Commit Graph

291 Commits

Author SHA1 Message Date
Sean Christopherson
84c679f5f5 KVM: x86/mmu: Set CR4.PKE/LA57 in MMU role iff long mode is active
Don't set cr4_pke or cr4_la57 in the MMU role if long mode isn't active,
which is required for protection keys and 5-level paging to be fully
enabled.  Ignoring the bit avoids unnecessary reconfiguration on reuse,
and also means consumers of mmu_role don't need to manually check for
long mode.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-28-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:41 -04:00
Sean Christopherson
ca8d664f50 KVM: x86/mmu: Do not set paging-related bits in MMU role if CR0.PG=0
Don't set CR0/CR4/EFER bits in the MMU role if paging is disabled, paging
modifiers are irrelevant if there is no paging in the first place.
Somewhat arbitrarily clear gpte_is_8_bytes for shadow paging if paging is
disabled in the guest.  Again, there are no guest PTEs to process, so the
size is meaningless.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-27-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:41 -04:00
Sean Christopherson
6066772455 KVM: x86/mmu: Add accessors to query mmu_role bits
Add accessors via a builder macro for all mmu_role bits that track a CR0,
CR4, or EFER bit, abstracting whether the bits are in the base or the
extended role.

Future commits will switch to using mmu_role instead of vCPU state to
configure the MMU, i.e. there are about to be a large number of users.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-26-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:41 -04:00
Sean Christopherson
167f8a5cae KVM: x86/mmu: Rename "nxe" role bit to "efer_nx" for macro shenanigans
Rename "nxe" to "efer_nx" so that future macro magic can use the pattern
<reg>_<bit> for all CR0, CR4, and EFER bits that included in the role.
Using "efer_nx" also makes it clear that the role bit reflects EFER.NX,
not the NX bit in the corresponding PTE.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-25-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:41 -04:00
Sean Christopherson
8626c120ba KVM: x86/mmu: Use MMU's role_regs, not vCPU state, to compute mmu_role
Use the provided role_regs to calculate the mmu_role instead of pulling
bits from current vCPU state.  For some flows, e.g. nested TDP, the vCPU
state may not be correct (or relevant).

Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-24-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:40 -04:00
Sean Christopherson
cd6767c334 KVM: x86/mmu: Ignore CR0 and CR4 bits in nested EPT MMU role
Do not incorporate CR0/CR4 bits into the role for the nested EPT MMU, as
EPT behavior is not influenced by CR0/CR4.  Note, this is the guest_mmu,
(L1's EPT), not nested_mmu (L2's IA32 paging); the nested_mmu does need
CR0/CR4, and is initialized in a separate flow.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-23-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:40 -04:00
Sean Christopherson
af09897229 KVM: x86/mmu: Consolidate misc updates into shadow_mmu_init_context()
Consolidate the MMU metadata update calls to deduplicate code, and to
prep for future cleanup.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-22-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:40 -04:00
Sean Christopherson
594e91a100 KVM: x86/mmu: Add struct and helpers to retrieve MMU role bits from regs
Introduce "struct kvm_mmu_role_regs" to hold the register state that is
incorporated into the mmu_role.  For nested TDP, the register state that
is factored into the MMU isn't vCPU state; the dedicated struct will be
used to propagate the correct state throughout the flows without having
to pass multiple params, and also provides helpers for the various flag
accessors.

Intentionally make the new helpers cumbersome/ugly by prepending four
underscores.  In the not-too-distant future, it will be preferable to use
the mmu_role to query bits as the mmu_role can drop irrelevant bits
without creating contradictions, e.g. clearing CR4 bits when CR0.PG=0.
Reserve the clean helper names (no underscores) for the mmu_role.

Add a helper for vCPU conversion, which is the common case.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-21-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:40 -04:00
Sean Christopherson
d555f7057e KVM: x86/mmu: Grab shadow root level from mmu_role for shadow MMUs
Use the mmu_role to initialize shadow root level instead of assuming the
level of KVM's shadow root (host) is the same as that of the guest root,
or in the case of 32-bit non-PAE paging where KVM forces PAE paging.
For nested NPT, the shadow root level cannot be adapted to L1's NPT root
level and is instead always the TDP root level because NPT uses the
current host CR0/CR4/EFER, e.g. 64-bit KVM can't drop into 32-bit PAE to
shadow L1's NPT.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:39 -04:00
Sean Christopherson
16be1d1292 KVM: x86/mmu: Move nested NPT reserved bit calculation into MMU proper
Move nested NPT's invocation of reset_shadow_zero_bits_mask() into the
MMU proper and unexport said function.  Aside from dropping an export,
this is a baby step toward eliminating the call entirely by fixing the
shadow_root_level confusion.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-19-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:39 -04:00
Sean Christopherson
20f632bd00 KVM: x86: Read and pass all CR0/CR4 role bits to shadow MMU helper
Grab all CR0/CR4 MMU role bits from current vCPU state when initializing
a non-nested shadow MMU.  Extract the masks from kvm_post_set_cr{0,4}(),
as the CR0/CR4 update masks must exactly match the mmu_role bits, with
one exception (see below).  The "full" CR0/CR4 will be used by future
commits to initialize the MMU and its role, as opposed to the current
approach of pulling everything from vCPU, which is incorrect for certain
flows, e.g. nested NPT.

CR4.LA57 is an exception, as it can be toggled on VM-Exit (for L1's MMU)
but can't be toggled via MOV CR4 while long mode is active.  I.e. LA57
needs to be in the mmu_role, but technically doesn't need to be checked
by kvm_post_set_cr4().  However, the extra check is completely benign as
the hardware restrictions simply mean LA57 will never be _the_ cause of
a MMU reset during MOV CR4.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-18-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:39 -04:00
Sean Christopherson
18feaad3c6 KVM: x86/mmu: Drop smep_andnot_wp check from "uses NX" for shadow MMUs
Drop the smep_andnot_wp role check from the "uses NX" calculation now
that all non-nested shadow MMUs treat NX as used via the !TDP check.

The shadow MMU for nested NPT, which shares the helper, does not need to
deal with SMEP (or WP) as NPT walks are always "user" accesses and WP is
explicitly noted as being ignored:

  Table walks for guest page tables are always treated as user writes at
  the nested page table level.

  A table walk for the guest page itself is always treated as a user
  access at the nested page table level

  The host hCR0.WP bit is ignored under nested paging.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-17-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:39 -04:00
Sean Christopherson
dbc4739b6b KVM: x86: Fix sizes used to pass around CR0, CR4, and EFER
When configuring KVM's MMU, pass CR0 and CR4 as unsigned longs, and EFER
as a u64 in various flows (mostly MMU).  Passing the params as u32s is
functionally ok since all of the affected registers reserve bits 63:32 to
zero (enforced by KVM), but it's technically wrong.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-15-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:38 -04:00
Sean Christopherson
0337f585f5 KVM: x86/mmu: Rename unsync helper and update related comments
Rename mmu_need_write_protect() to mmu_try_to_unsync_pages() and update
a variety of related, stale comments.  Add several new comments to call
out subtle details, e.g. that upper-level shadow pages are write-tracked,
and that can_unsync is false iff KVM is in the process of synchronizing
pages.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:38 -04:00
Sean Christopherson
479a1efc81 KVM: x86/mmu: Drop the intermediate "transient" __kvm_sync_page()
Nove the kvm_unlink_unsync_page() call out of kvm_sync_page() and into
it's sole caller, and fold __kvm_sync_page() into kvm_sync_page() since
the latter becomes a pure pass-through.  There really should be no reason
for code to do a complete sync of a shadow page outside of the full
kvm_mmu_sync_roots(), e.g. the one use case that creeped in turned out to
be flawed and counter-productive.

Drop the stale comment about @sp->gfn needing to be write-protected, as
it directly contradicts the kvm_mmu_get_page() usage.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:38 -04:00
Sean Christopherson
07dc4f35a4 KVM: x86/mmu: comment on kvm_mmu_get_page's syncing of pages
Explain the usage of sync_page() in kvm_mmu_get_page(), which is
subtle in how and why it differs from mmu_sync_children().

Signed-off-by: Sean Christopherson <seanjc@google.com>
[Split out of a different patch by Sean. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:37 -04:00
Sean Christopherson
2640b08653 KVM: x86/mmu: WARN and zap SP when sync'ing if MMU role mismatches
When synchronizing a shadow page, WARN and zap the page if its mmu role
isn't compatible with the current MMU context, where "compatible" is an
exact match sans the bits that have no meaning in the overall MMU context
or will be explicitly overwritten during the sync.  Many of the helpers
used by sync_page() are specific to the current context, updating a SMM
vs. non-SMM shadow page would use the wrong memslots, updating L1 vs. L2
PTEs might work but would be extremely bizaree, and so on and so forth.

Drop the guard with respect to 8-byte vs. 4-byte PTEs in
__kvm_sync_page(), it was made useless when kvm_mmu_get_page() stopped
trying to sync shadow pages irrespective of the current MMU context.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:37 -04:00
Sean Christopherson
00a669780f KVM: x86/mmu: Use MMU role to check for matching guest page sizes
Originally, __kvm_sync_page used to check the cr4_pae bit in the role
to avoid zapping 4-byte kvm_mmu_pages when guest page size are 8-byte
or the other way round.  However, in commit 47c42e6b41 ("KVM: x86: fix
handling of role.cr4_pae and rename it to 'gpte_size'", 2019-03-28) it
was observed that this did not work for nested EPT, where the page table
size would be 8 bytes even if CR4.PAE=0.  (Note that the check still
has to be done for nested *NPT*, so it is not possible to use tdp_enabled
or similar).

Therefore, a hack was introduced to identify nested EPT shadow pages
and unconditionally call __kvm_sync_page() on them.  However, it is
possible to do without the hack to identify nested EPT shadow pages:
if EPT is active, there will be no shadow pages in non-EPT format,
and all of them will have gpte_is_8_bytes set to true; we can just
check the MMU role directly, and the test will always be true.

Even for non-EPT shadow MMUs, this test should really always be true
now that __kvm_sync_page() is called if and only if the role is an
exact match (kvm_mmu_get_page()) or is part of the current MMU context
(kvm_mmu_sync_roots()).  A future commit will convert the likely-pointless
check into a meaningful WARN to enforce that the mmu_roles of the current
context and the shadow page are compatible.

Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:37 -04:00
Sean Christopherson
ddc16abbba KVM: x86/mmu: Unconditionally zap unsync SPs when creating >4k SP at GFN
When creating a new upper-level shadow page, zap unsync shadow pages at
the same target gfn instead of attempting to sync the pages.  This fixes
a bug where an unsync shadow page could be sync'd with an incompatible
context, e.g. wrong smm, is_guest, etc... flags.  In practice, the bug is
relatively benign as sync_page() is all but guaranteed to fail its check
that the guest's desired gfn (for the to-be-sync'd page) matches the
current gfn associated with the shadow page.  I.e. kvm_sync_page() would
end up zapping the page anyways.

Alternatively, __kvm_sync_page() could be modified to explicitly verify
the mmu_role of the unsync shadow page is compatible with the current MMU
context.  But, except for this specific case, __kvm_sync_page() is called
iff the page is compatible, e.g. the transient sync in kvm_mmu_get_page()
requires an exact role match, and the call from kvm_sync_mmu_roots() is
only synchronizing shadow pages from the current MMU (which better be
compatible or KVM has problems).  And as described above, attempting to
sync shadow pages when creating an upper-level shadow page is unlikely
to succeed, e.g. zero successful syncs were observed when running Linux
guests despite over a million attempts.

Fixes: 9f1a122f97 ("KVM: MMU: allow more page become unsync at getting sp time")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-10-seanjc@google.com>
[Remove WARN_ON after __kvm_sync_page. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:37 -04:00
Sean Christopherson
6c032f12dd Revert "KVM: MMU: record maximum physical address width in kvm_mmu_extended_role"
Drop MAXPHYADDR from mmu_role now that all MMUs have their role
invalidated after a CPUID update.  Invalidating the role forces all MMUs
to re-evaluate the guest's MAXPHYADDR, and the guest's MAXPHYADDR can
only be changed only through a CPUID update.

This reverts commit de3ccd26fa.

Cc: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:36 -04:00
Sean Christopherson
63f5a1909f KVM: x86: Alert userspace that KVM_SET_CPUID{,2} after KVM_RUN is broken
Warn userspace that KVM_SET_CPUID{,2} after KVM_RUN "may" cause guest
instability.  Initialize last_vmentry_cpu to -1 and use it to detect if
the vCPU has been run at least once when its CPUID model is changed.

KVM does not correctly handle changes to paging related settings in the
guest's vCPU model after KVM_RUN, e.g. MAXPHYADDR, GBPAGES, etc...  KVM
could theoretically zap all shadow pages, but actually making that happen
is a mess due to lock inversion (vcpu->mutex is held).  And even then,
updating paging settings on the fly would only work if all vCPUs are
stopped, updated in concert with identical settings, then restarted.

To support running vCPUs with different vCPU models (that affect paging),
KVM would need to track all relevant information in kvm_mmu_page_role.
Note, that's the _page_ role, not the full mmu_role.  Updating mmu_role
isn't sufficient as a vCPU can reuse a shadow page translation that was
created by a vCPU with different settings and thus completely skip the
reserved bit checks (that are tied to CPUID).

Tracking CPUID state in kvm_mmu_page_role is _extremely_ undesirable as
it would require doubling gfn_track from a u16 to a u32, i.e. would
increase KVM's memory footprint by 2 bytes for every 4kb of guest memory.
E.g. MAXPHYADDR (6 bits), GBPAGES, AMD vs. INTEL = 1 bit, and SEV C-BIT
would all need to be tracked.

In practice, there is no remotely sane use case for changing any paging
related CPUID entries on the fly, so just sweep it under the rug (after
yelling at userspace).

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:36 -04:00
Sean Christopherson
49c6f8756c KVM: x86: Force all MMUs to reinitialize if guest CPUID is modified
Invalidate all MMUs' roles after a CPUID update to force reinitizliation
of the MMU context/helpers.  Despite the efforts of commit de3ccd26fa
("KVM: MMU: record maximum physical address width in kvm_mmu_extended_role"),
there are still a handful of CPUID-based properties that affect MMU
behavior but are not incorporated into mmu_role.  E.g. 1gb hugepage
support, AMD vs. Intel handling of bit 8, and SEV's C-Bit location all
factor into the guest's reserved PTE bits.

The obvious alternative would be to add all such properties to mmu_role,
but doing so provides no benefit over simply forcing a reinitialization
on every CPUID update, as setting guest CPUID is a rare operation.

Note, reinitializing all MMUs after a CPUID update does not fix all of
KVM's woes.  Specifically, kvm_mmu_page_role doesn't track the CPUID
properties, which means that a vCPU can reuse shadow pages that should
not exist for the new vCPU model, e.g. that map GPAs that are now illegal
(due to MAXPHYADDR changes) or that set bits that are now reserved
(PAGE_SIZE for 1gb pages), etc...

Tracking the relevant CPUID properties in kvm_mmu_page_role would address
the majority of problems, but fully tracking that much state in the
shadow page role comes with an unpalatable cost as it would require a
non-trivial increase in KVM's memory footprint.  The GBPAGES case is even
worse, as neither Intel nor AMD provides a way to disable 1gb hugepage
support in the hardware page walker, i.e. it's a virtualization hole that
can't be closed when using TDP.

In other words, resetting the MMU after a CPUID update is largely a
superficial fix.  But, it will allow reverting the tracking of MAXPHYADDR
in the mmu_role, and that case in particular needs to mostly work because
KVM's shadow_root_level depends on guest MAXPHYADDR when 5-level paging
is supported.  For cases where KVM botches guest behavior, the damage is
limited to that guest.  But for the shadow_root_level, a misconfigured
MMU can cause KVM to incorrectly access memory, e.g. due to walking off
the end of its shadow page tables.

Fixes: 7dcd575520 ("x86/kvm/mmu: check if tdp/shadow MMU reconfiguration is needed")
Cc: Yu Zhang <yu.c.zhang@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:36 -04:00
Sean Christopherson
f71a53d118 Revert "KVM: x86/mmu: Drop kvm_mmu_extended_role.cr4_la57 hack"
Restore CR4.LA57 to the mmu_role to fix an amusing edge case with nested
virtualization.  When KVM (L0) is using TDP, CR4.LA57 is not reflected in
mmu_role.base.level because that tracks the shadow root level, i.e. TDP
level.  Normally, this is not an issue because LA57 can't be toggled
while long mode is active, i.e. the guest has to first disable paging,
then toggle LA57, then re-enable paging, thus ensuring an MMU
reinitialization.

But if L1 is crafty, it can load a new CR4 on VM-Exit and toggle LA57
without having to bounce through an unpaged section.  L1 can also load a
new CR3 on exit, i.e. it doesn't even need to play crazy paging games, a
single entry PML5 is sufficient.  Such shenanigans are only problematic
if L0 and L1 use TDP, otherwise L1 and L2 share an MMU that gets
reinitialized on nested VM-Enter/VM-Exit due to mmu_role.base.guest_mode.

Note, in the L2 case with nested TDP, even though L1 can switch between
L2s with different LA57 settings, thus bypassing the paging requirement,
in that case KVM's nested_mmu will track LA57 in base.level.

This reverts commit 8053f924ca.

Fixes: 8053f924ca ("KVM: x86/mmu: Drop kvm_mmu_extended_role.cr4_la57 hack")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:36 -04:00
Sean Christopherson
112022bdb5 KVM: x86/mmu: Treat NX as used (not reserved) for all !TDP shadow MMUs
Mark NX as being used for all non-nested shadow MMUs, as KVM will set the
NX bit for huge SPTEs if the iTLB mutli-hit mitigation is enabled.
Checking the mitigation itself is not sufficient as it can be toggled on
at any time and KVM doesn't reset MMU contexts when that happens.  KVM
could reset the contexts, but that would require purging all SPTEs in all
MMUs, for no real benefit.  And, KVM already forces EFER.NX=1 when TDP is
disabled (for WP=0, SMEP=1, NX=0), so technically NX is never reserved
for shadow MMUs.

Fixes: b8e8c8303f ("kvm: mmu: ITLB_MULTIHIT mitigation")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 18:00:35 -04:00
Colin Ian King
31c6565700 KVM: x86/mmu: Fix uninitialized boolean variable flush
In the case where kvm_memslots_have_rmaps(kvm) is false the boolean
variable flush is not set and is uninitialized.  If is_tdp_mmu_enabled(kvm)
is true then the call to kvm_tdp_mmu_zap_collapsible_sptes passes the
uninitialized value of flush into the call. Fix this by initializing
flush to false.

Addresses-Coverity: ("Uninitialized scalar variable")
Fixes: e2209710cc ("KVM: x86/mmu: Skip rmap operations if rmaps not allocated")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622150912.23429-1-colin.king@canonical.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24 04:31:16 -04:00
David Matlack
0485cf8dbe KVM: x86/mmu: Remove redundant root_hpa checks
The root_hpa checks below the top-level check in kvm_mmu_page_fault are
theoretically redundant since there is no longer a way for the root_hpa
to be reset during a page fault. The details of why are described in
commit ddce620821 ("KVM: x86/mmu: Move root_hpa validity checks to top
of page fault handler")

__direct_map, kvm_tdp_mmu_map, and get_mmio_spte are all only reachable
through kvm_mmu_page_fault, therefore their root_hpa checks are
redundant.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210617231948.2591431-5-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-18 06:45:47 -04:00
David Matlack
63c0cac938 KVM: x86/mmu: Refactor is_tdp_mmu_root into is_tdp_mmu
This change simplifies the call sites slightly and also abstracts away
the implementation detail of looking at root_hpa as the mechanism for
determining if the mmu is the TDP MMU.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210617231948.2591431-4-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-18 06:45:46 -04:00
David Matlack
0b873fd7fb KVM: x86/mmu: Remove redundant is_tdp_mmu_enabled check
This check is redundant because the root shadow page will only be a TDP
MMU page if is_tdp_mmu_enabled() returns true, and is_tdp_mmu_enabled()
never changes for the lifetime of a VM.

It's possible that this check was added for performance reasons but it
is unlikely that it is useful in practice since to_shadow_page() is
cheap. That being said, this patch also caches the return value of
is_tdp_mmu_root() in direct_page_fault() since there's no reason to
duplicate the call so many times, so performance is not a concern.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210617231948.2591431-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-18 06:45:46 -04:00
Sean Christopherson
ade74e1433 KVM: x86/mmu: Grab nx_lpage_splits as an unsigned long before division
Snapshot kvm->stats.nx_lpage_splits into a local unsigned long to avoid
64-bit division on 32-bit kernels.  Casting to an unsigned long is safe
because the maximum number of shadow pages, n_max_mmu_pages, is also an
unsigned long, i.e. KVM will start recycling shadow pages before the
number of splits can exceed a 32-bit value.

  ERROR: modpost: "__udivdi3" [arch/x86/kvm/kvm.ko] undefined!

Fixes: 7ee093d4f3f5 ("KVM: switch per-VM stats to u64")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210615162905.2132937-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:10:18 -04:00
Sean Christopherson
c906066288 KVM: x86: Drop pointless @reset_roots from kvm_init_mmu()
Remove the @reset_roots param from kvm_init_mmu(), the one user,
kvm_mmu_reset_context() has already unloaded the MMU and thus freed and
invalidated all roots.  This also happens to be why the reset_roots=true
paths doesn't leak roots; they're already invalid.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:09:54 -04:00
Sean Christopherson
25b62c6274 KVM: nVMX: Free only guest_mode (L2) roots on INVVPID w/o EPT
When emulating INVVPID for L1, free only L2+ roots, using the guest_mode
tag in the MMU role to identify L2+ roots.  From L1's perspective, its
own TLB entries use VPID=0, and INVVPID is not requied to invalidate such
entries.  Per Intel's SDM, INVVPID _may_ invalidate entries with VPID=0,
but it is not required to do so.

Cc: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:09:53 -04:00
Sean Christopherson
b512910039 KVM: x86: Drop skip MMU sync and TLB flush params from "new PGD" helpers
Drop skip_mmu_sync and skip_tlb_flush from __kvm_mmu_new_pgd() now that
all call sites unconditionally skip both the sync and flush.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:09:52 -04:00
Sean Christopherson
d2e5601907 KVM: nSVM: Move TLB flushing logic (or lack thereof) to dedicated helper
Introduce nested_svm_transition_tlb_flush() and use it force an MMU sync
and TLB flush on nSVM VM-Enter and VM-Exit instead of sneaking the logic
into the __kvm_mmu_new_pgd() call sites.  Add a partial todo list to
document issues that need to be addressed before the unconditional sync
and flush can be modified to look more like nVMX's logic.

In addition to making nSVM's forced flushing more overt (guess who keeps
losing track of it), the new helper brings further convergence between
nSVM and nVMX, and also sets the stage for dropping the "skip" params
from __kvm_mmu_new_pgd().

Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:09:52 -04:00
Ben Gardon
d501f747ef KVM: x86/mmu: Lazily allocate memslot rmaps
If the TDP MMU is in use, wait to allocate the rmaps until the shadow
MMU is actually used. (i.e. a nested VM is launched.) This saves memory
equal to 0.2% of guest memory in cases where the TDP MMU is used and
there are no nested guests involved.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210518173414.450044-8-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:09:27 -04:00
Ben Gardon
e2209710cc KVM: x86/mmu: Skip rmap operations if rmaps not allocated
If only the TDP MMU is being used to manage the memory mappings for a VM,
then many rmap operations can be skipped as they are guaranteed to be
no-ops. This saves some time which would be spent on the rmap operation.
It also avoids acquiring the MMU lock in write mode for many operations.

This makes it safe to run the VM without rmaps allocated, when only
using the TDP MMU and sets the stage for waiting to allocate the rmaps
until they're needed.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210518173414.450044-7-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:09:26 -04:00
Ben Gardon
a255740876 KVM: x86/mmu: Add a field to control memslot rmap allocation
Add a field to control whether new memslots should have rmaps allocated
for them. As of this change, it's not safe to skip allocating rmaps, so
the field is always set to allocate rmaps. Future changes will make it
safe to operate without rmaps, using the TDP MMU. Then further changes
will allow the rmaps to be allocated lazily when needed for nested
oprtation.

No functional change expected.

Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210518173414.450044-6-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:09:26 -04:00
Keqian Zhu
8921291980 KVM: x86: Do not write protect huge page in initially-all-set mode
Currently, when dirty logging is started in initially-all-set mode,
we write protect huge pages to prepare for splitting them into
4K pages, and leave normal pages untouched as the logging will
be enabled lazily as dirty bits are cleared.

However, enabling dirty logging lazily is also feasible for huge pages.
This not only reduces the time of start dirty logging, but it also
greatly reduces side-effect on guest when there is high dirty rate.

Signed-off-by: Keqian Zhu <zhukeqian1@huawei.com>
Message-Id: <20210429034115.35560-3-zhukeqian1@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:09:25 -04:00
Keqian Zhu
3ad9356209 KVM: x86: Support write protecting only large pages
Prepare for write protecting large page lazily during dirty log tracking,
for which we will only need to write protect gfns at large page
granularity.

No functional or performance change expected.

Signed-off-by: Keqian Zhu <zhukeqian1@huawei.com>
Message-Id: <20210429034115.35560-2-zhukeqian1@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:09:25 -04:00
Shaokun Zhang
a9d6496d66 KVM: x86/mmu: Make is_nx_huge_page_enabled an inline function
Function 'is_nx_huge_page_enabled' is called only by kvm/mmu, so make
it as inline fucntion and remove the unnecessary declaration.

Cc: Ben Gardon <bgardon@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Shaokun Zhang <zhangshaokun@hisilicon.com>
Message-Id: <1622102271-63107-1-git-send-email-zhangshaokun@hisilicon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:09:23 -04:00
Sean Christopherson
654430efde KVM: x86/mmu: Calculate and check "full" mmu_role for nested MMU
Calculate and check the full mmu_role when initializing the MMU context
for the nested MMU, where "full" means the bits and pieces of the role
that aren't handled by kvm_calc_mmu_role_common().  While the nested MMU
isn't used for shadow paging, things like the number of levels in the
guest's page tables are surprisingly important when walking the guest
page tables.  Failure to reinitialize the nested MMU context if L2's
paging mode changes can result in unexpected and/or missed page faults,
and likely other explosions.

E.g. if an L1 vCPU is running both a 32-bit PAE L2 and a 64-bit L2, the
"common" role calculation will yield the same role for both L2s.  If the
64-bit L2 is run after the 32-bit PAE L2, L0 will fail to reinitialize
the nested MMU context, ultimately resulting in a bad walk of L2's page
tables as the MMU will still have a guest root_level of PT32E_ROOT_LEVEL.

  WARNING: CPU: 4 PID: 167334 at arch/x86/kvm/vmx/vmx.c:3075 ept_save_pdptrs+0x15/0xe0 [kvm_intel]
  Modules linked in: kvm_intel]
  CPU: 4 PID: 167334 Comm: CPU 3/KVM Not tainted 5.13.0-rc1-d849817d5673-reqs #185
  Hardware name: ASUS Q87M-E/Q87M-E, BIOS 1102 03/03/2014
  RIP: 0010:ept_save_pdptrs+0x15/0xe0 [kvm_intel]
  Code: <0f> 0b c3 f6 87 d8 02 00f
  RSP: 0018:ffffbba702dbba00 EFLAGS: 00010202
  RAX: 0000000000000011 RBX: 0000000000000002 RCX: ffffffff810a2c08
  RDX: ffff91d7bc30acc0 RSI: 0000000000000011 RDI: ffff91d7bc30a600
  RBP: ffff91d7bc30a600 R08: 0000000000000010 R09: 0000000000000007
  R10: 0000000000000000 R11: 0000000000000000 R12: ffff91d7bc30a600
  R13: ffff91d7bc30acc0 R14: ffff91d67c123460 R15: 0000000115d7e005
  FS:  00007fe8e9ffb700(0000) GS:ffff91d90fb00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 0000000000000000 CR3: 000000029f15a001 CR4: 00000000001726e0
  Call Trace:
   kvm_pdptr_read+0x3a/0x40 [kvm]
   paging64_walk_addr_generic+0x327/0x6a0 [kvm]
   paging64_gva_to_gpa_nested+0x3f/0xb0 [kvm]
   kvm_fetch_guest_virt+0x4c/0xb0 [kvm]
   __do_insn_fetch_bytes+0x11a/0x1f0 [kvm]
   x86_decode_insn+0x787/0x1490 [kvm]
   x86_decode_emulated_instruction+0x58/0x1e0 [kvm]
   x86_emulate_instruction+0x122/0x4f0 [kvm]
   vmx_handle_exit+0x120/0x660 [kvm_intel]
   kvm_arch_vcpu_ioctl_run+0xe25/0x1cb0 [kvm]
   kvm_vcpu_ioctl+0x211/0x5a0 [kvm]
   __x64_sys_ioctl+0x83/0xb0
   do_syscall_64+0x40/0xb0
   entry_SYSCALL_64_after_hwframe+0x44/0xae

Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Fixes: bf627a9288 ("x86/kvm/mmu: check if MMU reconfiguration is needed in init_kvm_nested_mmu()")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210610220026.1364486-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-11 11:54:49 -04:00
Sean Christopherson
03ca4589fa KVM: x86: Prevent KVM SVM from loading on kernels with 5-level paging
Disallow loading KVM SVM if 5-level paging is supported.  In theory, NPT
for L1 should simply work, but there unknowns with respect to how the
guest's MAXPHYADDR will be handled by hardware.

Nested NPT is more problematic, as running an L1 VMM that is using
2-level page tables requires stacking single-entry PDP and PML4 tables in
KVM's NPT for L2, as there are no equivalent entries in L1's NPT to
shadow.  Barring hardware magic, for 5-level paging, KVM would need stack
another layer to handle PML5.

Opportunistically rename the lm_root pointer, which is used for the
aforementioned stacking when shadowing 2-level L1 NPT, to pml4_root to
call out that it's specifically for PML4.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210505204221.1934471-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-05-07 06:06:21 -04:00
Linus Torvalds
152d32aa84 ARM:
- Stage-2 isolation for the host kernel when running in protected mode
 
 - Guest SVE support when running in nVHE mode
 
 - Force W^X hypervisor mappings in nVHE mode
 
 - ITS save/restore for guests using direct injection with GICv4.1
 
 - nVHE panics now produce readable backtraces
 
 - Guest support for PTP using the ptp_kvm driver
 
 - Performance improvements in the S2 fault handler
 
 x86:
 
 - Optimizations and cleanup of nested SVM code
 
 - AMD: Support for virtual SPEC_CTRL
 
 - Optimizations of the new MMU code: fast invalidation,
   zap under read lock, enable/disably dirty page logging under
   read lock
 
 - /dev/kvm API for AMD SEV live migration (guest API coming soon)
 
 - support SEV virtual machines sharing the same encryption context
 
 - support SGX in virtual machines
 
 - add a few more statistics
 
 - improved directed yield heuristics
 
 - Lots and lots of cleanups
 
 Generic:
 
 - Rework of MMU notifier interface, simplifying and optimizing
 the architecture-specific code
 
 - Some selftests improvements
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmCJ13kUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroM1HAgAqzPxEtiTPTFeFJV5cnPPJ3dFoFDK
 y/juZJUQ1AOtvuWzzwuf175ewkv9vfmtG6rVohpNSkUlJYeoc6tw7n8BTTzCVC1b
 c/4Dnrjeycr6cskYlzaPyV6MSgjSv5gfyj1LA5UEM16LDyekmaynosVWY5wJhju+
 Bnyid8l8Utgz+TLLYogfQJQECCrsU0Wm//n+8TWQgLf1uuiwshU5JJe7b43diJrY
 +2DX+8p9yWXCTz62sCeDWNahUv8AbXpMeJ8uqZPYcN1P0gSEUGu8xKmLOFf9kR7b
 M4U1Gyz8QQbjd2lqnwiWIkvRLX6gyGVbq2zH0QbhUe5gg3qGUX7JjrhdDQ==
 =AXUi
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "This is a large update by KVM standards, including AMD PSP (Platform
  Security Processor, aka "AMD Secure Technology") and ARM CoreSight
  (debug and trace) changes.

  ARM:

   - CoreSight: Add support for ETE and TRBE

   - Stage-2 isolation for the host kernel when running in protected
     mode

   - Guest SVE support when running in nVHE mode

   - Force W^X hypervisor mappings in nVHE mode

   - ITS save/restore for guests using direct injection with GICv4.1

   - nVHE panics now produce readable backtraces

   - Guest support for PTP using the ptp_kvm driver

   - Performance improvements in the S2 fault handler

  x86:

   - AMD PSP driver changes

   - Optimizations and cleanup of nested SVM code

   - AMD: Support for virtual SPEC_CTRL

   - Optimizations of the new MMU code: fast invalidation, zap under
     read lock, enable/disably dirty page logging under read lock

   - /dev/kvm API for AMD SEV live migration (guest API coming soon)

   - support SEV virtual machines sharing the same encryption context

   - support SGX in virtual machines

   - add a few more statistics

   - improved directed yield heuristics

   - Lots and lots of cleanups

  Generic:

   - Rework of MMU notifier interface, simplifying and optimizing the
     architecture-specific code

   - a handful of "Get rid of oprofile leftovers" patches

   - Some selftests improvements"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (379 commits)
  KVM: selftests: Speed up set_memory_region_test
  selftests: kvm: Fix the check of return value
  KVM: x86: Take advantage of kvm_arch_dy_has_pending_interrupt()
  KVM: SVM: Skip SEV cache flush if no ASIDs have been used
  KVM: SVM: Remove an unnecessary prototype declaration of sev_flush_asids()
  KVM: SVM: Drop redundant svm_sev_enabled() helper
  KVM: SVM: Move SEV VMCB tracking allocation to sev.c
  KVM: SVM: Explicitly check max SEV ASID during sev_hardware_setup()
  KVM: SVM: Unconditionally invoke sev_hardware_teardown()
  KVM: SVM: Enable SEV/SEV-ES functionality by default (when supported)
  KVM: SVM: Condition sev_enabled and sev_es_enabled on CONFIG_KVM_AMD_SEV=y
  KVM: SVM: Append "_enabled" to module-scoped SEV/SEV-ES control variables
  KVM: SEV: Mask CPUID[0x8000001F].eax according to supported features
  KVM: SVM: Move SEV module params/variables to sev.c
  KVM: SVM: Disable SEV/SEV-ES if NPT is disabled
  KVM: SVM: Free sev_asid_bitmap during init if SEV setup fails
  KVM: SVM: Zero out the VMCB array used to track SEV ASID association
  x86/sev: Drop redundant and potentially misleading 'sev_enabled'
  KVM: x86: Move reverse CPUID helpers to separate header file
  KVM: x86: Rename GPR accessors to make mode-aware variants the defaults
  ...
2021-05-01 10:14:08 -07:00
Linus Torvalds
ea5bc7b977 Trivial cleanups and fixes all over the place.
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCGmYIACgkQEsHwGGHe
 VUr45w/8CSXr7MXaFBj4To0hTWJXSZyF6YGqlZOSJXFcFh4cWTNwfVOoFaV47aDo
 +HsCNTkGENcKhLrDUWDRiG/Uo46jxtOtl1vhq7U4pGemSYH871XWOKfb5k5XNMwn
 /uhaHMI4aEfd6bUFnF518NeyRIsD0BdqFj4tB7RbAiyFwdETDX9Tkj/uBKnQ4zon
 4tEDoXgThuK5YKK9zVQg5pa7aFp2zg1CAdX/WzBkS8BHVBPXSV0CF97AJYQOM/V+
 lUHv+BN3wp97GYHPQMPsbkNr8IuFoe2mIvikwjxg8iOFpzEU1G1u09XV9R+PXByX
 LclFTRqK/2uU5hJlcsBiKfUuidyErYMRYImbMAOREt2w0ogWVu2zQ7HkjVve25h1
 sQPwPudbAt6STbqRxvpmB3yoV4TCYwnF91FcWgEy+rcEK2BDsHCnScA45TsK5I1C
 kGR1K17pHXprgMZFPveH+LgxewB6smDv+HllxQdSG67LhMJXcs2Epz0TsN8VsXw8
 dlD3lGReK+5qy9FTgO7mY0xhiXGz1IbEdAPU4eRBgih13puu03+jqgMaMabvBWKD
 wax+BWJUrPtetwD5fBPhlS/XdJDnd8Mkv2xsf//+wT0s4p+g++l1APYxeB8QEehm
 Pd7Mvxm4GvQkfE13QEVIPYQRIXCMH/e9qixtY5SHUZDBVkUyFM0=
 =bO1i
 -----END PGP SIGNATURE-----

Merge tag 'x86_cleanups_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull misc x86 cleanups from Borislav Petkov:
 "Trivial cleanups and fixes all over the place"

* tag 'x86_cleanups_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  MAINTAINERS: Remove me from IDE/ATAPI section
  x86/pat: Do not compile stubbed functions when X86_PAT is off
  x86/asm: Ensure asm/proto.h can be included stand-alone
  x86/platform/intel/quark: Fix incorrect kernel-doc comment syntax in files
  x86/msr: Make locally used functions static
  x86/cacheinfo: Remove unneeded dead-store initialization
  x86/process/64: Move cpu_current_top_of_stack out of TSS
  tools/turbostat: Unmark non-kernel-doc comment
  x86/syscalls: Fix -Wmissing-prototypes warnings from COND_SYSCALL()
  x86/fpu/math-emu: Fix function cast warning
  x86/msr: Fix wr/rdmsr_safe_regs_on_cpu() prototypes
  x86: Fix various typos in comments, take #2
  x86: Remove unusual Unicode characters from comments
  x86/kaslr: Return boolean values from a function returning bool
  x86: Fix various typos in comments
  x86/setup: Remove unused RESERVE_BRK_ARRAY()
  stacktrace: Move documentation for arch_stack_walk_reliable() to header
  x86: Remove duplicate TSC DEADLINE MSR definitions
2021-04-26 09:25:47 -07:00
Ben Gardon
4c6654bd16 KVM: x86/mmu: Tear down roots before kvm_mmu_zap_all_fast returns
To avoid saddling a vCPU thread with the work of tearing down an entire
paging structure, take a reference on each root before they become
obsolete, so that the thread initiating the fast invalidation can tear
down the paging structure and (most likely) release the last reference.
As a bonus, this teardown can happen under the MMU lock in read mode so
as not to block the progress of vCPU threads.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-14-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 18:04:45 -04:00
Ben Gardon
b7cccd397f KVM: x86/mmu: Fast invalidation for TDP MMU
Provide a real mechanism for fast invalidation by marking roots as
invalid so that their reference count will quickly fall to zero
and they will be torn down.

One negative side affect of this approach is that a vCPU thread will
likely drop the last reference to a root and be saddled with the work of
tearing down an entire paging structure. This issue will be resolved in
a later commit.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-13-bgardon@google.com>
[Move the loop to tdp_mmu.c, otherwise compilation fails on 32-bit. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 18:04:35 -04:00
Ben Gardon
24ae4cfaaa KVM: x86/mmu: Allow enabling/disabling dirty logging under MMU read lock
To reduce lock contention and interference with page fault handlers,
allow the TDP MMU functions which enable and disable dirty logging
to operate under the MMU read lock.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-12-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 09:06:04 -04:00
Ben Gardon
2db6f772b5 KVM: x86/mmu: Allow zapping collapsible SPTEs to use MMU read lock
To reduce the impact of disabling dirty logging, change the TDP MMU
function which zaps collapsible SPTEs to run under the MMU read lock.
This way, page faults on zapped SPTEs can proceed in parallel with
kvm_mmu_zap_collapsible_sptes.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-11-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 09:06:04 -04:00
Ben Gardon
6103bc0740 KVM: x86/mmu: Allow zap gfn range to operate under the mmu read lock
To reduce lock contention and interference with page fault handlers,
allow the TDP MMU function to zap a GFN range to operate under the MMU
read lock.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-10-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 09:06:04 -04:00
Ben Gardon
2bdb3d84ce KVM: x86/mmu: Merge TDP MMU put and free root
kvm_tdp_mmu_put_root and kvm_tdp_mmu_free_root are always called
together, so merge the functions to simplify TDP MMU root refcounting /
freeing.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-5-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 09:05:24 -04:00
Ben Gardon
76eb54e7e7 KVM: x86/mmu: Move kvm_mmu_(get|put)_root to TDP MMU
The TDP MMU is almost the only user of kvm_mmu_get_root and
kvm_mmu_put_root. There is only one use of put_root in mmu.c for the
legacy / shadow MMU. Open code that one use and move the get / put
functions to the TDP MMU so they can be extended in future commits.

No functional change intended.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210401233736.638171-3-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-19 09:05:24 -04:00