* Accept EPERM in some simple cases, the following cases are handled:
1) efx_mcdi_read_assertion()
Unprivileged PCI functions aren't allowed to GET_ASSERTS.
We return success as it's up to the primary PF to deal with asserts.
2) efx_mcdi_mon_probe() in efx_ef10_probe()
Unprivileged PCI functions aren't allowed to read sensor info, and
worrying about sensor data is the primary PF's job.
3) phy_op->reconfigure() in efx_init_port() and efx_reset_up()
Unprivileged functions aren't allowed to MC_CMD_SET_LINK, they just have
to accept the settings (including flow-control, which is what
efx_init_port() is worried about) they've been given.
4) Fallback to GET_WORKAROUNDS in efx_ef10_probe()
Unprivileged PCI functions aren't allowed to set workarounds. So if
efx_mcdi_set_workaround() fails EPERM, use efx_mcdi_get_workarounds()
to find out if workaround_35388 is enabled.
5) If DRV_ATTACH gets EPERM, try without specifying fw-variant
Unprivileged PCI functions have to use a FIRMWARE_ID of 0xffffffff
(MC_CMD_FW_DONT_CARE).
6) Don't try to exit_assertion unless one had fired
Previously we called efx_mcdi_exit_assertion even if
efx_mcdi_read_assertion had received MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS.
This is unnecessary, and the resulting MC_CMD_REBOOT, even if the
AFTER_ASSERTION flag made it a no-op, would fail EPERM for unprivileged
PCI functions.
So make efx_mcdi_read_assertion return whether an assert happened, and only
call efx_mcdi_exit_assertion if it has.
Signed-off-by: Shradha Shah <sshah@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
To test a checkpatch spelling patch, I ran codespell against
drivers/net/ethernet/.
$ git ls-files drivers/net/ethernet/ | \
while read file ; do \
codespell -w $file; \
done
I removed a false positive in e1000_hw.h
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
EF10 controllers do not have shared memory for communication with the
MC; instead it reads requests and writes responses in host memory,
which allows for longer messages. It is also responsible for all
datapath control operations and hardware resource allocation, which
requires a large number of new commands and adds more possible error
cases. MCDI v2 extends the message header to support this.
Update the MCDI protocol definition header to include v2 lengths,
errors and messages, and a few definitions specific to the
SFC9100 family (codenames Farmingdale and Huntington) which is
the first generation of EF10.
Some messages have been extended, so adjust the code accordingly:
- The request for MC_CMD_DRV_ATTACH now includes a datapath firmware
ID. This is ignored by Siena but we should fill it in anyway,
initially always specifying low-latency datapath.
- The response for MC_CMD_GET_LOOPBACK_MODES now includes a 40G
field. Accept shorter responses that don't include it.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
There is a long-standing problem with the packet-timestamp matching in
the driver. When a PTP packet is received by the MC, the FPGA
timestamps the packet and the MC sends the timestamp and 6 bytes of
the UUID to the driver. The driver then matches the timestamp against
received packets using the same 6 bytes of UUID.
The problem comes from the choice of which 6 bytes to use. The PTP
spec is slightly contradictory and misleading in one of the two places
where the UUIDs are discussed. From section 7.2.2.2 of the spec, a
PTPD2 UUID can be either a EUI-64 or a EUI-64 constructed from a
EUI-48. The typical ethernet based implementation uses a EUI-64
constructed from a EUI-48. This works by taking the first 3 bytes of
the MAC address of the NIC being used for PTP (the OUI), then
inserting 0xFF, 0xFE, then taking the last 3 bytes of the MAC address
giving
MAC[0], MAC[1], MAC[2], 0xFF, 0xFE, MAC[3], MAC[4], MAC[5]
The current MC firmware and driver discard the first two bytes of this
UUID and packets are matched against timestamps using bytes 2 to 7 so
there is a small risk that in a deployment of Solarflare PTP NICs used
with other vendors NICs, that a PTP packet could be matched against
the wrong timestamp. This applies to all other organisations whose
third byte of the OUI is 0x53. It's a long list but I notice that it
includes Cisco.
The necessary modifications to use bytes 0-2 and 5-7 of the UUID to
match against are quite small but introduce incompatibility between
older version of the firmware and driver.
When PTP is enabled via SO_TIMESTAMPING specifying PTP V2, the driver
will try to enable PTP in the firmware using the enhanced mode
(above). If the firmware returns an error, the driver will enable PTP
in the firmware using the old mode.
[bwh: Fix some style errors; remove private ioctl bits]
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
Add PTP IEEE-1588 support and make accesible via the PHC subsystem.
This work is based on prior code by Andrew Jackson
Signed-off-by: Stuart Hodgson <smhodgson@solarflare.com>
[bwh:
- Add byte order conversion in efx_ptp_send_times()
- Simplify conversion of PPS event times
- Add the built-in vs module check to CONFIG_SFC_PTP dependencies]
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
The maximum array sizes have been calculated on the basis of a maximum
SDU size of 255 bytes, whereas the actual maximum is 252 bytes.
Constructing a larger SDU will result in a BUG_ON in efx_mcdi_copyin.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
Convert doxygen (or similar) formatted comments to kernel-doc or
unformatted comment. Delete a few that are content-free.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Moves the Solarflare drivers into drivers/net/ethernet/sfc/ and
make the necessary Kconfig and Makefile changes.
CC: Steve Hodgson <shodgson@solarflare.com>
CC: Ben Hutchings <bhutchings@solarflare.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>