This patch fixes a tunnel_dst null pointer dereference due to lockless
access in the tunnel egress path. When deleting a vlan tunnel the
tunnel_dst pointer is set to NULL without waiting a grace period (i.e.
while it's still usable) and packets egressing are dereferencing it
without checking. Use READ/WRITE_ONCE to annotate the lockless use of
tunnel_id, use RCU for accessing tunnel_dst and make sure it is read
only once and checked in the egress path. The dst is already properly RCU
protected so we don't need to do anything fancy than to make sure
tunnel_id and tunnel_dst are read only once and checked in the egress path.
Cc: stable@vger.kernel.org
Fixes: 11538d039a ("bridge: vlan dst_metadata hooks in ingress and egress paths")
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The only caller of br_vlan_tunnel_lookup, br_handle_ingress_vlan_tunnel,
extracts the tunnel_id from struct ip_tunnel_info::struct ip_tunnel_key::
tun_id which is a __be64 value.
The exact endianness does not seem to matter, because the tunnel id is
just used as a lookup key for the VLAN group's tunnel hash table, and
the value is not interpreted directly per se. Moreover,
rhashtable_lookup_fast treats the key argument as a const void *.
Therefore, there is no functional change associated with this patch,
just one to silence "make W=1" builds.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The vlan tunnel code changes vlan options, it shouldn't touch port or
bridge options so we can constify the port argument. This would later help
us to re-use these functions from the vlan options code.
Signed-off-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This patch changes rhashtables to use a bit_spin_lock on BIT(1) of the
bucket pointer to lock the hash chain for that bucket.
The benefits of a bit spin_lock are:
- no need to allocate a separate array of locks.
- no need to have a configuration option to guide the
choice of the size of this array
- locking cost is often a single test-and-set in a cache line
that will have to be loaded anyway. When inserting at, or removing
from, the head of the chain, the unlock is free - writing the new
address in the bucket head implicitly clears the lock bit.
For __rhashtable_insert_fast() we ensure this always happens
when adding a new key.
- even when lockings costs 2 updates (lock and unlock), they are
in a cacheline that needs to be read anyway.
The cost of using a bit spin_lock is a little bit of code complexity,
which I think is quite manageable.
Bit spin_locks are sometimes inappropriate because they are not fair -
if multiple CPUs repeatedly contend of the same lock, one CPU can
easily be starved. This is not a credible situation with rhashtable.
Multiple CPUs may want to repeatedly add or remove objects, but they
will typically do so at different buckets, so they will attempt to
acquire different locks.
As we have more bit-locks than we previously had spinlocks (by at
least a factor of two) we can expect slightly less contention to
go with the slightly better cache behavior and reduced memory
consumption.
To enhance type checking, a new struct is introduced to represent the
pointer plus lock-bit
that is stored in the bucket-table. This is "struct rhash_lock_head"
and is empty. A pointer to this needs to be cast to either an
unsigned lock, or a "struct rhash_head *" to be useful.
Variables of this type are most often called "bkt".
Previously "pprev" would sometimes point to a bucket, and sometimes a
->next pointer in an rhash_head. As these are now different types,
pprev is NULL when it would have pointed to the bucket. In that case,
'blk' is used, together with correct locking protocol.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fixes: efa5356b0d ("bridge: per vlan dst_metadata netlink support")
Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com>
Reviewed-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
- ingress hook:
- if port is a tunnel port, use tunnel info in
attached dst_metadata to map it to a local vlan
- egress hook:
- if port is a tunnel port, use tunnel info attached to
vlan to set dst_metadata on the skb
CC: Nikolay Aleksandrov <nikolay@cumulusnetworks.com>
Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds support to attach per vlan tunnel info dst
metadata. This enables bridge driver to map vlan to tunnel_info
at ingress and egress. It uses the kernel dst_metadata infrastructure.
The initial use case is vlan to vni bridging, but the api is generic
to extend to any tunnel_info in the future:
- Uapi to configure/unconfigure/dump per vlan tunnel data
- netlink functions to configure vlan and tunnel_info mapping
- Introduces bridge port flag BR_LWT_VLAN to enable attach/detach
dst_metadata to bridged packets on ports. off by default.
- changes to existing code is mainly refactor some existing vlan
handling netlink code + hooks for new vlan tunnel code
- I have kept the vlan tunnel code isolated in separate files.
- most of the netlink vlan tunnel code is handling of vlan-tunid
ranges (follows the vlan range handling code). To conserve space
vlan-tunid by default are always dumped in ranges if applicable.
Use case:
example use for this is a vxlan bridging gateway or vtep
which maps vlans to vn-segments (or vnis).
iproute2 example (patched and pruned iproute2 output to just show
relevant fdb entries):
example shows same host mac learnt on two vni's and
vlan 100 maps to vni 1000, vlan 101 maps to vni 1001
before (netdev per vni):
$bridge fdb show | grep "00:02:00:00:00:03"
00:02:00:00:00:03 dev vxlan1001 vlan 101 master bridge
00:02:00:00:00:03 dev vxlan1001 dst 12.0.0.8 self
00:02:00:00:00:03 dev vxlan1000 vlan 100 master bridge
00:02:00:00:00:03 dev vxlan1000 dst 12.0.0.8 self
after this patch with collect metdata in bridged mode (single netdev):
$bridge fdb show | grep "00:02:00:00:00:03"
00:02:00:00:00:03 dev vxlan0 vlan 101 master bridge
00:02:00:00:00:03 dev vxlan0 src_vni 1001 dst 12.0.0.8 self
00:02:00:00:00:03 dev vxlan0 vlan 100 master bridge
00:02:00:00:00:03 dev vxlan0 src_vni 1000 dst 12.0.0.8 self
CC: Nikolay Aleksandrov <nikolay@cumulusnetworks.com>
Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com>
Signed-off-by: David S. Miller <davem@davemloft.net>