Fscache has an optimisation by which reads from the cache are skipped
until we know that (a) there's data there to be read and (b) that data
isn't entirely covered by pages resident in the netfs pagecache. This is
done with two flags manipulated by fscache_note_page_release():
if (...
test_bit(FSCACHE_COOKIE_HAVE_DATA, &cookie->flags) &&
test_bit(FSCACHE_COOKIE_NO_DATA_TO_READ, &cookie->flags))
clear_bit(FSCACHE_COOKIE_NO_DATA_TO_READ, &cookie->flags);
where the NO_DATA_TO_READ flag causes cachefiles_prepare_read() to
indicate that netfslib should download from the server or clear the page
instead.
The fscache_note_page_release() function is intended to be called from
->releasepage() - but that only gets called if PG_private or PG_private_2
is set - and currently the former is at the discretion of the network
filesystem and the latter is only set whilst a page is being written to
the cache, so sometimes we miss clearing the optimisation.
Fix this by following Willy's suggestion[1] and adding an address_space
flag, AS_RELEASE_ALWAYS, that causes filemap_release_folio() to always call
->release_folio() if it's set, even if PG_private or PG_private_2 aren't
set.
Note that this would require folio_test_private() and page_has_private() to
become more complicated. To avoid that, in the places[*] where these are
used to conditionalise calls to filemap_release_folio() and
try_to_release_page(), the tests are removed the those functions just
jumped to unconditionally and the test is performed there.
[*] There are some exceptions in vmscan.c where the check guards more than
just a call to the releaser. I've added a function, folio_needs_release()
to wrap all the checks for that.
AS_RELEASE_ALWAYS should be set if a non-NULL cookie is obtained from
fscache and cleared in ->evict_inode() before truncate_inode_pages_final()
is called.
Additionally, the FSCACHE_COOKIE_NO_DATA_TO_READ flag needs to be cleared
and the optimisation cancelled if a cachefiles object already contains data
when we open it.
[dwysocha@redhat.com: call folio_mapping() inside folio_needs_release()]
Link: 902c990e31
Link: https://lkml.kernel.org/r/20230628104852.3391651-3-dhowells@redhat.com
Fixes: 1f67e6d0b1 ("fscache: Provide a function to note the release of a page")
Fixes: 047487c947 ("cachefiles: Implement the I/O routines")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Reported-by: Rohith Surabattula <rohiths.msft@gmail.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Tested-by: SeongJae Park <sj@kernel.org>
Cc: Daire Byrne <daire.byrne@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Steve French <sfrench@samba.org>
Cc: Shyam Prasad N <nspmangalore@gmail.com>
Cc: Rohith Surabattula <rohiths.msft@gmail.com>
Cc: Dave Wysochanski <dwysocha@redhat.com>
Cc: Dominique Martinet <asmadeus@codewreck.org>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Jingbo Xu <jefflexu@linux.alibaba.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Xiubo Li <xiubli@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
smatch reports
fs/nfs/fscache.c:260:10: warning: symbol
'nfs_netfs_debug_id' was not declared. Should it be static?
This variable is only used in its defining file, so it should be static
Signed-off-by: Tom Rix <trix@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Convert the NFS buffered read code paths to corresponding netfs APIs,
but only when fscache is configured and enabled.
The netfs API defines struct netfs_request_ops which must be filled
in by the network filesystem. For NFS, we only need to define 5 of
the functions, the main one being the issue_read() function.
The issue_read() function is called by the netfs layer when a read
cannot be fulfilled locally, and must be sent to the server (either
the cache is not active, or it is active but the data is not available).
Once the read from the server is complete, netfs requires a call to
netfs_subreq_terminated() which conveys either how many bytes were read
successfully, or an error. Note that issue_read() is called with a
structure, netfs_io_subrequest, which defines the IO requested, and
contains a start and a length (both in bytes), and assumes the underlying
netfs will return a either an error on the whole region, or the number
of bytes successfully read.
The NFS IO path is page based and the main APIs are the pgio APIs defined
in pagelist.c. For the pgio APIs, there is no way for the caller to
know how many RPCs will be sent and how the pages will be broken up
into underlying RPCs, each of which will have their own completion and
return code. In contrast, netfs is subrequest based, a single
subrequest may contain multiple pages, and a single subrequest is
initiated with issue_read() and terminated with netfs_subreq_terminated().
Thus, to utilze the netfs APIs, NFS needs some way to accommodate
the netfs API requirement on the single response to the whole
subrequest, while also minimizing disruptive changes to the NFS
pgio layer.
The approach taken with this patch is to allocate a small structure
for each nfs_netfs_issue_read() call, store the final error and number
of bytes successfully transferred in the structure, and update these values
as each RPC completes. The refcount on the structure is used as a marker
for the last RPC completion, is incremented in nfs_netfs_read_initiate(),
and decremented inside nfs_netfs_read_completion(), when a nfs_pgio_header
contains a valid pointer to the data. On the final put (which signals
the final outstanding RPC is complete) in nfs_netfs_read_completion(),
call netfs_subreq_terminated() with either the final error value (if
one or more READs complete with an error) or the number of bytes
successfully transferred (if all RPCs complete successfully). Note
that when all RPCs complete successfully, the number of bytes transferred
is capped to the length of the subrequest. Capping the transferred length
to the subrequest length prevents "Subreq overread" warnings from netfs.
This is due to the "aligned_len" in nfs_pageio_add_page(), and the
corner case where NFS requests a full page at the end of the file,
even when i_size reflects only a partial page (NFS overread).
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Tested-by: Daire Byrne <daire@dneg.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
As first steps for support of the netfs library when NFS_FSCACHE is
configured, add NETFS_SUPPORT to Kconfig and add the required netfs_inode
into struct nfs_inode.
Using netfs requires we move the VFS inode structure to be stored
inside struct netfs_inode, along with the fscache_cookie.
Thus, if NFS_FSCACHE is configured, place netfs_inode inside an
anonymous union so the vfs_inode memory is the same and we do
not need to modify other non-fscache areas of NFS.
In addition, inside the NFS fscache code, use the new helpers,
netfs_inode() and netfs_i_cookie() helpers, and remove our own
helper, nfs_i_fscache().
Later patches will convert NFS fscache to fully use netfs.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Tested-by: Daire Byrne <daire@dneg.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
READ/WRITE proved to be actively confusing - the meanings are
"data destination, as used with read(2)" and "data source, as
used with write(2)", but people keep interpreting those as
"we read data from it" and "we write data to it", i.e. exactly
the wrong way.
Call them ITER_DEST and ITER_SOURCE - at least that is harder
to misinterpret...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pass updated i_size in fscache_unuse_cookie() when called
from nfs_fscache_release_file(), which ensures the size of
an fscache object gets written to the cache storage. Failing
to do so results in unnessary reads from the NFS server, even
when the data is cached, due to a cachefiles object coherency
check failing with a trace similar to the following:
cachefiles_coherency: o=0000000e BAD osiz B=afbb3 c=0
This problem can be reproduced as follows:
#!/bin/bash
v=4.2; NFS_SERVER=127.0.0.1
set -e; trap cleanup EXIT; rc=1
function cleanup {
umount /mnt/nfs > /dev/null 2>&1
RC_STR="TEST PASS"
[ $rc -eq 1 ] && RC_STR="TEST FAIL"
echo "$RC_STR on $(uname -r) with NFSv$v and server $NFS_SERVER"
}
mount -o vers=$v,fsc $NFS_SERVER:/export /mnt/nfs
rm -f /mnt/nfs/file1.bin > /dev/null 2>&1
dd if=/dev/zero of=/mnt/nfs/file1.bin bs=4096 count=1 > /dev/null 2>&1
echo 3 > /proc/sys/vm/drop_caches
echo Read file 1st time from NFS server into fscache
dd if=/mnt/nfs/file1.bin of=/dev/null > /dev/null 2>&1
umount /mnt/nfs && mount -o vers=$v,fsc $NFS_SERVER:/export /mnt/nfs
echo 3 > /proc/sys/vm/drop_caches
echo Read file 2nd time from fscache
dd if=/mnt/nfs/file1.bin of=/dev/null > /dev/null 2>&1
echo Check mountstats for NFS read
grep -q "READ: 0" /proc/self/mountstats # (1st number) == 0
[ $? -eq 0 ] && rc=0
Fixes: a6b5a28eb5 "nfs: Convert to new fscache volume/cookie API"
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Tested-by: Daire Byrne <daire@dneg.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEqG5UsNXhtOCrfGQP+7dXa6fLC2sFAmI1HOwACgkQ+7dXa6fL
C2u9mA/+LUdXHqlvET/PAtFTg75bUPeOFGLnuDnYl1Ng2FCKMSodAohpbVtENxsK
E/gTVS7uiVZFQgC+YmNA00z6eIQkAaDVyvKyEcUbKREBbUgONfJ/HLeaK/NvVKxx
TY5gx/POdG6yHRQXL6JGBqSJUB8bZrGKwnJm8ebzeKOji9n7GSJBYiMlYBA7EAhs
Aut/P7Y39ISHLw3y+y5czBeRoubljmTyznbP20xUZEzrRwhTpNwpJVzBGUZU635T
93Sqcp//0U5LIdn6Pg6DUGHBMBTNDNJChb21ZoBusF/HHswXsOOnf/mcRUBSJUTI
M1WSpNLk8PRBgajMdIymQpGU1sCZZzJ3krrSA3RcXdN6GPHwZg8kKjoroHsLDL6l
igPbDSMJ5wfiwA2A2gXbY1CkAl3ik5ccb7ZqhTwS0WBk0vOnHmAsE9cs/bBo7Xii
GTiWXEFOgtJiXANPMS2P9DiOS3ZQNf+wxotCYdkGPOXuX9wnIo1Kmy8XfujQ1bXf
pJsEZKfeyROKrzyKWgqLI64/Kg5xNueoFQZfDpOlZYzF1uDstynADPUt0eQD706q
jcuKaXLN3rn5gSPun5mWOYbRtXVgOLdFL/7zptMVJwFKBFguQENhjG4UMNZcjkVA
3Mr0kGocsgoCSk1oDBkFlrw1wIsXxWbkRBL1Pww6kovivuGUwoo=
=j0yx
-----END PGP SIGNATURE-----
Merge tag 'netfs-prep-20220318' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull netfs updates from David Howells:
"Netfs prep for write helpers.
Having had a go at implementing write helpers and content encryption
support in netfslib, it seems that the netfs_read_{,sub}request
structs and the equivalent write request structs were almost the same
and so should be merged, thereby requiring only one set of
alloc/get/put functions and a common set of tracepoints.
Merging the structs also has the advantage that if a bounce buffer is
added to the request struct, a read operation can be performed to fill
the bounce buffer, the contents of the buffer can be modified and then
a write operation can be performed on it to send the data wherever it
needs to go using the same request structure all the way through. The
I/O handlers would then transparently perform any required crypto.
This should make it easier to perform RMW cycles if needed.
The potentially common functions and structs, however, by their names
all proclaim themselves to be associated with the read side of things.
The bulk of these changes alter this in the following ways:
- Rename struct netfs_read_{,sub}request to netfs_io_{,sub}request.
- Rename some enums, members and flags to make them more appropriate.
- Adjust some comments to match.
- Drop "read"/"rreq" from the names of common functions. For
instance, netfs_get_read_request() becomes netfs_get_request().
- The ->init_rreq() and ->issue_op() methods become ->init_request()
and ->issue_read(). I've kept the latter as a read-specific
function and in another branch added an ->issue_write() method.
The driver source is then reorganised into a number of files:
fs/netfs/buffered_read.c Create read reqs to the pagecache
fs/netfs/io.c Dispatchers for read and write reqs
fs/netfs/main.c Some general miscellaneous bits
fs/netfs/objects.c Alloc, get and put functions
fs/netfs/stats.c Optional procfs statistics.
and future development can be fitted into this scheme, e.g.:
fs/netfs/buffered_write.c Modify the pagecache
fs/netfs/buffered_flush.c Writeback from the pagecache
fs/netfs/direct_read.c DIO read support
fs/netfs/direct_write.c DIO write support
fs/netfs/unbuffered_write.c Write modifications directly back
Beyond the above changes, there are also some changes that affect how
things work:
- Make fscache_end_operation() generally available.
- In the netfs tracing header, generate enums from the symbol ->
string mapping tables rather than manually coding them.
- Add a struct for filesystems that uses netfslib to put into their
inode wrapper structs to hold extra state that netfslib is
interested in, such as the fscache cookie. This allows netfslib
functions to be set in filesystem operation tables and jumped to
directly without having to have a filesystem wrapper.
- Add a member to the struct added above to track the remote inode
length as that may differ if local modifications are buffered. We
may need to supply an appropriate EOF pointer when storing data (in
AFS for example).
- Pass extra information to netfs_alloc_request() so that the
->init_request() hook can access it and retain information to
indicate the origin of the operation.
- Make the ->init_request() hook return an error, thereby allowing a
filesystem that isn't allowed to cache an inode (ceph or cifs, for
example) to skip readahead.
- Switch to using refcount_t for subrequests and add tracepoints to
log refcount changes for the request and subrequest structs.
- Add a function to consolidate dispatching a read request. Similar
code is used in three places and another couple are likely to be
added in the future"
Link: https://lore.kernel.org/all/2639515.1648483225@warthog.procyon.org.uk/
* tag 'netfs-prep-20220318' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
afs: Maintain netfs_i_context::remote_i_size
netfs: Keep track of the actual remote file size
netfs: Split some core bits out into their own file
netfs: Split fs/netfs/read_helper.c
netfs: Rename read_helper.c to io.c
netfs: Prepare to split read_helper.c
netfs: Add a function to consolidate beginning a read
netfs: Add a netfs inode context
ceph: Make ceph_init_request() check caps on readahead
netfs: Change ->init_request() to return an error code
netfs: Refactor arguments for netfs_alloc_read_request
netfs: Adjust the netfs_failure tracepoint to indicate non-subreq lines
netfs: Trace refcounting on the netfs_io_subrequest struct
netfs: Trace refcounting on the netfs_io_request struct
netfs: Adjust the netfs_rreq tracepoint slightly
netfs: Split netfs_io_* object handling out
netfs: Finish off rename of netfs_read_request to netfs_io_request
netfs: Rename netfs_read_*request to netfs_io_*request
netfs: Generate enums from trace symbol mapping lists
fscache: export fscache_end_operation()
The fscache cookie APIs including fscache_acquire_cookie() and
fscache_relinquish_cookie() now have very good tracing. Thus,
there is no real need for dfprintks in the NFS fscache interface.
The NFS fscache interface has removed all dfprintks so remove the
NFSDBG_FSCACHE defines.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Most of fscache and other NFS IO paths are now using tracepoints.
Remove the dfprintks in the NFS fscache read/write page functions
and replace with tracepoints at the begin and end of the functions.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Rename NFS fscache functions in a more consistent fashion
to better reflect when we read from and write to fscache.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
A number of places in the fscache interface used nfs_inode when inode could
be used, simplifying the code.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Change the nfs filesystem to support fscache's indexing rewrite and
reenable caching in nfs.
The following changes have been made:
(1) The fscache_netfs struct is no more, and there's no need to register
the filesystem as a whole.
(2) The session cookie is now an fscache_volume cookie, allocated with
fscache_acquire_volume(). That takes three parameters: a string
representing the "volume" in the index, a string naming the cache to
use (or NULL) and a u64 that conveys coherency metadata for the
volume.
For nfs, I've made it render the volume name string as:
"nfs,<ver>,<family>,<address>,<port>,<fsidH>,<fsidL>*<,param>[,<uniq>]"
(3) The fscache_cookie_def is no more and needed information is passed
directly to fscache_acquire_cookie(). The cache no longer calls back
into the filesystem, but rather metadata changes are indicated at
other times.
fscache_acquire_cookie() is passed the same keying and coherency
information as before.
(4) fscache_enable/disable_cookie() have been removed.
Call fscache_use_cookie() and fscache_unuse_cookie() when a file is
opened or closed to prevent a cache file from being culled and to keep
resources to hand that are needed to do I/O.
If a file is opened for writing, we invalidate it with
FSCACHE_INVAL_DIO_WRITE in lieu of doing writeback to the cache,
thereby making it cease caching until all currently open files are
closed. This should give the same behaviour as the uptream code.
Making the cache store local modifications isn't straightforward for
NFS, so that's left for future patches.
(5) fscache_invalidate() now needs to be given uptodate auxiliary data and
a file size. It also takes a flag to indicate if this was due to a
DIO write.
(6) Call nfs_fscache_invalidate() with FSCACHE_INVAL_DIO_WRITE on a file
to which a DIO write is made.
(7) Call fscache_note_page_release() from nfs_release_page().
(8) Use a killable wait in nfs_vm_page_mkwrite() when waiting for
PG_fscache to be cleared.
(9) The functions to read and write data to/from the cache are stubbed out
pending a conversion to use netfslib.
Changes
=======
ver #3:
- Added missing =n fallback for nfs_fscache_release_file()[1][2].
ver #2:
- Use gfpflags_allow_blocking() rather than using flag directly.
- fscache_acquire_volume() now returns errors.
- Remove NFS_INO_FSCACHE as it's no longer used.
- Need to unuse a cookie on file-release, not inode-clear.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Co-developed-by: David Howells <dhowells@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Dave Wysochanski <dwysocha@redhat.com>
Acked-by: Jeff Layton <jlayton@kernel.org>
cc: Trond Myklebust <trond.myklebust@hammerspace.com>
cc: Anna Schumaker <anna.schumaker@netapp.com>
cc: linux-nfs@vger.kernel.org
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/202112100804.nksO8K4u-lkp@intel.com/ [1]
Link: https://lore.kernel.org/r/202112100957.2oEDT20W-lkp@intel.com/ [2]
Link: https://lore.kernel.org/r/163819668938.215744.14448852181937731615.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906979003.143852.2601189243864854724.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967182112.1823006.7791504655391213379.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021575950.640689.12069642327533368467.stgit@warthog.procyon.org.uk/ # v4
Earlier commits refactored some NFS read code and removed
nfs_readpage_async(), but neglected to properly fixup
nfs_readpage_from_fscache_complete(). The code path is
only hit when something unusual occurs with the cachefiles
backing filesystem, such as an IO error or while a cookie
is being invalidated.
Mark page with PG_checked if fscache IO completes in error,
unlock the page, and let the VM decide to re-issue based on
PG_uptodate. When the VM reissues the readpage, PG_checked
allows us to skip over fscache and read from the server.
Link: https://marc.info/?l=linux-nfs&m=162498209518739
Fixes: 1e83b173b2 ("NFS: Add nfs_pageio_complete_read() and remove nfs_readpage_async()")
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Add nfs_pageio_complete_read() and call this from both nfs_readpage()
and nfs_readpages(), since the submission and accounting is the same
for both functions.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Commit 402cb8dda9 ("fscache: Attach the index key and aux data to
the cookie") added the aux_data and aux_data_len to parameters to
fscache_acquire_cookie(), and updated the callers in the NFS client.
In the process it modified the aux_data to include the change_attr,
but missed adding change_attr to a couple places where aux_data was
used. Specifically, when opening a file and the change_attr is not
added, the following attempt to lookup an object will fail inside
cachefiles_check_object_xattr() = -116 due to
nfs_fscache_inode_check_aux() failing memcmp on auxdata and returning
FSCACHE_CHECKAUX_OBSOLETE.
Fix this by adding nfs_fscache_update_auxdata() to set the auxdata
from all relevant fields in the inode, including the change_attr.
Fixes: 402cb8dda9 ("fscache: Attach the index key and aux data to the cookie")
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Commit f2aedb713c ("NFS: Add fs_context support.") reworked
NFS mount code paths for fs_context support which included
super_block initialization. In the process there was an extra
return left in the code and so we never call
nfs_fscache_get_super_cookie even if 'fsc' is given on as mount
option. In addition, there is an extra check inside
nfs_fscache_get_super_cookie for the NFS_OPTION_FSCACHE which
is unnecessary since the only caller nfs_get_cache_cookie
checks this flag.
Fixes: f2aedb713c ("NFS: Add fs_context support.")
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Commit 402cb8dda9 ("fscache: Attach the index key and aux data to
the cookie") added the index_key and index_key_len parameters to
fscache_acquire_cookie(), and updated the callers in the NFS client.
One of the callers was inside nfs_fscache_get_super_cookie()
and was changed to use the full struct nfs_fscache_key as the
index_key. However, a couple members of this structure contain
pointers and thus will change each time the same NFS share is
remounted. Since index_key is used for fscache_cookie->key_hash
and this subsequently is used to compare cookies, the effectiveness
of fscache with NFS is reduced to the point at which a umount
occurs. Any subsequent remount of the same share will cause a
unique NFS super_block index_key and key_hash to be generated for
the same data, rendering any prior fscache data unable to be
found. A simple reproducer demonstrates the problem.
1. Mount share with 'fsc', create a file, drop page cache
systemctl start cachefilesd
mount -o vers=3,fsc 127.0.0.1:/export /mnt
dd if=/dev/zero of=/mnt/file1.bin bs=4096 count=1
echo 3 > /proc/sys/vm/drop_caches
2. Read file into page cache and fscache, then unmount
dd if=/mnt/file1.bin of=/dev/null bs=4096 count=1
umount /mnt
3. Remount and re-read which should come from fscache
mount -o vers=3,fsc 127.0.0.1:/export /mnt
echo 3 > /proc/sys/vm/drop_caches
dd if=/mnt/file1.bin of=/dev/null bs=4096 count=1
4. Check for READ ops in mountstats - there should be none
grep READ: /proc/self/mountstats
Looking at the history and the removed function, nfs_super_get_key(),
we should only use nfs_fscache_key.key plus any uniquifier, for
the fscache index_key.
Fixes: 402cb8dda9 ("fscache: Attach the index key and aux data to the cookie")
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
An NFS client that mounts multiple exports from the same NFS
server with higher NFSv4 versions disabled (i.e. 4.2) and without
forcing a specific NFS version results in fscache index cookie
collisions and the following messages:
[ 570.004348] FS-Cache: Duplicate cookie detected
Each nfs_client structure should have its own fscache index cookie,
so add the minorversion to nfs_server_key.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=200145
Signed-off-by: Scott Mayhew <smayhew@redhat.com>
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
nfs currently behaves differently on 32-bit and 64-bit kernels regarding
the on-disk format of nfs_fscache_inode_auxdata.
That format should really be the same on any kernel, and we should avoid
the 'timespec' type in order to remove that from the kernel later on.
Using plain 'timespec64' would not be good here, since that includes
implied padding and would possibly leak kernel stack data to the on-disk
format on 32-bit architectures.
struct __kernel_timespec would work as a replacement, but open-coding
the two struct members in nfs_fscache_inode_auxdata makes it more
obvious what's going on here, and keeps the current format for 64-bit
architectures.
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Split out from commit "NFS: Add fs_context support."
This patch adds additional refactoring for the conversion of NFS to use
fs_context, namely:
(*) Merge nfs_mount_info and nfs_clone_mount into nfs_fs_context.
nfs_clone_mount has had several fields removed, and nfs_mount_info
has been removed altogether.
(*) Various functions now take an fs_context as an argument instead
of nfs_mount_info, nfs_fs_context, etc.
Signed-off-by: Scott Mayhew <smayhew@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
People are reporing seeing fscache errors being reported concerning
duplicate cookies even in cases where they are not setting up fscache
at all. The rule needs to be that if fscache is not enabled, then it
should have no side effects at all.
To ensure this is the case, we disable fscache completely on all superblocks
for which the 'fsc' mount option was not set. In order to avoid issues
with '-oremount', we also disable the ability to turn fscache on via
remount.
Fixes: f1fe29b4a0 ("NFS: Use i_writecount to control whether...")
Link: https://bugzilla.kernel.org/show_bug.cgi?id=200145
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Steve Dickson <steved@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public licence as published by
the free software foundation either version 2 of the licence or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 114 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520170857.552531963@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pass the object size in to fscache_acquire_cookie() and
fscache_write_page() rather than the netfs providing a callback by which it
can be received. This makes it easier to update the size of the object
when a new page is written that extends the object.
The current object size is also passed by fscache to the check_aux
function, obviating the need to store it in the aux data.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Anna Schumaker <anna.schumaker@netapp.com>
Tested-by: Steve Dickson <steved@redhat.com>
Attach copies of the index key and auxiliary data to the fscache cookie so
that:
(1) The callbacks to the netfs for this stuff can be eliminated. This
can simplify things in the cache as the information is still
available, even after the cache has relinquished the cookie.
(2) Simplifies the locking requirements of accessing the information as we
don't have to worry about the netfs object going away on us.
(3) The cache can do lazy updating of the coherency information on disk.
As long as the cache is flushed before reboot/poweroff, there's no
need to update the coherency info on disk every time it changes.
(4) Cookies can be hashed or put in a tree as the index key is easily
available. This allows:
(a) Checks for duplicate cookies can be made at the top fscache layer
rather than down in the bowels of the cache backend.
(b) Caching can be added to a netfs object that has a cookie if the
cache is brought online after the netfs object is allocated.
A certain amount of space is made in the cookie for inline copies of the
data, but if it won't fit there, extra memory will be allocated for it.
The downside of this is that live cache operation requires more memory.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Anna Schumaker <anna.schumaker@netapp.com>
Tested-by: Steve Dickson <steved@redhat.com>
Define and use nfs_inc_fscache_stats when plus one, which can save to
pass one parameter.
Signed-off-by: Li RongQing <roy.qing.li@gmail.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Use i_writecount to control whether to get an fscache cookie in nfs_open() as
NFS does not do write caching yet. I *think* this is the cause of a problem
encountered by Mark Moseley whereby __fscache_uncache_page() gets a NULL
pointer dereference because cookie->def is NULL:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000010
IP: [<ffffffff812a1903>] __fscache_uncache_page+0x23/0x160
PGD 0
Thread overran stack, or stack corrupted
Oops: 0000 [#1] SMP
Modules linked in: ...
CPU: 7 PID: 18993 Comm: php Not tainted 3.11.1 #1
Hardware name: Dell Inc. PowerEdge R420/072XWF, BIOS 1.3.5 08/21/2012
task: ffff8804203460c0 ti: ffff880420346640
RIP: 0010:[<ffffffff812a1903>] __fscache_uncache_page+0x23/0x160
RSP: 0018:ffff8801053af878 EFLAGS: 00210286
RAX: 0000000000000000 RBX: ffff8800be2f8780 RCX: ffff88022ffae5e8
RDX: 0000000000004c66 RSI: ffffea00055ff440 RDI: ffff8800be2f8780
RBP: ffff8801053af898 R08: 0000000000000001 R09: 0000000000000003
R10: 0000000000000000 R11: 0000000000000000 R12: ffffea00055ff440
R13: 0000000000001000 R14: ffff8800c50be538 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff88042fc60000(0063) knlGS:00000000e439c700
CS: 0010 DS: 002b ES: 002b CR0: 0000000080050033
CR2: 0000000000000010 CR3: 0000000001d8f000 CR4: 00000000000607f0
Stack:
...
Call Trace:
[<ffffffff81365a72>] __nfs_fscache_invalidate_page+0x42/0x70
[<ffffffff813553d5>] nfs_invalidate_page+0x75/0x90
[<ffffffff811b8f5e>] truncate_inode_page+0x8e/0x90
[<ffffffff811b90ad>] truncate_inode_pages_range.part.12+0x14d/0x620
[<ffffffff81d6387d>] ? __mutex_lock_slowpath+0x1fd/0x2e0
[<ffffffff811b95d3>] truncate_inode_pages_range+0x53/0x70
[<ffffffff811b969d>] truncate_inode_pages+0x2d/0x40
[<ffffffff811b96ff>] truncate_pagecache+0x4f/0x70
[<ffffffff81356840>] nfs_setattr_update_inode+0xa0/0x120
[<ffffffff81368de4>] nfs3_proc_setattr+0xc4/0xe0
[<ffffffff81357f78>] nfs_setattr+0xc8/0x150
[<ffffffff8122d95b>] notify_change+0x1cb/0x390
[<ffffffff8120a55b>] do_truncate+0x7b/0xc0
[<ffffffff8121f96c>] do_last+0xa4c/0xfd0
[<ffffffff8121ffbc>] path_openat+0xcc/0x670
[<ffffffff81220a0e>] do_filp_open+0x4e/0xb0
[<ffffffff8120ba1f>] do_sys_open+0x13f/0x2b0
[<ffffffff8126aaf6>] compat_SyS_open+0x36/0x50
[<ffffffff81d7204c>] sysenter_dispatch+0x7/0x24
The code at the instruction pointer was disassembled:
> (gdb) disas __fscache_uncache_page
> Dump of assembler code for function __fscache_uncache_page:
> ...
> 0xffffffff812a18ff <+31>: mov 0x48(%rbx),%rax
> 0xffffffff812a1903 <+35>: cmpb $0x0,0x10(%rax)
> 0xffffffff812a1907 <+39>: je 0xffffffff812a19cd <__fscache_uncache_page+237>
These instructions make up:
ASSERTCMP(cookie->def->type, !=, FSCACHE_COOKIE_TYPE_INDEX);
That cmpb is the faulting instruction (%rax is 0). So cookie->def is NULL -
which presumably means that the cookie has already been at least partway
through __fscache_relinquish_cookie().
What I think may be happening is something like a three-way race on the same
file:
PROCESS 1 PROCESS 2 PROCESS 3
=============== =============== ===============
open(O_TRUNC|O_WRONLY)
open(O_RDONLY)
open(O_WRONLY)
-->nfs_open()
-->nfs_fscache_set_inode_cookie()
nfs_fscache_inode_lock()
nfs_fscache_disable_inode_cookie()
__fscache_relinquish_cookie()
nfs_inode->fscache = NULL
<--nfs_fscache_set_inode_cookie()
-->nfs_open()
-->nfs_fscache_set_inode_cookie()
nfs_fscache_inode_lock()
nfs_fscache_enable_inode_cookie()
__fscache_acquire_cookie()
nfs_inode->fscache = cookie
<--nfs_fscache_set_inode_cookie()
<--nfs_open()
-->nfs_setattr()
...
...
-->nfs_invalidate_page()
-->__nfs_fscache_invalidate_page()
cookie = nfsi->fscache
-->nfs_open()
-->nfs_fscache_set_inode_cookie()
nfs_fscache_inode_lock()
nfs_fscache_disable_inode_cookie()
-->__fscache_relinquish_cookie()
-->__fscache_uncache_page(cookie)
<crash>
<--__fscache_relinquish_cookie()
nfs_inode->fscache = NULL
<--nfs_fscache_set_inode_cookie()
What is needed is something to prevent process #2 from reacquiring the cookie
- and I think checking i_writecount should do the trick.
It's also possible to have a two-way race on this if the file is opened
O_TRUNC|O_RDONLY instead.
Reported-by: Mark Moseley <moseleymark@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Provide the ability to enable and disable fscache cookies. A disabled cookie
will reject or ignore further requests to:
Acquire a child cookie
Invalidate and update backing objects
Check the consistency of a backing object
Allocate storage for backing page
Read backing pages
Write to backing pages
but still allows:
Checks/waits on the completion of already in-progress objects
Uncaching of pages
Relinquishment of cookies
Two new operations are provided:
(1) Disable a cookie:
void fscache_disable_cookie(struct fscache_cookie *cookie,
bool invalidate);
If the cookie is not already disabled, this locks the cookie against other
dis/enablement ops, marks the cookie as being disabled, discards or
invalidates any backing objects and waits for cessation of activity on any
associated object.
This is a wrapper around a chunk split out of fscache_relinquish_cookie(),
but it reinitialises the cookie such that it can be reenabled.
All possible failures are handled internally. The caller should consider
calling fscache_uncache_all_inode_pages() afterwards to make sure all page
markings are cleared up.
(2) Enable a cookie:
void fscache_enable_cookie(struct fscache_cookie *cookie,
bool (*can_enable)(void *data),
void *data)
If the cookie is not already enabled, this locks the cookie against other
dis/enablement ops, invokes can_enable() and, if the cookie is not an
index cookie, will begin the procedure of acquiring backing objects.
The optional can_enable() function is passed the data argument and returns
a ruling as to whether or not enablement should actually be permitted to
begin.
All possible failures are handled internally. The cookie will only be
marked as enabled if provisional backing objects are allocated.
A later patch will introduce these to NFS. Cookie enablement during nfs_open()
is then contingent on i_writecount <= 0. can_enable() checks for a race
between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie
handling and allows us to get rid of open(O_RDONLY) accidentally introducing
caching to an inode that's open for writing already.
One operation has its API modified:
(3) Acquire a cookie.
struct fscache_cookie *fscache_acquire_cookie(
struct fscache_cookie *parent,
const struct fscache_cookie_def *def,
void *netfs_data,
bool enable);
This now has an additional argument that indicates whether the requested
cookie should be enabled by default. It doesn't need the can_enable()
function because the caller must prevent multiple calls for the same netfs
object and it doesn't need to take the enablement lock because no one else
can get at the cookie before this returns.
Signed-off-by: David Howells <dhowells@redhat.com
I intend on creating a single nfs_fs_mount() function used by all our
mount paths. To avoid checking between new mounts and clone mounts, I
instead pass both structures to a new function in super.c that finds the
cache key and then looks up the super cookie.
Signed-off-by: Bryan Schumaker <bjschuma@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Add an FS-Cache helper to bulk uncache pages on an inode. This will
only work for the circumstance where the pages in the cache correspond
1:1 with the pages attached to an inode's page cache.
This is required for CIFS and NFS: When disabling inode cookie, we were
returning the cookie and setting cifsi->fscache to NULL but failed to
invalidate any previously mapped pages. This resulted in "Bad page
state" errors and manifested in other kind of errors when running
fsstress. Fix it by uncaching mapped pages when we disable the inode
cookie.
This patch should fix the following oops and "Bad page state" errors
seen during fsstress testing.
------------[ cut here ]------------
kernel BUG at fs/cachefiles/namei.c:201!
invalid opcode: 0000 [#1] SMP
Pid: 5, comm: kworker/u:0 Not tainted 2.6.38.7-30.fc15.x86_64 #1 Bochs Bochs
RIP: 0010: cachefiles_walk_to_object+0x436/0x745 [cachefiles]
RSP: 0018:ffff88002ce6dd00 EFLAGS: 00010282
RAX: ffff88002ef165f0 RBX: ffff88001811f500 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000100 RDI: 0000000000000282
RBP: ffff88002ce6dda0 R08: 0000000000000100 R09: ffffffff81b3a300
R10: 0000ffff00066c0a R11: 0000000000000003 R12: ffff88002ae54840
R13: ffff88002ae54840 R14: ffff880029c29c00 R15: ffff88001811f4b0
FS: 00007f394dd32720(0000) GS:ffff88002ef00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 00007fffcb62ddf8 CR3: 000000001825f000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Process kworker/u:0 (pid: 5, threadinfo ffff88002ce6c000, task ffff88002ce55cc0)
Stack:
0000000000000246 ffff88002ce55cc0 ffff88002ce6dd58 ffff88001815dc00
ffff8800185246c0 ffff88001811f618 ffff880029c29d18 ffff88001811f380
ffff88002ce6dd50 ffffffff814757e4 ffff88002ce6dda0 ffffffff8106ac56
Call Trace:
cachefiles_lookup_object+0x78/0xd4 [cachefiles]
fscache_lookup_object+0x131/0x16d [fscache]
fscache_object_work_func+0x1bc/0x669 [fscache]
process_one_work+0x186/0x298
worker_thread+0xda/0x15d
kthread+0x84/0x8c
kernel_thread_helper+0x4/0x10
RIP cachefiles_walk_to_object+0x436/0x745 [cachefiles]
---[ end trace 1d481c9af1804caa ]---
I tested the uncaching by the following means:
(1) Create a big file on my NFS server (104857600 bytes).
(2) Read the file into the cache with md5sum on the NFS client. Look in
/proc/fs/fscache/stats:
Pages : mrk=25601 unc=0
(3) Open the file for read/write ("bash 5<>/warthog/bigfile"). Look in proc
again:
Pages : mrk=25601 unc=25601
Reported-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-and-Tested-by: Suresh Jayaraman <sjayaraman@suse.de>
cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Seen with -Wextra:
/home/cel/linux/fs/nfs/fscache.c: In function ‘__nfs_readpages_from_fscache’:
/home/cel/linux/fs/nfs/fscache.c:479: warning: comparison between signed and unsigned integer expressions
The comparison implicitly converts "int" to "unsigned", making it
safe. But there's no need for the implicit type conversions here, and
the dfprintk() already uses a "%u" formatter for "npages." Better to
reduce confusion.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Not having an fscache cookie is perfectly valid if the user didn't mount
with the fscache option.
This patch fixes http://bugzilla.kernel.org/show_bug.cgi?id=15234
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: David Howells <dhowells@redhat.com>
Cc: stable@kernel.org
Handle netfs pages that the vmscan algorithm wants to evict from the pagecache
under OOM conditions, but that are waiting for write to the cache. Under these
conditions, vmscan calls the releasepage() function of the netfs, asking if a
page can be discarded.
The problem is typified by the following trace of a stuck process:
kslowd005 D 0000000000000000 0 4253 2 0x00000080
ffff88001b14f370 0000000000000046 ffff880020d0d000 0000000000000007
0000000000000006 0000000000000001 ffff88001b14ffd8 ffff880020d0d2a8
000000000000ddf0 00000000000118c0 00000000000118c0 ffff880020d0d2a8
Call Trace:
[<ffffffffa00782d8>] __fscache_wait_on_page_write+0x8b/0xa7 [fscache]
[<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
[<ffffffffa0078240>] ? __fscache_check_page_write+0x63/0x70 [fscache]
[<ffffffffa00b671d>] nfs_fscache_release_page+0x4e/0xc4 [nfs]
[<ffffffffa00927f0>] nfs_release_page+0x3c/0x41 [nfs]
[<ffffffff810885d3>] try_to_release_page+0x32/0x3b
[<ffffffff81093203>] shrink_page_list+0x316/0x4ac
[<ffffffff8109372b>] shrink_inactive_list+0x392/0x67c
[<ffffffff813532fa>] ? __mutex_unlock_slowpath+0x100/0x10b
[<ffffffff81058df0>] ? trace_hardirqs_on_caller+0x10c/0x130
[<ffffffff8135330e>] ? mutex_unlock+0x9/0xb
[<ffffffff81093aa2>] shrink_list+0x8d/0x8f
[<ffffffff81093d1c>] shrink_zone+0x278/0x33c
[<ffffffff81052d6c>] ? ktime_get_ts+0xad/0xba
[<ffffffff81094b13>] try_to_free_pages+0x22e/0x392
[<ffffffff81091e24>] ? isolate_pages_global+0x0/0x212
[<ffffffff8108e743>] __alloc_pages_nodemask+0x3dc/0x5cf
[<ffffffff81089529>] grab_cache_page_write_begin+0x65/0xaa
[<ffffffff8110f8c0>] ext3_write_begin+0x78/0x1eb
[<ffffffff81089ec5>] generic_file_buffered_write+0x109/0x28c
[<ffffffff8103cb69>] ? current_fs_time+0x22/0x29
[<ffffffff8108a509>] __generic_file_aio_write+0x350/0x385
[<ffffffff8108a588>] ? generic_file_aio_write+0x4a/0xae
[<ffffffff8108a59e>] generic_file_aio_write+0x60/0xae
[<ffffffff810b2e82>] do_sync_write+0xe3/0x120
[<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
[<ffffffff810b18e1>] ? __dentry_open+0x1a5/0x2b8
[<ffffffff810b1a76>] ? dentry_open+0x82/0x89
[<ffffffffa00e693c>] cachefiles_write_page+0x298/0x335 [cachefiles]
[<ffffffffa0077147>] fscache_write_op+0x178/0x2c2 [fscache]
[<ffffffffa0075656>] fscache_op_execute+0x7a/0xd1 [fscache]
[<ffffffff81082093>] slow_work_execute+0x18f/0x2d1
[<ffffffff8108239a>] slow_work_thread+0x1c5/0x308
[<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
[<ffffffff810821d5>] ? slow_work_thread+0x0/0x308
[<ffffffff8104be91>] kthread+0x7a/0x82
[<ffffffff8100beda>] child_rip+0xa/0x20
[<ffffffff8100b87c>] ? restore_args+0x0/0x30
[<ffffffff8102ef83>] ? tg_shares_up+0x171/0x227
[<ffffffff8104be17>] ? kthread+0x0/0x82
[<ffffffff8100bed0>] ? child_rip+0x0/0x20
In the above backtrace, the following is happening:
(1) A page storage operation is being executed by a slow-work thread
(fscache_write_op()).
(2) FS-Cache farms the operation out to the cache to perform
(cachefiles_write_page()).
(3) CacheFiles is then calling Ext3 to perform the actual write, using Ext3's
standard write (do_sync_write()) under KERNEL_DS directly from the netfs
page.
(4) However, for Ext3 to perform the write, it must allocate some memory, in
particular, it must allocate at least one page cache page into which it
can copy the data from the netfs page.
(5) Under OOM conditions, the memory allocator can't immediately come up with
a page, so it uses vmscan to find something to discard
(try_to_free_pages()).
(6) vmscan finds a clean netfs page it might be able to discard (possibly the
one it's trying to write out).
(7) The netfs is called to throw the page away (nfs_release_page()) - but it's
called with __GFP_WAIT, so the netfs decides to wait for the store to
complete (__fscache_wait_on_page_write()).
(8) This blocks a slow-work processing thread - possibly against itself.
The system ends up stuck because it can't write out any netfs pages to the
cache without allocating more memory.
To avoid this, we make FS-Cache cancel some writes that aren't in the middle of
actually being performed. This means that some data won't make it into the
cache this time. To support this, a new FS-Cache function is added
fscache_maybe_release_page() that replaces what the netfs releasepage()
functions used to do with respect to the cache.
The decisions fscache_maybe_release_page() makes are counted and displayed
through /proc/fs/fscache/stats on a line labelled "VmScan". There are four
counters provided: "nos=N" - pages that weren't pending storage; "gon=N" -
pages that were pending storage when we first looked, but weren't by the time
we got the object lock; "bsy=N" - pages that we ignored as they were actively
being written when we looked; and "can=N" - pages that we cancelled the storage
of.
What I'd really like to do is alter the behaviour of the cancellation
heuristics, depending on how necessary it is to expel pages. If there are
plenty of other pages that aren't waiting to be written to the cache that
could be ejected first, then it would be nice to hold up on immediate
cancellation of cache writes - but I don't see a way of doing that.
Signed-off-by: David Howells <dhowells@redhat.com>
Propagate the NFS 'fsc' mount option through NFS automounts of various types.
This is now required as commit:
commit c02d7adf8c
Author: Trond Myklebust <Trond.Myklebust@netapp.com>
Date: Mon Jun 22 15:09:14 2009 -0400
NFSv4: Replace nfs4_path_walk() with VFS path lookup in a private namespace
uses VFS-driven automounting to reach all submounts barring the root, thus
preventing fscaching from being enabled on any submount other than the root.
This patch gets around that by propagating the NFS_OPTION_FSCACHE flag across
automounts. If a uniquifier is supplied to a mount then this is propagated to
all automounts of that mount too.
Signed-off-by: David Howells <dhowells@redhat.com>
[Trond: Fixed up the definition of nfs_fscache_get_super_cookie for the
case of #undef CONFIG_NFS_FSCACHE]
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Store pages from an NFS inode into the cache data storage object associated
with that inode.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Read pages from an FS-Cache data storage object representing an inode into an
NFS inode.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
FS-Cache page management for NFS. This includes hooking the releasing and
invalidation of pages marked with PG_fscache (aka PG_private_2) and waiting for
completion of the write-to-cache flag (PG_fscache_write aka PG_owner_priv_2).
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Bind data storage objects in the local cache to NFS inodes.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Define and create superblock-level cache index objects (as managed by
nfs_server structs).
Each superblock object is created in a server level index object and is itself
an index into which inode-level objects are inserted.
Ideally there would be one superblock-level object per server, and the former
would be folded into the latter; however, since the "nosharecache" option
exists this isn't possible.
The superblock object key is a sequence consisting of:
(1) Certain superblock s_flags.
(2) Various connection parameters that serve to distinguish superblocks for
sget().
(3) The volume FSID.
(4) The security flavour.
(5) The uniquifier length.
(6) The uniquifier text. This is normally an empty string, unless the fsc=xyz
mount option was used to explicitly specify a uniquifier.
The key blob is of variable length, depending on the length of (6).
The superblock object is given no coherency data to carry in the auxiliary data
permitted by the cache. It is assumed that the superblock is always coherent.
This patch also adds uniquification handling such that two otherwise identical
superblocks, at least one of which is marked "nosharecache", won't end up
trying to share the on-disk cache. It will be possible to manually provide a
uniquifier through a mount option with a later patch to avoid the error
otherwise produced.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
Define and create server-level cache index objects (as managed by nfs_client
structs).
Each server object is created in the NFS top-level index object and is itself
an index into which superblock-level objects are inserted.
Ideally there would be one superblock-level object per server, and the former
would be folded into the latter; however, since the "nosharecache" option
exists this isn't possible.
The server object key is a sequence consisting of:
(1) NFS version
(2) Server address family (eg: AF_INET or AF_INET6)
(3) Server port.
(4) Server IP address.
The key blob is of variable length, depending on the length of (4).
The server object is given no coherency data to carry in the auxiliary data
permitted by the cache.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>