mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-28 21:45:01 +08:00
730094577e
407 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Charan Teja Reddy
|
40d7e20320 |
mm/compaction: correct deferral logic for proactive compaction
should_proactive_compact_node() returns true when sum of the weighted fragmentation score of all the zones in the node is greater than the wmark_high of compaction, which then triggers the proactive compaction that operates on the individual zones of the node. But proactive compaction runs on the zone only when its weighted fragmentation score is greater than wmark_low(=wmark_high - 10). This means that the sum of the weighted fragmentation scores of all the zones can exceed the wmark_high but individual weighted fragmentation zone scores can still be less than wmark_low which makes the unnecessary trigger of the proactive compaction only to return doing nothing. Issue with the return of proactive compaction with out even trying is its deferral. It is simply deferred for 1 << COMPACT_MAX_DEFER_SHIFT if the scores across the proactive compaction is same, thinking that compaction didn't make any progress but in reality it didn't even try. With the delay between successive retries for proactive compaction is 500msec, it can result into the deferral for ~30sec with out even trying the proactive compaction. Test scenario is that: compaction_proactiveness=50 thus the wmark_low = 50 and wmark_high = 60. System have 2 zones(Normal and Movable) with sizes 5GB and 6GB respectively. After opening some apps on the android, the weighted fragmentation scores of these zones are 47 and 49 respectively. Since the sum of these fragmentation scores are above the wmark_high which triggers the proactive compaction and there since the individual zones weighted fragmentation scores are below wmark_low, it returns without trying the proactive compaction. As a result the weighted fragmentation scores of the zones are still 47 and 49 which makes the existing logic to defer the compaction thinking that noprogress is made across the compaction. Fix this by checking just zone fragmentation score, not the weighted, in __compact_finished() and use the zones weighted fragmentation score in fragmentation_score_node(). In the test case above, If the weighted average of is above wmark_high, then individual score (not adjusted) of atleast one zone has to be above wmark_high. Thus it avoids the unnecessary trigger and deferrals of the proactive compaction. Link: https://lkml.kernel.org/r/1610989938-31374-1-git-send-email-charante@codeaurora.org Signed-off-by: Charan Teja Reddy <charante@codeaurora.org> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Nitin Gupta <ngupta@nitingupta.dev> Cc: Vinayak Menon <vinmenon@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Miaohe Lin
|
e2d26aa5fb |
mm/compaction: remove duplicated VM_BUG_ON_PAGE !PageLocked
The VM_BUG_ON_PAGE(!PageLocked(page), page) is also done in PageMovable. Remove this explicitly one. Link: https://lkml.kernel.org/r/20210109081420.46030-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alex Shi
|
d99fd5feb0 |
mm/compaction: remove rcu_read_lock during page compaction
isolate_migratepages_block() used rcu_read_lock() with the intention of safeguarding against the mem_cgroup being destroyed concurrently; but its TestClearPageLRU already protects against that. Delete the unnecessary rcu_read_lock() and _unlock(). Hugh Dickins helped on commit log polishing, Thanks! Link: https://lkml.kernel.org/r/1608614453-10739-3-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yu Zhao
|
46ae6b2cc2 |
mm/swap.c: don't pass "enum lru_list" to del_page_from_lru_list()
The parameter is redundant in the sense that it can be potentially extracted from the "struct page" parameter by page_lru(). We need to make sure that existing PageActive() or PageUnevictable() remains until the function returns. A few places don't conform, and simple reordering fixes them. This patch may have left page_off_lru() seemingly odd, and we'll take care of it in the next patch. Link: https://lore.kernel.org/linux-mm/20201207220949.830352-6-yuzhao@google.com/ Link: https://lkml.kernel.org/r/20210122220600.906146-6-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alex Shi
|
c2135f7c57 |
mm/vmscan: __isolate_lru_page_prepare() cleanup
The function just returns 2 results, so using a 'switch' to deal with its result is unnecessary. Also simplify it to a bool func as Vlastimil suggested. Also remove 'goto' by reusing list_move(), and take Matthew Wilcox's suggestion to update comments in function. Link: https://lkml.kernel.org/r/728874d7-2d93-4049-68c1-dcc3b2d52ccd@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Rokudo Yan
|
74e21484e4 |
mm, compaction: move high_pfn to the for loop scope
In fast_isolate_freepages, high_pfn will be used if a prefered one (ie
PFN >= low_fn) not found.
But the high_pfn is not reset before searching an free area, so when it
was used as freepage, it may from another free area searched before. As
a result move_freelist_head(freelist, freepage) will have unexpected
behavior (eg corrupt the MOVABLE freelist)
Unable to handle kernel paging request at virtual address dead000000000200
Mem abort info:
ESR = 0x96000044
Exception class = DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
Data abort info:
ISV = 0, ISS = 0x00000044
CM = 0, WnR = 1
[dead000000000200] address between user and kernel address ranges
-000|list_cut_before(inline)
-000|move_freelist_head(inline)
-000|fast_isolate_freepages(inline)
-000|isolate_freepages(inline)
-000|compaction_alloc(?, ?)
-001|unmap_and_move(inline)
-001|migrate_pages([NSD:0xFFFFFF80088CBBD0] from = 0xFFFFFF80088CBD88, [NSD:0xFFFFFF80088CBBC8] get_new_p
-002|__read_once_size(inline)
-002|static_key_count(inline)
-002|static_key_false(inline)
-002|trace_mm_compaction_migratepages(inline)
-002|compact_zone(?, [NSD:0xFFFFFF80088CBCB0] capc = 0x0)
-003|kcompactd_do_work(inline)
-003|kcompactd([X19] p = 0xFFFFFF93227FBC40)
-004|kthread([X20] _create = 0xFFFFFFE1AFB26380)
-005|ret_from_fork(asm)
The issue was reported on an smart phone product with 6GB ram and 3GB
zram as swap device.
This patch fixes the issue by reset high_pfn before searching each free
area, which ensure freepage and freelist match when call
move_freelist_head in fast_isolate_freepages().
Link: http://lkml.kernel.org/r/20190118175136.31341-12-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20210112094720.1238444-1-wu-yan@tcl.com
Fixes:
|
||
Alex Shi
|
6168d0da2b |
mm/lru: replace pgdat lru_lock with lruvec lock
This patch moves per node lru_lock into lruvec, thus bring a lru_lock for each of memcg per node. So on a large machine, each of memcg don't have to suffer from per node pgdat->lru_lock competition. They could go fast with their self lru_lock. After move memcg charge before lru inserting, page isolation could serialize page's memcg, then per memcg lruvec lock is stable and could replace per node lru lock. In isolate_migratepages_block(), compact_unlock_should_abort and lock_page_lruvec_irqsave are open coded to work with compact_control. Also add a debug func in locking which may give some clues if there are sth out of hands. Daniel Jordan's testing show 62% improvement on modified readtwice case on his 2P * 10 core * 2 HT broadwell box. https://lore.kernel.org/lkml/20200915165807.kpp7uhiw7l3loofu@ca-dmjordan1.us.oracle.com/ Hugh Dickins helped on the patch polish, thanks! [alex.shi@linux.alibaba.com: fix comment typo] Link: https://lkml.kernel.org/r/5b085715-292a-4b43-50b3-d73dc90d1de5@linux.alibaba.com [alex.shi@linux.alibaba.com: use page_memcg()] Link: https://lkml.kernel.org/r/5a4c2b72-7ee8-2478-fc0e-85eb83aafec4@linux.alibaba.com Link: https://lkml.kernel.org/r/1604566549-62481-18-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Rong Chen <rong.a.chen@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alex Shi
|
9df4131439 |
mm/compaction: do page isolation first in compaction
Currently, compaction would get the lru_lock and then do page isolation which works fine with pgdat->lru_lock, since any page isoltion would compete for the lru_lock. If we want to change to memcg lru_lock, we have to isolate the page before getting lru_lock, thus isoltion would block page's memcg change which relay on page isoltion too. Then we could safely use per memcg lru_lock later. The new page isolation use previous introduced TestClearPageLRU() + pgdat lru locking which will be changed to memcg lru lock later. Hugh Dickins <hughd@google.com> fixed following bugs in this patch's early version: Fix lots of crashes under compaction load: isolate_migratepages_block() must clean up appropriately when rejecting a page, setting PageLRU again if it had been cleared; and a put_page() after get_page_unless_zero() cannot safely be done while holding locked_lruvec - it may turn out to be the final put_page(), which will take an lruvec lock when PageLRU. And move __isolate_lru_page_prepare back after get_page_unless_zero to make trylock_page() safe: trylock_page() is not safe to use at this time: its setting PG_locked can race with the page being freed or allocated ("Bad page"), and can also erase flags being set by one of those "sole owners" of a freshly allocated page who use non-atomic __SetPageFlag(). Link: https://lkml.kernel.org/r/1604566549-62481-16-git-send-email-alex.shi@linux.alibaba.com Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hui Su
|
2271b016bf |
mm/compaction: make defer_compaction and compaction_deferred static
defer_compaction() and compaction_deferred() and compaction_restarting() in mm/compaction.c won't be used in other files, so make them static, and remove the declaration in the header file. Take the chance to fix a typo. Link: https://lkml.kernel.org/r/20201123170801.GA9625@rlk Signed-off-by: Hui Su <sh_def@163.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Nitin Gupta <nigupta@nvidia.com> Cc: Baoquan He <bhe@redhat.com> Cc: Mateusz Nosek <mateusznosek0@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hui Su
|
2b1a20c3af |
mm/compaction: move compaction_suitable's comment to right place
Since commit
|
||
Yanfei Xu
|
19d3cf9de1 |
mm/compaction: rename 'start_pfn' to 'iteration_start_pfn' in compact_zone()
There are two 'start_pfn' declared in compact_zone() which have different meanings. Rename the second one to 'iteration_start_pfn' to prevent confusion. Also, remove an useless semicolon. Link: https://lkml.kernel.org/r/20201019115044.1571-1-yanfei.xu@windriver.com Signed-off-by: Yanfei Xu <yanfei.xu@windriver.com> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Zi Yan
|
d20bdd571e |
mm/compaction: stop isolation if too many pages are isolated and we have pages to migrate
In isolate_migratepages_block, if we have too many isolated pages and
nr_migratepages is not zero, we should try to migrate what we have
without wasting time on isolating.
In theory it's possible that multiple parallel compactions will cause
too_many_isolated() to become true even if each has isolated less than
COMPACT_CLUSTER_MAX, and loop forever in the while loop. Bailing
immediately prevents that.
[vbabka@suse.cz: changelog addition]
Fixes:
|
||
Zi Yan
|
38935861d8 |
mm/compaction: count pages and stop correctly during page isolation
In isolate_migratepages_block, when cc->alloc_contig is true, we are
able to isolate compound pages. But nr_migratepages and nr_isolated did
not count compound pages correctly, causing us to isolate more pages
than we thought.
So count compound pages as the number of base pages they contain.
Otherwise, we might be trapped in too_many_isolated while loop, since
the actual isolated pages can go up to COMPACT_CLUSTER_MAX*512=16384,
where COMPACT_CLUSTER_MAX is 32, since we stop isolation after
cc->nr_migratepages reaches to COMPACT_CLUSTER_MAX.
In addition, after we fix the issue above, cc->nr_migratepages could
never be equal to COMPACT_CLUSTER_MAX if compound pages are isolated,
thus page isolation could not stop as we intended. Change the isolation
stop condition to '>='.
The issue can be triggered as follows:
In a system with 16GB memory and an 8GB CMA region reserved by
hugetlb_cma, if we first allocate 10GB THPs and mlock them (so some THPs
are allocated in the CMA region and mlocked), reserving 6 1GB hugetlb
pages via /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages will
get stuck (looping in too_many_isolated function) until we kill either
task. With the patch applied, oom will kill the application with 10GB
THPs and let hugetlb page reservation finish.
[ziy@nvidia.com: v3]
Link: https://lkml.kernel.org/r/20201030183809.3616803-1-zi.yan@sent.com
Fixes:
|
||
Matthew Wilcox (Oracle)
|
ab130f9108 |
mm: rename page_order() to buddy_order()
The current page_order() can only be called on pages in the buddy allocator. For compound pages, you have to use compound_order(). This is confusing and led to a bug, so rename page_order() to buddy_order(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Link: https://lkml.kernel.org/r/20201001152259.14932-2-willy@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mateusz Nosek
|
62b35fe0eb |
mm/compaction.c: micro-optimization remove unnecessary branch
The same code can work both for 'zone->compact_considered > defer_limit' and 'zone->compact_considered >= defer_limit'. In the latter there is one branch less which is more effective considering performance. Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Link: https://lkml.kernel.org/r/20200913190448.28649-1-mateusznosek0@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
6c357848b4 |
mm: replace hpage_nr_pages with thp_nr_pages
The thp prefix is more frequently used than hpage and we should be consistent between the various functions. [akpm@linux-foundation.org: fix mm/migrate.c] Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Link: http://lkml.kernel.org/r/20200629151959.15779-6-willy@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Randy Dunlap
|
a1c1dbeb2e |
mm/compaction.c: delete duplicated word
Drop the repeated word "a". Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Zi Yan <ziy@nvidia.com> Link: http://lkml.kernel.org/r/20200801173822.14973-2-rdunlap@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alex Shi
|
860b32729a |
mm/compaction: correct the comments of compact_defer_shift
There is no compact_defer_limit. It should be compact_defer_shift in use. and add compact_order_failed explanation. Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Link: http://lkml.kernel.org/r/3bd60e1b-a74e-050d-ade4-6e8f54e00b92@linux.alibaba.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Nitin Gupta
|
d34c0a7599 |
mm: use unsigned types for fragmentation score
Proactive compaction uses per-node/zone "fragmentation score" which is always in range [0, 100], so use unsigned type of these scores as well as for related constants. Signed-off-by: Nitin Gupta <nigupta@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Baoquan He <bhe@redhat.com> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Link: http://lkml.kernel.org/r/20200618010319.13159-1-nigupta@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Nitin Gupta
|
25788738eb |
mm: fix compile error due to COMPACTION_HPAGE_ORDER
Fix compile error when COMPACTION_HPAGE_ORDER is assigned to HUGETLB_PAGE_ORDER. The correct way to check if this constant is defined is to check for CONFIG_HUGETLBFS. Reported-by: Nathan Chancellor <natechancellor@gmail.com> Signed-off-by: Nitin Gupta <nigupta@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Nathan Chancellor <natechancellor@gmail.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Link: http://lkml.kernel.org/r/20200623064544.25766-1-nigupta@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Nitin Gupta
|
facdaa917c |
mm: proactive compaction
For some applications, we need to allocate almost all memory as hugepages. However, on a running system, higher-order allocations can fail if the memory is fragmented. Linux kernel currently does on-demand compaction as we request more hugepages, but this style of compaction incurs very high latency. Experiments with one-time full memory compaction (followed by hugepage allocations) show that kernel is able to restore a highly fragmented memory state to a fairly compacted memory state within <1 sec for a 32G system. Such data suggests that a more proactive compaction can help us allocate a large fraction of memory as hugepages keeping allocation latencies low. For a more proactive compaction, the approach taken here is to define a new sysctl called 'vm.compaction_proactiveness' which dictates bounds for external fragmentation which kcompactd tries to maintain. The tunable takes a value in range [0, 100], with a default of 20. Note that a previous version of this patch [1] was found to introduce too many tunables (per-order extfrag{low, high}), but this one reduces them to just one sysctl. Also, the new tunable is an opaque value instead of asking for specific bounds of "external fragmentation", which would have been difficult to estimate. The internal interpretation of this opaque value allows for future fine-tuning. Currently, we use a simple translation from this tunable to [low, high] "fragmentation score" thresholds (low=100-proactiveness, high=low+10%). The score for a node is defined as weighted mean of per-zone external fragmentation. A zone's present_pages determines its weight. To periodically check per-node score, we reuse per-node kcompactd threads, which are woken up every 500 milliseconds to check the same. If a node's score exceeds its high threshold (as derived from user-provided proactiveness value), proactive compaction is started until its score reaches its low threshold value. By default, proactiveness is set to 20, which implies threshold values of low=80 and high=90. This patch is largely based on ideas from Michal Hocko [2]. See also the LWN article [3]. Performance data ================ System: x64_64, 1T RAM, 80 CPU threads. Kernel: 5.6.0-rc3 + this patch echo madvise | sudo tee /sys/kernel/mm/transparent_hugepage/enabled echo madvise | sudo tee /sys/kernel/mm/transparent_hugepage/defrag Before starting the driver, the system was fragmented from a userspace program that allocates all memory and then for each 2M aligned section, frees 3/4 of base pages using munmap. The workload is mainly anonymous userspace pages, which are easy to move around. I intentionally avoided unmovable pages in this test to see how much latency we incur when hugepage allocations hit direct compaction. 1. Kernel hugepage allocation latencies With the system in such a fragmented state, a kernel driver then allocates as many hugepages as possible and measures allocation latency: (all latency values are in microseconds) - With vanilla 5.6.0-rc3 percentile latency –––––––––– ––––––– 5 7894 10 9496 25 12561 30 15295 40 18244 50 21229 60 27556 75 30147 80 31047 90 32859 95 33799 Total 2M hugepages allocated = 383859 (749G worth of hugepages out of 762G total free => 98% of free memory could be allocated as hugepages) - With 5.6.0-rc3 + this patch, with proactiveness=20 sysctl -w vm.compaction_proactiveness=20 percentile latency –––––––––– ––––––– 5 2 10 2 25 3 30 3 40 3 50 4 60 4 75 4 80 4 90 5 95 429 Total 2M hugepages allocated = 384105 (750G worth of hugepages out of 762G total free => 98% of free memory could be allocated as hugepages) 2. JAVA heap allocation In this test, we first fragment memory using the same method as for (1). Then, we start a Java process with a heap size set to 700G and request the heap to be allocated with THP hugepages. We also set THP to madvise to allow hugepage backing of this heap. /usr/bin/time java -Xms700G -Xmx700G -XX:+UseTransparentHugePages -XX:+AlwaysPreTouch The above command allocates 700G of Java heap using hugepages. - With vanilla 5.6.0-rc3 17.39user 1666.48system 27:37.89elapsed - With 5.6.0-rc3 + this patch, with proactiveness=20 8.35user 194.58system 3:19.62elapsed Elapsed time remains around 3:15, as proactiveness is further increased. Note that proactive compaction happens throughout the runtime of these workloads. The situation of one-time compaction, sufficient to supply hugepages for following allocation stream, can probably happen for more extreme proactiveness values, like 80 or 90. In the above Java workload, proactiveness is set to 20. The test starts with a node's score of 80 or higher, depending on the delay between the fragmentation step and starting the benchmark, which gives more-or-less time for the initial round of compaction. As t he benchmark consumes hugepages, node's score quickly rises above the high threshold (90) and proactive compaction starts again, which brings down the score to the low threshold level (80). Repeat. bpftrace also confirms proactive compaction running 20+ times during the runtime of this Java benchmark. kcompactd threads consume 100% of one of the CPUs while it tries to bring a node's score within thresholds. Backoff behavior ================ Above workloads produce a memory state which is easy to compact. However, if memory is filled with unmovable pages, proactive compaction should essentially back off. To test this aspect: - Created a kernel driver that allocates almost all memory as hugepages followed by freeing first 3/4 of each hugepage. - Set proactiveness=40 - Note that proactive_compact_node() is deferred maximum number of times with HPAGE_FRAG_CHECK_INTERVAL_MSEC of wait between each check (=> ~30 seconds between retries). [1] https://patchwork.kernel.org/patch/11098289/ [2] https://lore.kernel.org/linux-mm/20161230131412.GI13301@dhcp22.suse.cz/ [3] https://lwn.net/Articles/817905/ Signed-off-by: Nitin Gupta <nigupta@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Oleksandr Natalenko <oleksandr@redhat.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com> Reviewed-by: Oleksandr Natalenko <oleksandr@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Nitin Gupta <ngupta@nitingupta.dev> Cc: Oleksandr Natalenko <oleksandr@redhat.com> Link: http://lkml.kernel.org/r/20200616204527.19185-1-nigupta@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
b9e20f0da1 |
mm, compaction: make capture control handling safe wrt interrupts
Hugh reports:
"While stressing compaction, one run oopsed on NULL capc->cc in
__free_one_page()'s task_capc(zone): compact_zone_order() had been
interrupted, and a page was being freed in the return from interrupt.
Though you would not expect it from the source, both gccs I was using
(4.8.1 and 7.5.0) had chosen to compile compact_zone_order() with the
".cc = &cc" implemented by mov %rbx,-0xb0(%rbp) immediately before
callq compact_zone - long after the "current->capture_control =
&capc". An interrupt in between those finds capc->cc NULL (zeroed by
an earlier rep stos).
This could presumably be fixed by a barrier() before setting
current->capture_control in compact_zone_order(); but would also need
more care on return from compact_zone(), in order not to risk leaking
a page captured by interrupt just before capture_control is reset.
Maybe that is the preferable fix, but I felt safer for task_capc() to
exclude the rather surprising possibility of capture at interrupt
time"
I have checked that gcc10 also behaves the same.
The advantage of fix in compact_zone_order() is that we don't add
another test in the page freeing hot path, and that it might prevent
future problems if we stop exposing pointers to uninitialized structures
in current task.
So this patch implements the suggestion for compact_zone_order() with
barrier() (and WRITE_ONCE() to prevent store tearing) for setting
current->capture_control, and prevents page leaking with
WRITE_ONCE/READ_ONCE in the proper order.
Link: http://lkml.kernel.org/r/20200616082649.27173-1-vbabka@suse.cz
Fixes:
|
||
Ethon Paul
|
f386775510 |
mm/compaction: fix a typo in comment "pessemistic"->"pessimistic"
There is a typo in comment, fix it. Signed-off-by: Ethon Paul <ethp@qq.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Link: http://lkml.kernel.org/r/20200411070307.16021-1-ethp@qq.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
ee01c4d72a |
Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton: "More mm/ work, plenty more to come Subsystems affected by this patch series: slub, memcg, gup, kasan, pagealloc, hugetlb, vmscan, tools, mempolicy, memblock, hugetlbfs, thp, mmap, kconfig" * akpm: (131 commits) arm64: mm: use ARCH_HAS_DEBUG_WX instead of arch defined x86: mm: use ARCH_HAS_DEBUG_WX instead of arch defined riscv: support DEBUG_WX mm: add DEBUG_WX support drivers/base/memory.c: cache memory blocks in xarray to accelerate lookup mm/thp: rename pmd_mknotpresent() as pmd_mkinvalid() powerpc/mm: drop platform defined pmd_mknotpresent() mm: thp: don't need to drain lru cache when splitting and mlocking THP hugetlbfs: get unmapped area below TASK_UNMAPPED_BASE for hugetlbfs sparc32: register memory occupied by kernel as memblock.memory include/linux/memblock.h: fix minor typo and unclear comment mm, mempolicy: fix up gup usage in lookup_node tools/vm/page_owner_sort.c: filter out unneeded line mm: swap: memcg: fix memcg stats for huge pages mm: swap: fix vmstats for huge pages mm: vmscan: limit the range of LRU type balancing mm: vmscan: reclaim writepage is IO cost mm: vmscan: determine anon/file pressure balance at the reclaim root mm: balance LRU lists based on relative thrashing mm: only count actual rotations as LRU reclaim cost ... |
||
Wei Yang
|
01c0bfe061 |
mm: rename gfpflags_to_migratetype to gfp_migratetype for same convention
Pageblock migrate type is encoded in GFP flags, just as zone_type and zonelist. Currently we use gfp_zone() and gfp_zonelist() to extract related information, it would be proper to use the same naming convention for migrate type. Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com> Link: http://lkml.kernel.org/r/20200329080823.7735-1-richard.weiyang@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
97a225e69a |
mm/page_alloc: integrate classzone_idx and high_zoneidx
classzone_idx is just different name for high_zoneidx now. So, integrate them and add some comment to struct alloc_context in order to reduce future confusion about the meaning of this variable. The accessor, ac_classzone_idx() is also removed since it isn't needed after integration. In addition to integration, this patch also renames high_zoneidx to highest_zoneidx since it represents more precise meaning. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Baoquan He <bhe@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Ye Xiaolong <xiaolong.ye@intel.com> Link: http://lkml.kernel.org/r/1587095923-7515-3-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Baoquan He
|
73a6e474cb |
mm: memmap_init: iterate over memblock regions rather that check each PFN
When called during boot the memmap_init_zone() function checks if each PFN is valid and actually belongs to the node being initialized using early_pfn_valid() and early_pfn_in_nid(). Each such check may cost up to O(log(n)) where n is the number of memory banks, so for large amount of memory overall time spent in early_pfn*() becomes substantial. Since the information is anyway present in memblock, we can iterate over memblock memory regions in memmap_init() and only call memmap_init_zone() for PFN ranges that are know to be valid and in the appropriate node. [cai@lca.pw: fix a compilation warning from Clang] Link: http://lkml.kernel.org/r/CF6E407F-17DC-427C-8203-21979FB882EF@lca.pw [bhe@redhat.com: fix the incorrect hole in fast_isolate_freepages()] Link: http://lkml.kernel.org/r/8C537EB7-85EE-4DCF-943E-3CC0ED0DF56D@lca.pw Link: http://lkml.kernel.org/r/20200521014407.29690-1-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Hoan Tran <hoan@os.amperecomputing.com> [arm64] Cc: Brian Cain <bcain@codeaurora.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Ungerer <gerg@linux-m68k.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ley Foon Tan <ley.foon.tan@intel.com> Cc: Mark Salter <msalter@redhat.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Simek <monstr@monstr.eu> Cc: Nick Hu <nickhu@andestech.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Qian Cai <cai@lca.pw> Link: http://lkml.kernel.org/r/20200412194859.12663-16-rppt@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
cb8e59cc87 |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from David Miller: 1) Allow setting bluetooth L2CAP modes via socket option, from Luiz Augusto von Dentz. 2) Add GSO partial support to igc, from Sasha Neftin. 3) Several cleanups and improvements to r8169 from Heiner Kallweit. 4) Add IF_OPER_TESTING link state and use it when ethtool triggers a device self-test. From Andrew Lunn. 5) Start moving away from custom driver versions, use the globally defined kernel version instead, from Leon Romanovsky. 6) Support GRO vis gro_cells in DSA layer, from Alexander Lobakin. 7) Allow hard IRQ deferral during NAPI, from Eric Dumazet. 8) Add sriov and vf support to hinic, from Luo bin. 9) Support Media Redundancy Protocol (MRP) in the bridging code, from Horatiu Vultur. 10) Support netmap in the nft_nat code, from Pablo Neira Ayuso. 11) Allow UDPv6 encapsulation of ESP in the ipsec code, from Sabrina Dubroca. Also add ipv6 support for espintcp. 12) Lots of ReST conversions of the networking documentation, from Mauro Carvalho Chehab. 13) Support configuration of ethtool rxnfc flows in bcmgenet driver, from Doug Berger. 14) Allow to dump cgroup id and filter by it in inet_diag code, from Dmitry Yakunin. 15) Add infrastructure to export netlink attribute policies to userspace, from Johannes Berg. 16) Several optimizations to sch_fq scheduler, from Eric Dumazet. 17) Fallback to the default qdisc if qdisc init fails because otherwise a packet scheduler init failure will make a device inoperative. From Jesper Dangaard Brouer. 18) Several RISCV bpf jit optimizations, from Luke Nelson. 19) Correct the return type of the ->ndo_start_xmit() method in several drivers, it's netdev_tx_t but many drivers were using 'int'. From Yunjian Wang. 20) Add an ethtool interface for PHY master/slave config, from Oleksij Rempel. 21) Add BPF iterators, from Yonghang Song. 22) Add cable test infrastructure, including ethool interfaces, from Andrew Lunn. Marvell PHY driver is the first to support this facility. 23) Remove zero-length arrays all over, from Gustavo A. R. Silva. 24) Calculate and maintain an explicit frame size in XDP, from Jesper Dangaard Brouer. 25) Add CAP_BPF, from Alexei Starovoitov. 26) Support terse dumps in the packet scheduler, from Vlad Buslov. 27) Support XDP_TX bulking in dpaa2 driver, from Ioana Ciornei. 28) Add devm_register_netdev(), from Bartosz Golaszewski. 29) Minimize qdisc resets, from Cong Wang. 30) Get rid of kernel_getsockopt and kernel_setsockopt in order to eliminate set_fs/get_fs calls. From Christoph Hellwig. * git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2517 commits) selftests: net: ip_defrag: ignore EPERM net_failover: fixed rollback in net_failover_open() Revert "tipc: Fix potential tipc_aead refcnt leak in tipc_crypto_rcv" Revert "tipc: Fix potential tipc_node refcnt leak in tipc_rcv" vmxnet3: allow rx flow hash ops only when rss is enabled hinic: add set_channels ethtool_ops support selftests/bpf: Add a default $(CXX) value tools/bpf: Don't use $(COMPILE.c) bpf, selftests: Use bpf_probe_read_kernel s390/bpf: Use bcr 0,%0 as tail call nop filler s390/bpf: Maintain 8-byte stack alignment selftests/bpf: Fix verifier test selftests/bpf: Fix sample_cnt shared between two threads bpf, selftests: Adapt cls_redirect to call csum_level helper bpf: Add csum_level helper for fixing up csum levels bpf: Fix up bpf_skb_adjust_room helper's skb csum setting sfc: add missing annotation for efx_ef10_try_update_nic_stats_vf() crypto/chtls: IPv6 support for inline TLS Crypto/chcr: Fixes a coccinile check error Crypto/chcr: Fixes compilations warnings ... |
||
Ingo Molnar
|
b01b214199 |
mm/swap: Use local_lock for protection
The various struct pagevec per CPU variables are protected by disabling either preemption or interrupts across the critical sections. Inside these sections spinlocks have to be acquired. These spinlocks are regular spinlock_t types which are converted to "sleeping" spinlocks on PREEMPT_RT enabled kernels. Obviously sleeping locks cannot be acquired in preemption or interrupt disabled sections. local locks provide a trivial way to substitute preempt and interrupt disable instances. On a non PREEMPT_RT enabled kernel local_lock() maps to preempt_disable() and local_lock_irq() to local_irq_disable(). Create lru_rotate_pvecs containing the pagevec and the locallock. Create lru_pvecs containing the remaining pagevecs and the locallock. Add lru_add_drain_cpu_zone() which is used from compact_zone() to avoid exporting the pvec structure. Change the relevant call sites to acquire these locks instead of using preempt_disable() / get_cpu() / get_cpu_var() and local_irq_disable() / local_irq_save(). There is neither a functional change nor a change in the generated binary code for non PREEMPT_RT enabled non-debug kernels. When lockdep is enabled local locks have lockdep maps embedded. These allow lockdep to validate the protections, i.e. inappropriate usage of a preemption only protected sections would result in a lockdep warning while the same problem would not be noticed with a plain preempt_disable() based protection. local locks also improve readability as they provide a named scope for the protections while preempt/interrupt disable are opaque scopeless. Finally local locks allow PREEMPT_RT to substitute them with real locking primitives to ensure the correctness of operation in a fully preemptible kernel. [ bigeasy: Adopted to use local_lock ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20200527201119.1692513-4-bigeasy@linutronix.de |
||
Christoph Hellwig
|
32927393dc |
sysctl: pass kernel pointers to ->proc_handler
Instead of having all the sysctl handlers deal with user pointers, which is rather hairy in terms of the BPF interaction, copy the input to and from userspace in common code. This also means that the strings are always NUL-terminated by the common code, making the API a little bit safer. As most handler just pass through the data to one of the common handlers a lot of the changes are mechnical. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
||
Jules Irenge
|
77337edee7 |
mm/compaction: add missing annotation for compact_lock_irqsave
Sparse reports a warning at compact_lock_irqsave() warning: context imbalance in compact_lock_irqsave() - wrong count at exit The root cause is the missing annotation at compact_lock_irqsave() Add the missing __acquires(lock) annotation. Signed-off-by: Jules Irenge <jbi.octave@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/20200214204741.94112-6-jbi.octave@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
9de4f22a60 |
mm: code cleanup for MADV_FREE
Some comments for MADV_FREE is revised and added to help people understand the MADV_FREE code, especially the page flag, PG_swapbacked. This makes page_is_file_cache() isn't consistent with its comments. So the function is renamed to page_is_file_lru() to make them consistent again. All these are put in one patch as one logical change. Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: David Rientjes <rientjes@google.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@kernel.org> Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200317100342.2730705-1-ying.huang@intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mateusz Nosek
|
250046e7ba |
mm/compaction.c: clean code by removing unnecessary assignment
Previously 0 was assigned to variable 'last_migrated_pfn'. But the variable is not read after that, so the assignment can be removed. Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Link: http://lkml.kernel.org/r/20200318174509.15021-1-mateusznosek0@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Sebastian Andrzej Siewior
|
6923aa0d8c |
mm/compaction: Disable compact_unevictable_allowed on RT
Since commit
|
||
Vlastimil Babka
|
6467552ca6 |
mm, compaction: fully assume capture is not NULL in compact_zone_order()
Dan reports: The patch |
||
Rik van Riel
|
1da2f328fa |
mm,thp,compaction,cma: allow THP migration for CMA allocations
The code to implement THP migrations already exists, and the code for CMA to clear out a region of memory already exists. Only a few small tweaks are needed to allow CMA to move THP memory when attempting an allocation from alloc_contig_range. With these changes, migrating THPs from a CMA area works when allocating a 1GB hugepage from CMA memory. [riel@surriel.com: fix hugetlbfs pages per Mike, cleanup per Vlastimil] Link: http://lkml.kernel.org/r/20200228104700.0af2f18d@imladris.surriel.com Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Joonsoo Kim <js1304@gmail.com> Link: http://lkml.kernel.org/r/20200227213238.1298752-2-riel@surriel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
a2e9a5afce |
mm, compaction: fix wrong pfn handling in __reset_isolation_pfn()
Florian and Dave reported [1] a NULL pointer dereference in
__reset_isolation_pfn(). While the exact cause is unclear, staring at
the code revealed two bugs, which might be related.
One bug is that if zone starts in the middle of pageblock, block_page
might correspond to different pfn than block_pfn, and then the
pfn_valid_within() checks will check different pfn's than those accessed
via struct page. This might result in acessing an unitialized page in
CONFIG_HOLES_IN_ZONE configs.
The other bug is that end_page refers to the first page of next
pageblock and not last page of current pageblock. The online and valid
check is then wrong and with sections, the while (page < end_page) loop
might wander off actual struct page arrays.
[1] https://lore.kernel.org/linux-xfs/87o8z1fvqu.fsf@mid.deneb.enyo.de/
Link: http://lkml.kernel.org/r/20191008152915.24704-1-vbabka@suse.cz
Fixes:
|
||
Pengfei Li
|
32aaf0553d |
mm/compaction.c: remove unnecessary zone parameter in isolate_migratepages()
Like commit
|
||
Yafang Shao
|
a94b525241 |
mm/compaction.c: clear total_{migrate,free}_scanned before scanning a new zone
total_{migrate,free}_scanned will be added to COMPACTMIGRATE_SCANNED and
COMPACTFREE_SCANNED in compact_zone(). We should clear them before
scanning a new zone. In the proc triggered compaction, we forgot clearing
them.
[laoar.shao@gmail.com: introduce a helper compact_zone_counters_init()]
Link: http://lkml.kernel.org/r/1563869295-25748-1-git-send-email-laoar.shao@gmail.com
[akpm@linux-foundation.org: expand compact_zone_counters_init() into its single callsite, per mhocko]
[vbabka@suse.cz: squash compact_zone() list_head init as well]
Link: http://lkml.kernel.org/r/1fb6f7da-f776-9e42-22f8-bbb79b030b98@suse.cz
[akpm@linux-foundation.org: kcompactd_do_work(): avoid unnecessary initialization of cc.zone]
Link: http://lkml.kernel.org/r/1563789275-9639-1-git-send-email-laoar.shao@gmail.com
Fixes:
|
||
Matthew Wilcox (Oracle)
|
d8c6546b1a |
mm: introduce compound_nr()
Replace 1 << compound_order(page) with compound_nr(page). Minor improvements in readability. Link: http://lkml.kernel.org/r/20190721104612.19120-4-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
670105a256 |
mm: compaction: avoid 100% CPU usage during compaction when a task is killed
"howaboutsynergy" reported via kernel buzilla number 204165 that compact_zone_order was consuming 100% CPU during a stress test for prolonged periods of time. Specifically the following command, which should exit in 10 seconds, was taking an excessive time to finish while the CPU was pegged at 100%. stress -m 220 --vm-bytes 1000000000 --timeout 10 Tracing indicated a pattern as follows stress-3923 [007] 519.106208: mm_compaction_isolate_migratepages: range=(0x70bb80 ~ 0x70bb80) nr_scanned=0 nr_taken=0 stress-3923 [007] 519.106212: mm_compaction_isolate_migratepages: range=(0x70bb80 ~ 0x70bb80) nr_scanned=0 nr_taken=0 stress-3923 [007] 519.106216: mm_compaction_isolate_migratepages: range=(0x70bb80 ~ 0x70bb80) nr_scanned=0 nr_taken=0 stress-3923 [007] 519.106219: mm_compaction_isolate_migratepages: range=(0x70bb80 ~ 0x70bb80) nr_scanned=0 nr_taken=0 stress-3923 [007] 519.106223: mm_compaction_isolate_migratepages: range=(0x70bb80 ~ 0x70bb80) nr_scanned=0 nr_taken=0 stress-3923 [007] 519.106227: mm_compaction_isolate_migratepages: range=(0x70bb80 ~ 0x70bb80) nr_scanned=0 nr_taken=0 stress-3923 [007] 519.106231: mm_compaction_isolate_migratepages: range=(0x70bb80 ~ 0x70bb80) nr_scanned=0 nr_taken=0 stress-3923 [007] 519.106235: mm_compaction_isolate_migratepages: range=(0x70bb80 ~ 0x70bb80) nr_scanned=0 nr_taken=0 stress-3923 [007] 519.106238: mm_compaction_isolate_migratepages: range=(0x70bb80 ~ 0x70bb80) nr_scanned=0 nr_taken=0 stress-3923 [007] 519.106242: mm_compaction_isolate_migratepages: range=(0x70bb80 ~ 0x70bb80) nr_scanned=0 nr_taken=0 Note that compaction is entered in rapid succession while scanning and isolating nothing. The problem is that when a task that is compacting receives a fatal signal, it retries indefinitely instead of exiting while making no progress as a fatal signal is pending. It's not easy to trigger this condition although enabling zswap helps on the basis that the timing is altered. A very small window has to be hit for the problem to occur (signal delivered while compacting and isolating a PFN for migration that is not aligned to SWAP_CLUSTER_MAX). This was reproduced locally -- 16G single socket system, 8G swap, 30% zswap configured, vm-bytes 22000000000 using Colin Kings stress-ng implementation from github running in a loop until the problem hits). Tracing recorded the problem occurring almost 200K times in a short window. With this patch, the problem hit 4 times but the task existed normally instead of consuming CPU. This problem has existed for some time but it was made worse by commit |
||
Suzuki K Poulose
|
e577c8b64d |
mm, compaction: make sure we isolate a valid PFN
When we have holes in a normal memory zone, we could endup having
cached_migrate_pfns which may not necessarily be valid, under heavy memory
pressure with swapping enabled ( via __reset_isolation_suitable(),
triggered by kswapd).
Later if we fail to find a page via fast_isolate_freepages(), we may end
up using the migrate_pfn we started the search with, as valid page. This
could lead to accessing NULL pointer derefernces like below, due to an
invalid mem_section pointer.
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008 [47/1825]
Mem abort info:
ESR = 0x96000004
Exception class = DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
Data abort info:
ISV = 0, ISS = 0x00000004
CM = 0, WnR = 0
user pgtable: 4k pages, 48-bit VAs, pgdp = 0000000082f94ae9
[0000000000000008] pgd=0000000000000000
Internal error: Oops: 96000004 [#1] SMP
...
CPU: 10 PID: 6080 Comm: qemu-system-aar Not tainted 510-rc1+ #6
Hardware name: AmpereComputing(R) OSPREY EV-883832-X3-0001/OSPREY, BIOS 4819 09/25/2018
pstate: 60000005 (nZCv daif -PAN -UAO)
pc : set_pfnblock_flags_mask+0x58/0xe8
lr : compaction_alloc+0x300/0x950
[...]
Process qemu-system-aar (pid: 6080, stack limit = 0x0000000095070da5)
Call trace:
set_pfnblock_flags_mask+0x58/0xe8
compaction_alloc+0x300/0x950
migrate_pages+0x1a4/0xbb0
compact_zone+0x750/0xde8
compact_zone_order+0xd8/0x118
try_to_compact_pages+0xb4/0x290
__alloc_pages_direct_compact+0x84/0x1e0
__alloc_pages_nodemask+0x5e0/0xe18
alloc_pages_vma+0x1cc/0x210
do_huge_pmd_anonymous_page+0x108/0x7c8
__handle_mm_fault+0xdd4/0x1190
handle_mm_fault+0x114/0x1c0
__get_user_pages+0x198/0x3c0
get_user_pages_unlocked+0xb4/0x1d8
__gfn_to_pfn_memslot+0x12c/0x3b8
gfn_to_pfn_prot+0x4c/0x60
kvm_handle_guest_abort+0x4b0/0xcd8
handle_exit+0x140/0x1b8
kvm_arch_vcpu_ioctl_run+0x260/0x768
kvm_vcpu_ioctl+0x490/0x898
do_vfs_ioctl+0xc4/0x898
ksys_ioctl+0x8c/0xa0
__arm64_sys_ioctl+0x28/0x38
el0_svc_common+0x74/0x118
el0_svc_handler+0x38/0x78
el0_svc+0x8/0xc
Code: f8607840 f100001f 8b011401 9a801020 (f9400400)
---[ end trace af6a35219325a9b6 ]---
The issue was reported on an arm64 server with 128GB with holes in the
zone (e.g, [32GB@4GB, 96GB@544GB]), with a swap device enabled, while
running 100 KVM guest instances.
This patch fixes the issue by ensuring that the page belongs to a valid
PFN when we fallback to using the lower limit of the scan range upon
failure in fast_isolate_freepages().
Link: http://lkml.kernel.org/r/1558711908-15688-1-git-send-email-suzuki.poulose@arm.com
Fixes:
|
||
Mel Gorman
|
60fce36afa |
mm/compaction.c: correct zone boundary handling when isolating pages from a pageblock
syzbot reported the following error from a tree with a head commit of |
||
Dan Williams
|
b03641af68 |
mm: move buddy list manipulations into helpers
In preparation for runtime randomization of the zone lists, take all (well, most of) the list_*() functions in the buddy allocator and put them in helper functions. Provide a common control point for injecting additional behavior when freeing pages. [dan.j.williams@intel.com: fix buddy list helpers] Link: http://lkml.kernel.org/r/155033679702.1773410.13041474192173212653.stgit@dwillia2-desk3.amr.corp.intel.com [vbabka@suse.cz: remove del_page_from_free_area() migratetype parameter] Link: http://lkml.kernel.org/r/4672701b-6775-6efd-0797-b6242591419e@suse.cz Link: http://lkml.kernel.org/r/154899812264.3165233.5219320056406926223.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: Keith Busch <keith.busch@intel.com> Cc: Robert Elliott <elliott@hpe.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Qian Cai
|
dd7ef7bd14 |
mm/compaction.c: fix an undefined behaviour
In a low-memory situation, cc->fast_search_fail can keep increasing as it
is unable to find an available page to isolate in
fast_isolate_freepages(). As the result, it could trigger an error below,
so just compare with the maximum bits can be shifted first.
UBSAN: Undefined behaviour in mm/compaction.c:1160:30
shift exponent 64 is too large for 64-bit type 'unsigned long'
CPU: 131 PID: 1308 Comm: kcompactd1 Kdump: loaded Tainted: G
W L 5.0.0+ #17
Call trace:
dump_backtrace+0x0/0x450
show_stack+0x20/0x2c
dump_stack+0xc8/0x14c
__ubsan_handle_shift_out_of_bounds+0x7e8/0x8c4
compaction_alloc+0x2344/0x2484
unmap_and_move+0xdc/0x1dbc
migrate_pages+0x274/0x1310
compact_zone+0x26ec/0x43bc
kcompactd+0x15b8/0x1a24
kthread+0x374/0x390
ret_from_fork+0x10/0x18
[akpm@linux-foundation.org: code cleanup]
Link: http://lkml.kernel.org/r/20190320203338.53367-1-cai@lca.pw
Fixes:
|
||
Qian Cai
|
5b56d996dd |
mm/compaction.c: abort search if isolation fails
Running LTP oom01 in a tight loop or memory stress testing put the system
in a low-memory situation could triggers random memory corruption like
page flag corruption below due to in fast_isolate_freepages(), if
isolation fails, next_search_order() does not abort the search immediately
could lead to improper accesses.
UBSAN: Undefined behaviour in ./include/linux/mm.h:1195:50
index 7 is out of range for type 'zone [5]'
Call Trace:
dump_stack+0x62/0x9a
ubsan_epilogue+0xd/0x7f
__ubsan_handle_out_of_bounds+0x14d/0x192
__isolate_free_page+0x52c/0x600
compaction_alloc+0x886/0x25f0
unmap_and_move+0x37/0x1e70
migrate_pages+0x2ca/0xb20
compact_zone+0x19cb/0x3620
kcompactd_do_work+0x2df/0x680
kcompactd+0x1d8/0x6c0
kthread+0x32c/0x3f0
ret_from_fork+0x35/0x40
------------[ cut here ]------------
kernel BUG at mm/page_alloc.c:3124!
invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC KASAN PTI
RIP: 0010:__isolate_free_page+0x464/0x600
RSP: 0000:ffff888b9e1af848 EFLAGS: 00010007
RAX: 0000000030000000 RBX: ffff888c39fcf0f8 RCX: 0000000000000000
RDX: 1ffff111873f9e25 RSI: 0000000000000004 RDI: ffffed1173c35ef6
RBP: ffff888b9e1af898 R08: fffffbfff4fc2461 R09: fffffbfff4fc2460
R10: fffffbfff4fc2460 R11: ffffffffa7e12303 R12: 0000000000000008
R13: dffffc0000000000 R14: 0000000000000000 R15: 0000000000000007
FS: 0000000000000000(0000) GS:ffff888ba8e80000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fc7abc00000 CR3: 0000000752416004 CR4: 00000000001606a0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
compaction_alloc+0x886/0x25f0
unmap_and_move+0x37/0x1e70
migrate_pages+0x2ca/0xb20
compact_zone+0x19cb/0x3620
kcompactd_do_work+0x2df/0x680
kcompactd+0x1d8/0x6c0
kthread+0x32c/0x3f0
ret_from_fork+0x35/0x40
Link: http://lkml.kernel.org/r/20190320192648.52499-1-cai@lca.pw
Fixes:
|
||
Mel Gorman
|
6b0868c820 |
mm/compaction.c: correct zone boundary handling when resetting pageblock skip hints
Mikhail Gavrilo reported the following bug being triggered in a Fedora kernel based on 5.1-rc1 but it is relevant to a vanilla kernel. kernel: page dumped because: VM_BUG_ON_PAGE(PagePoisoned(p)) kernel: ------------[ cut here ]------------ kernel: kernel BUG at include/linux/mm.h:1021! kernel: invalid opcode: 0000 [#1] SMP NOPTI kernel: CPU: 6 PID: 116 Comm: kswapd0 Tainted: G C 5.1.0-0.rc1.git1.3.fc31.x86_64 #1 kernel: Hardware name: System manufacturer System Product Name/ROG STRIX X470-I GAMING, BIOS 1201 12/07/2018 kernel: RIP: 0010:__reset_isolation_pfn+0x244/0x2b0 kernel: Code: fe 06 e8 0f 8e fc ff 44 0f b6 4c 24 04 48 85 c0 0f 85 dc fe ff ff e9 68 fe ff ff 48 c7 c6 58 b7 2e 8c 4c 89 ff e8 0c 75 00 00 <0f> 0b 48 c7 c6 58 b7 2e 8c e8 fe 74 00 00 0f 0b 48 89 fa 41 b8 01 kernel: RSP: 0018:ffff9e2d03f0fde8 EFLAGS: 00010246 kernel: RAX: 0000000000000034 RBX: 000000000081f380 RCX: ffff8cffbddd6c20 kernel: RDX: 0000000000000000 RSI: 0000000000000006 RDI: ffff8cffbddd6c20 kernel: RBP: 0000000000000001 R08: 0000009898b94613 R09: 0000000000000000 kernel: R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000100000 kernel: R13: 0000000000100000 R14: 0000000000000001 R15: ffffca7de07ce000 kernel: FS: 0000000000000000(0000) GS:ffff8cffbdc00000(0000) knlGS:0000000000000000 kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 kernel: CR2: 00007fc1670e9000 CR3: 00000007f5276000 CR4: 00000000003406e0 kernel: Call Trace: kernel: __reset_isolation_suitable+0x62/0x120 kernel: reset_isolation_suitable+0x3b/0x40 kernel: kswapd+0x147/0x540 kernel: ? finish_wait+0x90/0x90 kernel: kthread+0x108/0x140 kernel: ? balance_pgdat+0x560/0x560 kernel: ? kthread_park+0x90/0x90 kernel: ret_from_fork+0x27/0x50 He bisected it down to |
||
Andrey Ryabinin
|
5f438eee8f |
mm/compaction: pass pgdat to too_many_isolated() instead of zone
too_many_isolated() in mm/compaction.c looks only at node state, so it makes more sense to change argument to pgdat instead of zone. Link: http://lkml.kernel.org/r/20190228083329.31892-3-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: William Kucharski <william.kucharski@oracle.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Ryabinin
|
f4b7e272b5 |
mm: remove zone_lru_lock() function, access ->lru_lock directly
We have common pattern to access lru_lock from a page pointer: zone_lru_lock(page_zone(page)) Which is silly, because it unfolds to this: &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]->zone_pgdat->lru_lock while we can simply do &NODE_DATA(page_to_nid(page))->lru_lock Remove zone_lru_lock() function, since it's only complicate things. Use 'page_pgdat(page)->lru_lock' pattern instead. [aryabinin@virtuozzo.com: a slightly better version of __split_huge_page()] Link: http://lkml.kernel.org/r/20190301121651.7741-1-aryabinin@virtuozzo.com Link: http://lkml.kernel.org/r/20190228083329.31892-2-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
5e1f0f098b |
mm, compaction: capture a page under direct compaction
Compaction is inherently race-prone as a suitable page freed during compaction can be allocated by any parallel task. This patch uses a capture_control structure to isolate a page immediately when it is freed by a direct compactor in the slow path of the page allocator. The intent is to avoid redundant scanning. 5.0.0-rc1 5.0.0-rc1 selective-v3r17 capture-v3r19 Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%* Amean fault-both-3 2582.11 ( 0.00%) 2563.68 ( 0.71%) Amean fault-both-5 4500.26 ( 0.00%) 4233.52 ( 5.93%) Amean fault-both-7 5819.53 ( 0.00%) 6333.65 ( -8.83%) Amean fault-both-12 9321.18 ( 0.00%) 9759.38 ( -4.70%) Amean fault-both-18 9782.76 ( 0.00%) 10338.76 ( -5.68%) Amean fault-both-24 15272.81 ( 0.00%) 13379.55 * 12.40%* Amean fault-both-30 15121.34 ( 0.00%) 16158.25 ( -6.86%) Amean fault-both-32 18466.67 ( 0.00%) 18971.21 ( -2.73%) Latency is only moderately affected but the devil is in the details. A closer examination indicates that base page fault latency is reduced but latency of huge pages is increased as it takes creater care to succeed. Part of the "problem" is that allocation success rates are close to 100% even when under pressure and compaction gets harder 5.0.0-rc1 5.0.0-rc1 selective-v3r17 capture-v3r19 Percentage huge-3 96.70 ( 0.00%) 98.23 ( 1.58%) Percentage huge-5 96.99 ( 0.00%) 95.30 ( -1.75%) Percentage huge-7 94.19 ( 0.00%) 97.24 ( 3.24%) Percentage huge-12 94.95 ( 0.00%) 97.35 ( 2.53%) Percentage huge-18 96.74 ( 0.00%) 97.30 ( 0.58%) Percentage huge-24 97.07 ( 0.00%) 97.55 ( 0.50%) Percentage huge-30 95.69 ( 0.00%) 98.50 ( 2.95%) Percentage huge-32 96.70 ( 0.00%) 99.27 ( 2.65%) And scan rates are reduced as expected by 6% for the migration scanner and 29% for the free scanner indicating that there is less redundant work. Compaction migrate scanned 20815362 19573286 Compaction free scanned 16352612 11510663 [mgorman@techsingularity.net: remove redundant check] Link: http://lkml.kernel.org/r/20190201143853.GH9565@techsingularity.net Link: http://lkml.kernel.org/r/20190118175136.31341-23-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
e332f741a8 |
mm, compaction: be selective about what pageblocks to clear skip hints
Pageblock hints are cleared when compaction restarts or kswapd makes enough progress that it can sleep but it's over-eager in that the bit is cleared for migration sources with no LRU pages and migration targets with no free pages. As pageblock skip hint flushes are relatively rare and out-of-band with respect to kswapd, this patch makes a few more expensive checks to see if it's appropriate to even clear the bit. Every pageblock that is not cleared will avoid 512 pages being scanned unnecessarily on x86-64. The impact is variable with different workloads showing small differences in latency, success rates and scan rates. This is expected as clearing the hints is not that common but doing a small amount of work out-of-band to avoid a large amount of work in-band later is generally a good thing. Link: http://lkml.kernel.org/r/20190118175136.31341-22-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Qian Cai <cai@lca.pw> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> [cai@lca.pw: no stuck in __reset_isolation_pfn()] Link: http://lkml.kernel.org/r/20190206034732.75687-1-cai@lca.pw Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
4fca9730c5 |
mm, compaction: sample pageblocks for free pages
Once fast searching finishes, there is a possibility that the linear scanner is scanning full blocks found by the fast scanner earlier. This patch uses an adaptive stride to sample pageblocks for free pages. The more consecutive full pageblocks encountered, the larger the stride until a pageblock with free pages is found. The scanners might meet slightly sooner but it is an acceptable risk given that the search of the free lists may still encounter the pages and adjust the cached PFN of the free scanner accordingly. 5.0.0-rc1 5.0.0-rc1 roundrobin-v3r17 samplefree-v3r17 Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%* Amean fault-both-3 2752.37 ( 0.00%) 2729.95 ( 0.81%) Amean fault-both-5 4341.69 ( 0.00%) 4397.80 ( -1.29%) Amean fault-both-7 6308.75 ( 0.00%) 6097.61 ( 3.35%) Amean fault-both-12 10241.81 ( 0.00%) 9407.15 ( 8.15%) Amean fault-both-18 13736.09 ( 0.00%) 10857.63 * 20.96%* Amean fault-both-24 16853.95 ( 0.00%) 13323.24 * 20.95%* Amean fault-both-30 15862.61 ( 0.00%) 17345.44 ( -9.35%) Amean fault-both-32 18450.85 ( 0.00%) 16892.00 ( 8.45%) The latency is mildly improved offseting some overhead from earlier patches that are prerequisites for the rest of the series. However, a major impact is on the free scan rate with an 82% reduction. 5.0.0-rc1 5.0.0-rc1 roundrobin-v3r17 samplefree-v3r17 Compaction migrate scanned 21607271 20116887 Compaction free scanned 95336406 16668703 It's also the first time in the series where the number of pages scanned by the migration scanner is greater than the free scanner due to the increased search efficiency. Link: http://lkml.kernel.org/r/20190118175136.31341-21-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
dbe2d4e4f1 |
mm, compaction: round-robin the order while searching the free lists for a target
As compaction proceeds and creates high-order blocks, the free list search gets less efficient as the larger blocks are used as compaction targets. Eventually, the larger blocks will be behind the migration scanner for partially migrated pageblocks and the search fails. This patch round-robins what orders are searched so that larger blocks can be ignored and find smaller blocks that can be used as migration targets. The overall impact was small on 1-socket but it avoids corner cases where the migration/free scanners meet prematurely or situations where many of the pageblocks encountered by the free scanner are almost full instead of being properly packed. Previous testing had indicated that without this patch there were occasional large spikes in the free scanner without this patch. [dan.carpenter@oracle.com: fix static checker warning] Link: http://lkml.kernel.org/r/20190118175136.31341-20-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
d097a6f635 |
mm, compaction: reduce premature advancement of the migration target scanner
The fast isolation of free pages allows the cached PFN of the free scanner to advance faster than necessary depending on the contents of the free list. The key is that fast_isolate_freepages() can update zone->compact_cached_free_pfn via isolate_freepages_block(). When the fast search fails, the linear scan can start from a point that has skipped valid migration targets, particularly pageblocks with just low-order free pages. This can cause the migration source/target scanners to meet prematurely causing a reset. This patch starts by avoiding an update of the pageblock skip information and cached PFN from isolate_freepages_block() and puts the responsibility of updating that information in the callers. The fast scanner will update the cached PFN if and only if it finds a block that is higher than the existing cached PFN and sets the skip if the pageblock is full or nearly full. The linear scanner will update skipped information and the cached PFN only when a block is completely scanned. The total impact is that the free scanner advances more slowly as it is primarily driven by the linear scanner instead of the fast search. 5.0.0-rc1 5.0.0-rc1 noresched-v3r17 slowfree-v3r17 Amean fault-both-3 2965.68 ( 0.00%) 3036.75 ( -2.40%) Amean fault-both-5 3995.90 ( 0.00%) 4522.24 * -13.17%* Amean fault-both-7 5842.12 ( 0.00%) 6365.35 ( -8.96%) Amean fault-both-12 9550.87 ( 0.00%) 10340.93 ( -8.27%) Amean fault-both-18 13304.72 ( 0.00%) 14732.46 ( -10.73%) Amean fault-both-24 14618.59 ( 0.00%) 16288.96 ( -11.43%) Amean fault-both-30 16650.96 ( 0.00%) 16346.21 ( 1.83%) Amean fault-both-32 17145.15 ( 0.00%) 19317.49 ( -12.67%) The impact to latency is higher than the last version but it appears to be due to a slight increase in the free scan rates which is a potential side-effect of the patch. However, this is necessary for later patches that are more careful about how pageblocks are treated as earlier iterations of those patches hit corner cases where the restarts were punishing and very visible. Link: http://lkml.kernel.org/r/20190118175136.31341-19-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
cf66f0700c |
mm, compaction: do not consider a need to reschedule as contention
Scanning on large machines can take a considerable length of time and eventually need to be rescheduled. This is treated as an abort event but that's not appropriate as the attempt is likely to be retried after making numerous checks and taking another cycle through the page allocator. This patch will check the need to reschedule if necessary but continue the scanning. The main benefit is reduced scanning when compaction is taking a long time or the machine is over-saturated. It also avoids an unnecessary exit of compaction that ends up being retried by the page allocator in the outer loop. 5.0.0-rc1 5.0.0-rc1 synccached-v3r16 noresched-v3r17 Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%* Amean fault-both-3 2958.27 ( 0.00%) 2965.68 ( -0.25%) Amean fault-both-5 4091.90 ( 0.00%) 3995.90 ( 2.35%) Amean fault-both-7 5803.05 ( 0.00%) 5842.12 ( -0.67%) Amean fault-both-12 9481.06 ( 0.00%) 9550.87 ( -0.74%) Amean fault-both-18 14141.51 ( 0.00%) 13304.72 ( 5.92%) Amean fault-both-24 16438.00 ( 0.00%) 14618.59 ( 11.07%) Amean fault-both-30 17531.72 ( 0.00%) 16650.96 ( 5.02%) Amean fault-both-32 17101.96 ( 0.00%) 17145.15 ( -0.25%) Link: http://lkml.kernel.org/r/20190118175136.31341-18-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
cb810ad294 |
mm, compaction: rework compact_should_abort as compact_check_resched
With incremental changes, compact_should_abort no longer makes any documented sense. Rename to compact_check_resched and update the associated comments. There is no benefit other than reducing redundant code and making the intent slightly clearer. It could potentially be merged with earlier patches but it just makes the review slightly harder. Link: http://lkml.kernel.org/r/20190118175136.31341-17-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
8854c55f54 |
mm, compaction: keep cached migration PFNs synced for unusable pageblocks
Migrate has separate cached PFNs for ASYNC and SYNC* migration on the basis that some migrations will fail in ASYNC mode. However, if the cached PFNs match at the start of scanning and pageblocks are skipped due to having no isolation candidates, then the sync state does not matter. This patch keeps matching cached PFNs in sync until a pageblock with isolation candidates is found. The actual benefit is marginal given that the sync scanner following the async scanner will often skip a number of pageblocks but it's useless work. Any benefit depends heavily on whether the scanners restarted recently. Link: http://lkml.kernel.org/r/20190118175136.31341-16-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
9bebefd590 |
mm, compaction: check early for huge pages encountered by the migration scanner
When scanning for sources or targets, PageCompound is checked for huge pages as they can be skipped quickly but it happens relatively late after a lot of setup and checking. This patch short-cuts the check to make it earlier. It might still change when the lock is acquired but this has less overhead overall. The free scanner advances but the migration scanner does not. Typically the free scanner encounters more movable blocks that change state over the lifetime of the system and also tends to scan more aggressively as it's actively filling its portion of the physical address space with data. This could change in the future but for the moment, this worked better in practice and incurred fewer scan restarts. The impact on latency and allocation success rates is marginal but the free scan rates are reduced by 15% and system CPU usage is reduced by 3.3%. The 2-socket results are not materially different. Link: http://lkml.kernel.org/r/20190118175136.31341-15-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
cb2dcaf023 |
mm, compaction: finish pageblock scanning on contention
Async migration aborts on spinlock contention but contention can be high when there are multiple compaction attempts and kswapd is active. The consequence is that the migration scanners move forward uselessly while still contending on locks for longer while leaving suitable migration sources behind. This patch will acquire the lock but track when contention occurs. When it does, the current pageblock will finish as compaction may succeed for that block and then abort. This will have a variable impact on latency as in some cases useless scanning is avoided (reduces latency) but a lock will be contended (increase latency) or a single contended pageblock is scanned that would otherwise have been skipped (increase latency). 5.0.0-rc1 5.0.0-rc1 norescan-v3r16 finishcontend-v3r16 Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%* Amean fault-both-3 3002.07 ( 0.00%) 3153.17 ( -5.03%) Amean fault-both-5 4684.47 ( 0.00%) 4280.52 ( 8.62%) Amean fault-both-7 6815.54 ( 0.00%) 5811.50 * 14.73%* Amean fault-both-12 10864.02 ( 0.00%) 9276.85 ( 14.61%) Amean fault-both-18 12247.52 ( 0.00%) 11032.67 ( 9.92%) Amean fault-both-24 15683.99 ( 0.00%) 14285.70 ( 8.92%) Amean fault-both-30 18620.02 ( 0.00%) 16293.76 * 12.49%* Amean fault-both-32 19250.28 ( 0.00%) 16721.02 * 13.14%* 5.0.0-rc1 5.0.0-rc1 norescan-v3r16 finishcontend-v3r16 Percentage huge-1 0.00 ( 0.00%) 0.00 ( 0.00%) Percentage huge-3 95.00 ( 0.00%) 96.82 ( 1.92%) Percentage huge-5 94.22 ( 0.00%) 95.40 ( 1.26%) Percentage huge-7 92.35 ( 0.00%) 95.92 ( 3.86%) Percentage huge-12 91.90 ( 0.00%) 96.73 ( 5.25%) Percentage huge-18 89.58 ( 0.00%) 96.77 ( 8.03%) Percentage huge-24 90.03 ( 0.00%) 96.05 ( 6.69%) Percentage huge-30 89.14 ( 0.00%) 96.81 ( 8.60%) Percentage huge-32 90.58 ( 0.00%) 97.41 ( 7.54%) There is a variable impact that is mostly good on latency while allocation success rates are slightly higher. System CPU usage is reduced by about 10% but scan rate impact is mixed Compaction migrate scanned 27997659.00 20148867 Compaction free scanned 120782791.00 118324914 Migration scan rates are reduced 28% which is expected as a pageblock is used by the async scanner instead of skipped. The impact on the free scanner is known to be variable. Overall the primary justification for this patch is that completing scanning of a pageblock is very important for later patches. [yuehaibing@huawei.com: fix unused variable warning] Link: http://lkml.kernel.org/r/20190118175136.31341-14-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: YueHaibing <yuehaibing@huawei.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
804d3121ba |
mm, compaction: avoid rescanning the same pageblock multiple times
Pageblocks are marked for skip when no pages are isolated after a scan. However, it's possible to hit corner cases where the migration scanner gets stuck near the boundary between the source and target scanner. Due to pages being migrated in blocks of COMPACT_CLUSTER_MAX, pages that are migrated can be reallocated before the pageblock is complete. The pageblock is not necessarily skipped so it can be rescanned multiple times. Similarly, a pageblock with some dirty/writeback pages may fail to migrate and be rescanned until writeback completes which is wasteful. This patch tracks if a pageblock is being rescanned. If so, then the entire pageblock will be migrated as one operation. This narrows the race window during which pages can be reallocated during migration. Secondly, if there are pages that cannot be isolated then the pageblock will still be fully scanned and marked for skipping. On the second rescan, the pageblock skip is set and the migration scanner makes progress. 5.0.0-rc1 5.0.0-rc1 findfree-v3r16 norescan-v3r16 Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%* Amean fault-both-3 3200.68 ( 0.00%) 3002.07 ( 6.21%) Amean fault-both-5 4847.75 ( 0.00%) 4684.47 ( 3.37%) Amean fault-both-7 6658.92 ( 0.00%) 6815.54 ( -2.35%) Amean fault-both-12 11077.62 ( 0.00%) 10864.02 ( 1.93%) Amean fault-both-18 12403.97 ( 0.00%) 12247.52 ( 1.26%) Amean fault-both-24 15607.10 ( 0.00%) 15683.99 ( -0.49%) Amean fault-both-30 18752.27 ( 0.00%) 18620.02 ( 0.71%) Amean fault-both-32 21207.54 ( 0.00%) 19250.28 * 9.23%* 5.0.0-rc1 5.0.0-rc1 findfree-v3r16 norescan-v3r16 Percentage huge-3 96.86 ( 0.00%) 95.00 ( -1.91%) Percentage huge-5 93.72 ( 0.00%) 94.22 ( 0.53%) Percentage huge-7 94.31 ( 0.00%) 92.35 ( -2.08%) Percentage huge-12 92.66 ( 0.00%) 91.90 ( -0.82%) Percentage huge-18 91.51 ( 0.00%) 89.58 ( -2.11%) Percentage huge-24 90.50 ( 0.00%) 90.03 ( -0.52%) Percentage huge-30 91.57 ( 0.00%) 89.14 ( -2.65%) Percentage huge-32 91.00 ( 0.00%) 90.58 ( -0.46%) Negligible difference but this was likely a case when the specific corner case was not hit. A previous run of the same patch based on an earlier iteration of the series showed large differences where migration rates could be halved when the corner case was hit. The specific corner case where migration scan rates go through the roof was due to a dirty/writeback pageblock located at the boundary of the migration/free scanner did not happen in this case. When it does happen, the scan rates multipled by massive margins. Link: http://lkml.kernel.org/r/20190118175136.31341-13-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
5a811889de |
mm, compaction: use free lists to quickly locate a migration target
Similar to the migration scanner, this patch uses the free lists to quickly locate a migration target. The search is different in that lower orders will be searched for a suitable high PFN if necessary but the search is still bound. This is justified on the grounds that the free scanner typically scans linearly much more than the migration scanner. If a free page is found, it is isolated and compaction continues if enough pages were isolated. For SYNC* scanning, the full pageblock is scanned for any remaining free pages so that is can be marked for skipping in the near future. 1-socket thpfioscale 5.0.0-rc1 5.0.0-rc1 isolmig-v3r15 findfree-v3r16 Amean fault-both-3 3024.41 ( 0.00%) 3200.68 ( -5.83%) Amean fault-both-5 4749.30 ( 0.00%) 4847.75 ( -2.07%) Amean fault-both-7 6454.95 ( 0.00%) 6658.92 ( -3.16%) Amean fault-both-12 10324.83 ( 0.00%) 11077.62 ( -7.29%) Amean fault-both-18 12896.82 ( 0.00%) 12403.97 ( 3.82%) Amean fault-both-24 13470.60 ( 0.00%) 15607.10 * -15.86%* Amean fault-both-30 17143.99 ( 0.00%) 18752.27 ( -9.38%) Amean fault-both-32 17743.91 ( 0.00%) 21207.54 * -19.52%* The impact on latency is variable but the search is optimistic and sensitive to the exact system state. Success rates are similar but the major impact is to the rate of scanning 5.0.0-rc1 5.0.0-rc1 isolmig-v3r15 findfree-v3r16 Compaction migrate scanned 25646769 29507205 Compaction free scanned 201558184 100359571 The free scan rates are reduced by 50%. The 2-socket reductions for the free scanner are more dramatic which is a likely reflection that the machine has more memory. [dan.carpenter@oracle.com: fix static checker warning] [vbabka@suse.cz: correct number of pages scanned for lower orders] Link: http://lkml.kernel.org/r/20190118175136.31341-12-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
e380bebe47 |
mm, compaction: keep migration source private to a single compaction instance
Due to either a fast search of the free list or a linear scan, it is possible for multiple compaction instances to pick the same pageblock for migration. This is lucky for one scanner and increased scanning for all the others. It also allows a race between requests on which first allocates the resulting free block. This patch tests and updates the pageblock skip for the migration scanner carefully. When isolating a block, it will check and skip if the block is already in use. Once the zone lock is acquired, it will be rechecked so that only one scanner can set the pageblock skip for exclusive use. Any scanner contending will continue with a linear scan. The skip bit is still set if no pages can be isolated in a range. While this may result in redundant scanning, it avoids unnecessarily acquiring the zone lock when there are no suitable migration sources. 1-socket thpscale Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%* Amean fault-both-3 3390.40 ( 0.00%) 3024.41 ( 10.80%) Amean fault-both-5 5082.28 ( 0.00%) 4749.30 ( 6.55%) Amean fault-both-7 7012.51 ( 0.00%) 6454.95 ( 7.95%) Amean fault-both-12 11346.63 ( 0.00%) 10324.83 ( 9.01%) Amean fault-both-18 15324.19 ( 0.00%) 12896.82 * 15.84%* Amean fault-both-24 16088.50 ( 0.00%) 13470.60 * 16.27%* Amean fault-both-30 18723.42 ( 0.00%) 17143.99 ( 8.44%) Amean fault-both-32 18612.01 ( 0.00%) 17743.91 ( 4.66%) 5.0.0-rc1 5.0.0-rc1 findmig-v3r15 isolmig-v3r15 Percentage huge-3 89.83 ( 0.00%) 92.96 ( 3.48%) Percentage huge-5 91.96 ( 0.00%) 93.26 ( 1.41%) Percentage huge-7 92.85 ( 0.00%) 93.63 ( 0.84%) Percentage huge-12 92.74 ( 0.00%) 92.80 ( 0.07%) Percentage huge-18 91.71 ( 0.00%) 91.62 ( -0.10%) Percentage huge-24 92.13 ( 0.00%) 91.50 ( -0.69%) Percentage huge-30 93.79 ( 0.00%) 92.73 ( -1.13%) Percentage huge-32 91.27 ( 0.00%) 91.94 ( 0.74%) This shows a reasonable reduction in latency as multiple compaction scanners do not operate on the same blocks with a similar allocation success rate. Compaction migrate scanned 41093126 25646769 Migration scan rates are reduced by 38%. Link: http://lkml.kernel.org/r/20190118175136.31341-11-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
70b44595ea |
mm, compaction: use free lists to quickly locate a migration source
The migration scanner is a linear scan of a zone with a potentiall large search space. Furthermore, many pageblocks are unusable such as those filled with reserved pages or partially filled with pages that cannot migrate. These still get scanned in the common case of allocating a THP and the cost accumulates. The patch uses a partial search of the free lists to locate a migration source candidate that is marked as MOVABLE when allocating a THP. It prefers picking a block with a larger number of free pages already on the basis that there are fewer pages to migrate to free the entire block. The lowest PFN found during searches is tracked as the basis of the start for the linear search after the first search of the free list fails. After the search, the free list is shuffled so that the next search will not encounter the same page. If the search fails then the subsequent searches will be shorter and the linear scanner is used. If this search fails, or if the request is for a small or unmovable/reclaimable allocation then the linear scanner is still used. It is somewhat pointless to use the list search in those cases. Small free pages must be used for the search and there is no guarantee that movable pages are located within that block that are contiguous. 5.0.0-rc1 5.0.0-rc1 noboost-v3r10 findmig-v3r15 Amean fault-both-3 3771.41 ( 0.00%) 3390.40 ( 10.10%) Amean fault-both-5 5409.05 ( 0.00%) 5082.28 ( 6.04%) Amean fault-both-7 7040.74 ( 0.00%) 7012.51 ( 0.40%) Amean fault-both-12 11887.35 ( 0.00%) 11346.63 ( 4.55%) Amean fault-both-18 16718.19 ( 0.00%) 15324.19 ( 8.34%) Amean fault-both-24 21157.19 ( 0.00%) 16088.50 * 23.96%* Amean fault-both-30 21175.92 ( 0.00%) 18723.42 * 11.58%* Amean fault-both-32 21339.03 ( 0.00%) 18612.01 * 12.78%* 5.0.0-rc1 5.0.0-rc1 noboost-v3r10 findmig-v3r15 Percentage huge-3 86.50 ( 0.00%) 89.83 ( 3.85%) Percentage huge-5 92.52 ( 0.00%) 91.96 ( -0.61%) Percentage huge-7 92.44 ( 0.00%) 92.85 ( 0.44%) Percentage huge-12 92.98 ( 0.00%) 92.74 ( -0.25%) Percentage huge-18 91.70 ( 0.00%) 91.71 ( 0.02%) Percentage huge-24 91.59 ( 0.00%) 92.13 ( 0.60%) Percentage huge-30 90.14 ( 0.00%) 93.79 ( 4.04%) Percentage huge-32 90.03 ( 0.00%) 91.27 ( 1.37%) This shows an improvement in allocation latencies with similar allocation success rates. While not presented, there was a 31% reduction in migration scanning and a 8% reduction on system CPU usage. A 2-socket machine showed similar benefits. [mgorman@techsingularity.net: several fixes] Link: http://lkml.kernel.org/r/20190204120111.GL9565@techsingularity.net [vbabka@suse.cz: migrate block that was found-fast, some optimisations] Link: http://lkml.kernel.org/r/20190118175136.31341-10-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <Vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
efe771c760 |
mm, compaction: always finish scanning of a full pageblock
When compaction is finishing, it uses a flag to ensure the pageblock is complete but it makes sense to always complete migration of a pageblock. Minimally, skip information is based on a pageblock and partially scanned pageblocks may incur more scanning in the future. The pageblock skip handling also becomes more strict later in the series and the hint is more useful if a complete pageblock was always scanned. The potentially impacts latency as more scanning is done but it's not a consistent win or loss as the scanning is not always a high percentage of the pageblock and sometimes it is offset by future reductions in scanning. Hence, the results are not presented this time due to a misleading mix of gains/losses without any clear pattern. However, full scanning of the pageblock is important for later patches. Link: http://lkml.kernel.org/r/20190118175136.31341-8-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
4469ab9847 |
mm, compaction: rename map_pages to split_map_pages
It's non-obvious that high-order free pages are split into order-0 pages from the function name. Fix it. Link: http://lkml.kernel.org/r/20190118175136.31341-6-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
40cacbcb32 |
mm, compaction: remove unnecessary zone parameter in some instances
A zone parameter is passed into a number of top-level compaction functions despite the fact that it's already in compact_control. This is harmless but it did need an audit to check if zone actually ever changes meaningfully. This patches removes the parameter in a number of top-level functions. The change could be much deeper but this was enough to briefly clarify the flow. No functional change. Link: http://lkml.kernel.org/r/20190118175136.31341-5-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
566e54e113 |
mm, compaction: remove last_migrated_pfn from compact_control
The last_migrated_pfn field is a bit dubious as to whether it really helps but either way, the information from it can be inferred without increasing the size of compact_control so remove the field. Link: http://lkml.kernel.org/r/20190118175136.31341-4-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Matthew Wilcox
|
6b7e5cad65 |
mm: remove sysctl_extfrag_handler()
sysctl_extfrag_handler() neglects to propagate the return value from proc_dointvec_minmax() to its caller. It's a wrapper that doesn't need to exist, so just use proc_dointvec_minmax() directly. Link: http://lkml.kernel.org/r/20190104032557.3056-1-willy@infradead.org Signed-off-by: Matthew Wilcox <willy@infradead.org> Reported-by: Aditya Pakki <pakki001@umn.edu> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
a921444382 |
mm: move zone watermark accesses behind an accessor
This is a preparation patch only, no functional change. Link: http://lkml.kernel.org/r/20181123114528.28802-3-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
eb414681d5 |
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard to tell exactly the impact this has on workload productivity, or how close the system is to lockups and OOM kills. In particular, when machines work multiple jobs concurrently, the impact of overcommit in terms of latency and throughput on the individual job can be enormous. In order to maximize hardware utilization without sacrificing individual job health or risk complete machine lockups, this patch implements a way to quantify resource pressure in the system. A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that expose the percentage of time the system is stalled on CPU, memory, or IO, respectively. Stall states are aggregate versions of the per-task delay accounting delays: cpu: some tasks are runnable but not executing on a CPU memory: tasks are reclaiming, or waiting for swapin or thrashing cache io: tasks are waiting for io completions These percentages of walltime can be thought of as pressure percentages, and they give a general sense of system health and productivity loss incurred by resource overcommit. They can also indicate when the system is approaching lockup scenarios and OOMs. To do this, psi keeps track of the task states associated with each CPU and samples the time they spend in stall states. Every 2 seconds, the samples are averaged across CPUs - weighted by the CPUs' non-idle time to eliminate artifacts from unused CPUs - and translated into percentages of walltime. A running average of those percentages is maintained over 10s, 1m, and 5m periods (similar to the loadaverage). [hannes@cmpxchg.org: doc fixlet, per Randy] Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org [hannes@cmpxchg.org: code optimization] Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org [hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter] Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org [hannes@cmpxchg.org: fix build] Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Daniel Drake <drake@endlessm.com> Tested-by: Suren Baghdasaryan <surenb@google.com> Cc: Christopher Lameter <cl@linux.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <jweiner@fb.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Enderborg <peter.enderborg@sony.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joe Perches
|
0825a6f986 |
mm: use octal not symbolic permissions
mm/*.c files use symbolic and octal styles for permissions. Using octal and not symbolic permissions is preferred by many as more readable. https://lkml.org/lkml/2016/8/2/1945 Prefer the direct use of octal for permissions. Done using $ scripts/checkpatch.pl -f --types=SYMBOLIC_PERMS --fix-inplace mm/*.c and some typing. Before: $ git grep -P -w "0[0-7]{3,3}" mm | wc -l 44 After: $ git grep -P -w "0[0-7]{3,3}" mm | wc -l 86 Miscellanea: o Whitespace neatening around these conversions. Link: http://lkml.kernel.org/r/2e032ef111eebcd4c5952bae86763b541d373469.1522102887.git.joe@perches.com Signed-off-by: Joe Perches <joe@perches.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
d883c6cf3b |
Revert "mm/cma: manage the memory of the CMA area by using the ZONE_MOVABLE"
This reverts the following commits that change CMA design in MM. |
||
Joonsoo Kim
|
1d47a3ec09 |
mm/cma: remove ALLOC_CMA
Now, all reserved pages for CMA region are belong to the ZONE_MOVABLE and it only serves for a request with GFP_HIGHMEM && GFP_MOVABLE. Therefore, we don't need to maintain ALLOC_CMA at all. Link: http://lkml.kernel.org/r/1512114786-5085-3-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Tested-by: Tony Lindgren <tony@atomide.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
666feb21a0 |
mm, migrate: remove reason argument from new_page_t
No allocation callback is using this argument anymore. new_page_node used to use this parameter to convey node_id resp. migration error up to move_pages code (do_move_page_to_node_array). The error status never made it into the final status field and we have a better way to communicate node id to the status field now. All other allocation callbacks simply ignored the argument so we can drop it finally. [mhocko@suse.com: fix migration callback] Link: http://lkml.kernel.org/r/20180105085259.GH2801@dhcp22.suse.cz [akpm@linux-foundation.org: fix alloc_misplaced_dst_page()] [mhocko@kernel.org: fix build] Link: http://lkml.kernel.org/r/20180103091134.GB11319@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20180103082555.14592-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Rapoport
|
e8b098fc57 |
mm: kernel-doc: add missing parameter descriptions
Link: http://lkml.kernel.org/r/1519585191-10180-4-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
bc3106b26c |
mm, compaction: drain pcps for zone when kcompactd fails
It's possible for free pages to become stranded on per-cpu pagesets (pcps) that, if drained, could be merged with buddy pages on the zone's free area to form large order pages, including up to MAX_ORDER. Consider a verbose example using the tools/vm/page-types tool at the beginning of a ZONE_NORMAL ('B' indicates a buddy page and 'S' indicates a slab page). Pages on pcps do not have any page flags set. 109954 1 _______S________________________________________________________ 109955 2 __________B_____________________________________________________ 109957 1 ________________________________________________________________ 109958 1 __________B_____________________________________________________ 109959 7 ________________________________________________________________ 109960 1 __________B_____________________________________________________ 109961 9 ________________________________________________________________ 10996a 1 __________B_____________________________________________________ 10996b 3 ________________________________________________________________ 10996e 1 __________B_____________________________________________________ 10996f 1 ________________________________________________________________ ... 109f8c 1 __________B_____________________________________________________ 109f8d 2 ________________________________________________________________ 109f8f 2 __________B_____________________________________________________ 109f91 f ________________________________________________________________ 109fa0 1 __________B_____________________________________________________ 109fa1 7 ________________________________________________________________ 109fa8 1 __________B_____________________________________________________ 109fa9 1 ________________________________________________________________ 109faa 1 __________B_____________________________________________________ 109fab 1 _______S________________________________________________________ The compaction migration scanner is attempting to defragment this memory since it is at the beginning of the zone. It has done so quite well, all movable pages have been migrated. From pfn [0x109955, 0x109fab), there are only buddy pages and pages without flags set. These pages may be stranded on pcps that could otherwise allow this memory to be coalesced if freed back to the zone free area. It is possible that some of these pages may not be on pcps and that something has called alloc_pages() and used the memory directly, but we rely on the absence of __GFP_MOVABLE in these cases to allocate from MIGATE_UNMOVABLE pageblocks to try to keep these MIGRATE_MOVABLE pageblocks as free as possible. These buddy and pcp pages, spanning 1,621 pages, could be coalesced and allow for three transparent hugepages to be dynamically allocated. Running the numbers for all such spans on the system, it was found that there were over 400 such spans of only buddy pages and pages without flags set at the time this /proc/kpageflags sample was collected. Without this support, there were _no_ order-9 or order-10 pages free. When kcompactd fails to defragment memory such that a cc.order page can be allocated, drain all pcps for the zone back to the buddy allocator so this stranding cannot occur. Compaction for that order will subsequently be deferred, which acts as a ratelimit on this drain. Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1803010340100.88270@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
112d2d29fc |
mm/compaction.c: fix comment for try_to_compact_pages()
"mode" argument is not used by try_to_compact_pages() and sub functions anymore, it has been replaced by "prio". Fix the comment to explain the use of "prio" argument. Link: http://lkml.kernel.org/r/1515801336-20611-1-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
d3c85bad89 |
mm, compaction: remove unneeded pageblock_skip_persistent() checks
Commit f3c931633a59 ("mm, compaction: persistently skip hugetlbfs pageblocks") has introduced pageblock_skip_persistent() checks into migration and free scanners, to make sure pageblocks that should be persistently skipped are marked as such, regardless of the ignore_skip_hint flag. Since the previous patch introduced a new no_set_skip_hint flag, the ignore flag no longer prevents marking pageblocks as skipped. Therefore we can remove the special cases. The relevant pageblocks will be marked as skipped by the common logic which marks each pageblock where no page could be isolated. This makes the code simpler. Link: http://lkml.kernel.org/r/20171102121706.21504-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
2583d67132 |
mm, compaction: split off flag for not updating skip hints
Pageblock skip hints were added as a heuristic for compaction, which
shares core code with CMA. Since CMA reliability would suffer from the
heuristics, compact_control flag ignore_skip_hint was added for the CMA
use case. Since
|
||
Vlastimil Babka
|
b527cfe5bc |
mm, compaction: extend pageblock_skip_persistent() to all compound pages
pageblock_skip_persistent() checks for HugeTLB pages of pageblock order. When clearing pageblock skip bits for compaction, the bits are not cleared for such pageblocks, because they cannot contain base pages suitable for migration, nor free pages to use as migration targets. This optimization can be simply extended to all compound pages of order equal or larger than pageblock order, because migrating such pages (if they support it) cannot help sub-pageblock fragmentation. This includes THP's and also gigantic HugeTLB pages, which the current implementation doesn't persistently skip due to a strict pageblock_order equality check and not recognizing tail pages. While THP pages are generally less "persistent" than HugeTLB, we can still expect that if a THP exists at the point of __reset_isolation_suitable(), it will exist also during the subsequent compaction run. The time difference here could be actually smaller than between a compaction run that sets a (non-persistent) skip bit on a THP, and the next compaction run that observes it. Link: http://lkml.kernel.org/r/20171102121706.21504-1-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
21dc7e0236 |
mm, compaction: persistently skip hugetlbfs pageblocks
It is pointless to migrate hugetlb memory as part of memory compaction if the hugetlb size is equal to the pageblock order. No defragmentation is occurring in this condition. It is also pointless to for the freeing scanner to scan a pageblock where a hugetlb page is pinned. Unconditionally skip these pageblocks, and do so peristently so that they are not rescanned until it is observed that these hugepages are no longer pinned. It would also be possible to do this by involving the hugetlb subsystem in marking pageblocks to no longer be skipped when they hugetlb pages are freed. This is a simple solution that doesn't involve any additional subsystems in pageblock skip manipulation. [rientjes@google.com: fix build] Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1708201734390.117182@chino.kir.corp.google.com Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1708151639130.106658@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Tested-by: Michal Hocko <mhocko@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
a0647dc920 |
mm, compaction: kcompactd should not ignore pageblock skip
Kcompactd is needlessly ignoring pageblock skip information. It is doing MIGRATE_SYNC_LIGHT compaction, which is no more powerful than MIGRATE_SYNC compaction. If compaction recently failed to isolate memory from a set of pageblocks, there is nothing to indicate that kcompactd will be able to do so, or that it is beneficial from attempting to isolate memory. Use the pageblock skip hint to avoid rescanning pageblocks needlessly until that information is reset. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1708151638550.106658@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Greg Kroah-Hartman
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Davidlohr Bueso
|
6818600ff0 |
mm,compaction: serialize waitqueue_active() checks (for real)
Andrea brought to my attention that the L->{L,S} guarantees are
completely bogus for this case. I was looking at the diagram, from the
offending commit, when that _is_ the race, we had the load reordered
already.
What we need is at least S->L semantics, thus simply use
wq_has_sleeper() to serialize the call for good.
Link: http://lkml.kernel.org/r/20170914175313.GB811@linux-80c1.suse
Fixes:
|
||
Michal Hocko
|
ccbe1e4dde |
mm, compaction: skip over holes in __reset_isolation_suitable
__reset_isolation_suitable walks the whole zone pfn range and it tries to jump over holes by checking the zone for each page. It might still stumble over offline pages, though. Skip those by checking pfn_to_online_page() Link: http://lkml.kernel.org/r/20170515085827.16474-9-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Daniel Kiper <daniel.kiper@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Reza Arbab <arbab@linux.vnet.ibm.com> Cc: Tobias Regnery <tobias.regnery@gmail.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
baf6a9a1db |
mm, compaction: finish whole pageblock to reduce fragmentation
The main goal of direct compaction is to form a high-order page for allocation, but it should also help against long-term fragmentation when possible. Most lower-than-pageblock-order compactions are for non-movable allocations, which means that if we compact in a movable pageblock and terminate as soon as we create the high-order page, it's unlikely that the fallback heuristics will claim the whole block. Instead there might be a single unmovable page in a pageblock full of movable pages, and the next unmovable allocation might pick another pageblock and increase long-term fragmentation. To help against such scenarios, this patch changes the termination criteria for compaction so that the current pageblock is finished even though the high-order page already exists. Note that it might be possible that the high-order page formed elsewhere in the zone due to parallel activity, but this patch doesn't try to detect that. This is only done with sync compaction, because async compaction is limited to pageblock of the same migratetype, where it cannot result in a migratetype fallback. (Async compaction also eagerly skips order-aligned blocks where isolation fails, which is against the goal of migrating away as much of the pageblock as possible.) As a result of this patch, long-term memory fragmentation should be reduced. In testing based on 4.9 kernel with stress-highalloc from mmtests configured for order-4 GFP_KERNEL allocations, this patch has reduced the number of unmovable allocations falling back to movable pageblocks by 20%. The number Link: http://lkml.kernel.org/r/20170307131545.28577-9-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
282722b0d2 |
mm, compaction: restrict async compaction to pageblocks of same migratetype
The migrate scanner in async compaction is currently limited to MIGRATE_MOVABLE pageblocks. This is a heuristic intended to reduce latency, based on the assumption that non-MOVABLE pageblocks are unlikely to contain movable pages. However, with the exception of THP's, most high-order allocations are not movable. Should the async compaction succeed, this increases the chance that the non-MOVABLE allocations will fallback to a MOVABLE pageblock, making the long-term fragmentation worse. This patch attempts to help the situation by changing async direct compaction so that the migrate scanner only scans the pageblocks of the requested migratetype. If it's a non-MOVABLE type and there are such pageblocks that do contain movable pages, chances are that the allocation can succeed within one of such pageblocks, removing the need for a fallback. If that fails, the subsequent sync attempt will ignore this restriction. In testing based on 4.9 kernel with stress-highalloc from mmtests configured for order-4 GFP_KERNEL allocations, this patch has reduced the number of unmovable allocations falling back to movable pageblocks by 30%. The number of movable allocations falling back is reduced by 12%. Link: http://lkml.kernel.org/r/20170307131545.28577-8-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
d39773a062 |
mm, compaction: add migratetype to compact_control
Preparation patch. We are going to need migratetype at lower layers than compact_zone() and compact_finished(). Link: http://lkml.kernel.org/r/20170307131545.28577-7-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
b682debd97 |
mm, compaction: change migrate_async_suitable() to suitable_migration_source()
Preparation for making the decisions more complex and depending on compact_control flags. No functional change. Link: http://lkml.kernel.org/r/20170307131545.28577-6-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
228d7e3390 |
mm, compaction: remove redundant watermark check in compact_finished()
When detecting whether compaction has succeeded in forming a high-order page, __compact_finished() employs a watermark check, followed by an own search for a suitable page in the freelists. This is not ideal for two reasons: - The watermark check also searches high-order freelists, but has a less strict criteria wrt fallback. It's therefore redundant and waste of cycles. This was different in the past when high-order watermark check attempted to apply reserves to high-order pages. - The watermark check might actually fail due to lack of order-0 pages. Compaction can't help with that, so there's no point in continuing because of that. It's possible that high-order page still exists and it terminates. This patch therefore removes the watermark check. This should save some cycles and terminate compaction sooner in some cases. Link: http://lkml.kernel.org/r/20170307131545.28577-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yisheng Xie
|
1ef36db2a9 |
mm/compaction: ignore block suitable after check large free page
By reviewing code, I find that if the migrate target is a large free page and we ignore suitable, it may splite large target free page into smaller block which is not good for defrag. So move the ignore block suitable after check large free page. As Vlastimil pointed out in RFC version that this patch is just based on logical analyses which might be better for future-proofing the function and it is most likely won't have any visible effect right now, for direct compaction shouldn't have to be called if there's a >=pageblock_order page already available. Link: http://lkml.kernel.org/r/1489490743-5364-1-git-send-email-xieyisheng1@huawei.com Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ingo Molnar
|
174cd4b1e5 |
sched/headers: Prepare to move signal wakeup & sigpending methods from <linux/sched.h> into <linux/sched/signal.h>
Fix up affected files that include this signal functionality via sched.h. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Yisheng Xie
|
9e5bcd610f |
mm/migration: make isolate_movable_page() return int type
Patch series "HWPOISON: soft offlining for non-lru movable page", v6.
After Minchan's commit
|
||
Davidlohr Bueso
|
46acef048a |
mm,compaction: serialize waitqueue_active() checks
Without a memory barrier, the following race can occur with a high-order allocation: wakeup_kcompactd(order == 1) kcompactd() [L] waitqueue_active(kcompactd_wait) [S] prepare_to_wait_event(kcompactd_wait) [L] (kcompactd_max_order == 0) [S] kcompactd_max_order = order; schedule() Where the waitqueue_active() check is speculatively re-ordered to before setting the actual condition (max_order), not seeing the threads that's going to block; making us miss a wakeup. There are a couple of options to fix this, including calling wq_has_sleepers() which adds a full barrier, or unconditionally doing the wake_up_interruptible() and serialize on the q->lock. However, to make use of the control dependency, we just need to add L->L guarantees. While this bug is theoretical, there have been other offenders of the lockless waitqueue_active() in the past -- this is also documented in the call itself. Link: http://lkml.kernel.org/r/1483975528-24342-1-git-send-email-dave@stgolabs.net Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
7f354a548d |
mm, compaction: add vmstats for kcompactd work
A "compact_daemon_wake" vmstat exists that represents the number of times kcompactd has woken up. This doesn't represent how much work it actually did, though. It's useful to understand how much compaction work is being done by kcompactd versus other methods such as direct compaction and explicitly triggered per-node (or system) compaction. This adds two new vmstats: "compact_daemon_migrate_scanned" and "compact_daemon_free_scanned" to represent the number of pages kcompactd has scanned as part of its migration scanner and freeing scanner, respectively. These values are still accounted for in the general "compact_migrate_scanned" and "compact_free_scanned" for compatibility. It could be argued that explicitly triggered compaction could also be tracked separately, and that could be added if others find it useful. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1612071749390.69852@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
73e64c51af |
mm, compaction: allow compaction for GFP_NOFS requests
compaction has been disabled for GFP_NOFS and GFP_NOIO requests since
the direct compaction was introduced by commit
|
||
Linus Torvalds
|
e34bac726d |
Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton: - various misc bits - most of MM (quite a lot of MM material is awaiting the merge of linux-next dependencies) - kasan - printk updates - procfs updates - MAINTAINERS - /lib updates - checkpatch updates * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (123 commits) init: reduce rootwait polling interval time to 5ms binfmt_elf: use vmalloc() for allocation of vma_filesz checkpatch: don't emit unified-diff error for rename-only patches checkpatch: don't check c99 types like uint8_t under tools checkpatch: avoid multiple line dereferences checkpatch: don't check .pl files, improve absolute path commit log test scripts/checkpatch.pl: fix spelling checkpatch: don't try to get maintained status when --no-tree is given lib/ida: document locking requirements a bit better lib/rbtree.c: fix typo in comment of ____rb_erase_color lib/Kconfig.debug: make CONFIG_STRICT_DEVMEM depend on CONFIG_DEVMEM MAINTAINERS: add drm and drm/i915 irc channels MAINTAINERS: add "C:" for URI for chat where developers hang out MAINTAINERS: add drm and drm/i915 bug filing info MAINTAINERS: add "B:" for URI where to file bugs get_maintainer: look for arbitrary letter prefixes in sections printk: add Kconfig option to set default console loglevel printk/sound: handle more message headers printk/btrfs: handle more message headers printk/kdb: handle more message headers ... |
||
Ming Ling
|
6afcf8ef0c |
mm, compaction: fix NR_ISOLATED_* stats for pfn based migration
Since commit |
||
Anna-Maria Gleixner
|
e46b1db249 |
mm/compaction: Convert to hotplug state machine
Install the callbacks via the state machine. Should the hotplug init fail then no threads are spawned. Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: linux-mm@kvack.org Cc: rt@linutronix.de Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20161126231350.10321-15-bigeasy@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
||
Vlastimil Babka
|
2031142028 |
mm, compaction: restrict fragindex to costly orders
Fragmentation index and the vm.extfrag_threshold sysctl is meant as a heuristic to prevent excessive compaction for costly orders (i.e. THP). It's unlikely to make any difference for non-costly orders, especially with the default threshold. But we cannot afford any uncertainty for the non-costly orders where the only alternative to successful reclaim/compaction is OOM. After the recent patches we are guaranteed maximum effort without heuristics from compaction before deciding OOM, and fragindex is the last remaining heuristic. Therefore skip fragindex altogether for non-costly orders. Suggested-by: Michal Hocko <mhocko@suse.com> Link: http://lkml.kernel.org/r/20160926162025.21555-5-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
cc5c9f098f |
mm, compaction: ignore fragindex from compaction_zonelist_suitable()
The compaction_zonelist_suitable() function tries to determine if compaction will be able to proceed after sufficient reclaim, i.e. whether there are enough reclaimable pages to provide enough order-0 freepages for compaction. This addition of reclaimable pages to the free pages works well for the order-0 watermark check, but in the fragmentation index check we only consider truly free pages. Thus we can get fragindex value close to 0 which indicates failure do to lack of memory, and wrongly decide that compaction won't be suitable even after reclaim. Instead of trying to somehow adjust fragindex for reclaimable pages, let's just skip it from compaction_zonelist_suitable(). Link: http://lkml.kernel.org/r/20160926162025.21555-4-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
9f7e338793 |
mm, compaction: make full priority ignore pageblock suitability
Several people have reported premature OOMs for order-2 allocations (stack) due to OOM rework in 4.7. In the scenario (parallel kernel build and dd writing to two drives) many pageblocks get marked as Unmovable and compaction free scanner struggles to isolate free pages. Joonsoo Kim pointed out that the free scanner skips pageblocks that are not movable to prevent filling them and forcing non-movable allocations to fallback to other pageblocks. Such heuristic makes sense to help prevent long-term fragmentation, but premature OOMs are relatively more urgent problem. As a compromise, this patch disables the heuristic only for the ultimate compaction priority. Link: http://lkml.kernel.org/r/20160906135258.18335-5-vbabka@suse.cz Reported-by: Ralf-Peter Rohbeck <Ralf-Peter.Rohbeck@quantum.com> Reported-by: Arkadiusz Miskiewicz <a.miskiewicz@gmail.com> Reported-by: Olaf Hering <olaf@aepfle.de> Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
8348faf91f |
mm, compaction: require only min watermarks for non-costly orders
The __compaction_suitable() function checks the low watermark plus a compact_gap() gap to decide if there's enough free memory to perform compaction. Then __isolate_free_page uses low watermark check to decide if particular free page can be isolated. In the latter case, using low watermark is needlessly pessimistic, as the free page isolations are only temporary. For __compaction_suitable() the higher watermark makes sense for high-order allocations where more freepages increase the chance of success, and we can typically fail with some order-0 fallback when the system is struggling to reach that watermark. But for low-order allocation, forming the page should not be that hard. So using low watermark here might just prevent compaction from even trying, and eventually lead to OOM killer even if we are above min watermarks. So after this patch, we use min watermark for non-costly orders in __compaction_suitable(), and for all orders in __isolate_free_page(). [vbabka@suse.cz: clarify __isolate_free_page() comment] Link: http://lkml.kernel.org/r/7ae4baec-4eca-e70b-2a69-94bea4fb19fa@suse.cz Link: http://lkml.kernel.org/r/20160810091226.6709-11-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
984fdba6a3 |
mm, compaction: use proper alloc_flags in __compaction_suitable()
The __compaction_suitable() function checks the low watermark plus a compact_gap() gap to decide if there's enough free memory to perform compaction. This check uses direct compactor's alloc_flags, but that's wrong, since these flags are not applicable for freepage isolation. For example, alloc_flags may indicate access to memory reserves, making compaction proceed, and then fail watermark check during the isolation. A similar problem exists for ALLOC_CMA, which may be part of alloc_flags, but not during freepage isolation. In this case however it makes sense to use ALLOC_CMA both in __compaction_suitable() and __isolate_free_page(), since there's actually nothing preventing the freepage scanner to isolate from CMA pageblocks, with the assumption that a page that could be migrated once by compaction can be migrated also later by CMA allocation. Thus we should count pages in CMA pageblocks when considering compaction suitability and when isolating freepages. To sum up, this patch should remove some false positives from __compaction_suitable(), and allow compaction to proceed when free pages required for compaction reside in the CMA pageblocks. Link: http://lkml.kernel.org/r/20160810091226.6709-10-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
9861a62c33 |
mm, compaction: create compact_gap wrapper
Compaction uses a watermark gap of (2UL << order) pages at various places and it's not immediately obvious why. Abstract it through a compact_gap() wrapper to create a single place with a thorough explanation. [vbabka@suse.cz: clarify the comment of compact_gap()] Link: http://lkml.kernel.org/r/7b6aed1f-fdf8-2063-9ff4-bbe4de712d37@suse.cz Link: http://lkml.kernel.org/r/20160810091226.6709-9-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
f2b8228c5f |
mm, compaction: use correct watermark when checking compaction success
The __compact_finished() function uses low watermark in a check that has to pass if the direct compaction is to finish and allocation should succeed. This is too pessimistic, as the allocation will typically use min watermark. It may happen that during compaction, we drop below the low watermark (due to parallel activity), but still form the target high-order page. By checking against low watermark, we might needlessly continue compaction. Similarly, __compaction_suitable() uses low watermark in a check whether allocation can succeed without compaction. Again, this is unnecessarily pessimistic. After this patch, these check will use direct compactor's alloc_flags to determine the watermark, which is effectively the min watermark. Link: http://lkml.kernel.org/r/20160810091226.6709-8-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
a8e025e55b |
mm, compaction: add the ultimate direct compaction priority
During reclaim/compaction loop, it's desirable to get a final answer from unsuccessful compaction so we can either fail the allocation or invoke the OOM killer. However, heuristics such as deferred compaction or pageblock skip bits can cause compaction to skip parts or whole zones and lead to premature OOM's, failures or excessive reclaim/compaction retries. To remedy this, we introduce a new direct compaction priority called COMPACT_PRIO_SYNC_FULL, which instructs direct compaction to: - ignore deferred compaction status for a zone - ignore pageblock skip hints - ignore cached scanner positions and scan the whole zone The new priority should get eventually picked up by should_compact_retry() and this should improve success rates for costly allocations using __GFP_REPEAT, such as hugetlbfs allocations, and reduce some corner-case OOM's for non-costly allocations. Link: http://lkml.kernel.org/r/20160810091226.6709-6-vbabka@suse.cz [vbabka@suse.cz: use the MIN_COMPACT_PRIORITY alias] Link: http://lkml.kernel.org/r/d443b884-87e7-1c93-8684-3a3a35759fb1@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
7ceb009a22 |
mm, compaction: don't recheck watermarks after COMPACT_SUCCESS
Joonsoo has reminded me that in a later patch changing watermark checks throughout compaction I forgot to update checks in try_to_compact_pages() and compactd_do_work(). Closer inspection however shows that they are redundant now in the success case, because compact_zone() now reliably reports this with COMPACT_SUCCESS. So effectively the checks just repeat (a subset) of checks that have just passed. So instead of checking watermarks again, just test the return value. Note it's also possible that compaction would declare failure e.g. because its find_suitable_fallback() is more strict than simple watermark check, and then the watermark check we are removing would then still succeed. After this patch this is not possible and it's arguably better, because for long-term fragmentation avoidance we should rather try a different zone than allocate with the unsuitable fallback. If compaction of all zones fail and the allocation is important enough, it will retry and succeed anyway. Also remove the stray "bool success" variable from kcompactd_do_work(). Link: http://lkml.kernel.org/r/20160810091226.6709-5-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
cf378319d3 |
mm, compaction: rename COMPACT_PARTIAL to COMPACT_SUCCESS
COMPACT_PARTIAL has historically meant that compaction returned after doing some work without fully compacting a zone. It however didn't distinguish if compaction terminated because it succeeded in creating the requested high-order page. This has changed recently and now we only return COMPACT_PARTIAL when compaction thinks it succeeded, or the high-order watermark check in compaction_suitable() passes and no compaction needs to be done. So at this point we can make the return value clearer by renaming it to COMPACT_SUCCESS. The next patch will remove some redundant tests for success where compaction just returned COMPACT_SUCCESS. Link: http://lkml.kernel.org/r/20160810091226.6709-4-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
791cae9620 |
mm, compaction: cleanup unused functions
Since kswapd compaction moved to kcompactd, compact_pgdat() is not called anymore, so we remove it. The only caller of __compact_pgdat() is compact_node(), so we merge them and remove code that was only reachable from kswapd. Link: http://lkml.kernel.org/r/20160810091226.6709-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
06ed29989f |
mm, compaction: make whole_zone flag ignore cached scanner positions
Patch series "make direct compaction more deterministic") This is mostly a followup to Michal's oom detection rework, which highlighted the need for direct compaction to provide better feedback in reclaim/compaction loop, so that it can reliably recognize when compaction cannot make further progress, and allocation should invoke OOM killer or fail. We've discussed this at LSF/MM [1] where I proposed expanding the async/sync migration mode used in compaction to more general "priorities". This patchset adds one new priority that just overrides all the heuristics and makes compaction fully scan all zones. I don't currently think that we need more fine-grained priorities, but we'll see. Other than that there's some smaller fixes and cleanups, mainly related to the THP-specific hacks. I've tested this with stress-highalloc in GFP_KERNEL order-4 and THP-like order-9 scenarios. There's some improvement for compaction stats for the order-4, which is likely due to the better watermarks handling. In the previous version I reported mostly noise wrt compaction stats, and decreased direct reclaim - now the reclaim is without difference. I believe this is due to the less aggressive compaction priority increase in patch 6. "before" is a mmotm tree prior to 4.7 release plus the first part of the series that was sent and merged separately before after order-4: Compaction stalls 27216 30759 Compaction success 19598 25475 Compaction failures 7617 5283 Page migrate success 370510 464919 Page migrate failure 25712 27987 Compaction pages isolated 849601 1041581 Compaction migrate scanned 143146541 101084990 Compaction free scanned 208355124 144863510 Compaction cost 1403 1210 order-9: Compaction stalls 7311 7401 Compaction success 1634 1683 Compaction failures 5677 5718 Page migrate success 194657 183988 Page migrate failure 4753 4170 Compaction pages isolated 498790 456130 Compaction migrate scanned 565371 524174 Compaction free scanned 4230296 4250744 Compaction cost 215 203 [1] https://lwn.net/Articles/684611/ This patch (of 11): A recent patch has added whole_zone flag that compaction sets when scanning starts from the zone boundary, in order to report that zone has been fully scanned in one attempt. For allocations that want to try really hard or cannot fail, we will want to introduce a mode where scanning whole zone is guaranteed regardless of the cached positions. This patch reuses the whole_zone flag in a way that if it's already passed true to compaction, the cached scanner positions are ignored. Employing this flag during reclaim/compaction loop will be done in the next patch. This patch however converts compaction invoked from userspace via procfs to use this flag. Before this patch, the cached positions were first reset to zone boundaries and then read back from struct zone, so there was a window where a parallel compaction could replace the reset values, making the manual compaction less effective. Using the flag instead of performing reset is more robust. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20160810091226.6709-2-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
c3486f5376 |
mm, compaction: simplify contended compaction handling
Async compaction detects contention either due to failing trylock on
zone->lock or lru_lock, or by need_resched(). Since
|
||
Vlastimil Babka
|
a5508cd83f |
mm, compaction: introduce direct compaction priority
In the context of direct compaction, for some types of allocations we would like the compaction to either succeed or definitely fail while trying as hard as possible. Current async/sync_light migration mode is insufficient, as there are heuristics such as caching scanner positions, marking pageblocks as unsuitable or deferring compaction for a zone. At least the final compaction attempt should be able to override these heuristics. To communicate how hard compaction should try, we replace migration mode with a new enum compact_priority and change the relevant function signatures. In compact_zone_order() where struct compact_control is constructed, the priority is mapped to suitable control flags. This patch itself has no functional change, as the current priority levels are mapped back to the same migration modes as before. Expanding them will be done next. Note that !CONFIG_COMPACTION variant of try_to_compact_pages() is removed, as the only caller exists under CONFIG_COMPACTION. Link: http://lkml.kernel.org/r/20160721073614.24395-8-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
1d2047fefa |
mm, compaction: don't isolate PageWriteback pages in MIGRATE_SYNC_LIGHT mode
At present MIGRATE_SYNC_LIGHT is allowing __isolate_lru_page() to isolate a PageWriteback page, which __unmap_and_move() then rejects with -EBUSY: of course the writeback might complete in between, but that's not what we usually expect, so probably better not to isolate it. When tested by stress-highalloc from mmtests, this has reduced the number of page migrate failures by 60-70%. Link: http://lkml.kernel.org/r/20160721073614.24395-2-vbabka@suse.cz Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
5a1c84b404 |
mm: remove reclaim and compaction retry approximations
If per-zone LRU accounting is available then there is no point approximating whether reclaim and compaction should retry based on pgdat statistics. This is effectively a revert of "mm, vmstat: remove zone and node double accounting by approximating retries" with the difference that inactive/active stats are still available. This preserves the history of why the approximation was retried and why it had to be reverted to handle OOM kills on 32-bit systems. Link: http://lkml.kernel.org/r/1469110261-7365-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
bca6759258 |
mm, vmstat: remove zone and node double accounting by approximating retries
The number of LRU pages, dirty pages and writeback pages must be
accounted for on both zones and nodes because of the reclaim retry
logic, compaction retry logic and highmem calculations all depending on
per-zone stats.
Many lowmem allocations are immune from OOM kill due to a check in
__alloc_pages_may_oom for (ac->high_zoneidx < ZONE_NORMAL) since commit
|
||
Mel Gorman
|
599d0c954f |
mm, vmscan: move LRU lists to node
This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
a52633d8e9 |
mm, vmscan: move lru_lock to the node
Node-based reclaim requires node-based LRUs and locking. This is a preparation patch that just moves the lru_lock to the node so later patches are easier to review. It is a mechanical change but note this patch makes contention worse because the LRU lock is hotter and direct reclaim and kswapd can contend on the same lock even when reclaiming from different zones. Link: http://lkml.kernel.org/r/1467970510-21195-3-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Minchan Kim <minchan@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ganesh Mahendran
|
b2b331f966 |
mm/compaction: remove unnecessary order check in try_to_compact_pages()
The caller __alloc_pages_direct_compact() already checked (order == 0) so there's no need to check again. Link: http://lkml.kernel.org/r/1465973568-3496-1-git-send-email-opensource.ganesh@gmail.com Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
46f24fd857 |
mm/page_alloc: introduce post allocation processing on page allocator
This patch is motivated from Hugh and Vlastimil's concern [1]. There are two ways to get freepage from the allocator. One is using normal memory allocation API and the other is __isolate_free_page() which is internally used for compaction and pageblock isolation. Later usage is rather tricky since it doesn't do whole post allocation processing done by normal API. One problematic thing I already know is that poisoned page would not be checked if it is allocated by __isolate_free_page(). Perhaps, there would be more. We could add more debug logic for allocated page in the future and this separation would cause more problem. I'd like to fix this situation at this time. Solution is simple. This patch commonize some logic for newly allocated page and uses it on all sites. This will solve the problem. [1] http://marc.info/?i=alpine.LSU.2.11.1604270029350.7066%40eggly.anvils%3E [iamjoonsoo.kim@lge.com: mm-page_alloc-introduce-post-allocation-processing-on-page-allocator-v3] Link: http://lkml.kernel.org/r/1464230275-25791-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-9-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-7-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
83358ece26 |
mm/page_owner: initialize page owner without holding the zone lock
It's not necessary to initialized page_owner with holding the zone lock. It would cause more contention on the zone lock although it's not a big problem since it is just debug feature. But, it is better than before so do it. This is also preparation step to use stackdepot in page owner feature. Stackdepot allocates new pages when there is no reserved space and holding the zone lock in this case will cause deadlock. Link: http://lkml.kernel.org/r/1464230275-25791-2-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
66c64223ad |
mm/compaction: split freepages without holding the zone lock
We don't need to split freepages with holding the zone lock. It will cause more contention on zone lock so not desirable. [rientjes@google.com: if __isolate_free_page() fails, avoid adding to freelist so we don't call map_pages() with it] Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1606211447001.43430@chino.kir.corp.google.com Link: http://lkml.kernel.org/r/1464230275-25791-1-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
3783689a1a |
zsmalloc: introduce zspage structure
We have squeezed meta data of zspage into first page's descriptor. So, to get meta data from subpage, we should get first page first of all. But it makes trouble to implment page migration feature of zsmalloc because any place where to get first page from subpage can be raced with first page migration. IOW, first page it got could be stale. For preventing it, I have tried several approahces but it made code complicated so finally, I concluded to separate metadata from first page. Of course, it consumes more memory. IOW, 16bytes per zspage on 32bit at the moment. It means we lost 1% at *worst case*(40B/4096B) which is not bad I think at the cost of maintenance. Link: http://lkml.kernel.org/r/1464736881-24886-9-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
b1123ea6d3 |
mm: balloon: use general non-lru movable page feature
Now, VM has a feature to migrate non-lru movable pages so balloon doesn't need custom migration hooks in migrate.c and compaction.c. Instead, this patch implements the page->mapping->a_ops-> {isolate|migrate|putback} functions. With that, we could remove hooks for ballooning in general migration functions and make balloon compaction simple. [akpm@linux-foundation.org: compaction.h requires that the includer first include node.h] Link: http://lkml.kernel.org/r/1464736881-24886-4-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Rafael Aquini <aquini@redhat.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
bda807d444 |
mm: migrate: support non-lru movable page migration
We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
a46cbf3bc5 |
mm, compaction: prevent VM_BUG_ON when terminating freeing scanner
It's possible to isolate some freepages in a pageblock and then fail split_free_page() due to the low watermark check. In this case, we hit VM_BUG_ON() because the freeing scanner terminated early without a contended lock or enough freepages. This should never have been a VM_BUG_ON() since it's not a fatal condition. It should have been a VM_WARN_ON() at best, or even handled gracefully. Regardless, we need to terminate anytime the full pageblock scan was not done. The logic belongs in isolate_freepages_block(), so handle its state gracefully by terminating the pageblock loop and making a note to restart at the same pageblock next time since it was not possible to complete the scan this time. [rientjes@google.com: don't rescan pages in a pageblock] Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1607111244150.83138@chino.kir.corp.google.com Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1606291436300.145590@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Reported-by: Minchan Kim <minchan@kernel.org> Tested-by: Minchan Kim <minchan@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
a4f04f2c69 |
mm, compaction: abort free scanner if split fails
If the memory compaction free scanner cannot successfully split a free page (only possible due to per-zone low watermark), terminate the free scanner rather than continuing to scan memory needlessly. If the watermark is insufficient for a free page of order <= cc->order, then terminate the scanner since all future splits will also likely fail. This prevents the compaction freeing scanner from scanning all memory on very large zones (very noticeable for zones > 128GB, for instance) when all splits will likely fail while holding zone->lock. compaction_alloc() iterating a 128GB zone has been benchmarked to take over 400ms on some systems whereas any free page isolated and ready to be split ends up failing in split_free_page() because of the low watermark check and thus the iteration continues. The next time compaction occurs, the freeing scanner will likely start at the end of the zone again since no success was made previously and we get the same lengthy iteration until the zone is brought above the low watermark. All thp page faults can take >400ms in such a state without this fix. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1606211820350.97086@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Chen Feng
|
6cd9dc3e75 |
mm/compaction.c: fix zoneindex in kcompactd()
While testing the kcompactd in my platform 3G MEM only DMA ZONE. I
found the kcompactd never wakeup. It seems the zoneindex has already
minus 1 before. So the traverse here should be <=.
It fixes a regression where kswapd could previously compact, but
kcompactd not. Not a crash fix though.
[akpm@linux-foundation.org: fix kcompactd_do_work() as well, per Hugh]
Link: http://lkml.kernel.org/r/1463659121-84124-1-git-send-email-puck.chen@hisilicon.com
Fixes:
|
||
Michal Hocko
|
86a294a81f |
mm, oom, compaction: prevent from should_compact_retry looping for ever for costly orders
"mm: consider compaction feedback also for costly allocation" has
removed the upper bound for the reclaim/compaction retries based on the
number of reclaimed pages for costly orders. While this is desirable
the patch did miss a mis interaction between reclaim, compaction and the
retry logic. The direct reclaim tries to get zones over min watermark
while compaction backs off and returns COMPACT_SKIPPED when all zones
are below low watermark + 1<<order gap. If we are getting really close
to OOM then __compaction_suitable can keep returning COMPACT_SKIPPED a
high order request (e.g. hugetlb order-9) while the reclaim is not able
to release enough pages to get us over low watermark. The reclaim is
still able to make some progress (usually trashing over few remaining
pages) so we are not able to break out from the loop.
I have seen this happening with the same test described in "mm: consider
compaction feedback also for costly allocation" on a swapless system.
The original problem got resolved by "vmscan: consider classzone_idx in
compaction_ready" but it shows how things might go wrong when we
approach the oom event horizont.
The reason why compaction requires being over low rather than min
watermark is not clear to me. This check was there essentially since
|
||
Michal Hocko
|
c8f7de0bfa |
mm, compaction: distinguish between full and partial COMPACT_COMPLETE
COMPACT_COMPLETE now means that compaction and free scanner met. This is not very useful information if somebody just wants to use this feedback and make any decisions based on that. The current caller might be a poor guy who just happened to scan tiny portion of the zone and that could be the reason no suitable pages were compacted. Make sure we distinguish the full and partial zone walks. Consumers should treat COMPACT_PARTIAL_SKIPPED as a potential success and be optimistic in retrying. The existing users of COMPACT_COMPLETE are conservatively changed to use COMPACT_PARTIAL_SKIPPED as well but some of them should be probably reconsidered and only defer the compaction only for COMPACT_COMPLETE with the new semantic. This patch shouldn't introduce any functional changes. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
1d4746d395 |
mm, compaction: distinguish COMPACT_DEFERRED from COMPACT_SKIPPED
try_to_compact_pages() can currently return COMPACT_SKIPPED even when the compaction is defered for some zone just because zone DMA is skipped in 99% of cases due to watermark checks. This makes COMPACT_DEFERRED basically unusable for the page allocator as a feedback mechanism. Make sure we distinguish those two states properly and switch their ordering in the enum. This would mean that the COMPACT_SKIPPED will be returned only when all eligible zones are skipped. As a result COMPACT_DEFERRED handling for THP in __alloc_pages_slowpath will be more precise and we would bail out rather than reclaim. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
c46649deae |
mm, compaction: cover all compaction mode in compact_zone
The compiler is complaining after "mm, compaction: change COMPACT_ constants into enum" mm/compaction.c: In function `compact_zone': mm/compaction.c:1350:2: warning: enumeration value `COMPACT_DEFERRED' not handled in switch [-Wswitch] switch (ret) { ^ mm/compaction.c:1350:2: warning: enumeration value `COMPACT_COMPLETE' not handled in switch [-Wswitch] mm/compaction.c:1350:2: warning: enumeration value `COMPACT_NO_SUITABLE_PAGE' not handled in switch [-Wswitch] mm/compaction.c:1350:2: warning: enumeration value `COMPACT_NOT_SUITABLE_ZONE' not handled in switch [-Wswitch] mm/compaction.c:1350:2: warning: enumeration value `COMPACT_CONTENDED' not handled in switch [-Wswitch] compaction_suitable is allowed to return only COMPACT_PARTIAL, COMPACT_SKIPPED and COMPACT_CONTINUE so other cases are simply impossible. Put a VM_BUG_ON to catch an impossible return value. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
ea7ab982b6 |
mm, compaction: change COMPACT_ constants into enum
Compaction code is doing weird dances between COMPACT_FOO -> int -> unsigned long But there doesn't seem to be any reason for that. All functions which return/use one of those constants are not expecting any other value so it really makes sense to define an enum for them and make it clear that no other values are expected. This is a pure cleanup and shouldn't introduce any functional changes. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
93ea9964d1 |
mm, page_alloc: remove field from alloc_context
The classzone_idx can be inferred from preferred_zoneref so remove the unnecessary field and save stack space. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
c603844bdc |
mm, page_alloc: convert alloc_flags to unsigned
alloc_flags is a bitmask of flags but it is signed which does not necessarily generate the best code depending on the compiler. Even without an impact, it makes more sense that this be unsigned. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
fdd048e12c |
mm, compaction: skip blocks where isolation fails in async direct compaction
The goal of direct compaction is to quickly make a high-order page available for the pending allocation. Within an aligned block of pages of desired order, a single allocated page that cannot be isolated for migration means that the block cannot fully merge to a buddy page that would satisfy the allocation request. Therefore we can reduce the allocation stall by skipping the rest of the block immediately on isolation failure. For async compaction, this also means a higher chance of succeeding until it detects contention. We however shouldn't completely sacrifice the second objective of compaction, which is to reduce overal long-term memory fragmentation. As a compromise, perform the eager skipping only in direct async compaction, while sync compaction (including kcompactd) remains thorough. Testing was done using stress-highalloc from mmtests, configured for order-4 GFP_KERNEL allocations: 4.6-rc1 4.6-rc1 before after Success 1 Min 24.00 ( 0.00%) 27.00 (-12.50%) Success 1 Mean 30.20 ( 0.00%) 31.60 ( -4.64%) Success 1 Max 37.00 ( 0.00%) 35.00 ( 5.41%) Success 2 Min 42.00 ( 0.00%) 32.00 ( 23.81%) Success 2 Mean 44.00 ( 0.00%) 44.80 ( -1.82%) Success 2 Max 48.00 ( 0.00%) 52.00 ( -8.33%) Success 3 Min 91.00 ( 0.00%) 92.00 ( -1.10%) Success 3 Mean 92.20 ( 0.00%) 92.80 ( -0.65%) Success 3 Max 94.00 ( 0.00%) 93.00 ( 1.06%) We can see that success rates are unaffected by the skipping. 4.6-rc1 4.6-rc1 before after User 2587.42 2566.53 System 482.89 471.20 Elapsed 1395.68 1382.00 Times are not so useful metric for this benchmark as main portion is the interfering kernel builds, but results do hint at reduced system times. 4.6-rc1 4.6-rc1 before after Direct pages scanned 163614 159608 Kswapd pages scanned 2070139 2078790 Kswapd pages reclaimed 2061707 2069757 Direct pages reclaimed 163354 159505 Reduced direct reclaim was unintended, but could be explained by more successful first attempt at (async) direct compaction, which is attempted before the first reclaim attempt in __alloc_pages_slowpath(). Compaction stalls 33052 39853 Compaction success 12121 19773 Compaction failures 20931 20079 Compaction is indeed more successful, and thus less likely to get deferred, so there are also more direct compaction stalls. Page migrate success 3781876 3326819 Page migrate failure 45817 41774 Compaction pages isolated 7868232 6941457 Compaction migrate scanned 168160492 127269354 Compaction migrate prescanned 0 0 Compaction free scanned 2522142582 2326342620 Compaction free direct alloc 0 0 Compaction free dir. all. miss 0 0 Compaction cost 5252 4476 The patch reduces migration scanned pages by 25% thanks to the eager skipping. [hughd@google.com: prevent nr_isolated_* from going negative] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
a34753d275 |
mm, compaction: reduce spurious pcplist drains
Compaction drains the local pcplists each time migration scanner moves away from a cc->order aligned block where it isolated pages for migration, so that the pages freed by migrations can merge into higher orders. The detection is currently coarser than it could be. The cc->last_migrated_pfn variable should track the lowest pfn that was isolated for migration. But it is set to the pfn where isolate_migratepages_block() starts scanning, which is typically the first pfn of the pageblock. There, the scanner might fail to isolate several order-aligned blocks, and then isolate COMPACT_CLUSTER_MAX in another block. This would cause the pcplists drain to be performed, although the scanner didn't yet finish the block where it isolated from. This patch thus makes cc->last_migrated_pfn handling more accurate by setting it to the pfn of an actually isolated page in isolate_migratepages_block(). Although practical effects of this patch are likely low, it arguably makes the intent of the code more obvious. Also the next patch will make async direct compaction skip blocks more aggressively, and draining pcplists due to skipped blocks is wasteful. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
06b6640a39 |
mm, compaction: wrap calculating first and last pfn of pageblock
Compaction code has accumulated numerous instances of manual calculations of the first (inclusive) and last (exclusive) pfn of a pageblock (or a smaller block of given order), given a pfn within the pageblock. Wrap these calculations by introducing pageblock_start_pfn(pfn) and pageblock_end_pfn(pfn) macros. [vbabka@suse.cz: fix crash in get_pfnblock_flags_mask() from isolate_freepages():] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
172400c69c |
mm: fix kcompactd hang during memory offlining
Assume memory47 is the last online block left in node1. This will hang:
# echo offline > /sys/devices/system/node/node1/memory47/state
After a couple of minutes, the following pops up in dmesg:
INFO: task bash:957 blocked for more than 120 seconds.
Not tainted 4.6.0-rc6+ #6
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
bash D ffff8800b7adbaf8 0 957 951 0x00000000
Call Trace:
schedule+0x35/0x80
schedule_timeout+0x1ac/0x270
wait_for_completion+0xe1/0x120
kthread_stop+0x4f/0x110
kcompactd_stop+0x26/0x40
__offline_pages.constprop.28+0x7e6/0x840
offline_pages+0x11/0x20
memory_block_action+0x73/0x1d0
memory_subsys_offline+0x47/0x60
device_offline+0x86/0xb0
store_mem_state+0xda/0xf0
dev_attr_store+0x18/0x30
sysfs_kf_write+0x37/0x40
kernfs_fop_write+0x11d/0x170
__vfs_write+0x37/0x120
vfs_write+0xa9/0x1a0
SyS_write+0x55/0xc0
entry_SYSCALL_64_fastpath+0x1a/0xa4
kcompactd is waiting for kcompactd_max_order > 0 when it's woken up to
actually exit. Check kthread_should_stop() to break out of the wait.
Fixes:
|
||
Hugh Dickins
|
14af4a5e9b |
mm, cma: prevent nr_isolated_* counters from going negative
/proc/sys/vm/stat_refresh warns nr_isolated_anon and nr_isolated_file go
increasingly negative under compaction: which would add delay when
should be none, or no delay when should delay. The bug in compaction
was due to a recent mmotm patch, but much older instance of the bug was
also noticed in isolate_migratepages_range() which is used for CMA and
gigantic hugepage allocations.
The bug is caused by putback_movable_pages() in an error path
decrementing the isolated counters without them being previously
incremented by acct_isolated(). Fix isolate_migratepages_range() by
removing the error-path putback, thus reaching acct_isolated() with
migratepages still isolated, and leaving putback to caller like most
other places do.
Fixes:
|
||
Vlastimil Babka
|
accf62422b |
mm, kswapd: replace kswapd compaction with waking up kcompactd
Similarly to direct reclaim/compaction, kswapd attempts to combine
reclaim and compaction to attempt making memory allocation of given
order available.
The details differ from direct reclaim e.g. in having high watermark as
a goal. The code involved in kswapd's reclaim/compaction decisions has
evolved to be quite complex.
Testing reveals that it doesn't actually work in at least one scenario,
and closer inspection suggests that it could be greatly simplified
without compromising on the goal (make high-order page available) or
efficiency (don't reclaim too much). The simplification relieas of
doing all compaction in kcompactd, which is simply woken up when high
watermarks are reached by kswapd's reclaim.
The scenario where kswapd compaction doesn't work was found with mmtests
test stress-highalloc configured to attempt order-9 allocations without
direct reclaim, just waking up kswapd. There was no compaction attempt
from kswapd during the whole test. Some added instrumentation shows
what happens:
- balance_pgdat() sets end_zone to Normal, as it's not balanced
- reclaim is attempted on DMA zone, which sets nr_attempted to 99, but
it cannot reclaim anything, so sc.nr_reclaimed is 0
- for zones DMA32 and Normal, kswapd_shrink_zone uses testorder=0, so
it merely checks if high watermarks were reached for base pages.
This is true, so no reclaim is attempted. For DMA, testorder=0
wasn't used, as compaction_suitable() returned COMPACT_SKIPPED
- even though the pgdat_needs_compaction flag wasn't set to false, no
compaction happens due to the condition sc.nr_reclaimed >
nr_attempted being false (as 0 < 99)
- priority-- due to nr_reclaimed being 0, repeat until priority reaches
0 pgdat_balanced() is false as only the small zone DMA appears
balanced (curiously in that check, watermark appears OK and
compaction_suitable() returns COMPACT_PARTIAL, because a lower
classzone_idx is used there)
Now, even if it was decided that reclaim shouldn't be attempted on the
DMA zone, the scenario would be the same, as (sc.nr_reclaimed=0 >
nr_attempted=0) is also false. The condition really should use >= as
the comment suggests. Then there is a mismatch in the check for setting
pgdat_needs_compaction to false using low watermark, while the rest uses
high watermark, and who knows what other subtlety. Hopefully this
demonstrates that this is unsustainable.
Luckily we can simplify this a lot. The reclaim/compaction decisions
make sense for direct reclaim scenario, but in kswapd, our primary goal
is to reach high watermark in order-0 pages. Afterwards we can attempt
compaction just once. Unlike direct reclaim, we don't reclaim extra
pages (over the high watermark), the current code already disallows it
for good reasons.
After this patch, we simply wake up kcompactd to process the pgdat,
after we have either succeeded or failed to reach the high watermarks in
kswapd, which goes to sleep. We pass kswapd's order and classzone_idx,
so kcompactd can apply the same criteria to determine which zones are
worth compacting. Note that we use the classzone_idx from
wakeup_kswapd(), not balanced_classzone_idx which can include higher
zones that kswapd tried to balance too, but didn't consider them in
pgdat_balanced().
Since kswapd now cannot create high-order pages itself, we need to
adjust how it determines the zones to be balanced. The key element here
is adding a "highorder" parameter to zone_balanced, which, when set to
false, makes it consider only order-0 watermark instead of the desired
higher order (this was done previously by kswapd_shrink_zone(), but not
elsewhere). This false is passed for example in pgdat_balanced().
Importantly, wakeup_kswapd() uses true to make sure kswapd and thus
kcompactd are woken up for a high-order allocation failure.
The last thing is to decide what to do with pageblock_skip bitmap
handling. Compaction maintains a pageblock_skip bitmap to record
pageblocks where isolation recently failed. This bitmap can be reset by
three ways:
1) direct compaction is restarting after going through the full deferred cycle
2) kswapd goes to sleep, and some other direct compaction has previously
finished scanning the whole zone and set zone->compact_blockskip_flush.
Note that a successful direct compaction clears this flag.
3) compaction was invoked manually via trigger in /proc
The case 2) is somewhat fuzzy to begin with, but after introducing
kcompactd we should update it. The check for direct compaction in 1),
and to set the flush flag in 2) use current_is_kswapd(), which doesn't
work for kcompactd. Thus, this patch adds bool direct_compaction to
compact_control to use in 2). For the case 1) we remove the check
completely - unlike the former kswapd compaction, kcompactd does use the
deferred compaction functionality, so flushing tied to restarting from
deferred compaction makes sense here.
Note that when kswapd goes to sleep, kcompactd is woken up, so it will
see the flushed pageblock_skip bits. This is different from when the
former kswapd compaction observed the bits and I believe it makes more
sense. Kcompactd can afford to be more thorough than a direct
compaction trying to limit allocation latency, or kswapd whose primary
goal is to reclaim.
For testing, I used stress-highalloc configured to do order-9
allocations with GFP_NOWAIT|__GFP_HIGH|__GFP_COMP, so they relied just
on kswapd/kcompactd reclaim/compaction (the interfering kernel builds in
phases 1 and 2 work as usual):
stress-highalloc
4.5-rc1+before 4.5-rc1+after
-nodirect -nodirect
Success 1 Min 1.00 ( 0.00%) 5.00 (-66.67%)
Success 1 Mean 1.40 ( 0.00%) 6.20 (-55.00%)
Success 1 Max 2.00 ( 0.00%) 7.00 (-16.67%)
Success 2 Min 1.00 ( 0.00%) 5.00 (-66.67%)
Success 2 Mean 1.80 ( 0.00%) 6.40 (-52.38%)
Success 2 Max 3.00 ( 0.00%) 7.00 (-16.67%)
Success 3 Min 34.00 ( 0.00%) 62.00 ( 1.59%)
Success 3 Mean 41.80 ( 0.00%) 63.80 ( 1.24%)
Success 3 Max 53.00 ( 0.00%) 65.00 ( 2.99%)
User 3166.67 3181.09
System 1153.37 1158.25
Elapsed 1768.53 1799.37
4.5-rc1+before 4.5-rc1+after
-nodirect -nodirect
Direct pages scanned 32938 32797
Kswapd pages scanned 2183166 2202613
Kswapd pages reclaimed 2152359 2143524
Direct pages reclaimed 32735 32545
Percentage direct scans 1% 1%
THP fault alloc 579 612
THP collapse alloc 304 316
THP splits 0 0
THP fault fallback 793 778
THP collapse fail 11 16
Compaction stalls 1013 1007
Compaction success 92 67
Compaction failures 920 939
Page migrate success 238457 721374
Page migrate failure 23021 23469
Compaction pages isolated 504695 1479924
Compaction migrate scanned 661390 8812554
Compaction free scanned 13476658 84327916
Compaction cost 262 838
After this patch we see improvements in allocation success rate
(especially for phase 3) along with increased compaction activity. The
compaction stalls (direct compaction) in the interfering kernel builds
(probably THP's) also decreased somewhat thanks to kcompactd activity,
yet THP alloc successes improved a bit.
Note that elapsed and user time isn't so useful for this benchmark,
because of the background interference being unpredictable. It's just
to quickly spot some major unexpected differences. System time is
somewhat more useful and that didn't increase.
Also (after adjusting mmtests' ftrace monitor):
Time kswapd awake 2547781 2269241
Time kcompactd awake 0 119253
Time direct compacting 939937 557649
Time kswapd compacting 0 0
Time kcompactd compacting 0 119099
The decrease of overal time spent compacting appears to not match the
increased compaction stats. I suspect the tasks get rescheduled and
since the ftrace monitor doesn't see that, the reported time is wall
time, not CPU time. But arguably direct compactors care about overall
latency anyway, whether busy compacting or waiting for CPU doesn't
matter. And that latency seems to almost halved.
It's also interesting how much time kswapd spent awake just going
through all the priorities and failing to even try compacting, over and
over.
We can also configure stress-highalloc to perform both direct
reclaim/compaction and wakeup kswapd/kcompactd, by using
GFP_KERNEL|__GFP_HIGH|__GFP_COMP:
stress-highalloc
4.5-rc1+before 4.5-rc1+after
-direct -direct
Success 1 Min 4.00 ( 0.00%) 9.00 (-50.00%)
Success 1 Mean 8.00 ( 0.00%) 10.00 (-19.05%)
Success 1 Max 12.00 ( 0.00%) 11.00 ( 15.38%)
Success 2 Min 4.00 ( 0.00%) 9.00 (-50.00%)
Success 2 Mean 8.20 ( 0.00%) 10.00 (-16.28%)
Success 2 Max 13.00 ( 0.00%) 11.00 ( 8.33%)
Success 3 Min 75.00 ( 0.00%) 74.00 ( 1.33%)
Success 3 Mean 75.60 ( 0.00%) 75.20 ( 0.53%)
Success 3 Max 77.00 ( 0.00%) 76.00 ( 0.00%)
User 3344.73 3246.04
System 1194.24 1172.29
Elapsed 1838.04 1836.76
4.5-rc1+before 4.5-rc1+after
-direct -direct
Direct pages scanned 125146 120966
Kswapd pages scanned 2119757 2135012
Kswapd pages reclaimed 2073183 2108388
Direct pages reclaimed 124909 120577
Percentage direct scans 5% 5%
THP fault alloc 599 652
THP collapse alloc 323 354
THP splits 0 0
THP fault fallback 806 793
THP collapse fail 17 16
Compaction stalls 2457 2025
Compaction success 906 518
Compaction failures 1551 1507
Page migrate success 2031423 2360608
Page migrate failure 32845 40852
Compaction pages isolated
|
||
Vlastimil Babka
|
698b1b3064 |
mm, compaction: introduce kcompactd
Memory compaction can be currently performed in several contexts: - kswapd balancing a zone after a high-order allocation failure - direct compaction to satisfy a high-order allocation, including THP page fault attemps - khugepaged trying to collapse a hugepage - manually from /proc The purpose of compaction is two-fold. The obvious purpose is to satisfy a (pending or future) high-order allocation, and is easy to evaluate. The other purpose is to keep overal memory fragmentation low and help the anti-fragmentation mechanism. The success wrt the latter purpose is more The current situation wrt the purposes has a few drawbacks: - compaction is invoked only when a high-order page or hugepage is not available (or manually). This might be too late for the purposes of keeping memory fragmentation low. - direct compaction increases latency of allocations. Again, it would be better if compaction was performed asynchronously to keep fragmentation low, before the allocation itself comes. - (a special case of the previous) the cost of compaction during THP page faults can easily offset the benefits of THP. - kswapd compaction appears to be complex, fragile and not working in some scenarios. It could also end up compacting for a high-order allocation request when it should be reclaiming memory for a later order-0 request. To improve the situation, we should be able to benefit from an equivalent of kswapd, but for compaction - i.e. a background thread which responds to fragmentation and the need for high-order allocations (including hugepages) somewhat proactively. One possibility is to extend the responsibilities of kswapd, which could however complicate its design too much. It should be better to let kswapd handle reclaim, as order-0 allocations are often more critical than high-order ones. Another possibility is to extend khugepaged, but this kthread is a single instance and tied to THP configs. This patch goes with the option of a new set of per-node kthreads called kcompactd, and lays the foundations, without introducing any new tunables. The lifecycle mimics kswapd kthreads, including the memory hotplug hooks. For compaction, kcompactd uses the standard compaction_suitable() and ompact_finished() criteria and the deferred compaction functionality. Unlike direct compaction, it uses only sync compaction, as there's no allocation latency to minimize. This patch doesn't yet add a call to wakeup_kcompactd. The kswapd compact/reclaim loop for high-order pages will be replaced by waking up kcompactd in the next patch with the description of what's wrong with the old approach. Waking up of the kcompactd threads is also tied to kswapd activity and follows these rules: - we don't want to affect any fastpaths, so wake up kcompactd only from the slowpath, as it's done for kswapd - if kswapd is doing reclaim, it's more important than compaction, so don't invoke kcompactd until kswapd goes to sleep - the target order used for kswapd is passed to kcompactd Future possible future uses for kcompactd include the ability to wake up kcompactd on demand in special situations, such as when hugepages are not available (currently not done due to __GFP_NO_KSWAPD) or when a fragmentation event (i.e. __rmqueue_fallback()) occurs. It's also possible to perform periodic compaction with kcompactd. [arnd@arndb.de: fix build errors with kcompactd] [paul.gortmaker@windriver.com: don't use modular references for non modular code] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
7cf91a98e6 |
mm/compaction: speed up pageblock_pfn_to_page() when zone is contiguous
There is a performance drop report due to hugepage allocation and in there half of cpu time are spent on pageblock_pfn_to_page() in compaction [1]. In that workload, compaction is triggered to make hugepage but most of pageblocks are un-available for compaction due to pageblock type and skip bit so compaction usually fails. Most costly operations in this case is to find valid pageblock while scanning whole zone range. To check if pageblock is valid to compact, valid pfn within pageblock is required and we can obtain it by calling pageblock_pfn_to_page(). This function checks whether pageblock is in a single zone and return valid pfn if possible. Problem is that we need to check it every time before scanning pageblock even if we re-visit it and this turns out to be very expensive in this workload. Although we have no way to skip this pageblock check in the system where hole exists at arbitrary position, we can use cached value for zone continuity and just do pfn_to_page() in the system where hole doesn't exist. This optimization considerably speeds up in above workload. Before vs After Max: 1096 MB/s vs 1325 MB/s Min: 635 MB/s 1015 MB/s Avg: 899 MB/s 1194 MB/s Avg is improved by roughly 30% [2]. [1]: http://www.spinics.net/lists/linux-mm/msg97378.html [2]: https://lkml.org/lkml/2015/12/9/23 [akpm@linux-foundation.org: don't forget to restore zone->contiguous on error path, per Vlastimil] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reported-by: Aaron Lu <aaron.lu@intel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Aaron Lu <aaron.lu@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
e1409c325f |
mm/compaction: pass only pageblock aligned range to pageblock_pfn_to_page
pageblock_pfn_to_page() is used to check there is valid pfn and all pages in the pageblock is in a single zone. If there is a hole in the pageblock, passing arbitrary position to pageblock_pfn_to_page() could cause to skip whole pageblock scanning, instead of just skipping the hole page. For deterministic behaviour, it's better to always pass pageblock aligned range to pageblock_pfn_to_page(). It will also help further optimization on pageblock_pfn_to_page() in the following patch. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Aaron Lu <aaron.lu@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
623446e4dc |
mm/compaction: fix invalid free_pfn and compact_cached_free_pfn
free_pfn and compact_cached_free_pfn are the pointer that remember restart position of freepage scanner. When they are reset or invalid, we set them to zone_end_pfn because freepage scanner works in reverse direction. But, because zone range is defined as [zone_start_pfn, zone_end_pfn), zone_end_pfn is invalid to access. Therefore, we should not store it to free_pfn and compact_cached_free_pfn. Instead, we need to store zone_end_pfn - 1 to them. There is one more thing we should consider. Freepage scanner scan reversely by pageblock unit. If free_pfn and compact_cached_free_pfn are set to middle of pageblock, it regards that sitiation as that it already scans front part of pageblock so we lose opportunity to scan there. To fix-up, this patch do round_down() to guarantee that reset position will be pageblock aligned. Note that thanks to the current pageblock_pfn_to_page() implementation, actual access to zone_end_pfn doesn't happen until now. But, following patch will change pageblock_pfn_to_page() so this patch is needed from now on. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
7546934570 |
mm/compaction.c: __compact_pgdat() code cleanuup
This patch uses is_via_compact_memory() to distinguish compaction from sysfs or sysctl. And, this patch also reduces indentation on compaction_defer_reset() by filtering these cases first before checking watermark. There is no functional change. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yaowei Bai
|
fec4eb2c8d |
mm/compaction: improve comment for compact_memory tunable knob handler
sysctl_compaction_handler() is the handler function for compact_memory tunable knob under /proc/sys/vm, add the missing knob name to make this more accurate in comment. No functional change. Signed-off-by: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Nazarewicz <mina86@mina86.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
2d1e10412c |
mm, compaction: distinguish contended status in tracepoints
Compaction returns prematurely with COMPACT_PARTIAL when contended or has fatal signal pending. This is ok for the callers, but might be misleading in the traces, as the usual reason to return COMPACT_PARTIAL is that we think the allocation should succeed. After this patch we distinguish the premature ending condition in the mm_compaction_finished and mm_compaction_end tracepoints. The contended status covers the following reasons: - lock contention or need_resched() detected in async compaction - fatal signal pending - too many pages isolated in the zone (only for async compaction) Further distinguishing the exact reason seems unnecessary for now. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ingo Molnar <mingo@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
fa6c7b46aa |
mm, compaction: export tracepoints status strings to userspace
Some compaction tracepoints convert the integer return values to strings using the compaction_status_string array. This works for in-kernel printing, but not userspace trace printing of raw captured trace such as via trace-cmd report. This patch converts the private array to appropriate tracepoint macros that result in proper userspace support. trace-cmd output before: transhuge-stres-4235 [000] 453.149280: mm_compaction_finished: node=0 zone=ffffffff81815d7a order=9 ret= after: transhuge-stres-4235 [000] 453.149280: mm_compaction_finished: node=0 zone=ffffffff81815d7a order=9 ret=partial Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yaowei Bai
|
21c527a3cb |
mm/compaction.c: add an is_via_compact_memory() helper
Introduce is_via_compact_memory() helper indicating compacting via /proc/sys/vm/compact_memory to improve readability. To catch this situation in __compaction_suitable, use order as parameter directly instead of using struct compact_control. This patch has no functional changes. Signed-off-by: Yaowei Bai <bywxiaobai@163.com> Cc: Mel Gorman <mgorman@techsingularity.net> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |