Implement support for CXL 3.0 8.2.9.8.5.1 Sanitize. This is done by
adding a security/sanitize' memdev sysfs file to trigger the operation
and extend the status file to make it poll(2)-capable for completion.
Unlike all other background commands, this is the only operation that
is special and monopolizes the device for long periods of time.
In addition to the traditional pmem security requirements, all regions
must also be offline in order to perform the operation. This permits
avoiding explicit global CPU cache management, relying instead on the
implict cache management when a region transitions between
CXL_CONFIG_ACTIVE and CXL_CONFIG_COMMIT.
The expectation is that userspace can use it such as:
cxl disable-memdev memX
echo 1 > /sys/bus/cxl/devices/memX/security/sanitize
cxl wait-sanitize memX
cxl enable-memdev memX
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Link: https://lore.kernel.org/r/20230612181038.14421-5-dave@stgolabs.net
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Sanitization is by definition a device-monopolizing operation, and thus
the timeslicing rules for other background commands do not apply.
As such handle this special case asynchronously and return immediately.
Subsequent changes will allow completion to be pollable from userspace
via a sysfs file interface.
For devices that don't support interrupts for notifying background
command completion, self-poll with the caveat that the poller can
be out of sync with the ready hardware, and therefore care must be
taken to not allow any new commands to go through until the poller
sees the hw completion. The poller takes the mbox_mutex to stabilize
the flagging, minimizing any runtime overhead in the send path to
check for 'sanitize_tmo' for uncommon poll scenarios.
The irq case is much simpler as hardware will serialize/error
appropriately.
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230612181038.14421-4-dave@stgolabs.net
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add a read-only sysfs file to display the security state
of a device (currently only pmem):
/sys/bus/cxl/devices/memX/security/state
This introduces a cxl_security_state structure that is
to be the placeholder for common CXL security features.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/20230612181038.14421-3-dave@stgolabs.net
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
For cases when the mailbox background operation is not complete,
do not "handle" the interrupt, as it was not from this device.
And furthermore there are no racy scenarios such as the hw being
out of sync with the driver and starting a new background op
behind its back.
Reported-by: Jonathan Cameron <Jonathan.Cameron@Huawei.com>
Fixes: ccadf1310f (cxl/mbox: Add background cmd handling machinery)
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230612181038.14421-2-dave@stgolabs.net
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
commit eb0764b822 ("cxl/port: Enable the HDM decoder capability for switch ports")
...was added on the observation of CXL memory not being accessible after
setting up a region on a "cold-plugged" device. A "cold-plugged" CXL
device is one that was not present at boot, so platform-firmware/BIOS
has no chance to set it up.
While it is true that the debug found the enable bit clear in the
host-bridge's instance of the global control register (CXL 3.0
8.2.4.19.2 CXL HDM Decoder Global Control Register), that bit is
described as:
"This bit is only applicable to CXL.mem devices and shall
return 0 on CXL Host Bridges and Upstream Switch Ports."
So it is meant to be zero, and further testing confirmed that this "fix"
had no effect on the failure. Revert it, and be more vigilant about
proposed fixes in the future. Since the original copied stable@, flag
this revert for stable@ as well.
Cc: <stable@vger.kernel.org>
Fixes: eb0764b822 ("cxl/port: Enable the HDM decoder capability for switch ports")
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168685882012.3475336.16733084892658264991.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Move the endpoint port that the cxl_mem driver establishes from drvdata
to a first class attribute. This is in preparation for device-memory
drivers reusing the CXL core for memory region management. Those drivers
need a type-safe method to retrieve their CXL port linkage. Leave
drvdata for private usage of the cxl_mem driver not external consumers
of a 'struct cxl_memdev' object.
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168679264292.3436160.3901392135863405807.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The current check for 256B Flit mode is incomplete and unnecessary. It
is incomplete because it fails to consider the link speed, or check for
CXL link capabilities. It is unnecessary because unconditionally
unmasking 256B Flit errors is a nop when 256B Flit operation is not
available.
Remove this check in preparation for creating a cxl_probe_link() helper
to centralize this detection.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168679263124.3436160.6228910132469454346.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Switch-level (mid-level) decoders between the platform root and an
endpoint can dynamically switch modes between HDM-H and HDM-D[B]
depending on which region they target. Use the region type to fixup each
decoder that gets allocated to map the given region.
Note that endpoint decoders are meant to determine the region type, so
warn if those ever need to be fixed up, but since it is possible to
continue do so.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168679262543.3436160.13053831955768440312.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for device-memory region creation, arrange for decoders
of CXL_DEVTYPE_DEVMEM memdevs to default to CXL_DECODER_DEVMEM for their
target type.
Revisit this if a device ever shows up that wants to offer mixed HDM-H
(Host-Only Memory) and HDM-DB support, or an CXL_DEVTYPE_DEVMEM device
that supports HDM-H.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168679261945.3436160.11673393474107374595.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for support for HDM-D and HDM-DB configuration
(device-memory, and device-memory with back-invalidate). Rename the current
type designators to use HOSTONLYMEM and DEVMEM as a suffix.
HDM-DB can be supported by devices that are not accelerators, so DEVMEM is
a more generic term for that case.
Fixup one location where this type value was open coded.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168679261369.3436160.7042443847605280593.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In support of the Linux CXL core scaling for a wider set of CXL devices,
allow for the creation of memdevs with some memory device capabilities
disabled. Specifically, allow for CXL devices outside of those claiming
to be compliant with the generic CXL memory device class code, like
vendor specific Type-2/3 devices that host CXL.mem. This implies, allow
for the creation of memdevs that only support component-registers, not
necessarily memory-device-registers (like mailbox registers). A memdev
derived from a CXL endpoint that does not support generic class code
expectations is tagged "CXL_DEVTYPE_DEVMEM", while a memdev derived from a
class-code compliant endpoint is tagged "CXL_DEVTYPE_CLASSMEM".
The primary assumption of a CXL_DEVTYPE_DEVMEM memdev is that it
optionally may not host a mailbox. Disable the command passthrough ioctl
for memdevs that are not CXL_DEVTYPE_CLASSMEM, and return empty strings
from memdev attributes associated with data retrieved via the
class-device-standard IDENTIFY command. Note that empty strings were
chosen over attribute visibility to maintain compatibility with shipping
versions of cxl-cli that expect those attributes to always be present.
Once cxl-cli has dropped that requirement this workaround can be
deprecated.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168679260782.3436160.7587293613945445365.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
'struct cxl_dev_state' makes too many assumptions about the capabilities
of a CXL device. In particular it assumes a CXL device has a mailbox and
all of the infrastructure and state that comes along with that.
In preparation for supporting accelerator / Type-2 devices that may not
have a mailbox and in general maintain a minimal core context structure,
make mailbox functionality a super-set of 'struct cxl_dev_state' with
'struct cxl_memdev_state'.
With this reorganization it allows for CXL devices that support HDM
decoder mapping, but not other general-expander / Type-3 capabilities,
to only enable that subset without the rest of the mailbox
infrastructure coming along for the ride.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168679260240.3436160.15520641540463704524.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
After Jonathan noticed [1] that 'struct cxl_dev_state' had a kernel-doc
entry without a corresponding struct attribute I ran the kernel-doc
script to see what else might be broken. Fix these warnings:
drivers/cxl/cxlmem.h:199: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst
* Event Interrupt Policy
drivers/cxl/cxlmem.h:224: warning: Function parameter or member 'buf' not described in 'cxl_event_state'
drivers/cxl/cxlmem.h:224: warning: Function parameter or member 'log_lock' not described in 'cxl_event_state'
Note that scripts/kernel-doc only finds missing kernel-doc entries. It
does not warn on too many kernel-doc entries, i.e. it did not catch the
fact that @info refers to a not present member.
Link: http://lore.kernel.org/r/20230606121054.000069e1@Huawei.com [1]
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168679259170.3436160.3686460404739136336.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The @map parameter to cxl_probe_X_registers() is filled in with the
mapping parameters of the register block. The @map parameter to
cxl_map_X_registers() only reads that information to perform the
mapping. Mark @map const for cxl_map_X_registers() to clarify that it is
only an input to those helpers.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168679258103.3436160.4941603739448763855.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Jonathan reports that failed attempts to reset a region (teardown its
HDM decoder configuration) mistakenly advance the state of the region
to "not committed". Revert to the previous state of the region on reset
failure so that the reset can be re-attempted.
Reported-by: Jonathan Cameron <Jonathan.Cameron@Huawei.com>
Closes: http://lore.kernel.org/r/20230316171441.0000205b@Huawei.com
Fixes: 176baefb2e ("cxl/hdm: Commit decoder state to hardware")
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168696507968.3590522.14484000711718573626.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
cxl_region_decode_reset() walks all the decoders associated with a given
region and disables them. Due to decoder ordering rules it is possible
that a switch in the topology notices that a given decoder can not be
shutdown before another region with a higher HPA is shutdown first. That
can leave the region in a partially committed state.
Capture that state in a new CXL_REGION_F_NEEDS_RESET flag and require
that a successful cxl_region_decode_reset() attempt must be completed
before cxl_region_probe() accepts the region.
This is a corollary for the bug that Jonathan identified in "CXL/region
: commit reset of out of order region appears to succeed." [1].
Cc: Jonathan Cameron <Jonathan.Cameron@Huawei.com>
Link: http://lore.kernel.org/r/20230316171441.0000205b@Huawei.com [1]
Fixes: 176baefb2e ("cxl/hdm: Commit decoder state to hardware")
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168696507423.3590522.16254212607926684429.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Vikram raised a concern with the theoretical case of a CPU sending
MemClnEvict to a device that is not prepared to receive. MemClnEvict is
a message that is sent after a CPU has taken ownership of a cacheline
from accelerator memory (HDM-DB). In the case of hotplug or HDM decoder
reconfiguration it is possible that the CPU is holding old contents for
a new device that has taken over the physical address range being cached
by the CPU.
To avoid this scenario, invalidate caches prior to tearing down an HDM
decoder configuration.
Now, this poses another problem that it is possible for something to
speculate into that space while the decode configuration is still up, so
to close that gap also invalidate prior to establish new contents behind
a given physical address range.
With this change the cache invalidation is now explicit and need not be
checked in cxl_region_probe(), and that obviates the need for
CXL_REGION_F_INCOHERENT.
Cc: Jonathan Cameron <Jonathan.Cameron@Huawei.com>
Fixes: d18bc74ace ("cxl/region: Manage CPU caches relative to DPA invalidation events")
Reported-by: Vikram Sethi <vsethi@nvidia.com>
Closes: http://lore.kernel.org/r/BYAPR12MB33364B5EB908BF7239BB996BBD53A@BYAPR12MB3336.namprd12.prod.outlook.com
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168696506886.3590522.4597053660991916591.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Same as for ports, also store the downstream port's Component Register
mappings, use struct cxl_dport for that.
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-16-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL capabilities are stored in the Component Registers. To use them,
the specific I/O ranges of the capabilities must be determined by
probing the registers. For this, the whole Component Register range
needs to be mapped temporarily to detect the offset and length of a
capability range.
In order to use more than one capability of a component (e.g. RAS and
HDM) the Component Register are probed and its mappings created
multiple times. This also causes overlapping I/O ranges as the whole
Component Register range must be mapped again while a capability's I/O
range is already mapped.
Different capabilities cannot be setup at the same time. E.g. the RAS
capability must be made available as soon as the PCI driver is bound,
the HDM decoder is setup later during port enumeration. Moreover,
during early setup it is still unknown if a certain capability is
needed. A central capability setup is therefore not possible,
capabilities must be individually enabled once needed during
initialization.
To avoid a duplicate register probe and overlapping I/O mappings, only
probe the Component Registers one time and store the Component
Register mapping in struct port. The stored mappings can be used later
to iomap the capability register range when enabling the capability,
which will be implemented in a follow-on patch.
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-15-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL RAS capabilities must be enabled and accessible as soon as the CXL
endpoint is detected in the PCI hierarchy and bound to the cxl_pci
driver. This needs to be independent of other modules such as cxl_port
or cxl_mem.
CXL RAS capabilities reside in the Component Registers. For an RCH
this is determined by probing RCRB which is implemented very late once
the CXL Memory Device is created.
Change this by moving the RCRB probe to the cxl_pci driver. Do this by
using a new introduced function cxl_pci_find_port() similar to
cxl_mem_find_port() to determine the involved dport by the endpoint's
PCI handle. Plug this into the existing cxl_pci_setup_regs() function
to setup Component Registers. Probe the RCRB in case the Component
Registers cannot be located through the CXL Register Locator
capability.
This unifies code and early sets up the Component Registers at the
same time for both, VH and RCH mode. Only the cxl_pci driver is
involved for this. This allows an early mapping of the CXL RAS
capability registers.
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-14-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In order to move the RCH dport component register setup to cxl_pci the
base address must be stored in CXL device state (cxlds) for both
modes, RCH and VH. Store it in cxlds->component_reg_phys and use it
for endpoint creation.
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-13-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
When probing the Component Registers in function cxl_probe_regs()
there are also checks for the existence of the HDM and RAS
capabilities. The checks may fail for components that do not implement
the HDM capability causing the Component Registers setup to fail too.
Remove the checks for a generalized use of cxl_probe_regs() and check
them directly before mapping the RAS or HDM capabilities. This allows
it to setup other Component Registers esp. of an RCH Downstream Port,
which will be implemented in a follow-on patch.
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-12-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The Component Register base address @component_reg_phys is no longer
used after the rework of the Component Register setup which now uses
struct member @comp_map instead. Remove the base address.
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-11-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
During a Host Bridge's downstream port enumeration the CHBS entries in
the CEDT table are parsed, its Component Register base address
extracted and then stored in struct cxl_dport. The CHBS may contain
either the RCRB (RCH mode) or the Host Bridge's Component Registers
(CHBCR, VH mode). The RCRB further contains the CXL downstream port
register base address, while in VH mode the CXL Downstream Switch
Ports are visible in the PCI hierarchy and the DP's component regs are
disovered using the CXL DVSEC register locator capability. The
Component Registers derived from the CHBS for both modes are different
and thus also must be treated differently. That is, in RCH mode, the
component regs base should be bound to the dport, but in VH mode to
the CXL host bridge's port object.
The current implementation stores the CHBCR in addition in struct
cxl_dport and copies it later from there to struct cxl_port. As a
result, the dport contains the wrong Component Registers base address
and, e.g. the RAS capability of a CXL Root Port cannot be detected.
To fix the CHBCR binding, attach it directly to the Host Bridge's
@cxl_port structure. Do this during port creation of the Host Bridge
in add_host_bridge_uport(). Factor out CHBS parsing code in
add_host_bridge_dport() and use it in both functions.
Co-developed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-10-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Just moving code to reorder functions to later share cxl_get_chbs()
with add_host_bridge_uport().
This makes changes in the next patch visible. No other changes at all.
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-9-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The endpoint implements component register setup code. Refactor it for
reuse with RCRB, downstream port, and upstream port setup.
Move PCI specifics from cxl_setup_regs() into cxl_pci_setup_regs().
Move cxl_setup_regs() into cxl/core/regs.c and export it. This also
includes supporting static functions cxl_map_registerblock(),
cxl_unmap_register_block() and cxl_probe_regs().
Co-developed-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-8-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The corresponding device of a register mapping is used for devm
operations and logging. For operations with struct cxl_register_map
the device needs to be kept track separately. To simpify the involved
function interfaces, add @dev to cxl_register_map.
While at it also reorder function arguments of cxl_map_device_regs()
and cxl_map_component_regs() to have the object @cxl_register_map
first.
As a result a bunch of functions are available to be used with a
@cxl_register_map object.
This patch is in preparation of reworking the component register setup
code.
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-7-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
For symmetry with the recent rename of ->dport_dev for a 'struct
cxl_dport', add the "_dev" suffix to the ->uport property of a 'struct
cxl_port'. These devices represent the downstream-port-device and
upstream-port-device respectively in the CXL/PCIe topology.
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-6-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reading code like dport->dport does not immediately suggest that this
points to the corresponding device structure of the dport. Rename
struct member @dport to @dport_dev.
While at it, also rename @new argument of add_dport() to @dport. This
better describes the variable as a dport (e.g. new->dport becomes to
dport->dport_dev).
Co-developed-by: Terry Bowman <terry.bowman@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Signed-off-by: Robert Richter <rrichter@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-5-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Prepare cxl_probe_rcrb() for retrieving more than just the component
register block. The RCH AER handling code wants to get back to the AER
capability that happens to be MMIO mapped rather then configuration
cycles.
Move RCRB specific downstream port data, like the RCRB base and the
AER capability offset, into its own data structure ('struct
cxl_rcrb_info') for cxl_probe_rcrb() to fill. Extend 'struct
cxl_dport' to include a 'struct cxl_rcrb_info' attribute.
This centralizes all RCRB scanning in one routine.
Co-developed-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-4-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The RCRB is extracted already during ACPI CEDT table parsing while the
data of this is needed not earlier than dport creation. This
implementation comes with drawbacks: During ACPI table scan there is
already MMIO access including mapping and unmapping, but only ACPI
data should be collected here. The collected data must be transferred
through a couple of interfaces until it is finally consumed when
creating the dport. This causes complex data structures and function
interfaces. Additionally, RCRB parsing will be extended to also
extract AER data, it would be much easier do this at a later point
during port and dport creation when the data structures are available
to hold that data.
To simplify all that, probe the RCRB at a later point during RCH
downstream port creation. Change ACPI table parser to only extract the
base address of either the component registers or the RCRB. Parse and
extract the RCRB in devm_cxl_add_rch_dport().
This is in preparation to centralize all RCRB scanning.
Signed-off-by: Robert Richter <rrichter@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230622205523.85375-2-terry.bowman@amd.com
Co-developed-by: Dan Williams <dan.j.williams@intel.com>
Link: https://lore.kernel.org/r/20230622205523.85375-3-terry.bowman@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL PMU devices can be found from entries in the Register
Locator DVSEC.
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230526095824.16336-4-Jonathan.Cameron@huawei.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Until the recently release CXL 3.0 specification, there
was only ever one instance of any given register block pointed
to by the Register Block Locator DVSEC. Now, the specification allows
for multiple CXL PMU instances, each with their own register block.
To enable this add cxl_find_regblock_instance() that takes an index
parameter and use that to implement cxl_count_regblock() and
cxl_find_regblock().
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/20230526095824.16336-3-Jonathan.Cameron@huawei.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
When media is not ready do not assume that the capacity information from
the identify command is valid, i.e. ->total_bytes
->partition_align_bytes ->{volatile,persistent}_only_bytes. Explicitly
zero out the capacity resources and exit early.
Given zero-init of those fields this patch is functionally equivalent to
the prior state, but it improves readability and robustness going
forward.
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168506118166.3004974.13523455340007852589.stgit@djiang5-mobl3
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
This adds support for handling background operations, as defined in
the CXL 3.0 spec. Commands that can take too long (over ~2 seconds)
can run in the background asynchronously (to the hardware).
The driver will deal with such commands synchronously, blocking all
other incoming commands for a specified period of time, allowing
time-slicing the command such that the caller can send incremental
requests to avoid monopolizing the driver/device. Any out of sync
(timeout) between the driver and hardware is just disregarded as
an invalid state until the next successful submission. Such timeouts
are considered a rare occurrence, either a real device problem or a
driver issue that needs to reduce the size of the background operation
to fit the timeout.
On devices where mbox interrupts are supported, this will still use
a poller that will wakeup in the specified wait intervals. The irq
handler will simply awake the blocked cmd, which is also safe vs a
task that is either waking (timing out) or already awoken. Similarly
any irq setup error during the probing falls back to polling, thus
avoids unnecessarily erroring out.
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Link: https://lore.kernel.org/r/20230523170927.20685-5-dave@stgolabs.net
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Factor out common functionality/semantics for cxl shared interrupts
into a new helper on top of devm_request_irq().
Suggested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Link: https://lore.kernel.org/r/20230523170927.20685-4-dave@stgolabs.net
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Move the cxl_alloc_irq_vectors() call further up in the probing
in order to allow for mailbox interrupt usage. No change in
semantics.
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Link: https://lore.kernel.org/r/20230523170927.20685-3-dave@stgolabs.net
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In devm_cxl_add_port() the port creation may fail and its associated
pointer does not contain a valid address. During error message
generation this invalid port address is used. Fix that wrong address
access.
Fixes: f3cd264c4e ("cxl: Unify debug messages when calling devm_cxl_add_port()")
Signed-off-by: Robert Richter <rrichter@amd.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/20230519215436.3394532-1-rrichter@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Move cxl_await_media_ready() to cxl_pci probe before driver starts issuing
IDENTIFY and retrieving memory device information to ensure that the
device is ready to provide the information. Allow cxl_pci_probe() to succeed
even if media is not ready. Cache the media failure in cxlds and don't ask
the device for any media information.
The rationale for proceeding in the !media_ready case is to allow for
mailbox operations to interrogate and/or remediate the device. After
media is repaired then rebinding the cxl_pci driver is expected to
restart the capacity scan.
Suggested-by: Dan Williams <dan.j.williams@intel.com>
Fixes: b39cb1052a ("cxl/mem: Register CXL memX devices")
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168445310026.3251520.8124296540679268206.stgit@djiang5-mobl3
[djbw: fixup cxl_test]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The Memory_Info_Valid bit (CXL 3.0 8.1.3.8.2) indicates that the CXL
Range Size High and Size Low registers are valid. The bit must be set
within 1 second of reset deassertion to the device. Check valid bit
before we check the Memory_Active bit when waiting for
cxl_await_media_ready() to ensure that the memory info is valid for
consumption. Also ensures both DVSEC ranges 1 and 2 are ready if DVSEC
Capability indicates they are both supported.
Fixes: 523e594d9c ("cxl/pci: Implement wait for media active")
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168444687469.3134781.11033518965387297327.stgit@djiang5-mobl3
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Derick noticed, when testing hot plug, that hot-add behaves nominally
after a removal. However, if the hot-add is done without a prior
removal, CXL.mem accesses fail. It turns out that the original
implementation of the port driver and region programming wrongly assumed
that platform-firmware always enables the host-bridge HDM decoder
capability. Add support turning on switch-level HDM decoders in the case
where platform-firmware has not.
The implementation is careful to only arrange for the enable to be
undone if the current instance of the driver was the one that did the
enable. This is to interoperate with platform-firmware that may expect
CXL.mem to remain active after the driver is shutdown. This comes at the
cost of potentially not shutting down the enable on kexec flows, but it
is mitigated by the fact that the related HDM decoders still need to be
enabled on an individual basis.
Cc: <stable@vger.kernel.org>
Reported-by: Derick Marks <derick.w.marks@intel.com>
Fixes: 54cdbf845c ("cxl/port: Add a driver for 'struct cxl_port' objects")
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/168437998331.403037.15719879757678389217.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add a return to the error path when cxl_cdat_read_table() fails. Current
code continues with the table pointer points to freed memory.
Fixes: 7a877c9239 ("cxl/pci: Simplify CDAT retrieval error path")
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Link: https://lore.kernel.org/r/168382793506.3510737.4792518576623749076.stgit@djiang5-mobl3
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
- Refactor the DOE infrastructure (Data Object Exchange PCI-config-cycle
mailbox) to be a facility of the PCI core rather than the CXL core.
This is foundational for upcoming support for PCI device-attestation and
PCIe / CXL link encryption.
- Add support for retrieving and injecting poison for CXL memory
expanders. This enabling uses trace-events to convey CXL media error
records to user tooling. It includes translation of device-local
addresses (DPA) to system physical addresses (SPA) and their
corresponding CXL region.
- Fixes for decoder enumeration that missed v6.3-final
- Miscellaneous fixups
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQSbo+XnGs+rwLz9XGXfioYZHlFsZwUCZE2nNwAKCRDfioYZHlFs
Z5c2AQCTWebok6CD+HN01xnIx+CBWAUQe0QIGR40dT2P6/WGEgEA8wMae0w/FDlc
lQDvSoIyPvy1hGO7Ppb0K2AT6jrQAgU=
=blcC
-----END PGP SIGNATURE-----
Merge tag 'cxl-for-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl
Pull compute express link updates from Dan Williams:
"DOE support is promoted from drivers/cxl/ to drivers/pci/ with Bjorn's
blessing, and the CXL core continues to mature its media management
capabilities with support for listing and injecting media errors. Some
late fixes that missed v6.3-final are also included:
- Refactor the DOE infrastructure (Data Object Exchange
PCI-config-cycle mailbox) to be a facility of the PCI core rather
than the CXL core.
This is foundational for upcoming support for PCI
device-attestation and PCIe / CXL link encryption.
- Add support for retrieving and injecting poison for CXL memory
expanders.
This enabling uses trace-events to convey CXL media error records
to user tooling. It includes translation of device-local addresses
(DPA) to system physical addresses (SPA) and their corresponding
CXL region.
- Fixes for decoder enumeration that missed v6.3-final
- Miscellaneous fixups"
* tag 'cxl-for-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl: (38 commits)
cxl/test: Add mock test for set_timestamp
cxl/mbox: Update CMD_RC_TABLE
tools/testing/cxl: Require CONFIG_DEBUG_FS
tools/testing/cxl: Add a sysfs attr to test poison inject limits
tools/testing/cxl: Use injected poison for get poison list
tools/testing/cxl: Mock the Clear Poison mailbox command
tools/testing/cxl: Mock the Inject Poison mailbox command
cxl/mem: Add debugfs attributes for poison inject and clear
cxl/memdev: Trace inject and clear poison as cxl_poison events
cxl/memdev: Warn of poison inject or clear to a mapped region
cxl/memdev: Add support for the Clear Poison mailbox command
cxl/memdev: Add support for the Inject Poison mailbox command
tools/testing/cxl: Mock support for Get Poison List
cxl/trace: Add an HPA to cxl_poison trace events
cxl/region: Provide region info to the cxl_poison trace event
cxl/memdev: Add trigger_poison_list sysfs attribute
cxl/trace: Add TRACE support for CXL media-error records
cxl/mbox: Add GET_POISON_LIST mailbox command
cxl/mbox: Initialize the poison state
cxl/mbox: Restrict poison cmds to debugfs cxl_raw_allow_all
...
Here is the large set of driver core changes for 6.4-rc1.
Once again, a busy development cycle, with lots of changes happening in
the driver core in the quest to be able to move "struct bus" and "struct
class" into read-only memory, a task now complete with these changes.
This will make the future rust interactions with the driver core more
"provably correct" as well as providing more obvious lifetime rules for
all busses and classes in the kernel.
The changes required for this did touch many individual classes and
busses as many callbacks were changed to take const * parameters
instead. All of these changes have been submitted to the various
subsystem maintainers, giving them plenty of time to review, and most of
them actually did so.
Other than those changes, included in here are a small set of other
things:
- kobject logging improvements
- cacheinfo improvements and updates
- obligatory fw_devlink updates and fixes
- documentation updates
- device property cleanups and const * changes
- firwmare loader dependency fixes.
All of these have been in linux-next for a while with no reported
problems.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCZEp7Sw8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykitQCfamUHpxGcKOAGuLXMotXNakTEsxgAoIquENm5
LEGadNS38k5fs+73UaxV
=7K4B
-----END PGP SIGNATURE-----
Merge tag 'driver-core-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here is the large set of driver core changes for 6.4-rc1.
Once again, a busy development cycle, with lots of changes happening
in the driver core in the quest to be able to move "struct bus" and
"struct class" into read-only memory, a task now complete with these
changes.
This will make the future rust interactions with the driver core more
"provably correct" as well as providing more obvious lifetime rules
for all busses and classes in the kernel.
The changes required for this did touch many individual classes and
busses as many callbacks were changed to take const * parameters
instead. All of these changes have been submitted to the various
subsystem maintainers, giving them plenty of time to review, and most
of them actually did so.
Other than those changes, included in here are a small set of other
things:
- kobject logging improvements
- cacheinfo improvements and updates
- obligatory fw_devlink updates and fixes
- documentation updates
- device property cleanups and const * changes
- firwmare loader dependency fixes.
All of these have been in linux-next for a while with no reported
problems"
* tag 'driver-core-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (120 commits)
device property: make device_property functions take const device *
driver core: update comments in device_rename()
driver core: Don't require dynamic_debug for initcall_debug probe timing
firmware_loader: rework crypto dependencies
firmware_loader: Strip off \n from customized path
zram: fix up permission for the hot_add sysfs file
cacheinfo: Add use_arch[|_cache]_info field/function
arch_topology: Remove early cacheinfo error message if -ENOENT
cacheinfo: Check cache properties are present in DT
cacheinfo: Check sib_leaf in cache_leaves_are_shared()
cacheinfo: Allow early level detection when DT/ACPI info is missing/broken
cacheinfo: Add arm64 early level initializer implementation
cacheinfo: Add arch specific early level initializer
tty: make tty_class a static const structure
driver core: class: remove struct class_interface * from callbacks
driver core: class: mark the struct class in struct class_interface constant
driver core: class: make class_register() take a const *
driver core: class: mark class_release() as taking a const *
driver core: remove incorrect comment for device_create*
MIPS: vpe-cmp: remove module owner pointer from struct class usage.
...
As of CXL 3.0 there have some added return codes, update the
driver accordingly.
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/20230307042655.6714-1-dave@stgolabs.net
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Inject and Clear Poison commands are optionally supported by CXL
memdev devices and are intended for use in debug environments only.
Add debugfs attributes for user access.
Documentation/ABI/testing/debugfs-cxl describes the usage.
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/0c9ea8e671b8e58465d18722788b60d325c675c7.1681874357.git.alison.schofield@intel.com
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The cxl_poison trace event allows users to view the history of poison
list reads. With the addition of inject and clear poison capabilities,
users will expect similar tracing.
Add trace types 'Inject' and 'Clear' to the cxl_poison trace_event and
trace successful operations only.
If the driver finds that the DPA being injected or cleared of poison
is mapped in a region, that region info is included in the cxl_poison
trace event. Region reconfigurations can make this extra info useless
if the debug operations are not carefully managed.
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/e20eb7c3029137b480ece671998c183da0477e2e.1681874357.git.alison.schofield@intel.com
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Inject and clear poison capabilities and intended for debug usage only.
In order to be useful in debug environments, the driver needs to allow
inject and clear operations on DPAs mapped in regions.
dev_warn_once() when either operation occurs.
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Link: https://lore.kernel.org/r/f911ca5277c9d0f9757b72d7e6842871bfff4fa2.1681874357.git.alison.schofield@intel.com
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL devices optionally support the CLEAR POISON mailbox command. Add
memdev driver support for clearing poison.
Per the CXL Specification (3.0 8.2.9.8.4.3), after receiving a valid
clear poison request, the device removes the address from the device's
Poison List and writes 0 (zero) for 64 bytes starting at address. If
the device cannot clear poison from the address, it returns a permanent
media error and -ENXIO is returned to the user.
Additionally, and per the spec also, it is not an error to clear poison
of an address that is not poisoned.
If the address is not contained in the device's dpa resource, or is
not 64 byte aligned, the driver returns -EINVAL without sending the
command to the device.
Poison clearing is intended for debug only and will be exposed to
userspace through debugfs. Restrict compilation to CONFIG_DEBUG_FS.
Implementation note: Although the CXL specification defines the clear
command to accept 64 bytes of 'write-data', this implementation always
uses zeroes as write-data.
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/8682c30ec24bd9c45af5feccb04b02be51e58c0a.1681874357.git.alison.schofield@intel.com
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL devices optionally support the INJECT POISON mailbox command. Add
memdev driver support for the mailbox command.
Per the CXL Specification (3.0 8.2.9.8.4.2), after receiving a valid
inject poison request, the device will return poison when the address
is accessed through the CXL.mem driver. Injecting poison adds the address
to the device's Poison List and the error source is set to Injected.
In addition, the device adds a poison creation event to its internal
Informational Event log, updates the Event Status register, and if
configured, interrupts the host.
Also, per the CXL Specification, it is not an error to inject poison
into an address that already has poison present and no error is
returned from the device.
If the address is not contained in the device's dpa resource, or is
not 64 byte aligned, return -EINVAL without issuing the mbox command.
Poison injection is intended for debug only and will be exposed to
userspace through debugfs. Restrict compilation to CONFIG_DEBUG_FS.
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/241c64115e6bd2effed9c7a20b08b3908dd7be8f.1681874357.git.alison.schofield@intel.com
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
When a cxl_poison trace event is reported for a region, the poisoned
Device Physical Address (DPA) can be translated to a Host Physical
Address (HPA) for consumption by user space.
Translate and add the resulting HPA to the cxl_poison trace event.
Follow the device decode logic as defined in the CXL Spec 3.0 Section
8.2.4.19.13.
If no region currently maps the poison, assign ULLONG_MAX to the
cxl_poison event hpa field.
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/6d3cd726f9042a59902785b0a2cb3ddfb70e0219.1681838292.git.alison.schofield@intel.com
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
User space may need to know which region, if any, maps the poison
address(es) logged in a cxl_poison trace event. Since the mapping
of DPAs (device physical addresses) to a region can change, the
kernel must provide this information at the time the poison list
is read. The event informs user space that at event <timestamp>
this <region> mapped to this <DPA>, which is poisoned.
The cxl_poison trace event is already wired up to log the region
name and uuid if it receives param 'struct cxl_region'.
In order to provide that cxl_region, add another method for gathering
poison - by committed endpoint decoder mappings. This method is only
available with CONFIG_CXL_REGION and is only used if a region actually
maps the memdev where poison is being read. After the region driver
reads the poison list for all the mapped resources, poison is read for
any remaining unmapped resources.
The default method remains: read the poison by memdev resource.
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/438b01ccaa70592539e8eda4eb2b1d617ba03160.1681838292.git.alison.schofield@intel.com
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
When a boolean 'true' is written to this attribute the memdev driver
retrieves the poison list from the device. The list consists of
addresses that are poisoned, or would result in poison if accessed,
and the source of the poison. This attribute is only visible for
devices supporting the capability. The retrieved errors are logged
as kernel events when cxl_poison event tracing is enabled.
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/1081cfdc8a349dc754779642d584707e56db26ba.1681838291.git.alison.schofield@intel.com
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL devices may support the retrieval of a device poison list.
Add a new trace event that the CXL subsystem may use to log
the media-error records returned in the poison list.
Log each media-error record as a cxl_poison trace event of
type 'List'.
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/de6196f5269483d886ab1834744f82d27189a666.1681838291.git.alison.schofield@intel.com
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL devices maintain a list of locations that are poisoned or result
in poison if the addresses are accessed by the host.
Per the spec, (CXL 3.0 8.2.9.8.4.1), the device returns this Poison
list as a set of Media Error Records that include the source of the
error, the starting device physical address, and length. The length is
the number of adjacent DPAs in the record and is in units of 64 bytes.
Retrieve the poison list.
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/a1f332e817834ef8e89c0ff32e760308fb903346.1681838291.git.alison.schofield@intel.com
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Driver reads of the poison list are synchronized to ensure that a
reader does not get an incomplete list because their request
overlapped (was interrupted or preceded by) another read request
of the same DPA range. (CXL Spec 3.0 Section 8.2.9.8.4.1). The
driver maintains state information to achieve this goal.
To initialize the state, first recognize the poison commands in
the CEL (Command Effects Log). If the device supports Get Poison
List, allocate a single buffer for the poison list and protect it
with a lock.
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Link: https://lore.kernel.org/r/9078d180769be28a5087288b38cdfc827cae58bf.1681838291.git.alison.schofield@intel.com
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The Get, Inject, and Clear poison commands are not available for
direct user access because they require kernel driver controls to
perform safely.
Further restrict access to these commands by requiring the selection
of the debugfs attribute 'cxl_raw_allow_all' to enable in raw mode.
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Link: https://lore.kernel.org/r/0e5cb41ffae2bab800957d3b9003eedfd0a2dfd5.1681838291.git.alison.schofield@intel.com
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The CXL subsystem is adding formal mechanisms for managing device
poison. Minimize the maintenance burden going forward, and maximize
the investment in common tooling by deprecating direct user access
to poison commands outside of CXL_MEM_RAW_COMMANDS debug scenarios.
A new cxl_deprecated_commands[] list is created for querying which
command ids defined in previous kernels are now deprecated.
CXL Media and Poison Management commands, opcodes 0x43XX, defined in
CXL 3.0 Spec, Table 8-93 are deprecated with one exception: Get Scan
Media Capabilities. Keep Get Scan Media Capabilities as it simply
provides information and has no impact on the device state.
Effectively all of the commands defined in:
commit 87815ee9d0 ("cxl/pci: Add media provisioning required commands")
...were defined prematurely and should have waited until the kernel
implementation was decided. To my knowledge there are no shipping
devices with poison support and no known tools that would regress with
this change.
Co-developed-by: Alison Schofield <alison.schofield@intel.com>
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Link: https://lore.kernel.org/r/652197e9bc8885e6448d989405b9e50ee9d6b0a6.1681838291.git.alison.schofield@intel.com
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Not all endpoint CXL ports are associated with PCI devices. The cxl_test
infrastructure models 'struct cxl_port' instances hosted by platform
devices. Teach read_cdat_data() to be careful about non-pci hosted
cxl_memdev instances. Otherwise, cxl_test crashes with this signature:
RIP: 0010:xas_start+0x6d/0x290
[..]
Call Trace:
<TASK>
xas_load+0xa/0x50
xas_find+0x25b/0x2f0
xa_find+0x118/0x1d0
pci_find_doe_mailbox+0x51/0xc0
read_cdat_data+0x45/0x190 [cxl_core]
cxl_port_probe+0x10a/0x1e0 [cxl_port]
cxl_bus_probe+0x17/0x50 [cxl_core]
Some other cleanups are included like removing the single-use @uport
variable, and removing the indirection through 'struct cxl_dev_state' to
lookup the device that registered the memdev and may be a pci device.
Fixes: af0a6c3587 ("cxl/pci: Use CDAT DOE mailbox created by PCI core")
Reviewed-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/168213190748.708404.16215095414060364800.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Jonathan notes that cxl_cdat_get_length() and cxl_cdat_read_table()
allocate 32 dwords for the DOE response even though it may be smaller.
In the case of cxl_cdat_get_length(), only the second dword of the
response is of interest (it contains the length). So reduce the
allocation to 2 dwords and let DOE discard the remainder.
In the case of cxl_cdat_read_table(), a correctly sized allocation for
the full CDAT already exists. Let DOE write each table entry directly
into that allocation. There's a snag in that the table entry is
preceded by a Table Access Response Header (1 dword, CXL 3.0 table 8-14).
Save the last dword of the previous table entry, let DOE overwrite it
with the header of the next entry and restore it afterwards.
The resulting CDAT is preceded by 4 unavoidable useless bytes. Increase
the allocation size accordingly.
The buffer overflow check in cxl_cdat_read_table() becomes unnecessary
because the remaining bytes in the allocation are tracked in "length",
which is passed to DOE and limits how many bytes it writes to the
allocation. Additionally, cxl_cdat_read_table() bails out if the DOE
response is truncated due to insufficient space.
Tested-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/7a4e1f86958a79a70f29b96a92199522f08f8322.1678543498.git.lukas@wunner.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The cdat.table and cdat.length fields in struct cxl_port are set before
CDAT retrieval and must therefore be unset on failure.
Simplify by setting only on success.
Suggested-by: Jonathan Cameron <Jonathan.Cameron@Huawei.com>
Link: https://lore.kernel.org/linux-cxl/20230209113422.00007017@Huawei.com/
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
[lukas: rebase and rephrase commit message]
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Link: https://lore.kernel.org/r/7a5c7104fb6a3016dbaec1c5d0ed34619ea11a0c.1678543498.git.lukas@wunner.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The PCI core has just been amended to create a pci_doe_mb struct for
every DOE instance on device enumeration.
Drop creation of a (duplicate) CDAT DOE mailbox on cxl probing in favor
of the one already created by the PCI core.
Tested-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/becaf70e8faf9681d474200117d62d7eaac46cca.1678543498.git.lukas@wunner.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
A synchronous API for DOE has just been introduced. Convert CXL CDAT
retrieval over to it.
Tested-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Link: https://lore.kernel.org/r/c329c0a21c11c3b524ce2336b0bbb3c80a28c415.1678543498.git.lukas@wunner.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
A recent debug session yielded a couple debug messages that were useful
for determining the reason why the driver was or was not falling back
to CXL range register emulation, and for identifying decoder setting
enumeration problems.
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Link: https://lore.kernel.org/r/168149845668.792294.11814353796371419167.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Do not assume that a single-target port falls back to a passthrough
decoder configuration. Scan for decoders and only fallback after probing
that the HDM decoder capability is not present.
One user visible affect of this bug is the inability to enumerate
present CXL regions as the decoder settings for the present decoders are
skipped.
Fixes: d17d0540a0 ("cxl/core/hdm: Add CXL standard decoder enumeration to the core")
Reported-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: http://lore.kernel.org/r/20230227153128.8164-1-Jonathan.Cameron@huawei.com
Cc: <stable@vger.kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Link: https://lore.kernel.org/r/168149845130.792294.3210421233937427962.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
After the discovery of a case where an implementation misbehaves with
register reads larger than the definition of the register the other
usages of readq() were audited and found to be correct, but some cases
where the io-64-nonatomic-lo-hi.h include is not needed were discovered,
delete them.
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Link: https://lore.kernel.org/r/168149844596.792294.8273108394688012953.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The CXL specification mandates that 4-byte registers must be accessed
with 4-byte access cycles. CXL 3.0 8.2.3 "Component Register Layout and
Definition" states that the behavior is undefined if (2) 32-bit
registers are accessed as an 8-byte quantity. It turns out that at least
one hardware implementation is sensitive to this in practice. The @size
variable results in zero with:
size = readq(hdm + CXL_HDM_DECODER0_SIZE_LOW_OFFSET(which));
...and the correct size with:
lo = readl(hdm + CXL_HDM_DECODER0_SIZE_LOW_OFFSET(which));
hi = readl(hdm + CXL_HDM_DECODER0_SIZE_HIGH_OFFSET(which));
size = (hi << 32) + lo;
Fixes: d17d0540a0 ("cxl/core/hdm: Add CXL standard decoder enumeration to the core")
Cc: <stable@vger.kernel.org>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Link: https://lore.kernel.org/r/168149844056.792294.8224490474529733736.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Decoders committed with 0-size lead to later crashes on shutdown as
__cxl_dpa_release() assumes a 'struct resource' has been established in
the in 'cxlds->dpa_res'. Just fail the driver load in this instance
since there are deeper problems with the enumeration or the setup when
this happens.
Fixes: 9c57cde0dc ("cxl/hdm: Enumerate allocated DPA")
Cc: <stable@vger.kernel.org>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Link: https://lore.kernel.org/r/168149843516.792294.11872242648319572632.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
One motivation for mapping range registers to decoder objects is
to use those settings for region autodiscovery.
The need to map a region for devices programmed to use range registers
is especially urgent now that the kernel no longer routes "Soft
Reserved" ranges in the memory map to device-dax by default. The CXL
memory range loses all access mechanisms.
Complete the implementation by marking the DPA reservation and setting
the endpoint-decoder state to signal autodiscovery. Note that the
default settings of ways=1 and granularity=4096 set in cxl_decode_init()
do not need to be updated.
Fixes: 09d09e04d2 ("cxl/dax: Create dax devices for CXL RAM regions")
Tested-by: Dave Jiang <dave.jiang@intel.com>
Tested-by: Gregory Price <gregory.price@memverge.com>
Link: https://lore.kernel.org/r/168012575521.221280.14177293493678527326.stgit@dwillia2-xfh.jf.intel.com
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Recall that range register emulation seeks to treat the 2 potential
range registers as Linux CXL "decoder" objects. The number of range
registers can be 1 or 2, while HDM decoder ranges can include more than
2.
Be careful not to confuse DVSEC range count with HDM capability decoder
count. Commit to range register earlier in devm_cxl_setup_hdm().
Otherwise, a device with more HDM decoders than range registers can set
@cxlhdm->decoder_count to an invalid value.
Avoid introducing a forward declaration by just moving the definition of
should_emulate_decoders() earlier in the file. should_emulate_decoders()
is unchanged.
Tested-by: Dave Jiang <dave.jiang@intel.com>
Fixes: d7a2153762 ("cxl/hdm: Add emulation when HDM decoders are not committed")
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168012574932.221280.15944705098679646436.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Each time the contents of a given HPA are potentially changed in a cache
incoherent manner the CXL core sets CXL_REGION_F_INCOHERENT to
invalidate CPU caches before the region is used.
Successful invocation of attach_target() indicates that DPA has been
newly assigned to a given HPA in the dynamic region creation flow.
However, attach_target() is also reused in the autodiscovery flow where
the region was activated by platform firmware. In that case there is no
need to invalidate caches because that region is already in active use
and nothing about the autodiscovery flow modifies the HPA-to-DPA
relationship.
In the autodiscovery case cxl_region_attach() exits early after
determining the endpoint decoder is already correctly attached to the
region.
Fixes: a32320b71f ("cxl/region: Add region autodiscovery")
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168002858817.50647.1217607907088920888.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
RCDs (CXL memory devices that link train without VH capability and show
up as root complex integrated endpoints), hide the presence of the link
between the endpoint and the host-bridge. The CXL region setup/teardown
paths assume that a link hop is present and go looking for at least one
'struct cxl_port' instance between the CXL root port-object and an
endpoint port-object leading to crashes of the form:
BUG: kernel NULL pointer dereference, address: 0000000000000008
[..]
RIP: 0010:cxl_region_setup_targets+0x3e9/0xae0 [cxl_core]
[..]
Call Trace:
<TASK>
cxl_region_attach+0x46c/0x7a0 [cxl_core]
cxl_create_region+0x20b/0x270 [cxl_core]
cxl_mock_mem_probe+0x641/0x800 [cxl_mock_mem]
platform_probe+0x5b/0xb0
Detect RCDs explicitly and skip walking the non-existent port hierarchy
between root and endpoint in that case.
While this has been a problem since:
commit 0a19bfc8de ("cxl/port: Add RCD endpoint port enumeration")
...it becomes a more reliable crash scenario with the new autodiscovery
implementation.
Fixes: a32320b71f ("cxl/region: Add region autodiscovery")
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168002858268.50647.728091521032131326.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The find_cxl_root() helper is used to lookup root decoders and other CXL
platform topology information for a given endpoint. It turns out that
for RCDs it has never worked. The result of find_cxl_root(&cxlmd->dev)
is always NULL for the RCH topology case because it expects to find a
cxl_port at the host-bridge. RCH topologies only have the root cxl_port
object with the host-bridge as a dport. While there are no reports of
this being a problem to date, by inspection region enumeration should
crash as a result of this problem, and it does in a local unit test for
this scenario.
However, an observation that ever since:
commit f17b558d66 ("cxl/pmem: Refactor nvdimm device registration, delete the workqueue")
...all callers of find_cxl_root() occur after the memdev connection to
the port topology has been established. That means that find_cxl_root()
can be simplified to a walk of the endpoint port topology to the root.
Switch to that arrangement which also fixes the RCD bug.
Fixes: a32320b71f ("cxl/region: Add region autodiscovery")
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/168002857715.50647.344876437247313909.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
If the driver is allowed to enable memory operation itself then it can
also turn on HDM decoder support at will.
With this the second call to cxl_setup_hdm_decoder_from_dvsec(), when
an HDM decoder is not committed, is not needed.
Fixes: b777e9bec9 ("cxl/hdm: Emulate HDM decoder from DVSEC range registers")
Link: http://lore.kernel.org/r/20230220113657.000042e1@huawei.com
Reported-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167703068474.185722.664126485486344246.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
If the length in the CDAT header is larger than the concatenation of the
header and all table entries, then the CDAT exposed to user space
contains trailing null bytes.
Not every consumer may be able to handle that. Per Postel's robustness
principle, "be liberal in what you accept" and silently reduce the
cached length to avoid exposing those null bytes.
Fixes: c97006046c ("cxl/port: Read CDAT table")
Tested-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: stable@vger.kernel.org # v6.0+
Link: https://lore.kernel.org/r/6d98b3c7da5343172bd3ccabfabbc1f31c079d74.1678543498.git.lukas@wunner.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
If truncated CDAT entries are received from a device, the concatenation
of those entries constitutes a corrupt CDAT, yet is happily exposed to
user space.
Avoid by verifying response lengths and erroring out if truncation is
detected.
The last CDAT entry may still be truncated despite the checks introduced
herein if the length in the CDAT header is too small. However, that is
easily detectable by user space because it reaches EOF prematurely.
A subsequent commit which rightsizes the CDAT response allocation closes
that remaining loophole.
The two lines introduced here which exceed 80 chars are shortened to
less than 80 chars by a subsequent commit which migrates to a
synchronous DOE API and replaces "t.task.rv" by "rc".
The existing acpi_cdat_header and acpi_table_cdat struct definitions
provided by ACPICA cannot be used because they do not employ __le16 or
__le32 types. I believe that cannot be changed because those types are
Linux-specific and ACPI is specified for little endian platforms only,
hence doesn't care about endianness. So duplicate the structs.
Fixes: c97006046c ("cxl/port: Read CDAT table")
Tested-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: stable@vger.kernel.org # v6.0+
Link: https://lore.kernel.org/r/bce3aebc0e8e18a1173425a7a865b232c3912963.1678543498.git.lukas@wunner.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
cxl_cdat_get_length() only checks whether the DOE response size is
sufficient for the Table Access response header (1 dword), but not the
succeeding CDAT header (1 dword length plus other fields).
It thus returns whatever uninitialized memory happens to be on the stack
if a truncated DOE response with only 1 dword was received. Fix it.
Fixes: c97006046c ("cxl/port: Read CDAT table")
Reported-by: Ming Li <ming4.li@intel.com>
Tested-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Ming Li <ming4.li@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: stable@vger.kernel.org # v6.0+
Reviewed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Link: https://lore.kernel.org/r/000e69cd163461c8b1bc2cf4155b6e25402c29c7.1678543498.git.lukas@wunner.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
struct bus_type should never be modified in a sysfs callback as there is
nothing in the structure to modify, and frankly, the structure is almost
never used in a sysfs callback, so mark it as constant to allow struct
bus_type to be moved to read-only memory.
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "James E.J. Bottomley" <jejb@linux.ibm.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Alexandre Bounine <alex.bou9@gmail.com>
Cc: Alison Schofield <alison.schofield@intel.com>
Cc: Ben Widawsky <bwidawsk@kernel.org>
Cc: Dexuan Cui <decui@microsoft.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Hannes Reinecke <hare@suse.de>
Cc: Harald Freudenberger <freude@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Hu Haowen <src.res@email.cn>
Cc: Jakub Kicinski <kuba@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Laurentiu Tudor <laurentiu.tudor@nxp.com>
Cc: Matt Porter <mporter@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paolo Abeni <pabeni@redhat.com>
Cc: Stuart Yoder <stuyoder@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Yanteng Si <siyanteng@loongson.cn>
Acked-by: Ilya Dryomov <idryomov@gmail.com> # rbd
Acked-by: Ira Weiny <ira.weiny@intel.com> # cxl
Reviewed-by: Alex Shi <alexs@kernel.org>
Acked-by: Iwona Winiarska <iwona.winiarska@intel.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com> # pci
Acked-by: Wei Liu <wei.liu@kernel.org>
Acked-by: Martin K. Petersen <martin.petersen@oracle.com> # scsi
Link: https://lore.kernel.org/r/20230313182918.1312597-23-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The CDAT exposed in sysfs differs between little endian and big endian
arches: On big endian, every 4 bytes are byte-swapped.
PCI Configuration Space is little endian (PCI r3.0 sec 6.1). Accessors
such as pci_read_config_dword() implicitly swap bytes on big endian.
That way, the macros in include/uapi/linux/pci_regs.h work regardless of
the arch's endianness. For an example of implicit byte-swapping, see
ppc4xx_pciex_read_config(), which calls in_le32(), which uses lwbrx
(Load Word Byte-Reverse Indexed).
DOE Read/Write Data Mailbox Registers are unlike other registers in
Configuration Space in that they contain or receive a 4 byte portion of
an opaque byte stream (a "Data Object" per PCIe r6.0 sec 7.9.24.5f).
They need to be copied to or from the request/response buffer verbatim.
So amend pci_doe_send_req() and pci_doe_recv_resp() to undo the implicit
byte-swapping.
The CXL_DOE_TABLE_ACCESS_* and PCI_DOE_DATA_OBJECT_DISC_* macros assume
implicit byte-swapping. Byte-swap requests after constructing them with
those macros and byte-swap responses before parsing them.
Change the request and response type to __le32 to avoid sparse warnings.
Per a request from Jonathan, replace sizeof(u32) with sizeof(__le32) for
consistency.
Fixes: c97006046c ("cxl/port: Read CDAT table")
Tested-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Cc: stable@vger.kernel.org # v6.0+
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/3051114102f41d19df3debbee123129118fc5e6d.1678543498.git.lukas@wunner.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
- CXL RAM region enumeration: instantiate 'struct cxl_region' objects
for platform firmware created memory regions
- CXL RAM region provisioning: complement the existing PMEM region
creation support with RAM region support
- "Soft Reservation" policy change: Online (memory hot-add)
soft-reserved memory (EFI_MEMORY_SP) by default, but still allow for
setting aside such memory for dedicated access via device-dax.
- CXL Events and Interrupts: Takeover CXL event handling from
platform-firmware (ACPI calls this CXL Memory Error Reporting) and
export CXL Events via Linux Trace Events.
- Convey CXL _OSC results to drivers: Similar to PCI, let the CXL
subsystem interrogate the result of CXL _OSC negotiation.
- Emulate CXL DVSEC Range Registers as "decoders": Allow for
first-generation devices that pre-date the definition of the CXL HDM
Decoder Capability to translate the CXL DVSEC Range Registers into
'struct cxl_decoder' objects.
- Set timestamp: Per spec, set the device timestamp in case of hotplug,
or if platform-firwmare failed to set it.
- General fixups: linux-next build issues, non-urgent fixes for
pre-production hardware, unit test fixes, spelling and debug message
improvements.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQSbo+XnGs+rwLz9XGXfioYZHlFsZwUCY/WYcgAKCRDfioYZHlFs
Z6m3APkBUtiEEm1o8ikdu5llUS1OTLBwqjJDwGMTyf8X/WDXhgD+J2mLsCgARS7X
5IS0RAtefutrW5sQpUucPM7QiLuraAY=
=kOXC
-----END PGP SIGNATURE-----
Merge tag 'cxl-for-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl
Pull Compute Express Link (CXL) updates from Dan Williams:
"To date Linux has been dependent on platform-firmware to map CXL RAM
regions and handle events / errors from devices. With this update we
can now parse / update the CXL memory layout, and report events /
errors from devices. This is a precursor for the CXL subsystem to
handle the end-to-end "RAS" flow for CXL memory. i.e. the flow that
for DDR-attached-DRAM is handled by the EDAC driver where it maps
system physical address events to a field-replaceable-unit (FRU /
endpoint device). In general, CXL has the potential to standardize
what has historically been a pile of memory-controller-specific error
handling logic.
Another change of note is the default policy for handling RAM-backed
device-dax instances. Previously the default access mode was "device",
mmap(2) a device special file to access memory. The new default is
"kmem" where the address range is assigned to the core-mm via
add_memory_driver_managed(). This saves typical users from wondering
why their platform memory is not visible via free(1) and stuck behind
a device-file. At the same time it allows expert users to deploy
policy to, for example, get dedicated access to high performance
memory, or hide low performance memory from general purpose kernel
allocations. This affects not only CXL, but also systems with
high-bandwidth-memory that platform-firmware tags with the
EFI_MEMORY_SP (special purpose) designation.
Summary:
- CXL RAM region enumeration: instantiate 'struct cxl_region' objects
for platform firmware created memory regions
- CXL RAM region provisioning: complement the existing PMEM region
creation support with RAM region support
- "Soft Reservation" policy change: Online (memory hot-add)
soft-reserved memory (EFI_MEMORY_SP) by default, but still allow
for setting aside such memory for dedicated access via device-dax.
- CXL Events and Interrupts: Takeover CXL event handling from
platform-firmware (ACPI calls this CXL Memory Error Reporting) and
export CXL Events via Linux Trace Events.
- Convey CXL _OSC results to drivers: Similar to PCI, let the CXL
subsystem interrogate the result of CXL _OSC negotiation.
- Emulate CXL DVSEC Range Registers as "decoders": Allow for
first-generation devices that pre-date the definition of the CXL
HDM Decoder Capability to translate the CXL DVSEC Range Registers
into 'struct cxl_decoder' objects.
- Set timestamp: Per spec, set the device timestamp in case of
hotplug, or if platform-firwmare failed to set it.
- General fixups: linux-next build issues, non-urgent fixes for
pre-production hardware, unit test fixes, spelling and debug
message improvements"
* tag 'cxl-for-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl: (66 commits)
dax/kmem: Fix leak of memory-hotplug resources
cxl/mem: Add kdoc param for event log driver state
cxl/trace: Add serial number to trace points
cxl/trace: Add host output to trace points
cxl/trace: Standardize device information output
cxl/pci: Remove locked check for dvsec_range_allowed()
cxl/hdm: Add emulation when HDM decoders are not committed
cxl/hdm: Create emulated cxl_hdm for devices that do not have HDM decoders
cxl/hdm: Emulate HDM decoder from DVSEC range registers
cxl/pci: Refactor cxl_hdm_decode_init()
cxl/port: Export cxl_dvsec_rr_decode() to cxl_port
cxl/pci: Break out range register decoding from cxl_hdm_decode_init()
cxl: add RAS status unmasking for CXL
cxl: remove unnecessary calling of pci_enable_pcie_error_reporting()
dax/hmem: build hmem device support as module if possible
dax: cxl: add CXL_REGION dependency
cxl: avoid returning uninitialized error code
cxl/pmem: Fix nvdimm registration races
cxl/mem: Fix UAPI command comment
cxl/uapi: Tag commands from cxl_query_cmd()
...
Here is the large set of driver core changes for 6.3-rc1.
There's a lot of changes this development cycle, most of the work falls
into two different categories:
- fw_devlink fixes and updates. This has gone through numerous review
cycles and lots of review and testing by lots of different devices.
Hopefully all should be good now, and Saravana will be keeping a
watch for any potential regression on odd embedded systems.
- driver core changes to work to make struct bus_type able to be moved
into read-only memory (i.e. const) The recent work with Rust has
pointed out a number of areas in the driver core where we are
passing around and working with structures that really do not have
to be dynamic at all, and they should be able to be read-only making
things safer overall. This is the contuation of that work (started
last release with kobject changes) in moving struct bus_type to be
constant. We didn't quite make it for this release, but the
remaining patches will be finished up for the release after this
one, but the groundwork has been laid for this effort.
Other than that we have in here:
- debugfs memory leak fixes in some subsystems
- error path cleanups and fixes for some never-able-to-be-hit
codepaths.
- cacheinfo rework and fixes
- Other tiny fixes, full details are in the shortlog
All of these have been in linux-next for a while with no reported
problems.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCY/ipdg8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ynL3gCgwzbcWu0So3piZyLiJKxsVo9C2EsAn3sZ9gN6
6oeFOjD3JDju3cQsfGgd
=Su6W
-----END PGP SIGNATURE-----
Merge tag 'driver-core-6.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here is the large set of driver core changes for 6.3-rc1.
There's a lot of changes this development cycle, most of the work
falls into two different categories:
- fw_devlink fixes and updates. This has gone through numerous review
cycles and lots of review and testing by lots of different devices.
Hopefully all should be good now, and Saravana will be keeping a
watch for any potential regression on odd embedded systems.
- driver core changes to work to make struct bus_type able to be
moved into read-only memory (i.e. const) The recent work with Rust
has pointed out a number of areas in the driver core where we are
passing around and working with structures that really do not have
to be dynamic at all, and they should be able to be read-only
making things safer overall. This is the contuation of that work
(started last release with kobject changes) in moving struct
bus_type to be constant. We didn't quite make it for this release,
but the remaining patches will be finished up for the release after
this one, but the groundwork has been laid for this effort.
Other than that we have in here:
- debugfs memory leak fixes in some subsystems
- error path cleanups and fixes for some never-able-to-be-hit
codepaths.
- cacheinfo rework and fixes
- Other tiny fixes, full details are in the shortlog
All of these have been in linux-next for a while with no reported
problems"
[ Geert Uytterhoeven points out that that last sentence isn't true, and
that there's a pending report that has a fix that is queued up - Linus ]
* tag 'driver-core-6.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (124 commits)
debugfs: drop inline constant formatting for ERR_PTR(-ERROR)
OPP: fix error checking in opp_migrate_dentry()
debugfs: update comment of debugfs_rename()
i3c: fix device.h kernel-doc warnings
dma-mapping: no need to pass a bus_type into get_arch_dma_ops()
driver core: class: move EXPORT_SYMBOL_GPL() lines to the correct place
Revert "driver core: add error handling for devtmpfs_create_node()"
Revert "devtmpfs: add debug info to handle()"
Revert "devtmpfs: remove return value of devtmpfs_delete_node()"
driver core: cpu: don't hand-override the uevent bus_type callback.
devtmpfs: remove return value of devtmpfs_delete_node()
devtmpfs: add debug info to handle()
driver core: add error handling for devtmpfs_create_node()
driver core: bus: update my copyright notice
driver core: bus: add bus_get_dev_root() function
driver core: bus: constify bus_unregister()
driver core: bus: constify some internal functions
driver core: bus: constify bus_get_kset()
driver core: bus: constify bus_register/unregister_notifier()
driver core: remove private pointer from struct bus_type
...
Device serial numbers are useful information for the user.
Add device serial numbers to all the trace points.
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20230208-cxl-event-names-v2-3-fca130c2c68b@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The host parameter of where the memdev is connected is useful
information.
Report host consistently in all trace points.
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20230208-cxl-event-names-v2-2-fca130c2c68b@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The trace points were written to take a struct device input for the
trace. In CXL multiple device objects are associated with each CXL
hardware device. Using different device objects in the trace point can
lead to confusion for users.
The PCIe device is nice to have, but the user space tooling relies on
the memory device naming. It is better to have those device names
reported.
Change all trace points to take struct cxl_memdev as a standard and
report that name.
Furthermore, standardize on the name 'memdev' in both
/sys/kernel/tracing/trace and cxl-cli monitor output.
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20230208-cxl-event-names-v2-1-fca130c2c68b@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Pick up the CXL DVSEC range register emulation for v6.3, and resolve
conflicts with the cxl_port_probe() split (from for-6.3/cxl-ram-region)
and event handling (from for-6.3/cxl-events).
For the case where DVSEC range register(s) are active and HDM decoders are
not committed, use RR to provide emulation. A first pass is done to note
whether any decoders are committed. If there are no committed endpoint
decoders, then DVSEC ranges will be used for emulation.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167640369536.935665.611974113442400127.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL rev3 spec 8.1.3
RCDs may not have HDM register blocks. Create a fake HDM with information
from the CXL PCIe DVSEC registers. The decoder count will be set to the
HDM count retrieved from the DVSEC cap register.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167640368994.935665.15831225724059704620.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In the case where HDM decoder register block exists but is not programmed
and at the same time the DVSEC range register range is active, populate the
CXL decoder object 'cxl_decoder' with info from DVSEC range registers.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167640368454.935665.13806415120298330717.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
With the previous refactoring of DVSEC range registers out of
cxl_hdm_decode_init(), it basically becomes a skeleton function. Squash
__cxl_hdm_decode_init() with cxl_hdm_decode_init() to simplify the code.
cxl_hdm_decode_init() now returns more error codes than just -EBUSY.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167640367916.935665.12898404758336059003.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Call cxl_dvsec_rr_decode() in the beginning of cxl_port_probe() and
preserve the decoded information in a local
'struct cxl_endpoint_dvsec_info'. This info can be passed to various
functions later on in order to support the HDM decoder emulation.
The invocation of cxl_dvsec_rr_decode() in cxl_hdm_decode_init() is
removed and a pointer to the 'struct cxl_endpoint_dvsec_info' is passed
in.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167640367377.935665.2848747799651019676.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
There are 2 scenarios that requires additional handling. 1. A device that
has active ranges in DVSEC range registers (RR) but no HDM decoder register
block. 2. A device that has both RR active and HDM, but the HDM decoders
are not programmed. The goal is to create emulated decoder software structs
based on the RR.
Move the CXL DVSEC range register decoding code block from
cxl_hdm_decode_init() to its own function. Refactor code in preparation for
the HDM decoder emulation. There is no functionality change to the code.
Name the new function to cxl_dvsec_rr_decode().
The only change is to set range->start and range->end to CXL_RESOURCE_NONE
and skipping the reading of base registers if the range size is 0, which
equates to range not active.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167640366839.935665.11816388524993234329.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
By default the CXL RAS mask registers bits are defaulted to 1's and
suppress all error reporting. If the kernel has negotiated ownership
of error handling for CXL then unmask the mask registers by writing 0s.
PCI_EXP_DEVCTL capability is checked to see uncorrectable or correctable
errors bits are set before unmasking the respective errors.
Acked-by: Bjorn Helgaas <bhelgaas@google.com> # pci_regs.h
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167639402301.778884.12556849214955646539.stgit@djiang5-mobl3.local
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
With this [1] commit upstream, pci_enable_pci_error_report() is no longer
necessary for the driver to call. Remove call and related cleanups.
[1]: f26e58bf6f ("PCI/AER: Enable error reporting when AER is native")
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167632012093.4153151.5360778069735064322.stgit@djiang5-mobl3.local
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The new cxl_add_to_region() function returns an uninitialized
value on success:
drivers/cxl/core/region.c:2628:6: error: variable 'rc' is used uninitialized whenever 'if' condition is false [-Werror,-Wsometimes-uninitialized]
if (IS_ERR(cxlr)) {
^~~~~~~~~~~~
drivers/cxl/core/region.c:2654:9: note: uninitialized use occurs here
return rc;
Simplify the logic to have the rc variable always initialized in the
same place.
Fixes: a32320b71f ("cxl/region: Add region autodiscovery")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20230213101220.3821689-1-arnd@kernel.org
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
A loop of the form:
while true; do modprobe cxl_pci; modprobe -r cxl_pci; done
...fails with the following crash signature:
BUG: kernel NULL pointer dereference, address: 0000000000000040
[..]
RIP: 0010:cxl_internal_send_cmd+0x5/0xb0 [cxl_core]
[..]
Call Trace:
<TASK>
cxl_pmem_ctl+0x121/0x240 [cxl_pmem]
nvdimm_get_config_data+0xd6/0x1a0 [libnvdimm]
nd_label_data_init+0x135/0x7e0 [libnvdimm]
nvdimm_probe+0xd6/0x1c0 [libnvdimm]
nvdimm_bus_probe+0x7a/0x1e0 [libnvdimm]
really_probe+0xde/0x380
__driver_probe_device+0x78/0x170
driver_probe_device+0x1f/0x90
__device_attach_driver+0x85/0x110
bus_for_each_drv+0x7d/0xc0
__device_attach+0xb4/0x1e0
bus_probe_device+0x9f/0xc0
device_add+0x445/0x9c0
nd_async_device_register+0xe/0x40 [libnvdimm]
async_run_entry_fn+0x30/0x130
...namely that the bottom half of async nvdimm device registration runs
after the CXL has already torn down the context that cxl_pmem_ctl()
needs. Unlike the ACPI NFIT case that benefits from launching multiple
nvdimm device registrations in parallel from those listed in the table,
CXL is already marked PROBE_PREFER_ASYNCHRONOUS. So provide for a
synchronous registration path to preclude this scenario.
Fixes: 21083f5152 ("cxl/pmem: Register 'pmem' / cxl_nvdimm devices")
Cc: <stable@vger.kernel.org>
Reported-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Include the support for enumerating and provisioning ram regions for
v6.3. This also include a default policy change for ram / volatile
device-dax instances to assign them to the dax_kmem driver by default.
It was pointed out that commands not supported by the device or excluded
by the kernel were being returned in cxl_query_cmd().[1]
While libcxl correctly handles failing commands, it is more efficient to
not issue an invalid command in the first place. This can't be done
without additional information being returned from cxl_query_cmd(). In
addition, information about the availability of commands can be useful
for debugging.
Add flags to struct cxl_command_info which reflect if a command is
enabled and/or exclusive to the kernel.
[1] https://lore.kernel.org/all/63b4ec4e37cc1_5178e2941d@dwillia2-xfh.jf.intel.com.notmuch/
Suggested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20221222-cxl-misc-v4-3-62f701c1cdd1@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL_CMD_FLAG_NONE is not used, remove it.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20221222-cxl-misc-v4-1-62f701c1cdd1@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
While platform firmware takes some responsibility for mapping the RAM
capacity of CXL devices present at boot, the OS is responsible for
mapping the remainder and hot-added devices. Platform firmware is also
responsible for identifying the platform general purpose memory pool,
typically DDR attached DRAM, and arranging for the remainder to be 'Soft
Reserved'. That reservation allows the CXL subsystem to route the memory
to core-mm via memory-hotplug (dax_kmem), or leave it for dedicated
access (device-dax).
The new 'struct cxl_dax_region' object allows for a CXL memory resource
(region) to be published, but also allow for udev and module policy to
act on that event. It also prevents cxl_core.ko from having a module
loading dependency on any drivers/dax/ modules.
Tested-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/167602003896.1924368.10335442077318970468.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Take two endpoints attached to the first switch on the first host-bridge
in the cxl_test topology and define a pre-initialized region. This is a
x2 interleave underneath a x1 CXL Window.
$ modprobe cxl_test
$ # cxl list -Ru
{
"region":"region3",
"resource":"0xf010000000",
"size":"512.00 MiB (536.87 MB)",
"interleave_ways":2,
"interleave_granularity":4096,
"decode_state":"commit"
}
Tested-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/167602000547.1924368.11613151863880268868.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Region autodiscovery is an asynchronous state machine advanced by
cxl_port_probe(). After the decoders on an endpoint port are enumerated
they are scanned for actively enabled instances. Each active decoder is
flagged for auto-assembly CXL_DECODER_F_AUTO and attached to a region.
If a region does not already exist for the address range setting of the
decoder one is created. That creation process may race with other
decoders of the same region being discovered since cxl_port_probe() is
asynchronous. A new 'struct cxl_root_decoder' lock, @range_lock, is
introduced to mitigate that race.
Once all decoders have arrived, "p->nr_targets == p->interleave_ways",
they are sorted by their relative decode position. The sort algorithm
involves finding the point in the cxl_port topology where one leg of the
decode leads to deviceA and the other deviceB. At that point in the
topology the target order in the 'struct cxl_switch_decoder' indicates
the relative position of those endpoint decoders in the region.
>From that point the region goes through the same setup and validation
steps as user-created regions, but instead of programming the decoders
it validates that driver would have written the same values to the
decoders as were already present.
Tested-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/167601999958.1924368.9366954455835735048.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Jonathan points out that the shared code between the switch and endpoint
case is small. Before adding another is_cxl_endpoint() conditional,
just split the two cases.
Rather than duplicate the "Couldn't enumerate decoders" error message
take the opportunity to improve the error messages in
devm_cxl_enumerate_decoders().
Reported-by: Jonathan Cameron <Jonathan.Cameron@Huawei.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/167601999378.1924368.15071142145866277623.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add help text and a label so the CXL_REGION config option can be
toggled. This is mainly to enable compile testing without region
support.
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Gregory Price <gregory.price@memverge.com>
Tested-by: Fan Ni <fan.ni@samsung.com>
Link: https://lore.kernel.org/r/167601998765.1924368.258370414771847699.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In support of the CXL subsystem's use of 'struct range' to track decode
address ranges, add a common range_contains() implementation with
identical semantics as resource_contains();
The existing 'range_contains()' in lib/stackinit_kunit.c is namespaced
with a 'stackinit_' prefix.
Cc: Kees Cook <keescook@chromium.org>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Gregory Price <gregory.price@memverge.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Tested-by: Fan Ni <fan.ni@samsung.com>
Link: https://lore.kernel.org/r/167601998163.1924368.6067392174077323935.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for region autodiscovery, that needs all devices
discovered before their relative position in the region can be
determined, consolidate all position dependent validation in a helper.
Recall that in the on-demand region creation flow the end-user picks the
position of a given endpoint decoder in a region. In the autodiscovery
case the position of an endpoint decoder can only be determined after
all other endpoint decoders that claim to decode the region's address
range have been enumerated and attached. So, in the autodiscovery case
endpoint decoders may be attached before their relative position is
known. Once all decoders arrive, then positions can be determined and
validated with cxl_region_validate_position() the same as user initiated
on-demand creation.
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Tested-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/167601997584.1924368.4615769326126138969.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Region autodiscovery is the process of kernel creating 'struct
cxl_region' object to represent active CXL memory ranges it finds
already active in hardware when the driver loads. Typically this happens
when platform firmware establishes CXL memory regions and then publishes
them in the memory map. However, this can also happen in the case of
kexec-reboot after the kernel has created regions.
In the autodiscovery case the region creation process starts with a
known endpoint decoder. Refactor attach_target() into a helper that is
suitable to be called from either sysfs, for runtime region creation, or
from cxl_port_probe() after it has enumerated all endpoint decoders.
The cxl_port_probe() context is an async device-core probing context, so
it is not appropriate to allow SIGTERM to interrupt the assembly
process. Refactor attach_target() to take @cxled and @state as arguments
where @state indicates whether waiting from the region rwsem is
interruptible or not.
No behavior change is intended.
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Fan Ni <fan.ni@samsung.com>
Link: https://lore.kernel.org/r/167601996393.1924368.2202255054618600069.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Expand the region creation infrastructure to enable 'ram'
(volatile-memory) regions. The internals of create_pmem_region_store()
and create_pmem_region_show() are factored out into helpers
__create_region() and __create_region_show() for the 'ram' case to
reuse.
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Gregory Price <gregory.price@memverge.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Fan Ni <fan.ni@samsung.com>
Link: https://lore.kernel.org/r/167601995775.1924368.352616146815830591.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for a new region mode, do not, for example, allow
'ram' decoders to be assigned to 'pmem' regions and vice versa.
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Gregory Price <gregory.price@memverge.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Fan Ni <fan.ni@samsung.com>
Link: https://lore.kernel.org/r/167601995111.1924368.7459128614177994602.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Shipping versions of the cxl-cli utility expect all regions to have a
'uuid' attribute. In preparation for 'ram' regions, update the 'uuid'
attribute to return an empty string which satisfies the current
expectations of 'cxl list -R'. Otherwise, 'cxl list -R' fails in the
presence of regions with the 'uuid' attribute missing. Force the
attribute to be read-only as there is no facility or expectation for a
'ram' region to recall its uuid from one boot to the next.
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Tested-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/167601994558.1924368.12612811533724694444.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for a new region type, "ram" regions, add a mode
attribute to clarify the mode of the decoders that can be added to a
region. Share the internals of mode_show() (for decoders) with the
region case.
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Gregory Price <gregory.price@memverge.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Fan Ni <fan.ni@samsung.com>
Link: https://lore.kernel.org/r/167601993930.1924368.4305018565539515665.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Testing of ram region support [1], stimulates a long standing bug in
cxl_detach_ep() where some cxl_ep_remove() cleanup is skipped due to
inability to walk ports after dports have been unregistered. That
results in a failure to re-register a memdev after the port is
re-enabled leading to a crash like the following:
cxl_port_setup_targets: cxl region4: cxl_host_bridge.0:port4 iw: 1 ig: 256
general protection fault, ...
[..]
RIP: 0010:cxl_region_setup_targets+0x897/0x9e0 [cxl_core]
dev_name at include/linux/device.h:700
(inlined by) cxl_port_setup_targets at drivers/cxl/core/region.c:1155
(inlined by) cxl_region_setup_targets at drivers/cxl/core/region.c:1249
[..]
Call Trace:
<TASK>
attach_target+0x39a/0x760 [cxl_core]
? __mutex_unlock_slowpath+0x3a/0x290
cxl_add_to_region+0xb8/0x340 [cxl_core]
? lockdep_hardirqs_on+0x7d/0x100
discover_region+0x4b/0x80 [cxl_port]
? __pfx_discover_region+0x10/0x10 [cxl_port]
device_for_each_child+0x58/0x90
cxl_port_probe+0x10e/0x130 [cxl_port]
cxl_bus_probe+0x17/0x50 [cxl_core]
Change the port ancestry walk to be by depth rather than by dport. This
ensures that even if a port has unregistered its dports a deferred
memdev cleanup will still be able to cleanup the memdev's interest in
that port.
The parent_port->dev.driver check is only needed for determining if the
bottom up removal beat the top-down removal, but cxl_ep_remove() can
always proceed given the port is pinned. That is, the two sources of
cxl_ep_remove() are in cxl_detach_ep() and cxl_port_release(), and
cxl_port_release() can not run if cxl_detach_ep() holds a reference.
Fixes: 2703c16c75 ("cxl/core/port: Add switch port enumeration")
Link: http://lore.kernel.org/r/167564534874.847146.5222419648551436750.stgit@dwillia2-xfh.jf.intel.com [1]
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Link: https://lore.kernel.org/r/167601992789.1924368.8083994227892600608.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
For ID allocations we want 0-(max-1), ie: smatch complains:
error: Calling ida_alloc_range() with a 'max' argument which is a power of 2. -1 missing?
Correct this and also replace the call to use the max() flavor instead.
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/20230208181944.240261-1-dave@stgolabs.net
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Merge the general CXL updates with fixes targeting v6.2-rc for v6.3.
Resolve a conflict with the fix and move of cxl_report_and_clear() from
pci.c to core/pci.c.
A passthrough decoder is a decoder that maps only 1 target. It is a
special case because it does not impose any constraints on the
interleave-math as compared to a decoder with multiple targets. Extend
the passthrough case to multi-target-capable decoders that only have one
target selected. I.e. the current code was only considering passthrough
*ports* which are only a subset of the potential passthrough decoder
scenarios.
Fixes: e4f6dfa9ef ("cxl/region: Fix 'distance' calculation with passthrough ports")
Cc: <stable@vger.kernel.org>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167564540422.847146.13816934143225777888.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Not all decoders have a reset callback.
The CXL specification allows a host bridge with a single root port to
have no explicit HDM decoders. Currently the region driver assumes there
are none. As such the CXL core creates a special pass through decoder
instance without a commit/reset callback.
Prior to this patch, the ->reset() callback was called unconditionally when
calling cxl_region_decode_reset. Thus a configuration with 1 Host Bridge,
1 Root Port, and one directly attached CXL type 3 device or multiple CXL
type 3 devices attached to downstream ports of a switch can cause a null
pointer dereference.
Before the fix, a kernel crash was observed when we destroy the region, and
a pass through decoder is reset.
The issue can be reproduced as below,
1) create a region with a CXL setup which includes a HB with a
single root port under which a memdev is attached directly.
2) destroy the region with cxl destroy-region regionX -f.
Fixes: 176baefb2e ("cxl/hdm: Commit decoder state to hardware")
Cc: <stable@vger.kernel.org>
Signed-off-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Gregory Price <gregory.price@memverge.com>
Reviewed-by: Gregory Price <gregory.price@memverge.com>
Link: https://lore.kernel.org/r/20221215170909.2650271-1-fan.ni@samsung.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The IRQ core expects that users of the default hardirq handler specify
IRQF_ONESHOT to keep interrupts disabled until the threaded handler
runs. That meets the CXL driver's expectations since it is an edge
triggered MSI and this flag would have been passed by default using
pci_request_irq() instead of devm_request_threaded_irq().
Fixes: a49aa8141b ("cxl/mem: Wire up event interrupts")
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Julia Lawall <julia.lawall@lip6.fr>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL r3.0 section 8.2.9.4.2 "Set Timestamp" recommends that the host sets
the timestamp after every Conventional or CXL Reset to ensure accurate
timestamps. This should include on initial boot up. The time base that
is being set is used by a device for the poison list overflow timestamp
and all event timestamps. Note that the command is optional and if
not supported and the device cannot return accurate timestamps it will
fill the fields in with an appropriate marker (see the specification
description of each timestamp).
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230130151327.32415-1-Jonathan.Cameron@huawei.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Kernel-doc should be complete, so add documentation for the status
parameter.
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/20230130153437.3153-1-Jonathan.Cameron@huawei.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Commit 2aeaf663b8 introduced strict checking for variable length
payload size validation. The payload length of received data must
match the size of the requested data by the caller except for the case
where the min_out value is set.
The Get Log command does not have a header with a length field set.
The Log size is determined by the Get Supported Logs command (CXL 3.0,
8.2.9.5.1). However, the actual size can be smaller and the number of
valid bytes in the payload output must be determined reading the
Payload Length field (CXL 3.0, Table 8-36, Note 2).
Two issues arise: The command can successfully complete with a payload
length of zero. And, the valid payload length must then also be
consumed by the caller.
Change cxl_xfer_log() to pass the number of payload bytes back to the
caller to determine the number of log entries. Implement the payload
handling as a special case where mbox_cmd->size_out is consulted when
cxl_internal_send_cmd() returns -EIO. A WARN_ONCE() is added to check
that -EIO is only returned in case of an unexpected output size.
Logs can be bigger than the maximum payload length and multiple Get
Log commands can be issued. If the received payload size is smaller
than the maximum payload size we can assume all valid bytes have been
fetched. Stop sending further Get Log commands then.
On that occasion, change debug messages to also report the opcodes of
supported commands.
The variable payload commands GET_LSA and SET_LSA are not affected by
this strict check: SET_LSA cannot be broken because SET_LSA does not
return an output payload, and GET_LSA never expects short reads.
Fixes: 2aeaf663b8 ("cxl/mbox: Add variable output size validation for internal commands")
Signed-off-by: Robert Richter <rrichter@amd.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230119094934.86067-1-rrichter@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The uevent() callback in struct bus_type should not be modifying the
device that is passed into it, so mark it as a const * and propagate the
function signature changes out into all relevant subsystems that use
this callback.
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Acked-by: Hans de Goede <hdegoede@redhat.com>
Link: https://lore.kernel.org/r/20230111113018.459199-16-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The devnode() callback in struct device_type should not be modifying the
device that is passed into it, so mark it as a const * and propagate the
function signature changes out into all relevant subsystems that use
this callback.
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Alison Schofield <alison.schofield@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Ben Widawsky <bwidawsk@kernel.org>
Cc: Jeremy Kerr <jk@ozlabs.org>
Cc: Joel Stanley <joel@jms.id.au>
Cc: Alistar Popple <alistair@popple.id.au>
Cc: Eddie James <eajames@linux.ibm.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jilin Yuan <yuanjilin@cdjrlc.com>
Cc: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Won Chung <wonchung@google.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Acked-by: Hans de Goede <hdegoede@redhat.com>
Link: https://lore.kernel.org/r/20230111113018.459199-7-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
CXL rev 3.0 section 8.2.9.2.1.3 defines the Memory Module Event Record.
Determine if the event read is memory module record and if so trace the
record.
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20221216-cxl-ev-log-v7-5-2316a5c8f7d8@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL rev 3.0 section 8.2.9.2.1.2 defines the DRAM Event Record.
Determine if the event read is a DRAM event record and if so trace the
record.
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20221216-cxl-ev-log-v7-4-2316a5c8f7d8@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL rev 3.0 section 8.2.9.2.1.1 defines the General Media Event Record.
Determine if the event read is a general media record and if so trace
the record as a General Media Event Record.
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20221216-cxl-ev-log-v7-3-2316a5c8f7d8@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Currently the only CXL features targeted for irq support require their
message numbers to be within the first 16 entries. The device may
however support less than 16 entries depending on the support it
provides.
Attempt to allocate these 16 irq vectors. If the device supports less
then the PCI infrastructure will allocate that number. Upon successful
allocation, users can plug in their respective isr at any point
thereafter.
CXL device events are signaled via interrupts. Each event log may have
a different interrupt message number. These message numbers are
reported in the Get Event Interrupt Policy mailbox command.
Add interrupt support for event logs. Interrupts are allocated as
shared interrupts. Therefore, all or some event logs can share the same
message number.
In addition all logs are queried on any interrupt in order of the most
to least severe based on the status register.
Finally place all event configuration logic into cxl_event_config().
Previously the logic was a simple 'read all' on start up. But
interrupts must be configured prior to any reads to ensure no events are
missed. A single event configuration function results in a cleaner over
all implementation.
Cc: Bjorn Helgaas <helgaas@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Co-developed-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20221216-cxl-ev-log-v7-2-2316a5c8f7d8@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Only unsupported mailbox commands are reported in debug messages. A
list of enabled commands is useful too. Change debug messages to also
report the opcodes of enabled commands. Esp. if card initialization
fails there is no way to get this information from userland.
On that occasion also add missing trailing newlines.
Signed-off-by: Robert Richter <rrichter@amd.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20230125085728.234697-1-rrichter@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL devices have multiple event logs which can be queried for CXL event
records. Devices are required to support the storage of at least one
event record in each event log type.
Devices track event log overflow by incrementing a counter and tracking
the time of the first and last overflow event seen.
Software queries events via the Get Event Record mailbox command; CXL
rev 3.0 section 8.2.9.2.2 and clears events via CXL rev 3.0 section
8.2.9.2.3 Clear Event Records mailbox command.
If the result of negotiating CXL Error Reporting Control is OS control,
read and clear all event logs on driver load.
Ensure a clean slate of events by reading and clearing the events on
driver load.
The status register is not used because a device may continue to trigger
events and the only requirement is to empty the log at least once. This
allows for the required transition from empty to non-empty for interrupt
generation. Handling of interrupts is in a follow on patch.
The device can return up to 1MB worth of event records per query.
Allocate a shared large buffer to handle the max number of records based
on the mailbox payload size.
This patch traces a raw event record and leaves specific event record
type tracing to subsequent patches. Macros are created to aid in
tracing the common CXL Event header fields.
Each record is cleared explicitly. A clear all bit is specified but is
only valid when the log overflows.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20221216-cxl-ev-log-v7-1-2316a5c8f7d8@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The cxl_pmem.ko module houses the driver for both cxl_nvdimm_bridge
objects and cxl_nvdimm objects. When the core creates a cxl_nvdimm it
arranges for it to be autoremoved when the bridge goes down. However, if
the bridge never initialized because the cxl_pmem.ko module never
loaded, it sets up a the following crash scenario:
BUG: kernel NULL pointer dereference, address: 0000000000000478
[..]
RIP: 0010:cxl_nvdimm_probe+0x99/0x140 [cxl_pmem]
[..]
Call Trace:
<TASK>
cxl_bus_probe+0x17/0x50 [cxl_core]
really_probe+0xde/0x380
__driver_probe_device+0x78/0x170
driver_probe_device+0x1f/0x90
__driver_attach+0xd2/0x1c0
bus_for_each_dev+0x79/0xc0
bus_add_driver+0x1b1/0x200
driver_register+0x89/0xe0
cxl_pmem_init+0x50/0xff0 [cxl_pmem]
It turns out the recent rework to simplify nvdimm probing obviated the
need to unregister cxl_nvdimm objects at cxl_nvdimm_bridge ->remove()
time. Leave the cxl_nvdimm device registered until the hosting
cxl_memdev departs. The alternative is that the cxl_memdev needs to be
reattached whenever the cxl_nvdimm_bridge attach state cycles, which is
awkward and unnecessary.
The only requirement is to make sure that when the cxl_nvdimm_bridge
goes away any dependent cxl_nvdimm objects are shutdown. Handle that in
unregister_nvdimm_bus().
With these registration entanglements removed there is no longer a need
to pre-load the cxl_pmem module in cxl_acpi.
Fixes: cb9cfff82f ("cxl/acpi: Simplify cxl_nvdimm_bridge probing")
Reported-by: Gregory Price <gregory.price@memverge.com>
Debugged-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167426077263.3955046.9695309346988027311.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Similar to the justification in:
1b58b4cac6 ("cxl/port: Record parent dport when adding ports")
...userspace wants to know the routing information for ports for
calculating the memdev order for region creation among other things.
Cache the information the kernel discovers at enumeration time in a
'parent_dport' attribute to save userspace the time of trawling sysfs
to recover the same information.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/167124082375.1626103.6047000000121298560.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Both cxl_switch_decoders() and cxl_endpoint_decoders() are considered by
cxl_region_decode_commit(). Flag cases where cxl_switch_decoders with
multiple targets, or cxl_endpoint_decoders do not have a commit callback
set. The switch case is unlikely to happen since switches are only
enumerated by the CXL core, but the endpoint case may support decoders
defined by drivers outside of drivers/cxl, like accerator drivers.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/167124081824.1626103.1555704405392757219.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
For debugging it is very helpful to see which commands are sent. Add
it to the debug message.
Signed-off-by: Robert Richter <rrichter@amd.com>
Link: https://lore.kernel.org/r/20230103210151.1126873-1-rrichter@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
'addr' that contains RAS UE register address is re-assigned to
RAS_CAP_CONTROL offset if there are multiple UE errors. Use different addr
variable to avoid the reassignment mistake.
Fixes: 2905cb5236 ("cxl/pci: Add (hopeful) error handling support")
Reported-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/167302318779.580155.15233596744650706167.stgit@djiang5-mobl3.local
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
No need for more than once per module load.
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/20221215183836.24136-1-dave@stgolabs.net
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
CXL is using tracepoints for reporting RAS capability register payloads
for AER events, and has plans to use tracepoints for the output payload
of Get Poison List and Get Event Records commands. For organization
purposes it would be nice to keep those all under a single + local CXL
trace system. This also organization also potentially helps in the
future when CXL drivers expand beyond generic memory expanders, however
that would also entail a move away from the expander-specific
cxl_dev_state context, save that for later.
Note that the powerpc-specific drivers/misc/cxl/ also defines a 'cxl'
trace system, however, it is unlikely that a single platform will ever
load both drivers simultaneously.
Cc: Steven Rostedt <rostedt@goodmis.org>
Tested-by: Alison Schofield <alison.schofield@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167051869176.436579.9728373544811641087.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Due to a typo, the check of whether or not a memdev has already been
used as a target for the region (above code piece) will always be
skipped. Given a memdev with more than one HDM decoder, an interleaved
region can be created that maps multiple HPAs to the same DPA. According
to CXL spec 3.0 8.1.3.8.4, "Aliasing (mapping more than one Host
Physical Address (HPA) to a single Device Physical Address) is
forbidden."
Fix this by using existing iterator for memdev reuse check.
Cc: <stable@vger.kernel.org>
Fixes: 384e624bb2 ("cxl/region: Attach endpoint decoders")
Signed-off-by: Fan Ni <fan.ni@samsung.com>
Link: https://lore.kernel.org/r/20221107212153.745993-1-fan.ni@samsung.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
readl() already handles endian conversion. That's the main difference
between readl() and __raw_readl(). This is benign on little-endian
systems, but big endian systems will end up byte-swabbing twice.
Fixes: 2905cb5236 ("cxl/pci: Add (hopeful) error handling support")
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/167030092025.4045167.10651070153523351093.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>