THP pages can get split during different code paths. An incremented
reference count does imply we will not split the compound page. But the
pmd entry can be converted to level 4 pte entries. Keep the code
simpler by allowing large IOMMU page size only if the guest ram is
backed by hugetlb pages.
Link: http://lkml.kernel.org/r/20190114095438.32470-6-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current code doesn't do page migration if the page allocated is a
compound page. With HugeTLB migration support, we can end up allocating
hugetlb pages from CMA region. Also, THP pages can be allocated from
CMA region. This patch updates the code to handle compound pages
correctly. The patch also switches to a single get_user_pages with the
right count, instead of doing one get_user_pages per page. That avoids
reading page table multiple times. This is done by using
get_user_pages_longterm, because that also takes care of DAX backed
pages.
DAX pages lifetime is dictated by file system rules and as such, we need
to make sure that we free these pages on operations like truncate and
punch hole. If we have long term pin on these pages, which are mostly
return to userspace with elevated page count, the entity holding the
long term pin may not be aware of the fact that file got truncated and
the file system blocks possibly got reused. That can result in
corruption.
The patch also converts the hpas member of mm_iommu_table_group_mem_t to
a union. We use the same storage location to store pointers to struct
page. We cannot update all the code path use struct page *, because we
access hpas in real mode and we can't do that struct page * to pfn
conversion in real mode.
[aneesh.kumar@linux.ibm.com: address review feedback, update changelog]
Link: http://lkml.kernel.org/r/20190227144736.5872-4-aneesh.kumar@linux.ibm.com
Link: http://lkml.kernel.org/r/20190114095438.32470-5-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch updates get_user_pages_longterm to migrate pages allocated
out of CMA region. This makes sure that we don't keep non-movable pages
(due to page reference count) in the CMA area.
This will be used by ppc64 in a later patch to avoid pinning pages in
the CMA region. ppc64 uses CMA region for allocation of the hardware
page table (hash page table) and not able to migrate pages out of CMA
region results in page table allocation failures.
One case where we hit this easy is when a guest using a VFIO passthrough
device. VFIO locks all the guest's memory and if the guest memory is
backed by CMA region, it becomes unmovable resulting in fragmenting the
CMA and possibly preventing other guests from allocation a large enough
hash page table.
NOTE: We allocate the new page without using __GFP_THISNODE
Link: http://lkml.kernel.org/r/20190114095438.32470-3-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/kvm/vfio/ppc64: Migrate compound pages out of CMA
region", v8.
ppc64 uses the CMA area for the allocation of guest page table (hash
page table). We won't be able to start guest if we fail to allocate
hash page table. We have observed hash table allocation failure because
we failed to migrate pages out of CMA region because they were pinned.
This happen when we are using VFIO. VFIO on ppc64 pins the entire guest
RAM. If the guest RAM pages get allocated out of CMA region, we won't
be able to migrate those pages. The pages are also pinned for the
lifetime of the guest.
Currently we support migration of non-compound pages. With THP and with
the addition of hugetlb migration we can end up allocating compound
pages from CMA region. This patch series add support for migrating
compound pages.
This patch (of 4):
Add PF_MEMALLOC_NOCMA which make sure any allocation in that context is
marked non-movable and hence cannot be satisfied by CMA region.
This is useful with get_user_pages_longterm where we want to take a page
pin by migrating pages from CMA region. Marking the section
PF_MEMALLOC_NOCMA ensures that we avoid unnecessary page migration
later.
Link: http://lkml.kernel.org/r/20190114095438.32470-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Suggested-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The usage of PG_reserved and how PG_reserved pages are to be treated is
buried deep down in different parts of the kernel. Let's shine some
light onto these details by documenting current users and expected
behavior.
Especially, clarify on the "Some of them might not even exist" case.
These are physical memory gaps that will never be dumped as they are not
marked as IORESOURCE_SYSRAM. PG_reserved does in general not hinder
anybody from dumping or swapping. In some cases, these pages will not
be stored in the hibernation image.
Link: http://lkml.kernel.org/r/20190114125903.24845-10-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Miles Chen <miles.chen@mediatek.com>
Cc: <yi.z.zhang@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the old days, remap_pfn_range() required pages to be marked as
PG_reserved, so they would e.g. never get swapped out. This was
required for special mappings. Nowadays, this is fully handled via the
VMA (VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP inside
remap_pfn_range() to be precise). PG_reserved is no longer required but
only a relic from the past.
So only architecture specific MM handling might require it (e.g. to
detect them as MMIO pages). As there are no architecture specific
checks for PageReserved() apart from MCA handling in ia64code, this can
go. Use simple vzalloc()/vfree() instead.
Note that before calling vzalloc(), size has already been aligned to
PAGE_SIZE, no need to align again.
Link: http://lkml.kernel.org/r/20190114125903.24845-9-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The crashkernel is reserved via memblock_reserve(). memblock_free_all()
will call free_low_memory_core_early(), which will go over all reserved
memblocks, marking the pages as PG_reserved.
So manually marking pages as PG_reserved is not necessary, they are
already in the desired state (otherwise they would have been handed over
to the buddy as free pages and bad things would happen).
Link: http://lkml.kernel.org/r/20190114125903.24845-8-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Matthias Brugger <mbrugger@suse.com>
Reviewed-by: Bhupesh Sharma <bhsharma@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Dave Kleikamp <dave.kleikamp@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Florian Fainelli <f.fainelli@gmail.com>
Cc: Stefan Agner <stefan@agner.ch>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Greg Hackmann <ghackmann@android.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kristina Martsenko <kristina.martsenko@arm.com>
Cc: CHANDAN VN <chandan.vn@samsung.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Logan Gunthorpe <logang@deltatee.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This will be done by free_reserved_page().
Link: http://lkml.kernel.org/r/20190114125903.24845-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: James Morse <james.morse@arm.com>
Reviewed-by: Bhupesh Sharma <bhsharma@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Dave Kleikamp <dave.kleikamp@oracle.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The PG_reserved flag is cleared from memory that is part of the kernel
image (and therefore marked as PG_reserved). Avoid using PG_reserved
directly.
Link: http://lkml.kernel.org/r/20190114125903.24845-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The VDSO is part of the kernel image and therefore the struct pages are
marked as reserved during boot.
As we install a special mapping, the actual struct pages will never be
exposed to MM via the page tables. We can therefore leave the pages
marked as reserved.
Link: http://lkml.kernel.org/r/20190114125903.24845-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Palmer Dabbelt <palmer@sifive.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Tobias Klauser <tklauser@distanz.ch>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The VDSO is part of the kernel image and therefore the struct pages are
marked as reserved during boot.
As we install a special mapping, the actual struct pages will never be
exposed to MM via the page tables. We can therefore leave the pages
marked as reserved.
Link: http://lkml.kernel.org/r/20190114125903.24845-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Kees Cook <keescook@chromium.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The VDSO is part of the kernel image and therefore the struct pages are
marked as reserved during boot.
As we install a special mapping, the actual struct pages will never be
exposed to MM via the page tables. We can therefore leave the pages
marked as reserved.
Link: http://lkml.kernel.org/r/20190114125903.24845-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Suggested-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: PG_reserved cleanups and documentation", v2.
I was recently going over all users of PG_reserved. Short story: it is
difficult and sometimes not really clear if setting/checking for
PG_reserved is only a relict from the past. Easy to break things. I
guess I now have a pretty good idea wh things are like that nowadays and
how they evolved.
I had way more cleanups in this series inititally, but some
architectures take PG_reserved as a way to apply a different caching
strategy (for MMIO pages). So I decided to only include the most
obvious changes (that are less likely to break something). So the big
chunk of manual SetPageReserved users are MMIO/DMA related things on
device buffers.
Most notably, for device memory we will hopefully soon stop setting
PG_reserved. Then the documentation has to be updated.
This patch (of 9):
The l1 GATT page table is kept in a special on-chip page with 64
entries. We allocate the l2 page table pages via get_zeroed_page() and
enter them into the table. These l2 pages are modified accordingly when
inserting/removing memory via efficeon_insert_memory and
efficeon_remove_memory.
Apart from that, these pages are not exposed or ioremap'ed. We can stop
setting them reserved (propably copied from generic code).
Link: http://lkml.kernel.org/r/20190114125903.24845-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch was initially posted by Kelley Nielsen. Reposting the patch
with all review comments addressed and with minor modifications and
optimizations. Also, folding in the fixes offered by Hugh Dickins and
Huang Ying. Tests were rerun and commit message updated with new
results.
try_to_unuse() is of quadratic complexity, with a lot of wasted effort.
It unuses swap entries one by one, potentially iterating over all the
page tables for all the processes in the system for each one.
This new proposed implementation of try_to_unuse simplifies its
complexity to linear. It iterates over the system's mms once, unusing
all the affected entries as it walks each set of page tables. It also
makes similar changes to shmem_unuse.
Improvement
swapoff was called on a swap partition containing about 6G of data, in a
VM(8cpu, 16G RAM), and calls to unuse_pte_range() were counted.
Present implementation....about 1200M calls(8min, avg 80% cpu util).
Prototype.................about 9.0K calls(3min, avg 5% cpu util).
Details
In shmem_unuse(), iterate over the shmem_swaplist and, for each
shmem_inode_info that contains a swap entry, pass it to
shmem_unuse_inode(), along with the swap type. In shmem_unuse_inode(),
iterate over its associated xarray, and store the index and value of
each swap entry in an array for passing to shmem_swapin_page() outside
of the RCU critical section.
In try_to_unuse(), instead of iterating over the entries in the type and
unusing them one by one, perhaps walking all the page tables for all the
processes for each one, iterate over the mmlist, making one pass. Pass
each mm to unuse_mm() to begin its page table walk, and during the walk,
unuse all the ptes that have backing store in the swap type received by
try_to_unuse(). After the walk, check the type for orphaned swap
entries with find_next_to_unuse(), and remove them from the swap cache.
If find_next_to_unuse() starts over at the beginning of the type, repeat
the check of the shmem_swaplist and the walk a maximum of three times.
Change unuse_mm() and the intervening walk functions down to
unuse_pte_range() to take the type as a parameter, and to iterate over
their entire range, calling the next function down on every iteration.
In unuse_pte_range(), make a swap entry from each pte in the range using
the passed in type. If it has backing store in the type, call
swapin_readahead() to retrieve the page and pass it to unuse_pte().
Pass the count of pages_to_unuse down the page table walks in
try_to_unuse(), and return from the walk when the desired number of
pages has been swapped back in.
Link: http://lkml.kernel.org/r/20190114153129.4852-2-vpillai@digitalocean.com
Signed-off-by: Vineeth Remanan Pillai <vpillai@digitalocean.com>
Signed-off-by: Kelley Nielsen <kelleynnn@gmail.com>
Signed-off-by: Huang Ying <ying.huang@intel.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
swapin logic can be reused independently without rest of the logic in
shmem_getpage_gfp. So lets refactor it out as an independent function.
Link: http://lkml.kernel.org/r/20190114153129.4852-1-vpillai@digitalocean.com
Signed-off-by: Vineeth Remanan Pillai <vpillai@digitalocean.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kelley Nielsen <kelleynnn@gmail.com>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We may simply check for sc->may_unmap in isolate_lru_pages() instead of
doing that in both of its callers.
Link: http://lkml.kernel.org/r/154748280735.29962.15867846875217618569.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Syzbot with KMSAN reports (excerpt):
==================================================================
BUG: KMSAN: uninit-value in mpol_rebind_policy mm/mempolicy.c:353 [inline]
BUG: KMSAN: uninit-value in mpol_rebind_mm+0x249/0x370 mm/mempolicy.c:384
CPU: 1 PID: 17420 Comm: syz-executor4 Not tainted 4.20.0-rc7+ #15
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x173/0x1d0 lib/dump_stack.c:113
kmsan_report+0x12e/0x2a0 mm/kmsan/kmsan.c:613
__msan_warning+0x82/0xf0 mm/kmsan/kmsan_instr.c:295
mpol_rebind_policy mm/mempolicy.c:353 [inline]
mpol_rebind_mm+0x249/0x370 mm/mempolicy.c:384
update_tasks_nodemask+0x608/0xca0 kernel/cgroup/cpuset.c:1120
update_nodemasks_hier kernel/cgroup/cpuset.c:1185 [inline]
update_nodemask kernel/cgroup/cpuset.c:1253 [inline]
cpuset_write_resmask+0x2a98/0x34b0 kernel/cgroup/cpuset.c:1728
...
Uninit was created at:
kmsan_save_stack_with_flags mm/kmsan/kmsan.c:204 [inline]
kmsan_internal_poison_shadow+0x92/0x150 mm/kmsan/kmsan.c:158
kmsan_kmalloc+0xa6/0x130 mm/kmsan/kmsan_hooks.c:176
kmem_cache_alloc+0x572/0xb90 mm/slub.c:2777
mpol_new mm/mempolicy.c:276 [inline]
do_mbind mm/mempolicy.c:1180 [inline]
kernel_mbind+0x8a7/0x31a0 mm/mempolicy.c:1347
__do_sys_mbind mm/mempolicy.c:1354 [inline]
As it's difficult to report where exactly the uninit value resides in
the mempolicy object, we have to guess a bit. mm/mempolicy.c:353
contains this part of mpol_rebind_policy():
if (!mpol_store_user_nodemask(pol) &&
nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
"mpol_store_user_nodemask(pol)" is testing pol->flags, which I couldn't
ever see being uninitialized after leaving mpol_new(). So I'll guess
it's actually about accessing pol->w.cpuset_mems_allowed on line 354,
but still part of statement starting on line 353.
For w.cpuset_mems_allowed to be not initialized, and the nodes_equal()
reachable for a mempolicy where mpol_set_nodemask() is called in
do_mbind(), it seems the only possibility is a MPOL_PREFERRED policy
with empty set of nodes, i.e. MPOL_LOCAL equivalent, with MPOL_F_LOCAL
flag. Let's exclude such policies from the nodes_equal() check. Note
the uninit access should be benign anyway, as rebinding this kind of
policy is always a no-op. Therefore no actual need for stable
inclusion.
Link: http://lkml.kernel.org/r/a71997c3-e8ae-a787-d5ce-3db05768b27c@suse.cz
Link: http://lkml.kernel.org/r/73da3e9c-cc84-509e-17d9-0c434bb9967d@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: syzbot+b19c2dc2c990ea657a71@syzkaller.appspotmail.com
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a memory cgroup contains a single process with many threads
(including different process group sharing the mm) then it is possible
to trigger a race when the oom killer complains that there are no oom
elible tasks and complain into the log which is both annoying and
confusing because there is no actual problem. The race looks as
follows:
P1 oom_reaper P2
try_charge try_charge
mem_cgroup_out_of_memory
mutex_lock(oom_lock)
out_of_memory
oom_kill_process(P1,P2)
wake_oom_reaper
mutex_unlock(oom_lock)
oom_reap_task
mutex_lock(oom_lock)
select_bad_process # no victim
The problem is more visible with many threads.
Fix this by checking for fatal_signal_pending from
mem_cgroup_out_of_memory when the oom_lock is already held.
The oom bypass is safe because we do the same early in the try_charge
path already. The situation migh have changed in the mean time. It
should be safe to check for fatal_signal_pending and tsk_is_oom_victim
but for a better code readability abstract the current charge bypass
condition into should_force_charge and reuse it from that path. "
Link: http://lkml.kernel.org/r/01370f70-e1f6-ebe4-b95e-0df21a0bc15e@i-love.sakura.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two early memory allocations that use
memblock_alloc_node_nopanic() and do not check its return value.
While this happens very early during boot and chances that the
allocation will fail are diminishing, it is still worth to have proper
checks for the allocation errors.
Link: http://lkml.kernel.org/r/1547734941-944-1-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
NestMMU requires us to mark the pte invalid and flush the tlb when we do
a RW upgrade of pte. We fixed a variant of this in the fault path in
bd5050e38a ("powerpc/mm/radix: Change pte relax sequence to handle
nest MMU hang").
Link: http://lkml.kernel.org/r/20190116085035.29729-6-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Architectures like ppc64 require to do a conditional tlb flush based on
the old and new value of pte. Follow the regular pte change protection
sequence for hugetlb too. This allows the architectures to override the
update sequence.
Link: http://lkml.kernel.org/r/20190116085035.29729-5-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
NestMMU requires us to mark the pte invalid and flush the tlb when we do
a RW upgrade of pte. We fixed a variant of this in the fault path in
bd5050e38a ("powerpc/mm/radix: Change pte relax sequence to handle
nest MMU hang").
Do the same for mprotect upgrades.
Hugetlb is handled in the next patch.
Link: http://lkml.kernel.org/r/20190116085035.29729-4-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Architectures like ppc64 require to do a conditional tlb flush based on
the old and new value of pte. Enable that by passing old pte value as
the arg.
Link: http://lkml.kernel.org/r/20190116085035.29729-3-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "NestMMU pte upgrade workaround for mprotect", v5.
We can upgrade pte access (R -> RW transition) via mprotect. We need to
make sure we follow the recommended pte update sequence as outlined in
commit bd5050e38a ("powerpc/mm/radix: Change pte relax sequence to
handle nest MMU hang") for such updates. This patch series does that.
This patch (of 5):
Some architectures may want to call flush_tlb_range from these helpers.
Link: http://lkml.kernel.org/r/20190116085035.29729-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No functional change.
Link: http://lkml.kernel.org/r/20190118235123.27843-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The variable 'addr' is redundant in arch_get_unmapped_area_topdown(),
just use parameter 'addr0' directly. Then remove the const qualifier of
the parameter, and change its name to 'addr'.
And in according with other functions, remove the const qualifier of all
other no-pointer parameters in function arch_get_unmapped_area_topdown().
Link: http://lkml.kernel.org/r/20190127041112.25599-1-nullptr.cpp@gmail.com
Signed-off-by: Yang Fan <nullptr.cpp@gmail.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since the start of the git history of Linux, the kernel after selecting
the worst process to be oom-killed, prefer to kill its child (if the
child does not share mm with the parent). Later it was changed to
prefer to kill a child who is worst. If the parent is still the worst
then the parent will be killed.
This heuristic assumes that the children did less work than their parent
and by killing one of them, the work lost will be less. However this is
very workload dependent. If there is a workload which can benefit from
this heuristic, can use oom_score_adj to prefer children to be killed
before the parent.
The select_bad_process() has already selected the worst process in the
system/memcg. There is no need to recheck the badness of its children
and hoping to find a worse candidate. That's a lot of unneeded racy
work. Also the heuristic is dangerous because it make fork bomb like
workloads to recover much later because we constantly pick and kill
processes which are not memory hogs. So, let's remove this whole
heuristic.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20190121215850.221745-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When calling debugfs functions, there is no need to ever check the
return value. The function can work or not, but the code logic should
never do something different based on this.
Link: http://lkml.kernel.org/r/20190122152151.16139-14-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Laura Abbott <labbott@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pages which use page_type must never be mapped to userspace as it would
destroy their page type. Add an explicit check for this instead of
assuming that kernel drivers always get this right.
Link: http://lkml.kernel.org/r/20190129053830.3749-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's never appropriate to map a page allocated by SLAB into userspace.
A buggy device driver might try this, or an attacker might be able to
find a way to make it happen.
Christoph said:
: Let's just fail the code. Currently this may work with SLUB. But SLAB
: and SLOB overlay fields with mapcount. So you would have a corrupted page
: struct if you mapped a slab page to user space.
Link: http://lkml.kernel.org/r/20190125173827.2658-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
One of the vmalloc stress test case triggers the kernel BUG():
<snip>
[60.562151] ------------[ cut here ]------------
[60.562154] kernel BUG at mm/vmalloc.c:512!
[60.562206] invalid opcode: 0000 [#1] PREEMPT SMP PTI
[60.562247] CPU: 0 PID: 430 Comm: vmalloc_test/0 Not tainted 4.20.0+ #161
[60.562293] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014
[60.562351] RIP: 0010:alloc_vmap_area+0x36f/0x390
<snip>
it can happen due to big align request resulting in overflowing of
calculated address, i.e. it becomes 0 after ALIGN()'s fixup.
Fix it by checking if calculated address is within vstart/vend range.
Link: http://lkml.kernel.org/r/20190124115648.9433-2-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memcg has a significant number of files exposed to kernfs where their
value is either exposed directly or is "max" in the case of
PAGE_COUNTER_MAX.
This patch makes this generic by providing a single function to do this
work. In combination with the previous patch adding
mem_cgroup_from_seq, this makes all of the seq_show feeder functions
significantly more simple.
Link: http://lkml.kernel.org/r/20190124194100.GA31425@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the start of a series of patches similar to my earlier
DEFINE_MEMCG_MAX_OR_VAL work, but with less Macro Magic(tm).
There are a bunch of places we go from seq_file to mem_cgroup, which
currently requires manually getting the css, then getting the mem_cgroup
from the css. It's in enough places now that having mem_cgroup_from_seq
makes sense (and also makes the next patch a bit nicer).
Link: http://lkml.kernel.org/r/20190124194050.GA31341@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cgroup has a standardized poll/notification mechanism for waking all
pollers on all fds when a filesystem node changes. To allow polling for
custom events, add a .poll callback that can override the default.
This is in preparation for pollable cgroup pressure files which have
per-fd trigger configurations.
Link: http://lkml.kernel.org/r/20190124211518.244221-3-surenb@google.com
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "psi: pressure stall monitors", v3.
Android is adopting psi to detect and remedy memory pressure that
results in stuttering and decreased responsiveness on mobile devices.
Psi gives us the stall information, but because we're dealing with
latencies in the millisecond range, periodically reading the pressure
files to detect stalls in a timely fashion is not feasible. Psi also
doesn't aggregate its averages at a high enough frequency right now.
This patch series extends the psi interface such that users can
configure sensitive latency thresholds and use poll() and friends to be
notified when these are breached.
As high-frequency aggregation is costly, it implements an aggregation
method that is optimized for fast, short-interval averaging, and makes
the aggregation frequency adaptive, such that high-frequency updates
only happen while monitored stall events are actively occurring.
With these patches applied, Android can monitor for, and ward off,
mounting memory shortages before they cause problems for the user. For
example, using memory stall monitors in userspace low memory killer
daemon (lmkd) we can detect mounting pressure and kill less important
processes before device becomes visibly sluggish.
In our memory stress testing psi memory monitors produce roughly 10x
less false positives compared to vmpressure signals. Having ability to
specify multiple triggers for the same psi metric allows other parts of
Android framework to monitor memory state of the device and act
accordingly.
The new interface is straightforward. The user opens one of the
pressure files for writing and writes a trigger description into the
file descriptor that defines the stall state - some or full, and the
maximum stall time over a given window of time. E.g.:
/* Signal when stall time exceeds 100ms of a 1s window */
char trigger[] = "full 100000 1000000";
fd = open("/proc/pressure/memory");
write(fd, trigger, sizeof(trigger));
while (poll() >= 0) {
...
}
close(fd);
When the monitored stall state is entered, psi adapts its aggregation
frequency according to what the configured time window requires in order
to emit event signals in a timely fashion. Once the stalling subsides,
aggregation reverts back to normal.
The trigger is associated with the open file descriptor. To stop
monitoring, the user only needs to close the file descriptor and the
trigger is discarded.
Patches 1-4 prepare the psi code for polling support. Patch 5
implements the adaptive polling logic, the pressure growth detection
optimized for short intervals, and hooks up write() and poll() on the
pressure files.
The patches were developed in collaboration with Johannes Weiner.
This patch (of 5):
Kernfs has a standardized poll/notification mechanism for waking all
pollers on all fds when a filesystem node changes. To allow polling for
custom events, add a .poll callback that can override the default.
This is in preparation for pollable cgroup pressure files which have
per-fd trigger configurations.
Link: http://lkml.kernel.org/r/20190124211518.244221-2-surenb@google.com
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction is inherently race-prone as a suitable page freed during
compaction can be allocated by any parallel task. This patch uses a
capture_control structure to isolate a page immediately when it is freed
by a direct compactor in the slow path of the page allocator. The
intent is to avoid redundant scanning.
5.0.0-rc1 5.0.0-rc1
selective-v3r17 capture-v3r19
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 2582.11 ( 0.00%) 2563.68 ( 0.71%)
Amean fault-both-5 4500.26 ( 0.00%) 4233.52 ( 5.93%)
Amean fault-both-7 5819.53 ( 0.00%) 6333.65 ( -8.83%)
Amean fault-both-12 9321.18 ( 0.00%) 9759.38 ( -4.70%)
Amean fault-both-18 9782.76 ( 0.00%) 10338.76 ( -5.68%)
Amean fault-both-24 15272.81 ( 0.00%) 13379.55 * 12.40%*
Amean fault-both-30 15121.34 ( 0.00%) 16158.25 ( -6.86%)
Amean fault-both-32 18466.67 ( 0.00%) 18971.21 ( -2.73%)
Latency is only moderately affected but the devil is in the details. A
closer examination indicates that base page fault latency is reduced but
latency of huge pages is increased as it takes creater care to succeed.
Part of the "problem" is that allocation success rates are close to 100%
even when under pressure and compaction gets harder
5.0.0-rc1 5.0.0-rc1
selective-v3r17 capture-v3r19
Percentage huge-3 96.70 ( 0.00%) 98.23 ( 1.58%)
Percentage huge-5 96.99 ( 0.00%) 95.30 ( -1.75%)
Percentage huge-7 94.19 ( 0.00%) 97.24 ( 3.24%)
Percentage huge-12 94.95 ( 0.00%) 97.35 ( 2.53%)
Percentage huge-18 96.74 ( 0.00%) 97.30 ( 0.58%)
Percentage huge-24 97.07 ( 0.00%) 97.55 ( 0.50%)
Percentage huge-30 95.69 ( 0.00%) 98.50 ( 2.95%)
Percentage huge-32 96.70 ( 0.00%) 99.27 ( 2.65%)
And scan rates are reduced as expected by 6% for the migration scanner
and 29% for the free scanner indicating that there is less redundant
work.
Compaction migrate scanned 20815362 19573286
Compaction free scanned 16352612 11510663
[mgorman@techsingularity.net: remove redundant check]
Link: http://lkml.kernel.org/r/20190201143853.GH9565@techsingularity.net
Link: http://lkml.kernel.org/r/20190118175136.31341-23-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pageblock hints are cleared when compaction restarts or kswapd makes
enough progress that it can sleep but it's over-eager in that the bit is
cleared for migration sources with no LRU pages and migration targets
with no free pages. As pageblock skip hint flushes are relatively rare
and out-of-band with respect to kswapd, this patch makes a few more
expensive checks to see if it's appropriate to even clear the bit.
Every pageblock that is not cleared will avoid 512 pages being scanned
unnecessarily on x86-64.
The impact is variable with different workloads showing small
differences in latency, success rates and scan rates. This is expected
as clearing the hints is not that common but doing a small amount of
work out-of-band to avoid a large amount of work in-band later is
generally a good thing.
Link: http://lkml.kernel.org/r/20190118175136.31341-22-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
[cai@lca.pw: no stuck in __reset_isolation_pfn()]
Link: http://lkml.kernel.org/r/20190206034732.75687-1-cai@lca.pw
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Once fast searching finishes, there is a possibility that the linear
scanner is scanning full blocks found by the fast scanner earlier. This
patch uses an adaptive stride to sample pageblocks for free pages. The
more consecutive full pageblocks encountered, the larger the stride
until a pageblock with free pages is found. The scanners might meet
slightly sooner but it is an acceptable risk given that the search of
the free lists may still encounter the pages and adjust the cached PFN
of the free scanner accordingly.
5.0.0-rc1 5.0.0-rc1
roundrobin-v3r17 samplefree-v3r17
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 2752.37 ( 0.00%) 2729.95 ( 0.81%)
Amean fault-both-5 4341.69 ( 0.00%) 4397.80 ( -1.29%)
Amean fault-both-7 6308.75 ( 0.00%) 6097.61 ( 3.35%)
Amean fault-both-12 10241.81 ( 0.00%) 9407.15 ( 8.15%)
Amean fault-both-18 13736.09 ( 0.00%) 10857.63 * 20.96%*
Amean fault-both-24 16853.95 ( 0.00%) 13323.24 * 20.95%*
Amean fault-both-30 15862.61 ( 0.00%) 17345.44 ( -9.35%)
Amean fault-both-32 18450.85 ( 0.00%) 16892.00 ( 8.45%)
The latency is mildly improved offseting some overhead from earlier
patches that are prerequisites for the rest of the series. However, a
major impact is on the free scan rate with an 82% reduction.
5.0.0-rc1 5.0.0-rc1
roundrobin-v3r17 samplefree-v3r17
Compaction migrate scanned 21607271 20116887
Compaction free scanned 95336406 16668703
It's also the first time in the series where the number of pages scanned
by the migration scanner is greater than the free scanner due to the
increased search efficiency.
Link: http://lkml.kernel.org/r/20190118175136.31341-21-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As compaction proceeds and creates high-order blocks, the free list
search gets less efficient as the larger blocks are used as compaction
targets. Eventually, the larger blocks will be behind the migration
scanner for partially migrated pageblocks and the search fails. This
patch round-robins what orders are searched so that larger blocks can be
ignored and find smaller blocks that can be used as migration targets.
The overall impact was small on 1-socket but it avoids corner cases
where the migration/free scanners meet prematurely or situations where
many of the pageblocks encountered by the free scanner are almost full
instead of being properly packed. Previous testing had indicated that
without this patch there were occasional large spikes in the free
scanner without this patch.
[dan.carpenter@oracle.com: fix static checker warning]
Link: http://lkml.kernel.org/r/20190118175136.31341-20-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The fast isolation of free pages allows the cached PFN of the free
scanner to advance faster than necessary depending on the contents of
the free list. The key is that fast_isolate_freepages() can update
zone->compact_cached_free_pfn via isolate_freepages_block(). When the
fast search fails, the linear scan can start from a point that has
skipped valid migration targets, particularly pageblocks with just
low-order free pages. This can cause the migration source/target
scanners to meet prematurely causing a reset.
This patch starts by avoiding an update of the pageblock skip
information and cached PFN from isolate_freepages_block() and puts the
responsibility of updating that information in the callers. The fast
scanner will update the cached PFN if and only if it finds a block that
is higher than the existing cached PFN and sets the skip if the
pageblock is full or nearly full. The linear scanner will update
skipped information and the cached PFN only when a block is completely
scanned. The total impact is that the free scanner advances more slowly
as it is primarily driven by the linear scanner instead of the fast
search.
5.0.0-rc1 5.0.0-rc1
noresched-v3r17 slowfree-v3r17
Amean fault-both-3 2965.68 ( 0.00%) 3036.75 ( -2.40%)
Amean fault-both-5 3995.90 ( 0.00%) 4522.24 * -13.17%*
Amean fault-both-7 5842.12 ( 0.00%) 6365.35 ( -8.96%)
Amean fault-both-12 9550.87 ( 0.00%) 10340.93 ( -8.27%)
Amean fault-both-18 13304.72 ( 0.00%) 14732.46 ( -10.73%)
Amean fault-both-24 14618.59 ( 0.00%) 16288.96 ( -11.43%)
Amean fault-both-30 16650.96 ( 0.00%) 16346.21 ( 1.83%)
Amean fault-both-32 17145.15 ( 0.00%) 19317.49 ( -12.67%)
The impact to latency is higher than the last version but it appears to
be due to a slight increase in the free scan rates which is a potential
side-effect of the patch. However, this is necessary for later patches
that are more careful about how pageblocks are treated as earlier
iterations of those patches hit corner cases where the restarts were
punishing and very visible.
Link: http://lkml.kernel.org/r/20190118175136.31341-19-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Scanning on large machines can take a considerable length of time and
eventually need to be rescheduled. This is treated as an abort event
but that's not appropriate as the attempt is likely to be retried after
making numerous checks and taking another cycle through the page
allocator. This patch will check the need to reschedule if necessary
but continue the scanning.
The main benefit is reduced scanning when compaction is taking a long
time or the machine is over-saturated. It also avoids an unnecessary
exit of compaction that ends up being retried by the page allocator in
the outer loop.
5.0.0-rc1 5.0.0-rc1
synccached-v3r16 noresched-v3r17
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 2958.27 ( 0.00%) 2965.68 ( -0.25%)
Amean fault-both-5 4091.90 ( 0.00%) 3995.90 ( 2.35%)
Amean fault-both-7 5803.05 ( 0.00%) 5842.12 ( -0.67%)
Amean fault-both-12 9481.06 ( 0.00%) 9550.87 ( -0.74%)
Amean fault-both-18 14141.51 ( 0.00%) 13304.72 ( 5.92%)
Amean fault-both-24 16438.00 ( 0.00%) 14618.59 ( 11.07%)
Amean fault-both-30 17531.72 ( 0.00%) 16650.96 ( 5.02%)
Amean fault-both-32 17101.96 ( 0.00%) 17145.15 ( -0.25%)
Link: http://lkml.kernel.org/r/20190118175136.31341-18-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With incremental changes, compact_should_abort no longer makes any
documented sense. Rename to compact_check_resched and update the
associated comments. There is no benefit other than reducing redundant
code and making the intent slightly clearer. It could potentially be
merged with earlier patches but it just makes the review slightly
harder.
Link: http://lkml.kernel.org/r/20190118175136.31341-17-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Migrate has separate cached PFNs for ASYNC and SYNC* migration on the
basis that some migrations will fail in ASYNC mode. However, if the
cached PFNs match at the start of scanning and pageblocks are skipped
due to having no isolation candidates, then the sync state does not
matter. This patch keeps matching cached PFNs in sync until a pageblock
with isolation candidates is found.
The actual benefit is marginal given that the sync scanner following the
async scanner will often skip a number of pageblocks but it's useless
work. Any benefit depends heavily on whether the scanners restarted
recently.
Link: http://lkml.kernel.org/r/20190118175136.31341-16-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When scanning for sources or targets, PageCompound is checked for huge
pages as they can be skipped quickly but it happens relatively late
after a lot of setup and checking. This patch short-cuts the check to
make it earlier. It might still change when the lock is acquired but
this has less overhead overall. The free scanner advances but the
migration scanner does not. Typically the free scanner encounters more
movable blocks that change state over the lifetime of the system and
also tends to scan more aggressively as it's actively filling its
portion of the physical address space with data. This could change in
the future but for the moment, this worked better in practice and
incurred fewer scan restarts.
The impact on latency and allocation success rates is marginal but the
free scan rates are reduced by 15% and system CPU usage is reduced by
3.3%. The 2-socket results are not materially different.
Link: http://lkml.kernel.org/r/20190118175136.31341-15-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Async migration aborts on spinlock contention but contention can be high
when there are multiple compaction attempts and kswapd is active. The
consequence is that the migration scanners move forward uselessly while
still contending on locks for longer while leaving suitable migration
sources behind.
This patch will acquire the lock but track when contention occurs. When
it does, the current pageblock will finish as compaction may succeed for
that block and then abort. This will have a variable impact on latency
as in some cases useless scanning is avoided (reduces latency) but a
lock will be contended (increase latency) or a single contended
pageblock is scanned that would otherwise have been skipped (increase
latency).
5.0.0-rc1 5.0.0-rc1
norescan-v3r16 finishcontend-v3r16
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 3002.07 ( 0.00%) 3153.17 ( -5.03%)
Amean fault-both-5 4684.47 ( 0.00%) 4280.52 ( 8.62%)
Amean fault-both-7 6815.54 ( 0.00%) 5811.50 * 14.73%*
Amean fault-both-12 10864.02 ( 0.00%) 9276.85 ( 14.61%)
Amean fault-both-18 12247.52 ( 0.00%) 11032.67 ( 9.92%)
Amean fault-both-24 15683.99 ( 0.00%) 14285.70 ( 8.92%)
Amean fault-both-30 18620.02 ( 0.00%) 16293.76 * 12.49%*
Amean fault-both-32 19250.28 ( 0.00%) 16721.02 * 13.14%*
5.0.0-rc1 5.0.0-rc1
norescan-v3r16 finishcontend-v3r16
Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%)
Percentage huge-3 95.00 ( 0.00%) 96.82 ( 1.92%)
Percentage huge-5 94.22 ( 0.00%) 95.40 ( 1.26%)
Percentage huge-7 92.35 ( 0.00%) 95.92 ( 3.86%)
Percentage huge-12 91.90 ( 0.00%) 96.73 ( 5.25%)
Percentage huge-18 89.58 ( 0.00%) 96.77 ( 8.03%)
Percentage huge-24 90.03 ( 0.00%) 96.05 ( 6.69%)
Percentage huge-30 89.14 ( 0.00%) 96.81 ( 8.60%)
Percentage huge-32 90.58 ( 0.00%) 97.41 ( 7.54%)
There is a variable impact that is mostly good on latency while allocation
success rates are slightly higher. System CPU usage is reduced by about
10% but scan rate impact is mixed
Compaction migrate scanned 27997659.00 20148867
Compaction free scanned 120782791.00 118324914
Migration scan rates are reduced 28% which is expected as a pageblock is
used by the async scanner instead of skipped. The impact on the free
scanner is known to be variable. Overall the primary justification for
this patch is that completing scanning of a pageblock is very important
for later patches.
[yuehaibing@huawei.com: fix unused variable warning]
Link: http://lkml.kernel.org/r/20190118175136.31341-14-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: YueHaibing <yuehaibing@huawei.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pageblocks are marked for skip when no pages are isolated after a scan.
However, it's possible to hit corner cases where the migration scanner
gets stuck near the boundary between the source and target scanner. Due
to pages being migrated in blocks of COMPACT_CLUSTER_MAX, pages that are
migrated can be reallocated before the pageblock is complete. The
pageblock is not necessarily skipped so it can be rescanned multiple
times. Similarly, a pageblock with some dirty/writeback pages may fail
to migrate and be rescanned until writeback completes which is wasteful.
This patch tracks if a pageblock is being rescanned. If so, then the
entire pageblock will be migrated as one operation. This narrows the
race window during which pages can be reallocated during migration.
Secondly, if there are pages that cannot be isolated then the pageblock
will still be fully scanned and marked for skipping. On the second
rescan, the pageblock skip is set and the migration scanner makes
progress.
5.0.0-rc1 5.0.0-rc1
findfree-v3r16 norescan-v3r16
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 3200.68 ( 0.00%) 3002.07 ( 6.21%)
Amean fault-both-5 4847.75 ( 0.00%) 4684.47 ( 3.37%)
Amean fault-both-7 6658.92 ( 0.00%) 6815.54 ( -2.35%)
Amean fault-both-12 11077.62 ( 0.00%) 10864.02 ( 1.93%)
Amean fault-both-18 12403.97 ( 0.00%) 12247.52 ( 1.26%)
Amean fault-both-24 15607.10 ( 0.00%) 15683.99 ( -0.49%)
Amean fault-both-30 18752.27 ( 0.00%) 18620.02 ( 0.71%)
Amean fault-both-32 21207.54 ( 0.00%) 19250.28 * 9.23%*
5.0.0-rc1 5.0.0-rc1
findfree-v3r16 norescan-v3r16
Percentage huge-3 96.86 ( 0.00%) 95.00 ( -1.91%)
Percentage huge-5 93.72 ( 0.00%) 94.22 ( 0.53%)
Percentage huge-7 94.31 ( 0.00%) 92.35 ( -2.08%)
Percentage huge-12 92.66 ( 0.00%) 91.90 ( -0.82%)
Percentage huge-18 91.51 ( 0.00%) 89.58 ( -2.11%)
Percentage huge-24 90.50 ( 0.00%) 90.03 ( -0.52%)
Percentage huge-30 91.57 ( 0.00%) 89.14 ( -2.65%)
Percentage huge-32 91.00 ( 0.00%) 90.58 ( -0.46%)
Negligible difference but this was likely a case when the specific
corner case was not hit. A previous run of the same patch based on an
earlier iteration of the series showed large differences where migration
rates could be halved when the corner case was hit.
The specific corner case where migration scan rates go through the roof
was due to a dirty/writeback pageblock located at the boundary of the
migration/free scanner did not happen in this case. When it does
happen, the scan rates multipled by massive margins.
Link: http://lkml.kernel.org/r/20190118175136.31341-13-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Similar to the migration scanner, this patch uses the free lists to
quickly locate a migration target. The search is different in that
lower orders will be searched for a suitable high PFN if necessary but
the search is still bound. This is justified on the grounds that the
free scanner typically scans linearly much more than the migration
scanner.
If a free page is found, it is isolated and compaction continues if
enough pages were isolated. For SYNC* scanning, the full pageblock is
scanned for any remaining free pages so that is can be marked for
skipping in the near future.
1-socket thpfioscale
5.0.0-rc1 5.0.0-rc1
isolmig-v3r15 findfree-v3r16
Amean fault-both-3 3024.41 ( 0.00%) 3200.68 ( -5.83%)
Amean fault-both-5 4749.30 ( 0.00%) 4847.75 ( -2.07%)
Amean fault-both-7 6454.95 ( 0.00%) 6658.92 ( -3.16%)
Amean fault-both-12 10324.83 ( 0.00%) 11077.62 ( -7.29%)
Amean fault-both-18 12896.82 ( 0.00%) 12403.97 ( 3.82%)
Amean fault-both-24 13470.60 ( 0.00%) 15607.10 * -15.86%*
Amean fault-both-30 17143.99 ( 0.00%) 18752.27 ( -9.38%)
Amean fault-both-32 17743.91 ( 0.00%) 21207.54 * -19.52%*
The impact on latency is variable but the search is optimistic and
sensitive to the exact system state. Success rates are similar but the
major impact is to the rate of scanning
5.0.0-rc1 5.0.0-rc1
isolmig-v3r15 findfree-v3r16
Compaction migrate scanned 25646769 29507205
Compaction free scanned 201558184 100359571
The free scan rates are reduced by 50%. The 2-socket reductions for the
free scanner are more dramatic which is a likely reflection that the
machine has more memory.
[dan.carpenter@oracle.com: fix static checker warning]
[vbabka@suse.cz: correct number of pages scanned for lower orders]
Link: http://lkml.kernel.org/r/20190118175136.31341-12-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Due to either a fast search of the free list or a linear scan, it is
possible for multiple compaction instances to pick the same pageblock
for migration. This is lucky for one scanner and increased scanning for
all the others. It also allows a race between requests on which first
allocates the resulting free block.
This patch tests and updates the pageblock skip for the migration
scanner carefully. When isolating a block, it will check and skip if
the block is already in use. Once the zone lock is acquired, it will be
rechecked so that only one scanner can set the pageblock skip for
exclusive use. Any scanner contending will continue with a linear scan.
The skip bit is still set if no pages can be isolated in a range. While
this may result in redundant scanning, it avoids unnecessarily acquiring
the zone lock when there are no suitable migration sources.
1-socket thpscale
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 3390.40 ( 0.00%) 3024.41 ( 10.80%)
Amean fault-both-5 5082.28 ( 0.00%) 4749.30 ( 6.55%)
Amean fault-both-7 7012.51 ( 0.00%) 6454.95 ( 7.95%)
Amean fault-both-12 11346.63 ( 0.00%) 10324.83 ( 9.01%)
Amean fault-both-18 15324.19 ( 0.00%) 12896.82 * 15.84%*
Amean fault-both-24 16088.50 ( 0.00%) 13470.60 * 16.27%*
Amean fault-both-30 18723.42 ( 0.00%) 17143.99 ( 8.44%)
Amean fault-both-32 18612.01 ( 0.00%) 17743.91 ( 4.66%)
5.0.0-rc1 5.0.0-rc1
findmig-v3r15 isolmig-v3r15
Percentage huge-3 89.83 ( 0.00%) 92.96 ( 3.48%)
Percentage huge-5 91.96 ( 0.00%) 93.26 ( 1.41%)
Percentage huge-7 92.85 ( 0.00%) 93.63 ( 0.84%)
Percentage huge-12 92.74 ( 0.00%) 92.80 ( 0.07%)
Percentage huge-18 91.71 ( 0.00%) 91.62 ( -0.10%)
Percentage huge-24 92.13 ( 0.00%) 91.50 ( -0.69%)
Percentage huge-30 93.79 ( 0.00%) 92.73 ( -1.13%)
Percentage huge-32 91.27 ( 0.00%) 91.94 ( 0.74%)
This shows a reasonable reduction in latency as multiple compaction
scanners do not operate on the same blocks with a similar allocation
success rate.
Compaction migrate scanned 41093126 25646769
Migration scan rates are reduced by 38%.
Link: http://lkml.kernel.org/r/20190118175136.31341-11-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The migration scanner is a linear scan of a zone with a potentiall large
search space. Furthermore, many pageblocks are unusable such as those
filled with reserved pages or partially filled with pages that cannot
migrate. These still get scanned in the common case of allocating a THP
and the cost accumulates.
The patch uses a partial search of the free lists to locate a migration
source candidate that is marked as MOVABLE when allocating a THP. It
prefers picking a block with a larger number of free pages already on
the basis that there are fewer pages to migrate to free the entire
block. The lowest PFN found during searches is tracked as the basis of
the start for the linear search after the first search of the free list
fails. After the search, the free list is shuffled so that the next
search will not encounter the same page. If the search fails then the
subsequent searches will be shorter and the linear scanner is used.
If this search fails, or if the request is for a small or
unmovable/reclaimable allocation then the linear scanner is still used.
It is somewhat pointless to use the list search in those cases. Small
free pages must be used for the search and there is no guarantee that
movable pages are located within that block that are contiguous.
5.0.0-rc1 5.0.0-rc1
noboost-v3r10 findmig-v3r15
Amean fault-both-3 3771.41 ( 0.00%) 3390.40 ( 10.10%)
Amean fault-both-5 5409.05 ( 0.00%) 5082.28 ( 6.04%)
Amean fault-both-7 7040.74 ( 0.00%) 7012.51 ( 0.40%)
Amean fault-both-12 11887.35 ( 0.00%) 11346.63 ( 4.55%)
Amean fault-both-18 16718.19 ( 0.00%) 15324.19 ( 8.34%)
Amean fault-both-24 21157.19 ( 0.00%) 16088.50 * 23.96%*
Amean fault-both-30 21175.92 ( 0.00%) 18723.42 * 11.58%*
Amean fault-both-32 21339.03 ( 0.00%) 18612.01 * 12.78%*
5.0.0-rc1 5.0.0-rc1
noboost-v3r10 findmig-v3r15
Percentage huge-3 86.50 ( 0.00%) 89.83 ( 3.85%)
Percentage huge-5 92.52 ( 0.00%) 91.96 ( -0.61%)
Percentage huge-7 92.44 ( 0.00%) 92.85 ( 0.44%)
Percentage huge-12 92.98 ( 0.00%) 92.74 ( -0.25%)
Percentage huge-18 91.70 ( 0.00%) 91.71 ( 0.02%)
Percentage huge-24 91.59 ( 0.00%) 92.13 ( 0.60%)
Percentage huge-30 90.14 ( 0.00%) 93.79 ( 4.04%)
Percentage huge-32 90.03 ( 0.00%) 91.27 ( 1.37%)
This shows an improvement in allocation latencies with similar
allocation success rates. While not presented, there was a 31%
reduction in migration scanning and a 8% reduction on system CPU usage.
A 2-socket machine showed similar benefits.
[mgorman@techsingularity.net: several fixes]
Link: http://lkml.kernel.org/r/20190204120111.GL9565@techsingularity.net
[vbabka@suse.cz: migrate block that was found-fast, some optimisations]
Link: http://lkml.kernel.org/r/20190118175136.31341-10-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <Vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>