Some ahash algorithms set .cra_type = &crypto_ahash_type. But this is
redundant with the C structure type ('struct ahash_alg'), and
crypto_register_ahash() already sets the .cra_type automatically.
Apparently the useless assignment has just been copy+pasted around.
So, remove the useless assignment from all the ahash algorithms.
This patch shouldn't change any actual behavior.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Gilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Many ahash algorithms set .cra_flags = CRYPTO_ALG_TYPE_AHASH. But this
is redundant with the C structure type ('struct ahash_alg'), and
crypto_register_ahash() already sets the type flag automatically,
clearing any type flag that was already there. Apparently the useless
assignment has just been copy+pasted around.
So, remove the useless assignment from all the ahash algorithms.
This patch shouldn't change any actual behavior.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Gilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
With all the crypto modules enabled on x86, and with a CPU that supports
AVX-2 but not SHA-NI instructions (e.g. Haswell, Broadwell, Skylake),
the "multibuffer" implementations of SHA-1, SHA-256, and SHA-512 are the
highest priority. However, these implementations only perform well when
many hash requests are being submitted concurrently, filling all 8 AVX-2
lanes. Otherwise, they are incredibly slow, as they waste time waiting
for more requests to arrive before proceeding to execute each request.
For example, here are the speeds I see hashing 4096-byte buffers with a
single thread on a Haswell-based processor:
generic avx2 mb (multibuffer)
------- -------- ----------------
sha1 602 MB/s 997 MB/s 0.61 MB/s
sha256 228 MB/s 412 MB/s 0.61 MB/s
sha512 312 MB/s 559 MB/s 0.61 MB/s
So, the multibuffer implementation is 500 to 1000 times slower than the
other implementations. Note that with smaller buffers or more update()s
per digest, the difference would be even greater.
I believe the vast majority of people are in the boat where the
multibuffer code is much slower, and only a small minority are doing the
highly parallel, hashing-intensive, latency-flexible workloads (maybe
IPsec on servers?) where the multibuffer code may be beneficial. Yet,
people often aren't familiar with all the crypto config options and so
the multibuffer code may inadvertently be built into the kernel.
Also the multibuffer code apparently hasn't been very well tested,
seeing as it was sometimes computing the wrong SHA-256 digest.
So, let's make the multibuffer algorithms low priority. Users who want
to use them can either request them explicitly by driver name, or use
NETLINK_CRYPTO (crypto_user) to increase their priority at runtime.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The SHA-512 multibuffer code keeps track of the number of blocks pending
in each lane. The minimum of these values is used to identify the next
lane that will be completed. Unused lanes are set to a large number
(0xFFFFFFFF) so that they don't affect this calculation.
However, it was forgotten to set the lengths to this value in the
initial state, where all lanes are unused. As a result it was possible
for sha512_mb_mgr_get_comp_job_avx2() to select an unused lane, causing
a NULL pointer dereference. Specifically this could happen in the case
where ->update() was passed fewer than SHA512_BLOCK_SIZE bytes of data,
so it then called sha_complete_job() without having actually submitted
any blocks to the multi-buffer code. This hit a NULL pointer
dereference if another task happened to have submitted blocks
concurrently to the same CPU and the flush timer had not yet expired.
Fix this by initializing sha512_mb_mgr->lens correctly.
As usual, this bug was found by syzkaller.
Fixes: 45691e2d9b ("crypto: sha512-mb - submit/flush routines for AVX2")
Reported-by: syzbot <syzkaller@googlegroups.com>
Cc: <stable@vger.kernel.org> # v4.8+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We recently added some new locking but missed the unlocks on these
error paths in sha512_ctx_mgr_submit().
Fixes: c459bd7bed ("crypto: sha512-mb - Protect sha512 mb ctx mgr access")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The flusher and regular multi-buffer computation via mcryptd may race with another.
Add here a lock and turn off interrupt to to access multi-buffer
computation state cstate->mgr before a round of computation. This should
prevent the flusher code jumping in.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
A lot of asm-optimized routines in arch/x86/crypto/ keep its
constants in .data. This is wrong, they should be on .rodata.
Mnay of these constants are the same in different modules.
For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F
exists in at least half a dozen places.
There is a way to let linker merge them and use just one copy.
The rules are as follows: mergeable objects of different sizes
should not share sections. You can't put them all in one .rodata
section, they will lose "mergeability".
GCC puts its mergeable constants in ".rodata.cstSIZE" sections,
or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used.
This patch does the same:
.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16
It is important that all data in such section consists of
16-byte elements, not larger ones, and there are no implicit
use of one element from another.
When this is not the case, use non-mergeable section:
.section .rodata[.VAR_NAME], "a", @progbits
This reduces .data by ~15 kbytes:
text data bss dec hex filename
11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o
11112095 2690672 2630712 16433479 fac147 vmlinux.o
Merged objects are visible in System.map:
ffffffff81a28810 r POLY
ffffffff81a28810 r POLY
ffffffff81a28820 r TWOONE
ffffffff81a28820 r TWOONE
ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of
ffffffff81a28830 r SHUF_MASK <------------- the name difference
ffffffff81a28830 r SHUF_MASK
ffffffff81a28830 r SHUF_MASK
..
ffffffff81a28d00 r K512 <- merged three identical 640-byte tables
ffffffff81a28d00 r K512
ffffffff81a28d00 r K512
Use of object names in section name suffixes is not strictly necessary,
but might help if someday link stage will use garbage collection
to eliminate unused sections (ld --gc-sections).
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: Josh Poimboeuf <jpoimboe@redhat.com>
CC: Xiaodong Liu <xiaodong.liu@intel.com>
CC: Megha Dey <megha.dey@intel.com>
CC: linux-crypto@vger.kernel.org
CC: x86@kernel.org
CC: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Current multi-buffer hash implementations have a restriction on the total
length of a hash job to 512MB. Hashing larger buffers will result in an
incorrect hash. This extends the limit to 2^62 - 1.
Signed-off-by: Greg Tucker <greg.b.tucker@intel.com>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
1. fix ctx pointer
Use req_ctx which is the ctx for the next job that have
been completed in the lanes instead of the first
completed job rctx, whose completion could have been
called and released.
Signed-off-by: Xiaodong Liu <xiaodong.liu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
for condition comparison and cleanup multiline comment style
In sha*_ctx_mgr_submit, we currently use the | operator instead of ||
((ctx->partial_block_buffer_length) | (len < SHA1_BLOCK_SIZE))
Switching it to || and remove extraneous paranthesis to
adhere to coding style.
Also cleanup inconsistent multiline comment style.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch introduces the assembly routines to do SHA512 computation on
buffers belonging to several jobs at once. The assembly routines are
optimized with AVX2 instructions that have 4 data lanes and using AVX2
registers.
Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch introduces the data structures and prototypes of functions
needed for computing SHA512 hash using multi-buffer. Included are the
structures of the multi-buffer SHA512 job, job scheduler in C and x86
assembly.
Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch introduces the routines used to submit and flush buffers
belonging to SHA512 crypto jobs to the SHA512 multibuffer algorithm.
It is implemented mostly in assembly optimized with AVX2 instructions.
Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch introduces the multi-buffer job manager which is responsible
for submitting scatter-gather buffers from several SHA512 jobs to the
multi-buffer algorithm. It also contains the flush routine that's called
by the crypto daemon to complete the job when no new jobs arrive before
the deadline of maximum latency of a SHA512 crypto job.
The SHA512 multi-buffer crypto algorithm is defined and initialized in this
patch.
Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>