Commit Graph

12 Commits

Author SHA1 Message Date
Baokun Li
5d8f805789 cachefiles: fix slab-use-after-free in cachefiles_withdraw_cookie()
We got the following issue in our fault injection stress test:

==================================================================
BUG: KASAN: slab-use-after-free in cachefiles_withdraw_cookie+0x4d9/0x600
Read of size 8 at addr ffff888118efc000 by task kworker/u78:0/109

CPU: 13 PID: 109 Comm: kworker/u78:0 Not tainted 6.8.0-dirty #566
Call Trace:
 <TASK>
 kasan_report+0x93/0xc0
 cachefiles_withdraw_cookie+0x4d9/0x600
 fscache_cookie_state_machine+0x5c8/0x1230
 fscache_cookie_worker+0x91/0x1c0
 process_one_work+0x7fa/0x1800
 [...]

Allocated by task 117:
 kmalloc_trace+0x1b3/0x3c0
 cachefiles_acquire_volume+0xf3/0x9c0
 fscache_create_volume_work+0x97/0x150
 process_one_work+0x7fa/0x1800
 [...]

Freed by task 120301:
 kfree+0xf1/0x2c0
 cachefiles_withdraw_cache+0x3fa/0x920
 cachefiles_put_unbind_pincount+0x1f6/0x250
 cachefiles_daemon_release+0x13b/0x290
 __fput+0x204/0xa00
 task_work_run+0x139/0x230
 do_exit+0x87a/0x29b0
 [...]
==================================================================

Following is the process that triggers the issue:

           p1                |             p2
------------------------------------------------------------
                              fscache_begin_lookup
                               fscache_begin_volume_access
                                fscache_cache_is_live(fscache_cache)
cachefiles_daemon_release
 cachefiles_put_unbind_pincount
  cachefiles_daemon_unbind
   cachefiles_withdraw_cache
    fscache_withdraw_cache
     fscache_set_cache_state(cache, FSCACHE_CACHE_IS_WITHDRAWN);
    cachefiles_withdraw_objects(cache)
    fscache_wait_for_objects(fscache)
      atomic_read(&fscache_cache->object_count) == 0
                              fscache_perform_lookup
                               cachefiles_lookup_cookie
                                cachefiles_alloc_object
                                 refcount_set(&object->ref, 1);
                                 object->volume = volume
                                 fscache_count_object(vcookie->cache);
                                  atomic_inc(&fscache_cache->object_count)
    cachefiles_withdraw_volumes
     cachefiles_withdraw_volume
      fscache_withdraw_volume
      __cachefiles_free_volume
       kfree(cachefiles_volume)
                              fscache_cookie_state_machine
                               cachefiles_withdraw_cookie
                                cache = object->volume->cache;
                                // cachefiles_volume UAF !!!

After setting FSCACHE_CACHE_IS_WITHDRAWN, wait for all the cookie lookups
to complete first, and then wait for fscache_cache->object_count == 0 to
avoid the cookie exiting after the volume has been freed and triggering
the above issue. Therefore call fscache_withdraw_volume() before calling
cachefiles_withdraw_objects().

This way, after setting FSCACHE_CACHE_IS_WITHDRAWN, only the following two
cases will occur:
1) fscache_begin_lookup fails in fscache_begin_volume_access().
2) fscache_withdraw_volume() will ensure that fscache_count_object() has
   been executed before calling fscache_wait_for_objects().

Fixes: fe2140e2f5 ("cachefiles: Implement volume support")
Suggested-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Link: https://lore.kernel.org/r/20240628062930.2467993-4-libaokun@huaweicloud.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-07-03 10:36:15 +02:00
Baokun Li
522018a0de cachefiles: fix slab-use-after-free in fscache_withdraw_volume()
We got the following issue in our fault injection stress test:

==================================================================
BUG: KASAN: slab-use-after-free in fscache_withdraw_volume+0x2e1/0x370
Read of size 4 at addr ffff88810680be08 by task ondemand-04-dae/5798

CPU: 0 PID: 5798 Comm: ondemand-04-dae Not tainted 6.8.0-dirty #565
Call Trace:
 kasan_check_range+0xf6/0x1b0
 fscache_withdraw_volume+0x2e1/0x370
 cachefiles_withdraw_volume+0x31/0x50
 cachefiles_withdraw_cache+0x3ad/0x900
 cachefiles_put_unbind_pincount+0x1f6/0x250
 cachefiles_daemon_release+0x13b/0x290
 __fput+0x204/0xa00
 task_work_run+0x139/0x230

Allocated by task 5820:
 __kmalloc+0x1df/0x4b0
 fscache_alloc_volume+0x70/0x600
 __fscache_acquire_volume+0x1c/0x610
 erofs_fscache_register_volume+0x96/0x1a0
 erofs_fscache_register_fs+0x49a/0x690
 erofs_fc_fill_super+0x6c0/0xcc0
 vfs_get_super+0xa9/0x140
 vfs_get_tree+0x8e/0x300
 do_new_mount+0x28c/0x580
 [...]

Freed by task 5820:
 kfree+0xf1/0x2c0
 fscache_put_volume.part.0+0x5cb/0x9e0
 erofs_fscache_unregister_fs+0x157/0x1b0
 erofs_kill_sb+0xd9/0x1c0
 deactivate_locked_super+0xa3/0x100
 vfs_get_super+0x105/0x140
 vfs_get_tree+0x8e/0x300
 do_new_mount+0x28c/0x580
 [...]
==================================================================

Following is the process that triggers the issue:

        mount failed         |         daemon exit
------------------------------------------------------------
 deactivate_locked_super        cachefiles_daemon_release
  erofs_kill_sb
   erofs_fscache_unregister_fs
    fscache_relinquish_volume
     __fscache_relinquish_volume
      fscache_put_volume(fscache_volume, fscache_volume_put_relinquish)
       zero = __refcount_dec_and_test(&fscache_volume->ref, &ref);
                                 cachefiles_put_unbind_pincount
                                  cachefiles_daemon_unbind
                                   cachefiles_withdraw_cache
                                    cachefiles_withdraw_volumes
                                     list_del_init(&volume->cache_link)
       fscache_free_volume(fscache_volume)
        cache->ops->free_volume
         cachefiles_free_volume
          list_del_init(&cachefiles_volume->cache_link);
        kfree(fscache_volume)
                                     cachefiles_withdraw_volume
                                      fscache_withdraw_volume
                                       fscache_volume->n_accesses
                                       // fscache_volume UAF !!!

The fscache_volume in cache->volumes must not have been freed yet, but its
reference count may be 0. So use the new fscache_try_get_volume() helper
function try to get its reference count.

If the reference count of fscache_volume is 0, fscache_put_volume() is
freeing it, so wait for it to be removed from cache->volumes.

If its reference count is not 0, call cachefiles_withdraw_volume() with
reference count protection to avoid the above issue.

Fixes: fe2140e2f5 ("cachefiles: Implement volume support")
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Link: https://lore.kernel.org/r/20240628062930.2467993-3-libaokun@huaweicloud.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-07-03 10:36:14 +02:00
Baokun Li
e21a2f1756
cachefiles: fix memory leak in cachefiles_add_cache()
The following memory leak was reported after unbinding /dev/cachefiles:

==================================================================
unreferenced object 0xffff9b674176e3c0 (size 192):
  comm "cachefilesd2", pid 680, jiffies 4294881224
  hex dump (first 32 bytes):
    01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
    00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  backtrace (crc ea38a44b):
    [<ffffffff8eb8a1a5>] kmem_cache_alloc+0x2d5/0x370
    [<ffffffff8e917f86>] prepare_creds+0x26/0x2e0
    [<ffffffffc002eeef>] cachefiles_determine_cache_security+0x1f/0x120
    [<ffffffffc00243ec>] cachefiles_add_cache+0x13c/0x3a0
    [<ffffffffc0025216>] cachefiles_daemon_write+0x146/0x1c0
    [<ffffffff8ebc4a3b>] vfs_write+0xcb/0x520
    [<ffffffff8ebc5069>] ksys_write+0x69/0xf0
    [<ffffffff8f6d4662>] do_syscall_64+0x72/0x140
    [<ffffffff8f8000aa>] entry_SYSCALL_64_after_hwframe+0x6e/0x76
==================================================================

Put the reference count of cache_cred in cachefiles_daemon_unbind() to
fix the problem. And also put cache_cred in cachefiles_add_cache() error
branch to avoid memory leaks.

Fixes: 9ae326a690 ("CacheFiles: A cache that backs onto a mounted filesystem")
CC: stable@vger.kernel.org
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Link: https://lore.kernel.org/r/20240217081431.796809-1-libaokun1@huawei.com
Acked-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jingbo Xu <jefflexu@linux.alibaba.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-02-20 09:46:07 +01:00
David Howells
6633213139 cachefiles: Check that the backing filesystem supports tmpfiles
Add a check that the backing filesystem supports the creation of
tmpfiles[1].

Suggested-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/568749bd7cc02908ecf6f3d6a611b6f9cf5c4afd.camel@kernel.org/ [1]
Link: https://lore.kernel.org/r/164251406558.3435901.1249023136670058162.stgit@warthog.procyon.org.uk/ # v1
2022-01-21 21:36:28 +00:00
David Howells
14b9d0902d cachefiles: Explain checks in a comment
Add a comment to explain the checks that cachefiles is making of the
backing filesystem[1].

Suggested-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/568749bd7cc02908ecf6f3d6a611b6f9cf5c4afd.camel@kernel.org/ [1]
Link: https://lore.kernel.org/r/164251405621.3435901.771439791811515914.stgit@warthog.procyon.org.uk/ # v1
2022-01-21 21:36:28 +00:00
David Howells
5638b067d3 cachefiles: Calculate the blockshift in terms of bytes, not pages
Cachefiles keeps track of how much space is available on the backing
filesystem and refuses new writes permission to start if there isn't enough
(we especially don't want ENOSPC happening).  It also tracks the amount of
data pending in DIO writes (cache->b_writing) and reduces the amount of
free space available by this amount before deciding if it can set up a new
write.

However, the old fscache I/O API was very much page-granularity dependent
and, as such, cachefiles's cache->bshift was meant to be a multiplier to
get from PAGE_SIZE to block size (ie. a blocksize of 512 would give a shift
of 3 for a 4KiB page) - and this was incorrectly being used to turn the
number of bytes in a DIO write into a number of blocks, leading to a
massive over estimation of the amount of data in flight.

Fix this by changing cache->bshift to be a multiplier from bytes to
blocksize and deal with quantities of blocks, not quantities of pages.

Fix also the rounding in the calculation in cachefiles_write() which needs
a "- 1" inserting.

Fixes: 047487c947 ("cachefiles: Implement the I/O routines")
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/164251398954.3435901.7138806620218474123.stgit@warthog.procyon.org.uk/ # v1
2022-01-21 21:36:28 +00:00
Linus Torvalds
8834147f95 fscache rewrite
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEqG5UsNXhtOCrfGQP+7dXa6fLC2sFAmHeBGsACgkQ+7dXa6fL
 C2tyLw/8C2Gs/XvOZvRO7KPetKI9BbQSFoCe7uvGbiPq5CEmgcjWzQxvQGklBiZD
 qYa6pMNye1iGpsHOY3Yu210b7vMQiRLnnxvVle0UrjpZR7CcxYS0gGV+6yRdbDGy
 W1X6GFiX06qiNsgBH4msYp0SmbhhfkTyAx1BeBZAEtX8iFgaPfOldPY2nLMcTDD6
 6FT1nTzRcMHx9IUQZJtpeatzc70Qg8+fOr2UAY2nOIypXh6+vAMBO80xtUjGVU+1
 pWD1E+8cXSLfwEEzquFWoWTsTX7hNfsesEN10FmBf1bVCH9ZDFE01MOl6B8+CkFl
 +xfkvDNFC3yyUwAMVAV4+A4Be+cVLSqN2R91QIKJnAj9w1OjxASrwZJ1YeZp6KP4
 h0XKuPs3sRwwbNPVL/nP0UPNexoJnOUAaHesl4uKkRrExmxz9xGOIqIri2+tUIO+
 HkGyNns1huymj1K1ja4AQbDiZZX39GgYVleyg9g3uuy1FS4k+/myJcXo/CqWn3ON
 4oeNwxwLvlcqIQnPrESvwev50lFZYB4pfwvez6T2C5dL/Wk/xdeJK9iG81RWgx7y
 5XcDeoGDE08gMCGWVPjuhOCXypeiRGHhRNlcxTtq5kLwBZGkcYg/wFFnWn+6hzc4
 kyXw2kS5WZq4Q/FPh7BdY0eHp6xv0EpAOZwceneLB9lhNINdxcQ=
 =ISJ6
 -----END PGP SIGNATURE-----

Merge tag 'fscache-rewrite-20220111' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs

Pull fscache rewrite from David Howells:
 "This is a set of patches that rewrites the fscache driver and the
  cachefiles driver, significantly simplifying the code compared to
  what's upstream, removing the complex operation scheduling and object
  state machine in favour of something much smaller and simpler.

  The series is structured such that the first few patches disable
  fscache use by the network filesystems using it, remove the cachefiles
  driver entirely and as much of the fscache driver as can be got away
  with without causing build failures in the network filesystems.

  The patches after that recreate fscache and then cachefiles,
  attempting to add the pieces in a logical order. Finally, the
  filesystems are reenabled and then the very last patch changes the
  documentation.

  [!] Note: I have dropped the cifs patch for the moment, leaving local
      caching in cifs disabled. I've been having trouble getting that
      working. I think I have it done, but it needs more testing (there
      seem to be some test failures occurring with v5.16 also from
      xfstests), so I propose deferring that patch to the end of the
      merge window.

  WHY REWRITE?
  ============

  Fscache's operation scheduling API was intended to handle sequencing
  of cache operations, which were all required (where possible) to run
  asynchronously in parallel with the operations being done by the
  network filesystem, whilst allowing the cache to be brought online and
  offline and to interrupt service for invalidation.

  With the advent of the tmpfile capacity in the VFS, however, an
  opportunity arises to do invalidation much more simply, without having
  to wait for I/O that's actually in progress: Cachefiles can simply
  create a tmpfile, cut over the file pointer for the backing object
  attached to a cookie and abandon the in-progress I/O, dismissing it
  upon completion.

  Future work here would involve using Omar Sandoval's vfs_link() with
  AT_LINK_REPLACE[1] to allow an extant file to be displaced by a new
  hard link from a tmpfile as currently I have to unlink the old file
  first.

  These patches can also simplify the object state handling as I/O
  operations to the cache don't all have to be brought to a stop in
  order to invalidate a file. To that end, and with an eye on to writing
  a new backing cache model in the future, I've taken the opportunity to
  simplify the indexing structure.

  I've separated the index cookie concept from the file cookie concept
  by C type now. The former is now called a "volume cookie" (struct
  fscache_volume) and there is a container of file cookies. There are
  then just the two levels. All the index cookie levels are collapsed
  into a single volume cookie, and this has a single printable string as
  a key. For instance, an AFS volume would have a key of something like
  "afs,example.com,1000555", combining the filesystem name, cell name
  and volume ID. This is freeform, but must not have '/' chars in it.

  I've also eliminated all pointers back from fscache into the network
  filesystem. This required the duplication of a little bit of data in
  the cookie (cookie key, coherency data and file size), but it's not
  actually that much. This gets rid of problems with making sure we keep
  netfs data structures around so that the cache can access them.

  These patches mean that most of the code that was in the drivers
  before is simply gone and those drivers are now almost entirely new
  code. That being the case, there doesn't seem any particular reason to
  try and maintain bisectability across it. Further, there has to be a
  point in the middle where things are cut over as there's a single
  point everything has to go through (ie. /dev/cachefiles) and it can't
  be in use by two drivers at once.

  ISSUES YET OUTSTANDING
  ======================

  There are some issues still outstanding, unaddressed by this patchset,
  that will need fixing in future patchsets, but that don't stop this
  series from being usable:

  (1) The cachefiles driver needs to stop using the backing filesystem's
      metadata to store information about what parts of the cache are
      populated. This is not reliable with modern extent-based
      filesystems.

      Fixing this is deferred to a separate patchset as it involves
      negotiation with the network filesystem and the VM as to how much
      data to download to fulfil a read - which brings me on to (2)...

  (2) NFS (and CIFS with the dropped patch) do not take account of how
      the cache would like I/O to be structured to meet its granularity
      requirements. Previously, the cache used page granularity, which
      was fine as the network filesystems also dealt in page
      granularity, and the backing filesystem (ext4, xfs or whatever)
      did whatever it did out of sight. However, we now have folios to
      deal with and the cache will now have to store its own metadata to
      track its contents.

      The change I'm looking at making for cachefiles is to store
      content bitmaps in one or more xattrs and making a bit in the map
      correspond to something like a 256KiB block. However, the size of
      an xattr and the fact that they have to be read/updated in one go
      means that I'm looking at covering 1GiB of data per 512-byte map
      and storing each map in an xattr. Cachefiles has the potential to
      grow into a fully fledged filesystem of its very own if I'm not
      careful.

      However, I'm also looking at changing things even more radically
      and going to a different model of how the cache is arranged and
      managed - one that's more akin to the way, say, openafs does
      things - which brings me on to (3)...

  (3) The way cachefilesd does culling is very inefficient for large
      caches and it would be better to move it into the kernel if I can
      as cachefilesd has to keep asking the kernel if it can cull a
      file. Changing the way the backend works would allow this to be
      addressed.

  BITS THAT MAY BE CONTROVERSIAL
  ==============================

  There are some bits I've added that may be controversial:

  (1) I've provided a flag, S_KERNEL_FILE, that cachefiles uses to check
      if a files is already being used by some other kernel service
      (e.g. a duplicate cachefiles cache in the same directory) and
      reject it if it is. This isn't entirely necessary, but it helps
      prevent accidental data corruption.

      I don't want to use S_SWAPFILE as that has other effects, but
      quite possibly swapon() should set S_KERNEL_FILE too.

      Note that it doesn't prevent userspace from interfering, though
      perhaps it should. (I have made it prevent a marked directory from
      being rmdir-able).

  (2) Cachefiles wants to keep the backing file for a cookie open whilst
      we might need to write to it from network filesystem writeback.
      The problem is that the network filesystem unuses its cookie when
      its file is closed, and so we have nothing pinning the cachefiles
      file open and it will get closed automatically after a short time
      to avoid EMFILE/ENFILE problems.

      Reopening the cache file, however, is a problem if this is being
      done due to writeback triggered by exit(). Some filesystems will
      oops if we try to open a file in that context because they want to
      access current->fs or suchlike.

      To get around this, I added the following:

      (A) An inode flag, I_PINNING_FSCACHE_WB, to be set on a network
          filesystem inode to indicate that we have a usage count on the
          cookie caching that inode.

      (B) A flag in struct writeback_control, unpinned_fscache_wb, that
          is set when __writeback_single_inode() clears the last dirty
          page from i_pages - at which point it clears
          I_PINNING_FSCACHE_WB and sets this flag.

          This has to be done here so that clearing I_PINNING_FSCACHE_WB
          can be done atomically with the check of PAGECACHE_TAG_DIRTY
          that clears I_DIRTY_PAGES.

      (C) A function, fscache_set_page_dirty(), which if it is not set,
          sets I_PINNING_FSCACHE_WB and calls fscache_use_cookie() to
          pin the cache resources.

      (D) A function, fscache_unpin_writeback(), to be called by
          ->write_inode() to unuse the cookie.

      (E) A function, fscache_clear_inode_writeback(), to be called when
          the inode is evicted, before clear_inode() is called. This
          cleans up any lingering I_PINNING_FSCACHE_WB.

      The network filesystem can then use these tools to make sure that
      fscache_write_to_cache() can write locally modified data to the
      cache as well as to the server.

      For the future, I'm working on write helpers for netfs lib that
      should allow this facility to be removed by keeping track of the
      dirty regions separately - but that's incomplete at the moment and
      is also going to be affected by folios, one way or another, since
      it deals with pages"

Link: https://lore.kernel.org/all/510611.1641942444@warthog.procyon.org.uk/
Tested-by: Dominique Martinet <asmadeus@codewreck.org> # 9p
Tested-by: kafs-testing@auristor.com # afs
Tested-by: Jeff Layton <jlayton@kernel.org> # ceph
Tested-by: Dave Wysochanski <dwysocha@redhat.com> # nfs
Tested-by: Daire Byrne <daire@dneg.com> # nfs

* tag 'fscache-rewrite-20220111' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: (67 commits)
  9p, afs, ceph, nfs: Use current_is_kswapd() rather than gfpflags_allow_blocking()
  fscache: Add a tracepoint for cookie use/unuse
  fscache: Rewrite documentation
  ceph: add fscache writeback support
  ceph: conversion to new fscache API
  nfs: Implement cache I/O by accessing the cache directly
  nfs: Convert to new fscache volume/cookie API
  9p: Copy local writes to the cache when writing to the server
  9p: Use fscache indexing rewrite and reenable caching
  afs: Skip truncation on the server of data we haven't written yet
  afs: Copy local writes to the cache when writing to the server
  afs: Convert afs to use the new fscache API
  fscache, cachefiles: Display stat of culling events
  fscache, cachefiles: Display stats of no-space events
  cachefiles: Allow cachefiles to actually function
  fscache, cachefiles: Store the volume coherency data
  cachefiles: Implement the I/O routines
  cachefiles: Implement cookie resize for truncate
  cachefiles: Implement begin and end I/O operation
  cachefiles: Implement backing file wrangling
  ...
2022-01-12 13:45:12 -08:00
David Howells
3929eca769 fscache, cachefiles: Display stats of no-space events
Add stat counters of no-space events that caused caching not to happen and
display in /proc/fs/fscache/stats.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/163819653216.215744.17210522251617386509.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906958369.143852.7257100711818401748.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967166917.1823006.14842444049198947892.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021566184.640689.4417328329632709265.stgit@warthog.procyon.org.uk/ # v4
2022-01-07 13:43:13 +00:00
David Howells
1f08c925e7 cachefiles: Implement backing file wrangling
Implement the wrangling of backing files, including the following pieces:

 (1) Lookup and creation of a file on disk, using a tmpfile if the file
     isn't yet present.  The file is then opened, sized for DIO and the
     file handle is attached to the cachefiles_object struct.  The inode is
     marked to indicate that it's in use by a kernel service.

 (2) Invalidation of an object, creating a tmpfile and switching the file
     pointer in the cachefiles object.

 (3) Committing a file to disk, including setting the coherency xattr on it
     and, if necessary, creating a hard link to it.

     Note that this would be a good place to use Omar Sandoval's vfs_link()
     with AT_LINK_REPLACE[1] as I may have to unlink an old file before I
     can link a tmpfile into place.

 (4) Withdrawal of open objects when a cache is being withdrawn or a cookie
     is relinquished.  This involves committing or discarding the file.

Changes
=======
ver #2:
 - Fix logging of wrong error[1].

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/20211203094950.GA2480@kili/ [1]
Link: https://lore.kernel.org/r/163819644097.215744.4505389616742411239.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906949512.143852.14222856795032602080.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967158526.1823006.17482695321424642675.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021557060.640689.16373541458119269871.stgit@warthog.procyon.org.uk/ # v4
2022-01-07 13:42:40 +00:00
David Howells
fe2140e2f5 cachefiles: Implement volume support
Implement support for creating the directory layout for a volume on disk
and setting up and withdrawing volume caching.

Each volume has a directory named for the volume key under the root of the
cache (prefixed with an 'I' to indicate to cachefilesd that it's an index)
and then creates a bunch of hash bucket subdirectories under that (named as
'@' plus a hex number) in which cookie files will be created.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/163819635314.215744.13081522301564537723.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906936397.143852.17788457778396467161.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967143860.1823006.7185205806080225038.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021545212.640689.5064821392307582927.stgit@warthog.procyon.org.uk/ # v4
2022-01-07 13:41:53 +00:00
David Howells
d1065b0a6f cachefiles: Implement cache registration and withdrawal
Do the following:

 (1) Fill out cachefiles_daemon_add_cache() so that it sets up the cache
     directories and registers the cache with cachefiles.

 (2) Add a function to do the top-level part of cache withdrawal and
     unregistration.

 (3) Add a function to sync a cache.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/163819633175.215744.10857127598041268340.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906935445.143852.15545194974036410029.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967142904.1823006.244055483596047072.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021543872.640689.14370017789605073222.stgit@warthog.procyon.org.uk/ # v4
2022-01-07 13:41:46 +00:00
David Howells
80f94f29f6 cachefiles: Provide a function to check how much space there is
Provide a function to check how much space there is.  This also flips the
state on the cache and will signal the daemon to inform it of the change
and to ask it to do some culling if necessary.

We will also need to subtract the amount of data currently being written to
the cache (cache->b_writing) from the amount of available space to avoid
hitting ENOSPC accidentally.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/163819629322.215744.13457425294680841213.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906930100.143852.1681026700865762069.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967140058.1823006.7781243664702837128.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021539957.640689.12477177372616805706.stgit@warthog.procyon.org.uk/ # v4
2022-01-07 13:41:26 +00:00