While stress-testing online repair of btrees, I noticed periodic
assertion failures from the buffer cache about buffers with incorrect
DELWRI_Q state. Looking further, I observed this race between the AIL
trying to write out a btree block and repair zapping a btree block after
the fact:
AIL: Repair0:
pin buffer X
delwri_queue:
set DELWRI_Q
add to delwri list
stale buf X:
clear DELWRI_Q
does not clear b_list
free space X
commit
delwri_submit # oops
Worse yet, I discovered that running the same repair over and over in a
tight loop can result in a second race that cause data integrity
problems with the repair:
AIL: Repair0: Repair1:
pin buffer X
delwri_queue:
set DELWRI_Q
add to delwri list
stale buf X:
clear DELWRI_Q
does not clear b_list
free space X
commit
find free space X
get buffer
rewrite buffer
delwri_queue:
set DELWRI_Q
already on a list, do not add
commit
BAD: committed tree root before all blocks written
delwri_submit # too late now
I traced this to my own misunderstanding of how the delwri lists work,
particularly with regards to the AIL's buffer list. If a buffer is
logged and committed, the buffer can end up on that AIL buffer list. If
btree repairs are run twice in rapid succession, it's possible that the
first repair will invalidate the buffer and free it before the next time
the AIL wakes up. Marking the buffer stale clears DELWRI_Q from the
buffer state without removing the buffer from its delwri list. The
buffer doesn't know which list it's on, so it cannot know which lock to
take to protect the list for a removal.
If the second repair allocates the same block, it will then recycle the
buffer to start writing the new btree block. Meanwhile, if the AIL
wakes up and walks the buffer list, it will ignore the buffer because it
can't lock it, and go back to sleep.
When the second repair calls delwri_queue to put the buffer on the
list of buffers to write before committing the new btree, it will set
DELWRI_Q again, but since the buffer hasn't been removed from the AIL's
buffer list, it won't add it to the bulkload buffer's list.
This is incorrect, because the bulkload caller relies on delwri_submit
to ensure that all the buffers have been sent to disk /before/
committing the new btree root pointer. This ordering requirement is
required for data consistency.
Worse, the AIL won't clear DELWRI_Q from the buffer when it does finally
drop it, so the next thread to walk through the btree will trip over a
debug assertion on that flag.
To fix this, create a new function that waits for the buffer to be
removed from any other delwri lists before adding the buffer to the
caller's delwri list. By waiting for the buffer to clear both the
delwri list and any potential delwri wait list, we can be sure that
repair will initiate writes of all buffers and report all write errors
back to userspace instead of committing the new structure.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
included in this merge do the following:
- Kemeng Shi has contributed some compation maintenance work in the
series "Fixes and cleanups to compaction".
- Joel Fernandes has a patchset ("Optimize mremap during mutual
alignment within PMD") which fixes an obscure issue with mremap()'s
pagetable handling during a subsequent exec(), based upon an
implementation which Linus suggested.
- More DAMON/DAMOS maintenance and feature work from SeongJae Park i the
following patch series:
mm/damon: misc fixups for documents, comments and its tracepoint
mm/damon: add a tracepoint for damos apply target regions
mm/damon: provide pseudo-moving sum based access rate
mm/damon: implement DAMOS apply intervals
mm/damon/core-test: Fix memory leaks in core-test
mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval
- In the series "Do not try to access unaccepted memory" Adrian Hunter
provides some fixups for the recently-added "unaccepted memory' feature.
To increase the feature's checking coverage. "Plug a few gaps where
RAM is exposed without checking if it is unaccepted memory".
- In the series "cleanups for lockless slab shrink" Qi Zheng has done
some maintenance work which is preparation for the lockless slab
shrinking code.
- Qi Zheng has redone the earlier (and reverted) attempt to make slab
shrinking lockless in the series "use refcount+RCU method to implement
lockless slab shrink".
- David Hildenbrand contributes some maintenance work for the rmap code
in the series "Anon rmap cleanups".
- Kefeng Wang does more folio conversions and some maintenance work in
the migration code. Series "mm: migrate: more folio conversion and
unification".
- Matthew Wilcox has fixed an issue in the buffer_head code which was
causing long stalls under some heavy memory/IO loads. Some cleanups
were added on the way. Series "Add and use bdev_getblk()".
- In the series "Use nth_page() in place of direct struct page
manipulation" Zi Yan has fixed a potential issue with the direct
manipulation of hugetlb page frames.
- In the series "mm: hugetlb: Skip initialization of gigantic tail
struct pages if freed by HVO" has improved our handling of gigantic
pages in the hugetlb vmmemmep optimizaton code. This provides
significant boot time improvements when significant amounts of gigantic
pages are in use.
- Matthew Wilcox has sent the series "Small hugetlb cleanups" - code
rationalization and folio conversions in the hugetlb code.
- Yin Fengwei has improved mlock()'s handling of large folios in the
series "support large folio for mlock"
- In the series "Expose swapcache stat for memcg v1" Liu Shixin has
added statistics for memcg v1 users which are available (and useful)
under memcg v2.
- Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
prctl so that userspace may direct the kernel to not automatically
propagate the denial to child processes. The series is named "MDWE
without inheritance".
- Kefeng Wang has provided the series "mm: convert numa balancing
functions to use a folio" which does what it says.
- In the series "mm/ksm: add fork-exec support for prctl" Stefan Roesch
makes is possible for a process to propagate KSM treatment across
exec().
- Huang Ying has enhanced memory tiering's calculation of memory
distances. This is used to permit the dax/kmem driver to use "high
bandwidth memory" in addition to Optane Data Center Persistent Memory
Modules (DCPMM). The series is named "memory tiering: calculate
abstract distance based on ACPI HMAT"
- In the series "Smart scanning mode for KSM" Stefan Roesch has
optimized KSM by teaching it to retain and use some historical
information from previous scans.
- Yosry Ahmed has fixed some inconsistencies in memcg statistics in the
series "mm: memcg: fix tracking of pending stats updates values".
- In the series "Implement IOCTL to get and optionally clear info about
PTEs" Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits
us to atomically read-then-clear page softdirty state. This is mainly
used by CRIU.
- Hugh Dickins contributed the series "shmem,tmpfs: general maintenance"
- a bunch of relatively minor maintenance tweaks to this code.
- Matthew Wilcox has increased the use of the VMA lock over file-backed
page faults in the series "Handle more faults under the VMA lock". Some
rationalizations of the fault path became possible as a result.
- In the series "mm/rmap: convert page_move_anon_rmap() to
folio_move_anon_rmap()" David Hildenbrand has implemented some cleanups
and folio conversions.
- In the series "various improvements to the GUP interface" Lorenzo
Stoakes has simplified and improved the GUP interface with an eye to
providing groundwork for future improvements.
- Andrey Konovalov has sent along the series "kasan: assorted fixes and
improvements" which does those things.
- Some page allocator maintenance work from Kemeng Shi in the series
"Two minor cleanups to break_down_buddy_pages".
- In thes series "New selftest for mm" Breno Leitao has developed
another MM self test which tickles a race we had between madvise() and
page faults.
- In the series "Add folio_end_read" Matthew Wilcox provides cleanups
and an optimization to the core pagecache code.
- Nhat Pham has added memcg accounting for hugetlb memory in the series
"hugetlb memcg accounting".
- Cleanups and rationalizations to the pagemap code from Lorenzo
Stoakes, in the series "Abstract vma_merge() and split_vma()".
- Audra Mitchell has fixed issues in the procfs page_owner code's new
timestamping feature which was causing some misbehaviours. In the
series "Fix page_owner's use of free timestamps".
- Lorenzo Stoakes has fixed the handling of new mappings of sealed files
in the series "permit write-sealed memfd read-only shared mappings".
- Mike Kravetz has optimized the hugetlb vmemmap optimization in the
series "Batch hugetlb vmemmap modification operations".
- Some buffer_head folio conversions and cleanups from Matthew Wilcox in
the series "Finish the create_empty_buffers() transition".
- As a page allocator performance optimization Huang Ying has added
automatic tuning to the allocator's per-cpu-pages feature, in the series
"mm: PCP high auto-tuning".
- Roman Gushchin has contributed the patchset "mm: improve performance
of accounted kernel memory allocations" which improves their performance
by ~30% as measured by a micro-benchmark.
- folio conversions from Kefeng Wang in the series "mm: convert page
cpupid functions to folios".
- Some kmemleak fixups in Liu Shixin's series "Some bugfix about
kmemleak".
- Qi Zheng has improved our handling of memoryless nodes by keeping them
off the allocation fallback list. This is done in the series "handle
memoryless nodes more appropriately".
- khugepaged conversions from Vishal Moola in the series "Some
khugepaged folio conversions".
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZULEMwAKCRDdBJ7gKXxA
jhQHAQCYpD3g849x69DmHnHWHm/EHQLvQmRMDeYZI+nx/sCJOwEAw4AKg0Oemv9y
FgeUPAD1oasg6CP+INZvCj34waNxwAc=
=E+Y4
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Many singleton patches against the MM code. The patch series which are
included in this merge do the following:
- Kemeng Shi has contributed some compation maintenance work in the
series 'Fixes and cleanups to compaction'
- Joel Fernandes has a patchset ('Optimize mremap during mutual
alignment within PMD') which fixes an obscure issue with mremap()'s
pagetable handling during a subsequent exec(), based upon an
implementation which Linus suggested
- More DAMON/DAMOS maintenance and feature work from SeongJae Park i
the following patch series:
mm/damon: misc fixups for documents, comments and its tracepoint
mm/damon: add a tracepoint for damos apply target regions
mm/damon: provide pseudo-moving sum based access rate
mm/damon: implement DAMOS apply intervals
mm/damon/core-test: Fix memory leaks in core-test
mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval
- In the series 'Do not try to access unaccepted memory' Adrian
Hunter provides some fixups for the recently-added 'unaccepted
memory' feature. To increase the feature's checking coverage. 'Plug
a few gaps where RAM is exposed without checking if it is
unaccepted memory'
- In the series 'cleanups for lockless slab shrink' Qi Zheng has done
some maintenance work which is preparation for the lockless slab
shrinking code
- Qi Zheng has redone the earlier (and reverted) attempt to make slab
shrinking lockless in the series 'use refcount+RCU method to
implement lockless slab shrink'
- David Hildenbrand contributes some maintenance work for the rmap
code in the series 'Anon rmap cleanups'
- Kefeng Wang does more folio conversions and some maintenance work
in the migration code. Series 'mm: migrate: more folio conversion
and unification'
- Matthew Wilcox has fixed an issue in the buffer_head code which was
causing long stalls under some heavy memory/IO loads. Some cleanups
were added on the way. Series 'Add and use bdev_getblk()'
- In the series 'Use nth_page() in place of direct struct page
manipulation' Zi Yan has fixed a potential issue with the direct
manipulation of hugetlb page frames
- In the series 'mm: hugetlb: Skip initialization of gigantic tail
struct pages if freed by HVO' has improved our handling of gigantic
pages in the hugetlb vmmemmep optimizaton code. This provides
significant boot time improvements when significant amounts of
gigantic pages are in use
- Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code
rationalization and folio conversions in the hugetlb code
- Yin Fengwei has improved mlock()'s handling of large folios in the
series 'support large folio for mlock'
- In the series 'Expose swapcache stat for memcg v1' Liu Shixin has
added statistics for memcg v1 users which are available (and
useful) under memcg v2
- Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
prctl so that userspace may direct the kernel to not automatically
propagate the denial to child processes. The series is named 'MDWE
without inheritance'
- Kefeng Wang has provided the series 'mm: convert numa balancing
functions to use a folio' which does what it says
- In the series 'mm/ksm: add fork-exec support for prctl' Stefan
Roesch makes is possible for a process to propagate KSM treatment
across exec()
- Huang Ying has enhanced memory tiering's calculation of memory
distances. This is used to permit the dax/kmem driver to use 'high
bandwidth memory' in addition to Optane Data Center Persistent
Memory Modules (DCPMM). The series is named 'memory tiering:
calculate abstract distance based on ACPI HMAT'
- In the series 'Smart scanning mode for KSM' Stefan Roesch has
optimized KSM by teaching it to retain and use some historical
information from previous scans
- Yosry Ahmed has fixed some inconsistencies in memcg statistics in
the series 'mm: memcg: fix tracking of pending stats updates
values'
- In the series 'Implement IOCTL to get and optionally clear info
about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap
which permits us to atomically read-then-clear page softdirty
state. This is mainly used by CRIU
- Hugh Dickins contributed the series 'shmem,tmpfs: general
maintenance', a bunch of relatively minor maintenance tweaks to
this code
- Matthew Wilcox has increased the use of the VMA lock over
file-backed page faults in the series 'Handle more faults under the
VMA lock'. Some rationalizations of the fault path became possible
as a result
- In the series 'mm/rmap: convert page_move_anon_rmap() to
folio_move_anon_rmap()' David Hildenbrand has implemented some
cleanups and folio conversions
- In the series 'various improvements to the GUP interface' Lorenzo
Stoakes has simplified and improved the GUP interface with an eye
to providing groundwork for future improvements
- Andrey Konovalov has sent along the series 'kasan: assorted fixes
and improvements' which does those things
- Some page allocator maintenance work from Kemeng Shi in the series
'Two minor cleanups to break_down_buddy_pages'
- In thes series 'New selftest for mm' Breno Leitao has developed
another MM self test which tickles a race we had between madvise()
and page faults
- In the series 'Add folio_end_read' Matthew Wilcox provides cleanups
and an optimization to the core pagecache code
- Nhat Pham has added memcg accounting for hugetlb memory in the
series 'hugetlb memcg accounting'
- Cleanups and rationalizations to the pagemap code from Lorenzo
Stoakes, in the series 'Abstract vma_merge() and split_vma()'
- Audra Mitchell has fixed issues in the procfs page_owner code's new
timestamping feature which was causing some misbehaviours. In the
series 'Fix page_owner's use of free timestamps'
- Lorenzo Stoakes has fixed the handling of new mappings of sealed
files in the series 'permit write-sealed memfd read-only shared
mappings'
- Mike Kravetz has optimized the hugetlb vmemmap optimization in the
series 'Batch hugetlb vmemmap modification operations'
- Some buffer_head folio conversions and cleanups from Matthew Wilcox
in the series 'Finish the create_empty_buffers() transition'
- As a page allocator performance optimization Huang Ying has added
automatic tuning to the allocator's per-cpu-pages feature, in the
series 'mm: PCP high auto-tuning'
- Roman Gushchin has contributed the patchset 'mm: improve
performance of accounted kernel memory allocations' which improves
their performance by ~30% as measured by a micro-benchmark
- folio conversions from Kefeng Wang in the series 'mm: convert page
cpupid functions to folios'
- Some kmemleak fixups in Liu Shixin's series 'Some bugfix about
kmemleak'
- Qi Zheng has improved our handling of memoryless nodes by keeping
them off the allocation fallback list. This is done in the series
'handle memoryless nodes more appropriately'
- khugepaged conversions from Vishal Moola in the series 'Some
khugepaged folio conversions'"
[ bcachefs conflicts with the dynamically allocated shrinkers have been
resolved as per Stephen Rothwell in
https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/
with help from Qi Zheng.
The clone3 test filtering conflict was half-arsed by yours truly ]
* tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits)
mm/damon/sysfs: update monitoring target regions for online input commit
mm/damon/sysfs: remove requested targets when online-commit inputs
selftests: add a sanity check for zswap
Documentation: maple_tree: fix word spelling error
mm/vmalloc: fix the unchecked dereference warning in vread_iter()
zswap: export compression failure stats
Documentation: ubsan: drop "the" from article title
mempolicy: migration attempt to match interleave nodes
mempolicy: mmap_lock is not needed while migrating folios
mempolicy: alloc_pages_mpol() for NUMA policy without vma
mm: add page_rmappable_folio() wrapper
mempolicy: remove confusing MPOL_MF_LAZY dead code
mempolicy: mpol_shared_policy_init() without pseudo-vma
mempolicy trivia: use pgoff_t in shared mempolicy tree
mempolicy trivia: slightly more consistent naming
mempolicy trivia: delete those ancient pr_debug()s
mempolicy: fix migrate_pages(2) syscall return nr_failed
kernfs: drop shared NUMA mempolicy hooks
hugetlbfs: drop shared NUMA mempolicy pretence
mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets()
...
Convert xfs to use bdev_open_by_path() and pass the handle around.
CC: "Darrick J. Wong" <djwong@kernel.org>
CC: linux-xfs@vger.kernel.org
Acked-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20230927093442.25915-28-jack@suse.cz
Acked-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
In preparation for implementing lockless slab shrink, use new APIs to
dynamically allocate the xfs-buf shrinker, so that it can be freed
asynchronously via RCU. Then it doesn't need to wait for RCU read-side
critical section when releasing the struct xfs_buftarg.
Link: https://lkml.kernel.org/r/20230911094444.68966-35-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Chandan Babu R <chandan.babu@oracle.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Abhinav Kumar <quic_abhinavk@quicinc.com>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Anna Schumaker <anna@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Bob Peterson <rpeterso@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Carlos Llamas <cmllamas@google.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Chris Mason <clm@fb.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: Chuck Lever <cel@kernel.org>
Cc: Coly Li <colyli@suse.de>
Cc: Dai Ngo <Dai.Ngo@oracle.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Airlie <airlied@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Sterba <dsterba@suse.com>
Cc: Dmitry Baryshkov <dmitry.baryshkov@linaro.org>
Cc: Gao Xiang <hsiangkao@linux.alibaba.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Huang Rui <ray.huang@amd.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jeffle Xu <jefflexu@linux.alibaba.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Kirill Tkhai <tkhai@ya.ru>
Cc: Marijn Suijten <marijn.suijten@somainline.org>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Mike Snitzer <snitzer@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nadav Amit <namit@vmware.com>
Cc: Neil Brown <neilb@suse.de>
Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com>
Cc: Olga Kornievskaia <kolga@netapp.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rob Clark <robdclark@gmail.com>
Cc: Rob Herring <robh@kernel.org>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sean Paul <sean@poorly.run>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Song Liu <song@kernel.org>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Steven Price <steven.price@arm.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tomeu Vizoso <tomeu.vizoso@collabora.com>
Cc: Tom Talpey <tom@talpey.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Xuan Zhuo <xuanzhuo@linux.alibaba.com>
Cc: Yue Hu <huyue2@coolpad.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
After an online repair, we need to invalidate buffers representing the
blocks from the old metadata that we're replacing. It's possible that
parts of a tree that were previously cached in memory are no longer
accessible due to media failure or other corruption on interior nodes,
so repair figures out the old blocks from the reverse mapping data and
scans the buffer cache directly.
In other words, online fsck needs to find all the live (i.e. non-stale)
buffers for a range of fsblocks so that it can invalidate them.
Unfortunately, the current buffer cache code triggers asserts if the
rhashtable lookup finds a non-stale buffer of a different length than
the key we searched for. For regular operation this is desirable, but
for this repair procedure, we don't care since we're going to forcibly
stale the buffer anyway. Add an internal lookup flag to avoid the
assert. Skip buffers that are already XBF_STALE.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Darrick and Sachin Sant reported that xfs/435 and xfs/436 would
report an non-empty xfs_buf slab on module remove. This isn't easily
to reproduce, but is clearly a side effect of converting the buffer
caceh to RUC freeing and lockless lookups. Sachin bisected and
Darrick hit it when testing the patchset directly.
Turns out that the xfs_buf slab is not destroyed when all the other
XFS slab caches are destroyed. Instead, it's got it's own little
wrapper function that gets called separately, and so it doesn't have
an rcu_barrier() call in it that is needed to drain all the rcu
callbacks before the slab is destroyed.
Fix it by removing the xfs_buf_init/terminate wrappers that just
allocate and destroy the xfs_buf slab, and move them to the same
place that all the other slab caches are set up and destroyed.
Reported-and-tested-by: Sachin Sant <sachinp@linux.ibm.com>
Fixes: 298f342245 ("xfs: lockless buffer lookup")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Now that we have a standalone fast path for buffer lookup, we can
easily convert it to use rcu lookups. When we continually hammer the
buffer cache with trylock lookups, we end up with a huge amount of
lock contention on the per-ag buffer hash locks:
- 92.71% 0.05% [kernel] [k] xfs_inodegc_worker
- 92.67% xfs_inodegc_worker
- 92.13% xfs_inode_unlink
- 91.52% xfs_inactive_ifree
- 85.63% xfs_read_agi
- 85.61% xfs_trans_read_buf_map
- 85.59% xfs_buf_read_map
- xfs_buf_get_map
- 85.55% xfs_buf_find
- 72.87% _raw_spin_lock
- do_raw_spin_lock
71.86% __pv_queued_spin_lock_slowpath
- 8.74% xfs_buf_rele
- 7.88% _raw_spin_lock
- 7.88% do_raw_spin_lock
7.63% __pv_queued_spin_lock_slowpath
- 1.70% xfs_buf_trylock
- 1.68% down_trylock
- 1.41% _raw_spin_lock_irqsave
- 1.39% do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.76% _raw_spin_unlock
0.75% do_raw_spin_unlock
This is basically hammering the pag->pag_buf_lock from lots of CPUs
doing trylocks at the same time. Most of the buffer trylock
operations ultimately fail after we've done the lookup, so we're
really hammering the buf hash lock whilst making no progress.
We can also see significant spinlock traffic on the same lock just
under normal operation when lots of tasks are accessing metadata
from the same AG, so let's avoid all this by converting the lookup
fast path to leverages the rhashtable's ability to do rcu protected
lookups.
We avoid races with the buffer release path by using
atomic_inc_not_zero() on the buffer hold count. Any buffer that is
in the LRU will have a non-zero count, thereby allowing the lockless
fast path to be taken in most cache hit situations. If the buffer
hold count is zero, then it is likely going through the release path
so in that case we fall back to the existing lookup miss slow path.
The slow path will then do an atomic lookup and insert under the
buffer hash lock and hence serialise correctly against buffer
release freeing the buffer.
The use of rcu protected lookups means that buffer handles now need
to be freed by RCU callbacks (same as inodes). We still free the
buffer pages before the RCU callback - we won't be trying to access
them at all on a buffer that has zero references - but we need the
buffer handle itself to be present for the entire rcu protected read
side to detect a zero hold count correctly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Make it consistent with the other buffer APIs to return a error and
the buffer is placed in a parameter.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
5.18 w/ std=gnu11 compiled with gcc-5 wants flags stored in unsigned
fields to be unsigned. This manifests as a compiler error such as:
/kisskb/src/fs/xfs/./xfs_trace.h:432:2: note: in expansion of macro 'TP_printk'
TP_printk("dev %d:%d daddr 0x%llx bbcount 0x%x hold %d pincount %d "
^
/kisskb/src/fs/xfs/./xfs_trace.h:440:5: note: in expansion of macro '__print_flags'
__print_flags(__entry->flags, "|", XFS_BUF_FLAGS),
^
/kisskb/src/fs/xfs/xfs_buf.h:67:4: note: in expansion of macro 'XBF_UNMAPPED'
{ XBF_UNMAPPED, "UNMAPPED" }
^
/kisskb/src/fs/xfs/./xfs_trace.h:440:40: note: in expansion of macro 'XFS_BUF_FLAGS'
__print_flags(__entry->flags, "|", XFS_BUF_FLAGS),
^
/kisskb/src/fs/xfs/./xfs_trace.h: In function 'trace_raw_output_xfs_buf_flags_class':
/kisskb/src/fs/xfs/xfs_buf.h:46:23: error: initializer element is not constant
#define XBF_UNMAPPED (1 << 31)/* do not map the buffer */
as __print_flags assigns XFS_BUF_FLAGS to a structure that uses an
unsigned long for the flag. Since this results in the value of
XBF_UNMAPPED causing a signed integer overflow, the result is
technically undefined behavior, which gcc-5 does not accept as an
integer constant.
This is based on a patch from Arnd Bergman <arnd@arndb.de>.
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Prepare for the removal of the block_device from the DAX I/O path by
returning the partition offset from fs_dax_get_by_bdev so that the file
systems have it at hand for use during I/O.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Link: https://lore.kernel.org/r/20211129102203.2243509-26-hch@lst.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Hide the DAX device lookup from the xfs_super.c code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Link: https://lore.kernel.org/r/20211129102203.2243509-22-hch@lst.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
To stop external users from using b_bn as the disk address of the
buffer, rename it to b_rhash_key to indicate that it is the buffer
cache index, not the block number of the buffer. Code that needs the
disk address should use xfs_buf_daddr() to obtain it.
Do the rename and clean up any of the remaining internal b_bn users.
Also clean up any remaining b_bn cruft that is now unused.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Introduce a helper function xfs_buf_daddr() to extract the disk
address of the buffer from the struct xfs_buf. This will replace
direct accesses to bp->b_bn and bp->b_maps[0].bm_bn, as well as
the XFS_BUF_ADDR() macro.
This patch introduces the helper function and replaces all uses of
XFS_BUF_ADDR() as this is just a simple sed replacement.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The verifier checks explicitly for bp->b_bn == XFS_SB_DADDR to match
the primary superblock buffer, but the primary superblock is an
uncached buffer and so bp->b_bn is always -1ULL. Hence this never
matches and the CRC error reporting is wholly dependent on the
mount superblock already being populated so CRC feature checks pass
and allow CRC errors to be reported.
Fix this so that the primary superblock CRC error reporting is not
dependent on already having read the superblock into memory.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Since commit 59bb47985c ("mm, sl[aou]b: guarantee natural alignment
for kmalloc(power-of-two)"), the core slab code now guarantees slab
alignment in all situations sufficient for IO purposes (i.e. minimum
of 512 byte alignment of >= 512 byte sized heap allocations) we no
longer need the workaround in the XFS code to provide this
guarantee.
Replace the use of kmem_alloc_io() with kmem_alloc() or
kmem_alloc_large() appropriately, and remove the kmem_alloc_io()
interface altogether.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
->b_offset can only be non-zero for _XBF_KMEM backed buffers, so
remove all code dealing with it for page backed buffers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
[dgc: modified to fit this patchset]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
xfs_buftarg_drain() is called from xfs_log_quiesce() to ensure the
buffer cache is reclaimed during unmount. xfs_log_quiesce() is also
called from xfs_quiesce_attr(), however, which means that cache
state is completely drained for filesystem freeze and read-only
remount. While technically harmless, this is unnecessarily
heavyweight. Both freeze and read-only mounts allow reads and thus
allow population of the buffer cache. Therefore, the transitional
sequence in either case really only needs to quiesce outstanding
writes to return the filesystem in a generally read-only state.
Additionally, some users have reported that attempts to freeze a
filesystem concurrent with a read-heavy workload causes the freeze
process to stall for a significant amount of time. This occurs
because, as mentioned above, the read workload repopulates the
buffer LRU while the freeze task attempts to drain it.
To improve this situation, replace the drain in xfs_log_quiesce()
with a buffer I/O quiesce and lift the drain into the unmount path.
This removes buffer LRU reclaim from freeze and read-only [re]mount,
but ensures the LRU is still drained before the filesystem unmounts.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
xfs_wait_buftarg() is vaguely named and somewhat overloaded. Its
primary purpose is to reclaim all buffers from the provided buffer
target LRU. In preparation to refactor xfs_wait_buftarg() into
serialization and LRU draining components, rename the function and
associated helpers to something more descriptive. This patch has no
functional changes with the minor exception of renaming a
tracepoint.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Prepare for kernel xfs_buf alignment by getting rid of the
xfs_buf_t typedef from userspace.
[darrick: This patch is a port of a userspace patch removing the
xfs_buf_t typedef in preparation to make the userspace xfs_buf code
behave more like its kernel counterpart.]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Instead of poking deeply into buffer cache internals when re-reading the
superblock during log recovery just generalize _xfs_buf_read and use it
there. Note that we don't have to explicitly set up the ops as they
must be set from the initial read.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
No need to keep a separate helper for this logic.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
All unmarked dirty buffers should be in the AIL and have log items
attached to them. Hence when they are written, we will run a
callback to remove the item from the AIL if appropriate. Now that
we've handled inode and dquot buffers, all remaining calls are to
xfs_buf_iodone() and so we can hard code this rather than use an
indirect call.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Log recovery has it's own buffer write completion handler for
buffers that it directly recovers. Convert these to direct calls by
flagging these buffers as being log recovery buffers. The flag will
get cleared by the log recovery IO completion routine, so it will
never leak out of log recovery.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
dquot buffers always have write IO callbacks, so by marking them
directly we can avoid needing to attach ->b_iodone functions to
them. This avoids an indirect call, and makes future modifications
much simpler.
This is largely a rearrangement of the code at this point - no IO
completion functionality changes at this point, just how the
code is run is modified.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Inode buffers always have write IO callbacks, so by marking them
directly we can avoid needing to attach ->b_iodone functions to
them. This avoids an indirect call, and makes future modifications
much simpler.
While this is largely a refactor of existing functionality, we
broaden the scope of the flag to beyond where inodes are explicitly
attached because future changes need to know what type of log items
are attached to the buffer. Adding this buffer flag may invoke the
inode iodone callback in cases where it wouldn't have been
previously, but this is not a functional change because the callback
is identical to the normal buffer write iodone callback when inodes
are not attached.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
XFS has some inconsistent log message rate limiting with respect to
buffer alerts. The metadata I/O error notification uses the generic
ratelimited alert, the buffer push code uses a custom rate limit and
the similar quiesce time failure checks are not rate limited at all
(when they should be).
The custom rate limit defined in the buf item code is specifically
crafted for buffer alerts. It is more aggressive than generic rate
limiting code because it must accommodate a high frequency of I/O
error events in a relative short timeframe.
Factor out the custom rate limit state from the buf item code into a
per-buftarg rate limit so various alerts are limited based on the
target. Define a buffer alert helper function and use it for the
buffer alerts that are already ratelimited.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We use the same buffer I/O failure code in a few different places.
It's not much code, but it's not necessarily self-explanatory.
Factor it into a helper and document it in one place.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Add a helper function to get rid of buffers that we have decided are
corrupt after the verifiers have run. This function is intended to
handle metadata checks that can't happen in the verifiers, such as
inter-block relationship checking. Note that we now mark the buffer
stale so that it will not end up on any LRU and will be purged on
release.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Instead of passing __func__ to the error reporting function, let's use
the return address builtins so that the messages actually tell you which
higher level function called the buffer functions. This was previously
true for the xfs_buf_read callers, but not for the xfs_trans_read_buf
callers.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Convert xfs_buf_read() to return numeric error codes like most
everywhere else in xfs.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Convert xfs_buf_get_uncached() to return numeric error codes like most
everywhere else in xfs.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Convert xfs_buf_get() to return numeric error codes like most
everywhere else in xfs.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Convert xfs_buf_read_map() to return numeric error codes like most
everywhere else in xfs. This involves moving the open-coded logic that
reports metadata IO read / corruption errors and stales the buffer into
xfs_buf_read_map so that the logic is all in one place.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Convert xfs_buf_get_map() to return numeric error codes like most
everywhere else in xfs.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Needed to feed into the allocation routine to guarantee the memory
buffers we add to bios are correctly aligned to the underlying
device.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We need to derive the mount pointer from a buffer in a lot of place.
Add a direct pointer to short cut the pointer chasing.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This field is now always idential to b_length.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that the log code doesn't abuse this field any more we can
declare it as a struct xfs_buf_log_item pointer.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that the log code uses bios directly we can drop various special
cases in the buffer cache code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Assining a numerical value that is not close to the flags
defined near by is just asking for conflicts later on.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
There are several functions which take a flag argument that is
only ever passed as "0," so remove these arguments.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_buf_zero is the only caller of xfs_buf_iomove. Remove support
for copying from or to the buffer in xfs_buf_iomove and merge the
two functions.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Create a separate magic16 check function so that we don't run afoul of
static checkers.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
The inode btree verifier code is shared between the inode btree and
free inode btree because the underlying metadata formats are
essentially equivalent. A side effect of this is that the verifier
cannot determine whether a particular btree block should have an
inobt or finobt magic value.
This logic allows an unfortunate xfs_repair bug to escape detection
where certain level > 0 nodes of the finobt are stamped with inobt
magic by xfs_repair finobt reconstruction. This is fortunately not a
severe problem since the inode btree magic values do not contribute
to any changes in kernel behavior, but we do need a means to detect
and prevent this problem in the future.
Add a field to xfs_buf_ops to store the v4 and v5 superblock magic
values expected by a particular verifier. Add a helper to check an
on-disk magic value against the value expected by the verifier. Call
the helper from the shared [f]inobt verifier code for magic value
verification. This ensures that the inode btree blocks each have the
appropriate magic value based on specific tree type and superblock
version.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Improve the documentation around xfs_buf_ensure_ops, which is the
function that is responsible for cleaning up the b_ops state of buffers
that go through xrep_findroot_block but don't match anything. Rename
the function to xfs_buf_reverify.
[darrick: this started off as bfoster mods of a previous patch of mine,
but the renaming part is now this separate patch.]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
If a caller supplies buffer ops when trying to read a buffer and the
buffer doesn't already have buf ops assigned, ensure that the ops are
assigned to the buffer and the verifier is run on that buffer.
Note that current XFS code is careful to assign buffer ops after a
xfs_{trans_,}buf_read call in which ops were not supplied. However, we
should apply ops defensively in case there is ever a coding mistake; and
an upcoming repair patch will need to be able to read a buffer without
assigning buf ops.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The old lock tracking infrastructure in xfs using the b_last_holder
field seems to only be useful if you can get into the system with a
debugger; it seems that the existing tracepoints would be the way to
go these days, and this old infrastructure can be removed.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>