mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-02 00:24:12 +08:00
6cef7dab3e
19217 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
1440f57602 |
Five hotfixes - three for nilfs2, two for MM. For are cc:stable, one is
not. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0YhtwAKCRDdBJ7gKXxA juJLAQDCa0g8sfe9cTw3PT1gRnn8gWLHEkMgUWVC/aBaqYFGeQEAta+g8muv9Tpd qODv0JARH4cwONKEA24Oql+A5RnI6gQ= =QZnW -----END PGP SIGNATURE----- Merge tag 'mm-hotfixes-stable-2022-10-11' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull misc hotfixes from Andrew Morton: "Five hotfixes - three for nilfs2, two for MM. For are cc:stable, one is not" * tag 'mm-hotfixes-stable-2022-10-11' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: nilfs2: fix leak of nilfs_root in case of writer thread creation failure nilfs2: fix NULL pointer dereference at nilfs_bmap_lookup_at_level() nilfs2: fix use-after-free bug of struct nilfs_root mm/damon/core: initialize damon_target->list in damon_new_target() mm/hugetlb: fix races when looking up a CONT-PTE/PMD size hugetlb page |
||
SeongJae Park
|
b1f44cdaba |
mm/damon/core: initialize damon_target->list in damon_new_target()
'struct damon_target' creation function, 'damon_new_target()' is not
initializing its '->list' field, unlike other DAMON structs creator
functions such as 'damon_new_region()'. Normal users of
'damon_new_target()' initializes the field by adding the target to DAMON
context's targets list, but some code could access the uninitialized
field.
This commit avoids the case by initializing the field in
'damon_new_target()'.
Link: https://lkml.kernel.org/r/20221002193130.8227-1-sj@kernel.org
Fixes:
|
||
Baolin Wang
|
fac35ba763 |
mm/hugetlb: fix races when looking up a CONT-PTE/PMD size hugetlb page
On some architectures (like ARM64), it can support CONT-PTE/PMD size hugetlb, which means it can support not only PMD/PUD size hugetlb (2M and 1G), but also CONT-PTE/PMD size(64K and 32M) if a 4K page size specified. So when looking up a CONT-PTE size hugetlb page by follow_page(), it will use pte_offset_map_lock() to get the pte entry lock for the CONT-PTE size hugetlb in follow_page_pte(). However this pte entry lock is incorrect for the CONT-PTE size hugetlb, since we should use huge_pte_lock() to get the correct lock, which is mm->page_table_lock. That means the pte entry of the CONT-PTE size hugetlb under current pte lock is unstable in follow_page_pte(), we can continue to migrate or poison the pte entry of the CONT-PTE size hugetlb, which can cause some potential race issues, even though they are under the 'pte lock'. For example, suppose thread A is trying to look up a CONT-PTE size hugetlb page by move_pages() syscall under the lock, however antoher thread B can migrate the CONT-PTE hugetlb page at the same time, which will cause thread A to get an incorrect page, if thread A also wants to do page migration, then data inconsistency error occurs. Moreover we have the same issue for CONT-PMD size hugetlb in follow_huge_pmd(). To fix above issues, rename the follow_huge_pmd() as follow_huge_pmd_pte() to handle PMD and PTE level size hugetlb, which uses huge_pte_lock() to get the correct pte entry lock to make the pte entry stable. Mike said: Support for CONT_PMD/_PTE was added with |
||
Linus Torvalds
|
f721d24e5d |
tmpfile API change
-----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCY0DP2AAKCRBZ7Krx/gZQ 6/+qAQCEGQWpcC5MB17zylaX7gqzhgAsDrwtpevlno3aIv/1pQD/YWr/E8tf7WTW ERXRXMRx1cAzBJhUhVgIY+3ANfU2Rg4= =cko4 -----END PGP SIGNATURE----- Merge tag 'pull-tmpfile' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull vfs tmpfile updates from Al Viro: "Miklos' ->tmpfile() signature change; pass an unopened struct file to it, let it open the damn thing. Allows to add tmpfile support to FUSE" * tag 'pull-tmpfile' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: fuse: implement ->tmpfile() vfs: open inside ->tmpfile() vfs: move open right after ->tmpfile() vfs: make vfs_tmpfile() static ovl: use vfs_tmpfile_open() helper cachefiles: use vfs_tmpfile_open() helper cachefiles: only pass inode to *mark_inode_inuse() helpers cachefiles: tmpfile error handling cleanup hugetlbfs: cleanup mknod and tmpfile vfs: add vfs_tmpfile_open() helper |
||
Linus Torvalds
|
27bc50fc90 |
- Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any negative reports (or any positive ones, come to that). - Also the Maple Tree from Liam R. Howlett. An overlapping range-based tree for vmas. It it apparently slight more efficient in its own right, but is mainly targeted at enabling work to reduce mmap_lock contention. Liam has identified a number of other tree users in the kernel which could be beneficially onverted to mapletrees. Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat (https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com). This has yet to be addressed due to Liam's unfortunately timed vacation. He is now back and we'll get this fixed up. - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses clang-generated instrumentation to detect used-unintialized bugs down to the single bit level. KMSAN keeps finding bugs. New ones, as well as the legacy ones. - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of memory into THPs. - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support file/shmem-backed pages. - userfaultfd updates from Axel Rasmussen - zsmalloc cleanups from Alexey Romanov - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure - Huang Ying adds enhancements to NUMA balancing memory tiering mode's page promotion, with a new way of detecting hot pages. - memcg updates from Shakeel Butt: charging optimizations and reduced memory consumption. - memcg cleanups from Kairui Song. - memcg fixes and cleanups from Johannes Weiner. - Vishal Moola provides more folio conversions - Zhang Yi removed ll_rw_block() :( - migration enhancements from Peter Xu - migration error-path bugfixes from Huang Ying - Aneesh Kumar added ability for a device driver to alter the memory tiering promotion paths. For optimizations by PMEM drivers, DRM drivers, etc. - vma merging improvements from Jakub Matěn. - NUMA hinting cleanups from David Hildenbrand. - xu xin added aditional userspace visibility into KSM merging activity. - THP & KSM code consolidation from Qi Zheng. - more folio work from Matthew Wilcox. - KASAN updates from Andrey Konovalov. - DAMON cleanups from Kaixu Xia. - DAMON work from SeongJae Park: fixes, cleanups. - hugetlb sysfs cleanups from Muchun Song. - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core. -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0HaPgAKCRDdBJ7gKXxA joPjAQDZ5LlRCMWZ1oxLP2NOTp6nm63q9PWcGnmY50FjD/dNlwEAnx7OejCLWGWf bbTuk6U2+TKgJa4X7+pbbejeoqnt5QU= =xfWx -----END PGP SIGNATURE----- Merge tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Yu Zhao's Multi-Gen LRU patches are here. They've been under test in linux-next for a couple of months without, to my knowledge, any negative reports (or any positive ones, come to that). - Also the Maple Tree from Liam Howlett. An overlapping range-based tree for vmas. It it apparently slightly more efficient in its own right, but is mainly targeted at enabling work to reduce mmap_lock contention. Liam has identified a number of other tree users in the kernel which could be beneficially onverted to mapletrees. Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat at [1]. This has yet to be addressed due to Liam's unfortunately timed vacation. He is now back and we'll get this fixed up. - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses clang-generated instrumentation to detect used-unintialized bugs down to the single bit level. KMSAN keeps finding bugs. New ones, as well as the legacy ones. - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of memory into THPs. - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support file/shmem-backed pages. - userfaultfd updates from Axel Rasmussen - zsmalloc cleanups from Alexey Romanov - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure - Huang Ying adds enhancements to NUMA balancing memory tiering mode's page promotion, with a new way of detecting hot pages. - memcg updates from Shakeel Butt: charging optimizations and reduced memory consumption. - memcg cleanups from Kairui Song. - memcg fixes and cleanups from Johannes Weiner. - Vishal Moola provides more folio conversions - Zhang Yi removed ll_rw_block() :( - migration enhancements from Peter Xu - migration error-path bugfixes from Huang Ying - Aneesh Kumar added ability for a device driver to alter the memory tiering promotion paths. For optimizations by PMEM drivers, DRM drivers, etc. - vma merging improvements from Jakub Matěn. - NUMA hinting cleanups from David Hildenbrand. - xu xin added aditional userspace visibility into KSM merging activity. - THP & KSM code consolidation from Qi Zheng. - more folio work from Matthew Wilcox. - KASAN updates from Andrey Konovalov. - DAMON cleanups from Kaixu Xia. - DAMON work from SeongJae Park: fixes, cleanups. - hugetlb sysfs cleanups from Muchun Song. - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core. Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1] * tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits) hugetlb: allocate vma lock for all sharable vmas hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer hugetlb: fix vma lock handling during split vma and range unmapping mglru: mm/vmscan.c: fix imprecise comments mm/mglru: don't sync disk for each aging cycle mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol mm: memcontrol: use do_memsw_account() in a few more places mm: memcontrol: deprecate swapaccounting=0 mode mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled mm/secretmem: remove reduntant return value mm/hugetlb: add available_huge_pages() func mm: remove unused inline functions from include/linux/mm_inline.h selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd selftests/vm: add thp collapse shmem testing selftests/vm: add thp collapse file and tmpfs testing selftests/vm: modularize thp collapse memory operations selftests/vm: dedup THP helpers mm/khugepaged: add tracepoint to hpage_collapse_scan_file() mm/madvise: add file and shmem support to MADV_COLLAPSE ... |
||
Linus Torvalds
|
adf4bfc4a9 |
cgroup changes for v6.1-rc1.
* cpuset now support isolated cpus.partition type, which will enable dynamic
CPU isolation.
* pids.peak added to remember the max number of pids used.
* Holes in cgroup namespace plugged.
* Internal cleanups.
Note that for-6.1-fixes was pulled into for-6.1 twice. Both were for
follow-up cleanups and each merge commit has details.
Also,
|
||
Linus Torvalds
|
8adc0486f3 |
Random number generator updates for Linux 6.1-rc1.
-----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEEq5lC5tSkz8NBJiCnSfxwEqXeA64FAmM++NMACgkQSfxwEqXe A65f3w//eRwdaZV5eX3m9eb3CsNnnut2dDKNG+HrImd+z+96CbpBCsyZN2p5uDMw pPownat8Ejv6P6E0ztOAyCsFDnS0Tf2YjdVOZ9txif5zIwqoM8TYbmHlmm7JhACc hDoblbICTf/bmSURWQOCdkayPhqIyV61pF5hwXXQuCAMoanHzDWbH1yxMmBMCQYJ P6fA0r2BYniC90o/C0HvToeIw7tTGxBm2Lki/S9cWOFCzPBwQytBbE7AD4rBP8+Y ryHdcpKaXLF9C1zSlYfyLBbBGR3Oe+DBLl081q3LkTjnnoPbLEtJE1B644K5FiOJ ySkeHZoMeGB2fisoEJAaEf1GjA1I6f1fcmTlY57XbR/iU3gfQE6+06CwVJBUoqtx Q71FMU+AMoc1ZfDVQB8NC+RdifV1qRhzVPrawhCPPfx8ngR8yKekh9RYwp0xpGPL RoAqswoOwOW20BalNxRipLji1URcZGH1d3QgkjdIwxvodyPsiGg74LJ9xBYWccfv jBS6vNEGgWYUtMA/20W0HowSizA89Rl9REBd7M8q+eLOhJ/AsUgzuJ9noODBe6OV PO4NDWXwaud64gDHtPhomah/14zej53yomlC/qJ9cJN4uPo6J3u9phqcaOWHjgPX AKYRGWxCgnwpf7g6v4S/35kU+OEs9fS+oDKUzUY8s7lhNM4qCK0= =KGwF -----END PGP SIGNATURE----- Merge tag 'random-6.1-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random Pull random number generator updates from Jason Donenfeld: - Huawei reported that when they updated their kernel from 4.4 to something much newer, some userspace code they had broke, the culprit being the accidental removal of O_NONBLOCK from /dev/random way back in 5.6. It's been gone for over 2 years now and this is the first we've heard of it, but userspace breakage is userspace breakage, so O_NONBLOCK is now back. - Use randomness from hardware RNGs much more often during early boot, at the same interval that crng reseeds are done, from Dominik. - A semantic change in hardware RNG throttling, so that the hwrng framework can properly feed random.c with randomness from hardware RNGs that aren't specifically marked as creditable. A related patch coming to you via Herbert's hwrng tree depends on this one, not to compile, but just to function properly, so you may want to merge this PULL before that one. - A fix to clamp credited bits from the interrupts pool to the size of the pool sample. This is mainly just a theoretical fix, as it'd be pretty hard to exceed it in practice. - Oracle reported that InfiniBand TCP latency regressed by around 10-15% after a change a few cycles ago made at the request of the RT folks, in which we hoisted a somewhat rare operation (1 in 1024 times) out of the hard IRQ handler and into a workqueue, a pretty common and boring pattern. It turns out, though, that scheduling a worker from there has overhead of its own, whereas scheduling a timer on that same CPU for the next jiffy amortizes better and doesn't incur the same overhead. I also eliminated a cache miss by moving the work_struct (and subsequently, the timer_list) to below a critical cache line, so that the more critical members that are accessed on every hard IRQ aren't split between two cache lines. - The boot-time initialization of the RNG has been split into two approximate phases: what we can accomplish before timekeeping is possible and what we can accomplish after. This winds up being useful so that we can use RDRAND to seed the RNG before CONFIG_SLAB_FREELIST_RANDOM=y systems initialize slabs, in addition to other early uses of randomness. The effect is that systems with RDRAND (or a bootloader seed) will never see any warnings at all when setting CONFIG_WARN_ALL_UNSEEDED_RANDOM=y. And kfence benefits from getting a better seed of its own. - Small systems without much entropy sometimes wind up putting some truncated serial number read from flash into hostname, so contribute utsname changes to the RNG, without crediting. - Add smaller batches to serve requests for smaller integers, and make use of them when people ask for random numbers bounded by a given compile-time constant. This has positive effects all over the tree, most notably in networking and kfence. - The original jitter algorithm intended (I believe) to schedule the timer for the next jiffy, not the next-next jiffy, yet it used mod_timer(jiffies + 1), which will fire on the next-next jiffy, instead of what I believe was intended, mod_timer(jiffies), which will fire on the next jiffy. So fix that. - Fix a comment typo, from William. * tag 'random-6.1-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: random: clear new batches when bringing new CPUs online random: fix typos in get_random_bytes() comment random: schedule jitter credit for next jiffy, not in two jiffies prandom: make use of smaller types in prandom_u32_max random: add 8-bit and 16-bit batches utsname: contribute changes to RNG random: use init_utsname() instead of utsname() kfence: use better stack hash seed random: split initialization into early step and later step random: use expired timer rather than wq for mixing fast pool random: avoid reading two cache lines on irq randomness random: clamp credited irq bits to maximum mixed random: throttle hwrng writes if no entropy is credited random: use hwgenerator randomness more frequently at early boot random: restore O_NONBLOCK support |
||
Linus Torvalds
|
52abb27abf |
slab fixes for 6.1-rc1
-----BEGIN PGP SIGNATURE----- iQEzBAABCAAdFiEEjUuTAak14xi+SF7M4CHKc/GJqRAFAmM6/BMACgkQ4CHKc/GJ qRBqBAgAh+5JdVkYBxW4MvGEolRw0RDIBNwEwmyJI7WeAegL8FaGI3jmA5Kcww4c yA+lL/jcS9zQ/qwwHHoCqZoCLDFa43oiDMjSW4MI6oZpV+T6lx5uaH5kXBKsmxy5 2dONP7kYG/eFfBGB6F9qQOLJnCz0CXeY7+O99D1Nldx0yKKUVCK0krb018p5oI6a RTVRASSVuEGkxvJGo4BbIR1H40s1BKTyRO9eZCKEHSanYM5SVXdBy9GTh5VQWTPk WLwvXmd0DehZzlPrgg3PMVPBTNGO/yplWibugWyzUqGcPIhQPk6Z76aWE4vojI2q f0w+86BYR2U7SBV2ZaNrGrxk/PZJyg== =aDgU -----END PGP SIGNATURE----- Merge tag 'slab-for-6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab Pull slab fixes from Vlastimil Babka: - The "common kmalloc v4" series [1] by Hyeonggon Yoo. While the plan after LPC is to try again if it's possible to get rid of SLOB and SLAB (and if any critical aspect of those is not possible to achieve with SLUB today, modify it accordingly), it will take a while even in case there are no objections. Meanwhile this is a nice cleanup and some parts (e.g. to the tracepoints) will be useful even if we end up with a single slab implementation in the future: - Improves the mm/slab_common.c wrappers to allow deleting duplicated code between SLAB and SLUB. - Large kmalloc() allocations in SLAB are passed to page allocator like in SLUB, reducing number of kmalloc caches. - Removes the {kmem_cache_alloc,kmalloc}_node variants of tracepoints, node id parameter added to non-_node variants. - Addition of kmalloc_size_roundup() The first two patches from a series by Kees Cook [2] that introduce kmalloc_size_roundup(). This will allow merging of per-subsystem patches using the new function and ultimately stop (ab)using ksize() in a way that causes ongoing trouble for debugging functionality and static checkers. - Wasted kmalloc() memory tracking in debugfs alloc_traces A patch from Feng Tang that enhances the existing debugfs alloc_traces file for kmalloc caches with information about how much space is wasted by allocations that needs less space than the particular kmalloc cache provides. - My series [3] to fix validation races for caches with enabled debugging: - By decoupling the debug cache operation more from non-debug fastpaths, extra locking simplifications were possible and thus done afterwards. - Additional cleanup of PREEMPT_RT specific code on top, by Thomas Gleixner. - A late fix for slab page leaks caused by the series, by Feng Tang. - Smaller fixes and cleanups: - Unneeded variable removals, by ye xingchen - A cleanup removing a BUG_ON() in create_unique_id(), by Chao Yu Link: https://lore.kernel.org/all/20220817101826.236819-1-42.hyeyoo@gmail.com/ [1] Link: https://lore.kernel.org/all/20220923202822.2667581-1-keescook@chromium.org/ [2] Link: https://lore.kernel.org/all/20220823170400.26546-1-vbabka@suse.cz/ [3] * tag 'slab-for-6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab: (30 commits) mm/slub: fix a slab missed to be freed problem slab: Introduce kmalloc_size_roundup() slab: Remove __malloc attribute from realloc functions mm/slub: clean up create_unique_id() mm/slub: enable debugging memory wasting of kmalloc slub: Make PREEMPT_RT support less convoluted mm/slub: simplify __cmpxchg_double_slab() and slab_[un]lock() mm/slub: convert object_map_lock to non-raw spinlock mm/slub: remove slab_lock() usage for debug operations mm/slub: restrict sysfs validation to debug caches and make it safe mm/sl[au]b: check if large object is valid in __ksize() mm/slab_common: move declaration of __ksize() to mm/slab.h mm/slab_common: drop kmem_alloc & avoid dereferencing fields when not using mm/slab_common: unify NUMA and UMA version of tracepoints mm/sl[au]b: cleanup kmem_cache_alloc[_node]_trace() mm/sl[au]b: generalize kmalloc subsystem mm/slub: move free_debug_processing() further mm/sl[au]b: introduce common alloc/free functions without tracepoint mm/slab: kmalloc: pass requests larger than order-1 page to page allocator mm/slab_common: cleanup kmalloc_large() ... |
||
Linus Torvalds
|
7f6dcffb44 |
Preempt RT cleanups:
Introduce preempt_[dis|enable_nested() and use it to clean up various places which have open coded PREEMPT_RT conditionals. On PREEMPT_RT enabled kernels, spinlocks and rwlocks are neither disabling preemption nor interrupts. Though there are a few places which depend on the implicit preemption/interrupt disable of those locks, e.g. seqcount write sections, per CPU statistics updates etc. PREEMPT_RT added open coded CONFIG_PREEMPT_RT conditionals to disable/enable preemption in the related code parts all over the place. That's hard to read and does not really explain why this is necessary. Linus suggested to use helper functions (preempt_disable_nested() and preempt_enable_nested()) and use those in the affected places. On !RT enabled kernels these functions are NOPs, but contain a lockdep assert to validate that preemption is actually disabled to catch call sites which do not have preemption disabled. Clean up the affected code paths in mm, dentry and lib. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmM9c8MTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYobrrEADHkvkCUHxRlarfinQY2rxEpC4nbnAg ibg+LWpDpqqZwkjADExu6+lsbb0mCdvlFyvSPwY2YcQAkj/bkTAXvdf3KjejTl++ B1J5/Cr5lyyKjajjl1efxdORgATBvwuEjR2moJiU868ZR3K4vgflN9n51A0U+NAn 3kOj/TYotFlyDNJeoK/8edqZwKaueXs3fsYGC1aq2X8mQLI4QDeaHUR6R8CU4w+X bVSIdKNluIYxyc3Eav5sDwzyF6gOSL+9DtZcVyXxJ6+PrkDdkptO23derVHk19WE ymdAwVX6S37L6HNhJgqeScs+s3xD8KDmvu5ktEAtqC0unBP8JwOFZKCZaaYj91j3 iMjMC4UFcXI5sERWhDXTSja2g0pYV6q3myfYfojxe6xXHlrVs42gCzDpOI4LZncM lvPfmhb7JR7zEmBEvVyEOX8B16ecWnUqgihU17a3ogGdKW1PRNWcWj3RmNXDmpGD YZsZSfsawMSJsDIrNRCydXrsiFBNIoVStN7K7c+blnNV8ER5rt24dqCJyUhrl4fB K8hNvDp+T8N0f6nlIUWk42vjhskEo2ijCnpvHSXQc1UL7WmLfaJf3/T9zlufPwqJ 7yVuWd9vZIb3iVAKz+LqOzLlHcgeJmYlbSBsj+Ay1UHPsNgYulDEKcuNniVoG39u zFgHu3OmIRueHA== =3M58 -----END PGP SIGNATURE----- Merge tag 'sched-rt-2022-10-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull preempt RT updates from Thomas Gleixner: "Introduce preempt_[dis|enable_nested() and use it to clean up various places which have open coded PREEMPT_RT conditionals. On PREEMPT_RT enabled kernels, spinlocks and rwlocks are neither disabling preemption nor interrupts. Though there are a few places which depend on the implicit preemption/interrupt disable of those locks, e.g. seqcount write sections, per CPU statistics updates etc. PREEMPT_RT added open coded CONFIG_PREEMPT_RT conditionals to disable/enable preemption in the related code parts all over the place. That's hard to read and does not really explain why this is necessary. Linus suggested to use helper functions (preempt_disable_nested() and preempt_enable_nested()) and use those in the affected places. On !RT enabled kernels these functions are NOPs, but contain a lockdep assert to validate that preemption is actually disabled to catch call sites which do not have preemption disabled. Clean up the affected code paths in mm, dentry and lib" * tag 'sched-rt-2022-10-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: u64_stats: Streamline the implementation flex_proportions: Disable preemption entering the write section. mm/compaction: Get rid of RT ifdeffery mm/memcontrol: Replace the PREEMPT_RT conditionals mm/debug: Provide VM_WARN_ON_IRQS_ENABLED() mm/vmstat: Use preempt_[dis|en]able_nested() dentry: Use preempt_[dis|en]able_nested() preempt: Provide preempt_[dis|en]able_nested() |
||
Linus Torvalds
|
30c999937f |
Scheduler changes for v6.1:
- Debuggability: - Change most occurances of BUG_ON() to WARN_ON_ONCE() - Reorganize & fix TASK_ state comparisons, turn it into a bitmap - Update/fix misc scheduler debugging facilities - Load-balancing & regular scheduling: - Improve the behavior of the scheduler in presence of lot of SCHED_IDLE tasks - in particular they should not impact other scheduling classes. - Optimize task load tracking, cleanups & fixes - Clean up & simplify misc load-balancing code - Freezer: - Rewrite the core freezer to behave better wrt thawing and be simpler in general, by replacing PF_FROZEN with TASK_FROZEN & fixing/adjusting all the fallout. - Deadline scheduler: - Fix the DL capacity-aware code - Factor out dl_task_is_earliest_deadline() & replenish_dl_new_period() - Relax/optimize locking in task_non_contending() - Cleanups: - Factor out the update_current_exec_runtime() helper - Various cleanups, simplifications Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmM/01cRHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1geZA/+PB4KC1T9aVxzaTHI36R03YgJYZmIdtxw wTf02MixePmz+gQCbepJbempGOh5ST28aOcI0xhdYOql5B63MaUBBMlB0HvGUyDG IU3zETqLMRtAbnSTdQFv8m++ECUtZYp8/x1FCel4WO7ya4ETkRu1NRfCoUepEhpZ aVAlae9LH3NBaF9t7s0PT2lTjf3pIzMFRkddJ0ywJhbFR3VnWat05fAK+J6fGY8+ LS54coefNlJD4oDh5TY8uniL1j5SmWmmwbk9Cdj7bLU5P3dFSS0/+5FJNHJPVGDE srGT7wstRUcDrN0CnZo48VIUBiApJCCDqTfJYi9wNYd0NAHvwY6MIJJgEIY8mKsI L/qH26H81Wt+ezSZ/5JIlGlZ/LIeNaa6OO/fbWEYABBQogvvx3nxsRNUYKSQzumH CnSBasBjLnjWyLlK4qARM9cI7NFSEK6NUigrEx/7h8JFu/8T4DlSy6LsF1HUyKgq 4+FJLAqG6cL0tcwB/fHYd0oRESN8dStnQhGxSojgufwLc7dlFULvCYF5JM/dX+/V IKwbOfIOeOn6ViMtSOXAEGdII+IQ2/ZFPwr+8Z5JC7NzvTVL6xlu/3JXkLZR3L7o yaXTSaz06h1vil7Z+GRf7RHc+wUeGkEpXh5vnarGZKXivhFdWsBdROIJANK+xR0i TeSLCxQxXlU= =KjMD -----END PGP SIGNATURE----- Merge tag 'sched-core-2022-10-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: "Debuggability: - Change most occurances of BUG_ON() to WARN_ON_ONCE() - Reorganize & fix TASK_ state comparisons, turn it into a bitmap - Update/fix misc scheduler debugging facilities Load-balancing & regular scheduling: - Improve the behavior of the scheduler in presence of lot of SCHED_IDLE tasks - in particular they should not impact other scheduling classes. - Optimize task load tracking, cleanups & fixes - Clean up & simplify misc load-balancing code Freezer: - Rewrite the core freezer to behave better wrt thawing and be simpler in general, by replacing PF_FROZEN with TASK_FROZEN & fixing/adjusting all the fallout. Deadline scheduler: - Fix the DL capacity-aware code - Factor out dl_task_is_earliest_deadline() & replenish_dl_new_period() - Relax/optimize locking in task_non_contending() Cleanups: - Factor out the update_current_exec_runtime() helper - Various cleanups, simplifications" * tag 'sched-core-2022-10-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits) sched: Fix more TASK_state comparisons sched: Fix TASK_state comparisons sched/fair: Move call to list_last_entry() in detach_tasks sched/fair: Cleanup loop_max and loop_break sched/fair: Make sure to try to detach at least one movable task sched: Show PF_flag holes freezer,sched: Rewrite core freezer logic sched: Widen TAKS_state literals sched/wait: Add wait_event_state() sched/completion: Add wait_for_completion_state() sched: Add TASK_ANY for wait_task_inactive() sched: Change wait_task_inactive()s match_state freezer,umh: Clean up freezer/initrd interaction freezer: Have {,un}lock_system_sleep() save/restore flags sched: Rename task_running() to task_on_cpu() sched/fair: Cleanup for SIS_PROP sched/fair: Default to false in test_idle_cores() sched/fair: Remove useless check in select_idle_core() sched/fair: Avoid double search on same cpu sched/fair: Remove redundant check in select_idle_smt() ... |
||
Linus Torvalds
|
ef688f8b8c |
The first batch of KVM patches, mostly covering x86, which I
am sending out early due to me travelling next week. There is a lone mm patch for which Andrew gave an informal ack at https://lore.kernel.org/linux-mm/20220817102500.440c6d0a3fce296fdf91bea6@linux-foundation.org. I will send the bulk of ARM work, as well as other architectures, at the end of next week. ARM: * Account stage2 page table allocations in memory stats. x86: * Account EPT/NPT arm64 page table allocations in memory stats. * Tracepoint cleanups/fixes for nested VM-Enter and emulated MSR accesses. * Drop eVMCS controls filtering for KVM on Hyper-V, all known versions of Hyper-V now support eVMCS fields associated with features that are enumerated to the guest. * Use KVM's sanitized VMCS config as the basis for the values of nested VMX capabilities MSRs. * A myriad event/exception fixes and cleanups. Most notably, pending exceptions morph into VM-Exits earlier, as soon as the exception is queued, instead of waiting until the next vmentry. This fixed a longstanding issue where the exceptions would incorrecly become double-faults instead of triggering a vmexit; the common case of page-fault vmexits had a special workaround, but now it's fixed for good. * A handful of fixes for memory leaks in error paths. * Cleanups for VMREAD trampoline and VMX's VM-Exit assembly flow. * Never write to memory from non-sleepable kvm_vcpu_check_block() * Selftests refinements and cleanups. * Misc typo cleanups. Generic: * remove KVM_REQ_UNHALT -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmM2zwcUHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroNpbwf+MlVeOlzE5SBdrJ0TEnLmKUel1lSz QnZzP5+D65oD0zhCilUZHcg6G4mzZ5SdVVOvrGJvA0eXh25ruLNMF6jbaABkMLk/ FfI1ybN7A82hwJn/aXMI/sUurWv4Jteaad20JC2DytBCnsW8jUqc49gtXHS2QWy4 3uMsFdpdTAg4zdJKgEUfXBmQviweVpjjl3ziRyZZ7yaeo1oP7XZ8LaE1nR2l5m0J mfjzneNm5QAnueypOh5KhSwIvqf6WHIVm/rIHDJ1HIFbgfOU0dT27nhb1tmPwAcE +cJnnMUHjZqtCXteHkAxMClyRq0zsEoKk0OGvSOOMoq3Q0DavSXUNANOig== =/hqX -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "The first batch of KVM patches, mostly covering x86. ARM: - Account stage2 page table allocations in memory stats x86: - Account EPT/NPT arm64 page table allocations in memory stats - Tracepoint cleanups/fixes for nested VM-Enter and emulated MSR accesses - Drop eVMCS controls filtering for KVM on Hyper-V, all known versions of Hyper-V now support eVMCS fields associated with features that are enumerated to the guest - Use KVM's sanitized VMCS config as the basis for the values of nested VMX capabilities MSRs - A myriad event/exception fixes and cleanups. Most notably, pending exceptions morph into VM-Exits earlier, as soon as the exception is queued, instead of waiting until the next vmentry. This fixed a longstanding issue where the exceptions would incorrecly become double-faults instead of triggering a vmexit; the common case of page-fault vmexits had a special workaround, but now it's fixed for good - A handful of fixes for memory leaks in error paths - Cleanups for VMREAD trampoline and VMX's VM-Exit assembly flow - Never write to memory from non-sleepable kvm_vcpu_check_block() - Selftests refinements and cleanups - Misc typo cleanups Generic: - remove KVM_REQ_UNHALT" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (94 commits) KVM: remove KVM_REQ_UNHALT KVM: mips, x86: do not rely on KVM_REQ_UNHALT KVM: x86: never write to memory from kvm_vcpu_check_block() KVM: x86: Don't snapshot pending INIT/SIPI prior to checking nested events KVM: nVMX: Make event request on VMXOFF iff INIT/SIPI is pending KVM: nVMX: Make an event request if INIT or SIPI is pending on VM-Enter KVM: SVM: Make an event request if INIT or SIPI is pending when GIF is set KVM: x86: lapic does not have to process INIT if it is blocked KVM: x86: Rename kvm_apic_has_events() to make it INIT/SIPI specific KVM: x86: Rename and expose helper to detect if INIT/SIPI are allowed KVM: nVMX: Make an event request when pending an MTF nested VM-Exit KVM: x86: make vendor code check for all nested events mailmap: Update Oliver's email address KVM: x86: Allow force_emulation_prefix to be written without a reload KVM: selftests: Add an x86-only test to verify nested exception queueing KVM: selftests: Use uapi header to get VMX and SVM exit reasons/codes KVM: x86: Rename inject_pending_events() to kvm_check_and_inject_events() KVM: VMX: Update MTF and ICEBP comments to document KVM's subtle behavior KVM: x86: Treat pending TRIPLE_FAULT requests as pending exceptions KVM: x86: Morph pending exceptions to pending VM-Exits at queue time ... |
||
Mike Kravetz
|
bbff39cc6c |
hugetlb: allocate vma lock for all sharable vmas
The hugetlb vma lock was originally designed to synchronize pmd sharing. As such, it was only necessary to allocate the lock for vmas that were capable of pmd sharing. Later in the development cycle, it was discovered that it could also be used to simplify fault/truncation races as described in [1]. However, a subsequent change to allocate the lock for all vmas that use the page cache was never made. A fault/truncation race could leave pages in a file past i_size until the file is removed. Remove the previous restriction and allocate lock for all VM_MAYSHARE vmas. Warn in the unlikely event of allocation failure. [1] https://lore.kernel.org/lkml/Yxiv0SkMkZ0JWGGp@monkey/#t Link: https://lkml.kernel.org/r/20221005011707.514612-4-mike.kravetz@oracle.com Fixes: "hugetlb: clean up code checking for fault/truncation races" Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Mike Kravetz
|
ecfbd73387 |
hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer
hugetlb file truncation/hole punch code may need to back out and take locks in order in the routine hugetlb_unmap_file_folio(). This code could race with vma freeing as pointed out in [1] and result in accessing a stale vma pointer. To address this, take the vma_lock when clearing the vma_lock->vma pointer. [1] https://lore.kernel.org/linux-mm/01f10195-7088-4462-6def-909549c75ef4@huawei.com/ [mike.kravetz@oracle.com: address build issues] Link: https://lkml.kernel.org/r/Yz5L1uxQYR1VqFtJ@monkey Link: https://lkml.kernel.org/r/20221005011707.514612-3-mike.kravetz@oracle.com Fixes: "hugetlb: use new vma_lock for pmd sharing synchronization" Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Mike Kravetz
|
131a79b474 |
hugetlb: fix vma lock handling during split vma and range unmapping
Patch series "hugetlb: fixes for new vma lock series". In review of the series "hugetlb: Use new vma lock for huge pmd sharing synchronization", Miaohe Lin pointed out two key issues: 1) There is a race in the routine hugetlb_unmap_file_folio when locks are dropped and reacquired in the correct order [1]. 2) With the switch to using vma lock for fault/truncate synchronization, we need to make sure lock exists for all VM_MAYSHARE vmas, not just vmas capable of pmd sharing. These two issues are addressed here. In addition, having a vma lock present in all VM_MAYSHARE vmas, uncovered some issues around vma splitting. Those are also addressed. [1] https://lore.kernel.org/linux-mm/01f10195-7088-4462-6def-909549c75ef4@huawei.com/ This patch (of 3): The hugetlb vma lock hangs off the vm_private_data field and is specific to the vma. When vm_area_dup() is called as part of vma splitting, the vma lock pointer is copied to the new vma. This will result in issues such as double freeing of the structure. Update the hugetlb open vm_ops to allocate a new vma lock for the new vma. The routine __unmap_hugepage_range_final unconditionally unset VM_MAYSHARE to prevent subsequent pmd sharing. hugetlb_vma_lock_free attempted to anticipate this by checking both VM_MAYSHARE and VM_SHARED. However, if only VM_MAYSHARE was set we would miss the free. With the introduction of the vma lock, a vma can not participate in pmd sharing if vm_private_data is NULL. Instead of clearing VM_MAYSHARE in __unmap_hugepage_range_final, free the vma lock to prevent sharing. Also, update the sharing code to make sure vma lock is indeed a condition for pmd sharing. hugetlb_vma_lock_free can then key off VM_MAYSHARE and not miss any vmas. Link: https://lkml.kernel.org/r/20221005011707.514612-1-mike.kravetz@oracle.com Link: https://lkml.kernel.org/r/20221005011707.514612-2-mike.kravetz@oracle.com Fixes: "hugetlb: add vma based lock for pmd sharing" Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
e4fea72b14 |
mglru: mm/vmscan.c: fix imprecise comments
Link: https://lkml.kernel.org/r/YzSWfFI+MOeb1ils@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Yu Zhao
|
14aa8b2d5c |
mm/mglru: don't sync disk for each aging cycle
wakeup_flusher_threads() was added under the assumption that if a system
runs out of clean cold pages, it might want to write back dirty pages more
aggressively so that they can become clean and be dropped.
However, doing so can breach the rate limit a system wants to impose on
writeback, resulting in early SSD wearout.
Link: https://lkml.kernel.org/r/YzSiWq9UEER5LKup@google.com
Fixes:
|
||
Linus Torvalds
|
513389809e |
for-6.1/block-2022-10-03
-----BEGIN PGP SIGNATURE----- iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmM67XkQHGF4Ym9lQGtl cm5lbC5kawAKCRD301j7KXHgpiHoD/9eN+6YnNRPu5+2zeGnnm1Nlwic6YMZeORr KFIeC0COMWoFhNBIPFkgAKT+0qIH+uGt5UsHSM3Y5La7wMR8yLxD4PAnvTZ/Ijtt yxVIOmonJoQ0OrQ2kTbvDXL/9OCUrzwXXyUIEPJnH0Ca1mxeNOgDHbE7VGF6DMul 0D3pI8qs2WLnHlDi1V/8kH5qZ6WoAJSDcb8sTzOUVnyveZPNaZhGQJuHA2XAYMtg fqKMDJqgmNk6jdTMUgdF5B+rV64PQoCy28I7fXqGkEe+RE5TBy57vAa0XY84V8XR /a8CEuwMts2ypk1hIcJG8Vv8K6u5war9yPM5MTngKsoMpzNIlhrhaJQVyjKdcs+E Ixwzexu6xTYcrcq+mUARgeTh79FzTBM/uXEdbCG2G3S6HPd6UZWUJZGfxw/l0Aem V4xB7lj6SQaJDU1iJCYUaHcekNXhQAPvyVG+R2ED1SO3McTpTPIM1aeigxw6vj7u bH3Kfdr94Z8HNuoLuiS6YYfjNt2Shf4LEB6GxKJ9TYHtyhdOyO0H64jGHpygrWqN cSnkWPUqUUNpF7srKM0ZgbliCshvmyJc4aMOFd0gBY/kXf5J/j7IXvh8TFCi9rHH 0KyZH3/3Zsu9geUn3ynznlr4FXU+BcqE6boaa/iWb9sN1m+Rvaahv8cSch/dh44a vQNj/iOBQA== =R05e -----END PGP SIGNATURE----- Merge tag 'for-6.1/block-2022-10-03' of git://git.kernel.dk/linux Pull block updates from Jens Axboe: - NVMe pull requests via Christoph: - handle number of queue changes in the TCP and RDMA drivers (Daniel Wagner) - allow changing the number of queues in nvmet (Daniel Wagner) - also consider host_iface when checking ip options (Daniel Wagner) - don't map pages which can't come from HIGHMEM (Fabio M. De Francesco) - avoid unnecessary flush bios in nvmet (Guixin Liu) - shrink and better pack the nvme_iod structure (Keith Busch) - add comment for unaligned "fake" nqn (Linjun Bao) - print actual source IP address through sysfs "address" attr (Martin Belanger) - various cleanups (Jackie Liu, Wolfram Sang, Genjian Zhang) - handle effects after freeing the request (Keith Busch) - copy firmware_rev on each init (Keith Busch) - restrict management ioctls to admin (Keith Busch) - ensure subsystem reset is single threaded (Keith Busch) - report the actual number of tagset maps in nvme-pci (Keith Busch) - small fabrics authentication fixups (Christoph Hellwig) - add common code for tagset allocation and freeing (Christoph Hellwig) - stop using the request_queue in nvmet (Christoph Hellwig) - set min_align_mask before calculating max_hw_sectors (Rishabh Bhatnagar) - send a rediscover uevent when a persistent discovery controller reconnects (Sagi Grimberg) - misc nvmet-tcp fixes (Varun Prakash, zhenwei pi) - MD pull request via Song: - Various raid5 fix and clean up, by Logan Gunthorpe and David Sloan. - Raid10 performance optimization, by Yu Kuai. - sbitmap wakeup hang fixes (Hugh, Keith, Jan, Yu) - IO scheduler switching quisce fix (Keith) - s390/dasd block driver updates (Stefan) - support for recovery for the ublk driver (ZiyangZhang) - rnbd drivers fixes and updates (Guoqing, Santosh, ye, Christoph) - blk-mq and null_blk map fixes (Bart) - various bcache fixes (Coly, Jilin, Jules) - nbd signal hang fix (Shigeru) - block writeback throttling fix (Yu) - optimize the passthrough mapping handling (me) - prepare block cgroups to being gendisk based (Christoph) - get rid of an old PSI hack in the block layer, moving it to the callers instead where it belongs (Christoph) - blk-throttle fixes and cleanups (Yu) - misc fixes and cleanups (Liu Shixin, Liu Song, Miaohe, Pankaj, Ping-Xiang, Wolfram, Saurabh, Li Jinlin, Li Lei, Lin, Li zeming, Miaohe, Bart, Coly, Gaosheng * tag 'for-6.1/block-2022-10-03' of git://git.kernel.dk/linux: (162 commits) sbitmap: fix lockup while swapping block: add rationale for not using blk_mq_plug() when applicable block: adapt blk_mq_plug() to not plug for writes that require a zone lock s390/dasd: use blk_mq_alloc_disk blk-cgroup: don't update the blkg lookup hint in blkg_conf_prep nvmet: don't look at the request_queue in nvmet_bdev_set_limits nvmet: don't look at the request_queue in nvmet_bdev_zone_mgmt_emulate_all blk-mq: use quiesced elevator switch when reinitializing queues block: replace blk_queue_nowait with bdev_nowait nvme: remove nvme_ctrl_init_connect_q nvme-loop: use the tagset alloc/free helpers nvme-loop: store the generic nvme_ctrl in set->driver_data nvme-loop: initialize sqsize later nvme-fc: use the tagset alloc/free helpers nvme-fc: store the generic nvme_ctrl in set->driver_data nvme-fc: keep ctrl->sqsize in sync with opts->queue_size nvme-rdma: use the tagset alloc/free helpers nvme-rdma: store the generic nvme_ctrl in set->driver_data nvme-tcp: use the tagset alloc/free helpers nvme-tcp: store the generic nvme_ctrl in set->driver_data ... |
||
Linus Torvalds
|
76e4503534 |
for-6.1-tag
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmM6zNkACgkQxWXV+ddt WDsNMg/+LTuwf6Js+mAl1AgtSpLOl2gLfNBJAUXhzwPbc3nF9bwONE/EUYEXTo5h kTf1cQRj0NCIZ7iHDwXuWNm77diNl+SChEDIoc7k0d6P7Qmmn2AWbTLM4dleyg5S 6jxPpOMbegycQfL9tSJNaiT9zlZxj9Z+0yPibR99otrgtuv6zuvRxcdh34rEFIyf xoabO3/18lAKHzYzAZxNXMpbUSBmqLPVoZEOcfBAXvcuIJkzKRP6Y9gwlYs+kn+D J8BPa3LoSNxXrpCvWzlu7vO3gwNp7H7pQQqZKjjEcOZ+dj2UYQeTyJvl1vdzaNyk EoFYlkaKkYi7RaonuHjNaTeD/igJf8Eo6DTiXzACECssbKutlvNG4HXuFApsWy7M T7KZ5jTAQ98ZMYjgZ27UbEpFZd8lYHzV952Njjo9zbRVbqwaPEZTTdkjpz+3X6t4 Z0A951ixOYKiOVdu3Uj1fHaBv0n/p0wrXIGt3ZIdjufM9TctV3oJwOZOiM2H0ccb XJVwsQG92+ja9XLZrw8H62PCKBYo3LL52r9b9NVodY9aTsQWTfiV5OP84RRlncCp hzPkHmO1YIyVcLoijagiO7cW21pQbKfqsRX/P1F7DXyjosHppmDS7IHDWA7Adf3W QA6eBnoWqVwBh7P+IyxJuRG0CrnxkPZeAZIhohDwk5Mt4NGATkA= =NlUz -----END PGP SIGNATURE----- Merge tag 'for-6.1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "There's a bunch of performance improvements, most notably the FIEMAP speedup, the new block group tree to speed up mount on large filesystems, more io_uring integration, some sysfs exports and the usual fixes and core updates. Summary: Performance: - outstanding FIEMAP speed improvement - algorithmic change how extents are enumerated leads to orders of magnitude speed boost (uncached and cached) - extent sharing check speedup (2.2x uncached, 3x cached) - add more cancellation points, allowing to interrupt seeking in files with large number of extents - more efficient hole and data seeking (4x uncached, 1.3x cached) - sample results: 256M, 32K extents: 4s -> 29ms (~150x) 512M, 64K extents: 30s -> 59ms (~550x) 1G, 128K extents: 225s -> 120ms (~1800x) - improved inode logging, especially for directories (on dbench workload throughput +25%, max latency -21%) - improved buffered IO, remove redundant extent state tracking, lowering memory consumption and avoiding rb tree traversal - add sysfs tunable to let qgroup temporarily skip exact accounting when deleting snapshot, leading to a speedup but requiring a rescan after that, will be used by snapper - support io_uring and buffered writes, until now it was just for direct IO, with the no-wait semantics implemented in the buffered write path it now works and leads to speed improvement in IOPS (2x), throughput (2.2x), latency (depends, 2x to 150x) - small performance improvements when dropping and searching for extent maps as well as when flushing delalloc in COW mode (throughput +5MB/s) User visible changes: - new incompatible feature block-group-tree adding a dedicated tree for tracking block groups, this allows a much faster load during mount and avoids seeking unlike when it's scattered in the extent tree items - this reduces mount time for many-terabyte sized filesystems - conversion tool will be provided so existing filesystem can also be updated in place - to reduce test matrix and feature combinations requires no-holes and free-space-tree (mkfs defaults since 5.15) - improved reporting of super block corruption detected by scrub - scrub also tries to repair super block and does not wait until next commit - discard stats and tunables are exported in sysfs (/sys/fs/btrfs/FSID/discard) - qgroup status is exported in sysfs (/sys/sys/fs/btrfs/FSID/qgroups/) - verify that super block was not modified when thawing filesystem Fixes: - FIEMAP fixes - fix extent sharing status, does not depend on the cached status where merged - flush delalloc so compressed extents are reported correctly - fix alignment of VMA for memory mapped files on THP - send: fix failures when processing inodes with no links (orphan files and directories) - fix race between quota enable and quota rescan ioctl - handle more corner cases for read-only compat feature verification - fix missed extent on fsync after dropping extent maps Core: - lockdep annotations to validate various transactions states and state transitions - preliminary support for fs-verity in send - more effective memory use in scrub for subpage where sector is smaller than page - block group caching progress logic has been removed, load is now synchronous - simplify end IO callbacks and bio handling, use chained bios instead of own tracking - add no-wait semantics to several functions (tree search, nocow, flushing, buffered write - cleanups and refactoring MM changes: - export balance_dirty_pages_ratelimited_flags" * tag 'for-6.1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (177 commits) btrfs: set generation before calling btrfs_clean_tree_block in btrfs_init_new_buffer btrfs: drop extent map range more efficiently btrfs: avoid pointless extent map tree search when flushing delalloc btrfs: remove unnecessary next extent map search btrfs: remove unnecessary NULL pointer checks when searching extent maps btrfs: assert tree is locked when clearing extent map from logging btrfs: remove unnecessary extent map initializations btrfs: remove the refcount warning/check at free_extent_map() btrfs: add helper to replace extent map range with a new extent map btrfs: move open coded extent map tree deletion out of inode eviction btrfs: use cond_resched_rwlock_write() during inode eviction btrfs: use extent_map_end() at btrfs_drop_extent_map_range() btrfs: move btrfs_drop_extent_cache() to extent_map.c btrfs: fix missed extent on fsync after dropping extent maps btrfs: remove stale prototype of btrfs_write_inode btrfs: enable nowait async buffered writes btrfs: assert nowait mode is not used for some btree search functions btrfs: make btrfs_buffered_write nowait compatible btrfs: plumb NOWAIT through the write path btrfs: make lock_and_cleanup_extent_if_need nowait compatible ... |
||
Johannes Weiner
|
e55b9f9686 |
mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol
Since
|
||
Johannes Weiner
|
b94c4e949c |
mm: memcontrol: use do_memsw_account() in a few more places
It's slightly more descriptive and consistent with other places that distinguish cgroup1's combined memory+swap accounting scheme from cgroup2's dedicated swap accounting. Link: https://lkml.kernel.org/r/20220926135704.400818-4-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Johannes Weiner
|
b25806dcd3 |
mm: memcontrol: deprecate swapaccounting=0 mode
The swapaccounting= commandline option already does very little today. To
close a trivial containment failure case, the swap ownership tracking part
of the swap controller has recently become mandatory (see commit
|
||
Johannes Weiner
|
c91bdc9358 |
mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled
Patch series "memcg swap fix & cleanups". This patch (of 4): Since commit |
||
Xiu Jianfeng
|
f7c5b1aab5 |
mm/secretmem: remove reduntant return value
The return value @ret is always 0, so remove it and return 0 directly. Link: https://lkml.kernel.org/r/20220920012205.246217-1-xiujianfeng@huawei.com Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Xin Hao
|
8346d69d8b |
mm/hugetlb: add available_huge_pages() func
In hugetlb.c there are several places which compare the values of 'h->free_huge_pages' and 'h->resv_huge_pages', it looks a bit messy, so add a new available_huge_pages() function to do these. Link: https://lkml.kernel.org/r/20220922021929.98961-1-xhao@linux.alibaba.com Signed-off-by: Xin Hao <xhao@linux.alibaba.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Zach O'Keefe
|
d41fd2016e |
mm/khugepaged: add tracepoint to hpage_collapse_scan_file()
Add huge_memory:trace_mm_khugepaged_scan_file tracepoint to hpage_collapse_scan_file() analogously to hpage_collapse_scan_pmd(). While this change is targeted at debugging MADV_COLLAPSE pathway, the "mm_khugepaged" prefix is retained for symmetry with huge_memory:trace_mm_khugepaged_scan_pmd, which retains it's legacy name to prevent changing kernel ABI as much as possible. Link: https://lkml.kernel.org/r/20220907144521.3115321-5-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-5-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Zach O'Keefe
|
34488399fa |
mm/madvise: add file and shmem support to MADV_COLLAPSE
Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y). On success, the backing memory will be a hugepage. For the memory range and process provided, the page tables will synchronously have a huge pmd installed, mapping the THP. Other mappings of the file extent mapped by the memory range may be added to a set of entries that khugepaged will later process and attempt update their page tables to map the THP by a pmd. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. Since khugepaged is single threaded, this change now introduces possibility of collapse contexts racing in file collapse path. There a important few places to consider: (1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU. We could have the memory collapsed out from under us, but the next xas_for_each() iteration will correctly pick up the hugepage. The hugepage might not be up to date (insofar as copying of small page contents might not have completed - the page still may be locked), but regardless what small page index we were iterating over, we'll find the hugepage and identify it as a suitably aligned compound page of order HPAGE_PMD_ORDER. In khugepaged path, we locklessly check the value of the pmd, and only add it to deferred collapse array if we find pmd mapping pte table. This is fine, since other values that could have raced in right afterwards denote failure, or that the memory was successfully collapsed, so we don't need further processing. In madvise path, we'll take mmap_lock() in write to serialize against page table updates and will know what to do based on the true value of the pmd: recheck all ptes if we point to a pte table, directly install the pmd, if the pmd has been cleared, but memory not yet faulted, or nothing at all if we find a huge pmd. It's worth putting emphasis here on how we treat the none pmd here. If khugepaged has processed this mm's page tables already, it will have left the pmd cleared (ready for refault by the process). Depending on the VMA flags and sysfs settings, amount of RAM on the machine, and the current load, could be a relatively common occurrence - and as such is one we'd like to handle successfully in MADV_COLLAPSE. When we see the none pmd in collapse_pte_mapped_thp(), we've locked mmap_lock in write and checked (a) huepaged_vma_check() to see if the backing memory is appropriate still, along with VMA sizing and appropriate hugepage alignment within the file, and (b) we've found a hugepage head of order HPAGE_PMD_ORDER at the offset in the file mapped by our hugepage-aligned virtual address. Even though the common-case is likely race with khugepaged, given these checks (regardless how we got here - we could be operating on a completely different file than originally checked in hpage_collapse_scan_file() for all we know) it should be safe to directly make the pmd a huge pmd pointing to this hugepage. (2) collapse_file() is mostly serialized on the same file extent by lock sequence: | lock hupepage | lock mapping->i_pages | lock 1st page | unlock mapping->i_pages | <page checks> | lock mapping->i_pages | page_ref_freeze(3) | xas_store(hugepage) | unlock mapping->i_pages | page_ref_unfreeze(1) | unlock 1st page V unlock hugepage Once a context (who already has their fresh hugepage locked) locks mapping->i_pages exclusively, it will hold said lock until it locks the first page, and it will hold that lock until the after the hugepage has been added to the page cache (and will unlock the hugepage after page table update, though that isn't important here). A racing context that loses the race for mapping->i_pages will then lose the race to locking the first page. Here - depending on how far the other racing context has gotten - we might find the new hugepage (in which case we'll exit cleanly when we check PageTransCompound()), or we'll find the "old" 1st small page (in which we'll exit cleanly when we discover unexpected refcount of 2 after isolate_lru_page()). This is assuming we are able to successfully lock the page we find - in shmem path, we could just fail the trylock and exit cleanly anyways. Failure path in collapse_file() is similar: once we hold lock on 1st small page, we are serialized against other collapse contexts. Before the 1st small page is unlocked, we add it back to the pagecache and unfreeze the refcount appropriately. Contexts who lost the race to the 1st small page will then find the same 1st small page with the correct refcount and will be able to proceed. [zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()] Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com [shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove check for multi-add in khugepaged_add_pte_mapped_thp()] Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Zach O'Keefe
|
58ac9a8993 |
mm/khugepaged: attempt to map file/shmem-backed pte-mapped THPs by pmds
The main benefit of THPs are that they can be mapped at the pmd level, increasing the likelihood of TLB hit and spending less cycles in page table walks. pte-mapped hugepages - that is - hugepage-aligned compound pages of order HPAGE_PMD_ORDER mapped by ptes - although being contiguous in physical memory, don't have this advantage. In fact, one could argue they are detrimental to system performance overall since they occupy a precious hugepage-aligned/sized region of physical memory that could otherwise be used more effectively. Additionally, pte-mapped hugepages can be the cheapest memory to collapse for khugepaged since no new hugepage allocation or copying of memory contents is necessary - we only need to update the mapping page tables. In the anonymous collapse path, we are able to collapse pte-mapped hugepages (albeit, perhaps suboptimally), but the file/shmem path makes no effort when compound pages (of any order) are encountered. Identify pte-mapped hugepages in the file/shmem collapse path. The final step of which makes a racy check of the value of the pmd to ensure it maps a pte table. This should be fine, since races that result in false-positive (i.e. attempt collapse even though we shouldn't) will fail later in collapse_pte_mapped_thp() once we actually lock mmap_lock and reinspect the pmd value. Races that result in false-negatives (i.e. where we decide to not attempt collapse, but should have) shouldn't be an issue, since in the worst case, we do nothing - which is what we've done up to this point. We make a similar check in retract_page_tables(). If we do think we've found a pte-mapped hugepgae in khugepaged context, attempt to update page tables mapping this hugepage. Note that these collapses still count towards the /sys/kernel/mm/transparent_hugepage/khugepaged/pages_collapsed counter, and if the pte-mapped hugepage was also mapped into multiple process' address spaces, could be incremented for each page table update. Since we increment the counter when a pte-mapped hugepage is successfully added to the list of to-collapse pte-mapped THPs, it's possible that we never actually update the page table either. This is different from how file/shmem pages_collapsed accounting works today where only a successful page cache update is counted (it's also possible here that no page tables are actually changed). Though it incurs some slop, this is preferred to either not accounting for the event at all, or plumbing through data in struct mm_slot on whether to account for the collapse or not. Also note that work still needs to be done to support arbitrary compound pages, and that this should all be converted to using folios. [shy828301@gmail.com: Spelling mistake, update comment, and add Documentation] Link: https://lore.kernel.org/linux-mm/CAHbLzkpHwZxFzjfX9nxVoRhzup8WMjMfyL6Xiq8mZ9M-N3ombw@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220907144521.3115321-3-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-3-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Zach O'Keefe
|
7c6c6cc4d3 |
mm/shmem: add flag to enforce shmem THP in hugepage_vma_check()
Patch series "mm: add file/shmem support to MADV_COLLAPSE", v4. This series builds on top of the previous "mm: userspace hugepage collapse" series which introduced the MADV_COLLAPSE madvise mode and added support for private, anonymous mappings[2], by adding support for file and shmem backed memory to CONFIG_READ_ONLY_THP_FOR_FS=y kernels. File and shmem support have been added with effort to align with existing MADV_COLLAPSE semantics and policy decisions[3]. Collapse of shmem-backed memory ignores kernel-guiding directives and heuristics including all sysfs settings (transparent_hugepage/shmem_enabled), and tmpfs huge= mount options (shmem always supports large folios). Like anonymous mappings, on successful return of MADV_COLLAPSE on file/shmem memory, the contents of memory mapped by the addresses provided will be synchronously pmd-mapped THPs. This functionality unlocks two important uses: (1) Immediately back executable text by THPs. Current support provided by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large system which might impair services from serving at their full rated load after (re)starting. Tricks like mremap(2)'ing text onto anonymous memory to immediately realize iTLB performance prevents page sharing and demand paging, both of which increase steady state memory footprint. Now, we can have the best of both worlds: Peak upfront performance and lower RAM footprints. (2) userfaultfd-based live migration of virtual machines satisfy UFFD faults by fetching native-sized pages over the network (to avoid latency of transferring an entire hugepage). However, after guest memory has been fully copied to the new host, MADV_COLLAPSE can be used to immediately increase guest performance. khugepaged has received a small improvement by association and can now detect and collapse pte-mapped THPs. However, there is still work to be done along the file collapse path. Compound pages of arbitrary order still needs to be supported and THP collapse needs to be converted to using folios in general. Eventually, we'd like to move away from the read-only and executable-mapped constraints currently imposed on eligible files and support any inode claiming huge folio support. That said, I think the series as-is covers enough to claim that MADV_COLLAPSE supports file/shmem memory. Patches 1-3 Implement the guts of the series. Patch 4 Is a tracepoint for debugging. Patches 5-9 Refactor existing khugepaged selftests to work with new memory types + new collapse tests. Patch 10 Adds a userfaultfd selftest mode to mimic a functional test of UFFDIO_REGISTER_MODE_MINOR+MADV_COLLAPSE live migration. (v4 note: "userfaultfd shmem" selftest is failing as of Sep 22 mm-unstable) [1] https://lore.kernel.org/linux-mm/YyiK8YvVcrtZo0z3@google.com/ [2] https://lore.kernel.org/linux-mm/20220706235936.2197195-1-zokeefe@google.com/ [3] https://lore.kernel.org/linux-mm/YtBmhaiPHUTkJml8@google.com/ [4] https://lore.kernel.org/linux-mm/20220922222731.1124481-1-zokeefe@google.com/ [5] https://lore.kernel.org/linux-mm/20220922184651.1016461-1-zokeefe@google.com/ This patch (of 10): Extend 'mm/thp: add flag to enforce sysfs THP in hugepage_vma_check()' to shmem, allowing callers to ignore /sys/kernel/transparent_hugepage/shmem_enabled and tmpfs huge= mount. This is intended to be used by MADV_COLLAPSE, and the rationale is analogous to the anon/file case: MADV_COLLAPSE is not coupled to directives that advise the kernel's decisions on when THPs should be considered eligible. shmem/tmpfs always claims large folio support, regardless of sysfs or mount options. [shy828301@gmail.com: test shmem_huge_force explicitly] Link: https://lore.kernel.org/linux-mm/CAHbLzko3A5-TpS0BgBeKkx5cuOkWgLvWXQH=TdgW-baO4rPtdg@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220922224046.1143204-1-zokeefe@google.com Link: https://lkml.kernel.org/r/20220907144521.3115321-2-zokeefe@google.com Link: https://lkml.kernel.org/r/20220922224046.1143204-2-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Zach O'Keefe
|
0f3e2a2c42 |
mm/madvise: MADV_COLLAPSE return EAGAIN when page cannot be isolated
MADV_COLLAPSE is a best-effort request that attempts to set an actionable
errno value if the request cannot be fulfilled at the time. EAGAIN should
be used to communicate that a resource was temporarily unavailable, but
that the user may try again immediately.
SCAN_DEL_PAGE_LRU is an internal result code used when a page cannot be
isolated from it's LRU list. Since this, like SCAN_PAGE_LRU, is likely a
transitory state, make MADV_COLLAPSE return EAGAIN so that users know they
may reattempt the operation.
Another important scenario to consider is race with khugepaged.
khugepaged might isolate a page while MADV_COLLAPSE is interested in it.
Even though racing with khugepaged might mean that the memory has already
been collapsed, signalling an errno that is non-intrinsic to that memory
or arguments provided to madvise(2) lets the user know that future
attempts might (and in this case likely would) succeed, and avoids
false-negative assumptions by the user.
Link: https://lkml.kernel.org/r/20220922184651.1016461-1-zokeefe@google.com
Fixes:
|
||
Zach O'Keefe
|
780a4b6fb8 |
mm/khugepaged: check compound_order() in collapse_pte_mapped_thp()
By the time we lock a page in collapse_pte_mapped_thp(), the page mapped by the address pushed onto the slot's .pte_mapped_thp[] array might have changed arbitrarily since we last looked at it. We revalidate that the page is still the head of a compound page, but we don't revalidate if the compound page is of order HPAGE_PMD_ORDER before applying rmap and page table updates. Since the kernel now supports large folios of arbitrary order, and since replacing page's pte mappings by a pmd mapping only makes sense for compound pages of order HPAGE_PMD_ORDER, revalidate that the compound order is indeed of order HPAGE_PMD_ORDER before proceeding. Link: https://lore.kernel.org/linux-mm/CAHbLzkon+2ky8v9ywGcsTUgXM_B35jt5NThYqQKXW2YV_GUacw@mail.gmail.com/ Link: https://lkml.kernel.org/r/20220922222731.1124481-1-zokeefe@google.com Signed-off-by: Zach O'Keefe <zokeefe@google.com> Suggested-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Chris Kennelly <ckennelly@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <songliubraving@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Liu Shixin
|
958f32ce83 |
mm: hugetlb: fix UAF in hugetlb_handle_userfault
The vma_lock and hugetlb_fault_mutex are dropped before handling userfault
and reacquire them again after handle_userfault(), but reacquire the
vma_lock could lead to UAF[1,2] due to the following race,
hugetlb_fault
hugetlb_no_page
/*unlock vma_lock */
hugetlb_handle_userfault
handle_userfault
/* unlock mm->mmap_lock*/
vm_mmap_pgoff
do_mmap
mmap_region
munmap_vma_range
/* clean old vma */
/* lock vma_lock again <--- UAF */
/* unlock vma_lock */
Since the vma_lock will unlock immediately after
hugetlb_handle_userfault(), let's drop the unneeded lock and unlock in
hugetlb_handle_userfault() to fix the issue.
[1] https://lore.kernel.org/linux-mm/000000000000d5e00a05e834962e@google.com/
[2] https://lore.kernel.org/linux-mm/20220921014457.1668-1-liuzixian4@huawei.com/
Link: https://lkml.kernel.org/r/20220923042113.137273-1-liushixin2@huawei.com
Fixes:
|
||
Kairui Song
|
c1b8fdae62 |
mm: memcontrol: make cgroup_memory_noswap a static key
cgroup_memory_noswap is used in many hot path, so make it a static key to lower the kernel overhead. Using 8G of ZRAM as SWAP, benchmark using `perf stat -d -d -d --repeat 100` with the following code snip in a non-root cgroup: #include <stdio.h> #include <string.h> #include <linux/mman.h> #include <sys/mman.h> #define MB 1024UL * 1024UL int main(int argc, char **argv){ void *p = mmap(NULL, 8000 * MB, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); memset(p, 0xff, 8000 * MB); madvise(p, 8000 * MB, MADV_PAGEOUT); memset(p, 0xff, 8000 * MB); return 0; } Before: 7,021.43 msec task-clock # 0.967 CPUs utilized ( +- 0.03% ) 4,010 context-switches # 573.853 /sec ( +- 0.01% ) 0 cpu-migrations # 0.000 /sec 2,052,057 page-faults # 293.661 K/sec ( +- 0.00% ) 12,616,546,027 cycles # 1.805 GHz ( +- 0.06% ) (39.92%) 156,823,666 stalled-cycles-frontend # 1.25% frontend cycles idle ( +- 0.10% ) (40.25%) 310,130,812 stalled-cycles-backend # 2.47% backend cycles idle ( +- 4.39% ) (40.73%) 18,692,516,591 instructions # 1.49 insn per cycle # 0.01 stalled cycles per insn ( +- 0.04% ) (40.75%) 4,907,447,976 branches # 702.283 M/sec ( +- 0.05% ) (40.30%) 13,002,578 branch-misses # 0.26% of all branches ( +- 0.08% ) (40.48%) 7,069,786,296 L1-dcache-loads # 1.012 G/sec ( +- 0.03% ) (40.32%) 649,385,847 L1-dcache-load-misses # 9.13% of all L1-dcache accesses ( +- 0.07% ) (40.10%) 1,485,448,688 L1-icache-loads # 212.576 M/sec ( +- 0.15% ) (39.49%) 31,628,457 L1-icache-load-misses # 2.13% of all L1-icache accesses ( +- 0.40% ) (39.57%) 6,667,311 dTLB-loads # 954.129 K/sec ( +- 0.21% ) (39.50%) 5,668,555 dTLB-load-misses # 86.40% of all dTLB cache accesses ( +- 0.12% ) (39.03%) 765 iTLB-loads # 109.476 /sec ( +- 21.81% ) (39.44%) 4,370,351 iTLB-load-misses # 214320.09% of all iTLB cache accesses ( +- 1.44% ) (39.86%) 149,207,254 L1-dcache-prefetches # 21.352 M/sec ( +- 0.13% ) (40.27%) 7.25869 +- 0.00203 seconds time elapsed ( +- 0.03% ) After: 6,576.16 msec task-clock # 0.953 CPUs utilized ( +- 0.10% ) 4,020 context-switches # 605.595 /sec ( +- 0.01% ) 0 cpu-migrations # 0.000 /sec 2,052,056 page-faults # 309.133 K/sec ( +- 0.00% ) 11,967,619,180 cycles # 1.803 GHz ( +- 0.36% ) (38.76%) 161,259,240 stalled-cycles-frontend # 1.38% frontend cycles idle ( +- 0.27% ) (36.58%) 253,605,302 stalled-cycles-backend # 2.16% backend cycles idle ( +- 4.45% ) (34.78%) 19,328,171,892 instructions # 1.65 insn per cycle # 0.01 stalled cycles per insn ( +- 0.10% ) (31.46%) 5,213,967,902 branches # 785.461 M/sec ( +- 0.18% ) (30.68%) 12,385,170 branch-misses # 0.24% of all branches ( +- 0.26% ) (34.13%) 7,271,687,822 L1-dcache-loads # 1.095 G/sec ( +- 0.12% ) (35.29%) 649,873,045 L1-dcache-load-misses # 8.93% of all L1-dcache accesses ( +- 0.11% ) (41.41%) 1,950,037,608 L1-icache-loads # 293.764 M/sec ( +- 0.33% ) (43.11%) 31,365,566 L1-icache-load-misses # 1.62% of all L1-icache accesses ( +- 0.39% ) (45.89%) 6,767,809 dTLB-loads # 1.020 M/sec ( +- 0.47% ) (48.42%) 6,339,590 dTLB-load-misses # 95.43% of all dTLB cache accesses ( +- 0.50% ) (46.60%) 736 iTLB-loads # 110.875 /sec ( +- 1.79% ) (48.60%) 4,314,836 iTLB-load-misses # 518653.73% of all iTLB cache accesses ( +- 0.63% ) (42.91%) 144,950,156 L1-dcache-prefetches # 21.836 M/sec ( +- 0.37% ) (41.39%) 6.89935 +- 0.00703 seconds time elapsed ( +- 0.10% ) The performance is clearly better. There is no significant hotspot improvement according to perf report, as there are quite a few callers of memcg_swap_enabled and do_memsw_account (which calls memcg_swap_enabled). Many pieces of minor optimizations resulted in lower overhead for the branch predictor, and bettter performance. Link: https://lkml.kernel.org/r/20220919180634.45958-3-ryncsn@gmail.com Signed-off-by: Kairui Song <kasong@tencent.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: Muchun Song <songmuchun@bytedance.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kaixu Xia
|
233f0b31bd |
mm/damon: deduplicate damon_{reclaim,lru_sort}_apply_parameters()
The bodies of damon_{reclaim,lru_sort}_apply_parameters() contain duplicates. This commit adds a common function damon_set_region_biggest_system_ram_default() to remove the duplicates. Link: https://lkml.kernel.org/r/6329f00d.a70a0220.9bb29.3678SMTPIN_ADDED_BROKEN@mx.google.com Signed-off-by: Kaixu Xia <kaixuxia@tencent.com> Suggested-by: SeongJae Park <sj@kernel.org> Reviewed-by: SeongJae Park <sj@kernel.org> Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Xin Hao
|
30b6242c49 |
mm/damon/sysfs: return 'err' value when call kstrtoul() failed
We had better return the 'err' value when calling kstrtoul() failed, so the user will know why it really fails, there do little change, let it return the 'err' value when failed. Link: https://lkml.kernel.org/r/6329ebe0.050a0220.ec4bd.297cSMTPIN_ADDED_BROKEN@mx.google.com Suggested-by: SeongJae Park <sj@kernel.org> Signed-off-by: Xin Hao <xhao@linux.alibaba.com> Reviewed-by: SeongJae Park <sj@kernel.org> Signed-off-by: SeongJae Park <sj@kernel.org> Reviewed-by: Xin Hao <xhao@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Ran Xiaokai
|
a57ae9ef9e |
mm/page_alloc: update comments for rmqueue()
Since commit
|
||
Kaixu Xia
|
e3e486e634 |
mm/damon: rename damon_pageout_score() to damon_cold_score()
In the beginning there is only one damos_action 'DAMOS_PAGEOUT' that need to get the coldness score of a region for a scheme, which using damon_pageout_score() to do that. But now there are also other damos_action actions need the coldness score, so rename it to damon_cold_score() to make more sense. Link: https://lkml.kernel.org/r/1663423014-28907-1-git-send-email-kaixuxia@tencent.com Signed-off-by: Kaixu Xia <kaixuxia@tencent.com> Reviewed-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Mike Kravetz
|
2b21624fc2 |
hugetlb: freeze allocated pages before creating hugetlb pages
When creating hugetlb pages, the hugetlb code must first allocate contiguous pages from a low level allocator such as buddy, cma or memblock. The pages returned from these low level allocators are ref counted. This creates potential issues with other code taking speculative references on these pages before they can be transformed to a hugetlb page. This issue has been addressed with methods and code such as that provided in [1]. Recent discussions about vmemmap freeing [2] have indicated that it would be beneficial to freeze all sub pages, including the head page of pages returned from low level allocators before converting to a hugetlb page. This helps avoid races if we want to replace the page containing vmemmap for the head page. There have been proposals to change at least the buddy allocator to return frozen pages as described at [3]. If such a change is made, it can be employed by the hugetlb code. However, as mentioned above hugetlb uses several low level allocators so each would need to be modified to return frozen pages. For now, we can manually freeze the returned pages. This is done in two places: 1) alloc_buddy_huge_page, only the returned head page is ref counted. We freeze the head page, retrying once in the VERY rare case where there may be an inflated ref count. 2) prep_compound_gigantic_page, for gigantic pages the current code freezes all pages except the head page. New code will simply freeze the head page as well. In a few other places, code checks for inflated ref counts on newly allocated hugetlb pages. With the modifications to freeze after allocating, this code can be removed. After hugetlb pages are freshly allocated, they are often added to the hugetlb free lists. Since these pages were previously ref counted, this was done via put_page() which would end up calling the hugetlb destructor: free_huge_page. With changes to freeze pages, we simply call free_huge_page directly to add the pages to the free list. In a few other places, freshly allocated hugetlb pages were immediately put into use, and the expectation was they were already ref counted. In these cases, we must manually ref count the page. [1] https://lore.kernel.org/linux-mm/20210622021423.154662-3-mike.kravetz@oracle.com/ [2] https://lore.kernel.org/linux-mm/20220802180309.19340-1-joao.m.martins@oracle.com/ [3] https://lore.kernel.org/linux-mm/20220809171854.3725722-1-willy@infradead.org/ [mike.kravetz@oracle.com: fix NULL pointer dereference] Link: https://lkml.kernel.org/r/20220921202702.106069-1-mike.kravetz@oracle.com Link: https://lkml.kernel.org/r/20220916214638.155744-1-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Miaohe Lin
|
c9b3637f8a |
mm/page_alloc: fix obsolete comment in deferred_pfn_valid()
There are no architectures that can have holes in the memory map within a
pageblock since commit
|
||
Miaohe Lin
|
896c4d5253 |
mm/page_alloc: use costly_order in WARN_ON_ONCE_GFP()
There's no need to check whether order > PAGE_ALLOC_COSTLY_ORDER again. Minor readability improvement. Link: https://lkml.kernel.org/r/20220916072257.9639-15-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Miaohe Lin
|
dae37a5dcc |
mm/page_alloc: init local variable buddy_pfn
The local variable buddy_pfn could be passed to buddy_merge_likely() without initialization if the passed in order is MAX_ORDER - 1. This looks buggy but buddy_pfn won't be used in this case as there's a order >= MAX_ORDER - 2 check. Init buddy_pfn to 0 anyway to avoid possible future misuse. Link: https://lkml.kernel.org/r/20220916072257.9639-14-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Miaohe Lin
|
c940e0207a |
mm/page_alloc: use helper macro SZ_1{K,M}
Use helper macro SZ_1K and SZ_1M to do the size conversion. Minor readability improvement. Link: https://lkml.kernel.org/r/20220916072257.9639-13-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Miaohe Lin
|
6dc2c87a5a |
mm/page_alloc: make boot_nodestats static
It's only used in mm/page_alloc.c now. Make it static. Link: https://lkml.kernel.org/r/20220916072257.9639-12-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Miaohe Lin
|
c035290424 |
mm/page_alloc: use local variable zone_idx directly
Use local variable zone_idx directly since it holds the exact value of zone_idx(). No functional change intended. Link: https://lkml.kernel.org/r/20220916072257.9639-10-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Miaohe Lin
|
b36184553d |
mm/page_alloc: add missing is_migrate_isolate() check in set_page_guard()
In MIGRATE_ISOLATE case, zone freepage state shouldn't be modified as
caller will take care of it. Add missing is_migrate_isolate() here to
avoid possible unbalanced freepage state. This would happen if someone
isolates the block, and then we face an MCE failure/soft-offline on a page
within that block. __mod_zone_freepage_state() will be triggered via
below call trace which already had been triggered back when block was
isolated:
take_page_off_buddy
break_down_buddy_pages
set_page_guard
Link: https://lkml.kernel.org/r/20220916072257.9639-9-linmiaohe@huawei.com
Fixes:
|
||
Miaohe Lin
|
022e7fa0f7 |
mm/page_alloc: fix freeing static percpu memory
The size of struct per_cpu_zonestat can be 0 on !SMP && !NUMA. In that
case, zone->per_cpu_zonestats will always equal to boot_zonestats. But in
zone_pcp_reset(), zone->per_cpu_zonestats is freed via free_percpu()
directly without checking against boot_zonestats first. boot_zonestats
will be released by free_percpu() unexpectedly.
Link: https://lkml.kernel.org/r/20220916072257.9639-7-linmiaohe@huawei.com
Fixes:
|
||
Miaohe Lin
|
5749fcc5f0 |
mm/page_alloc: add __init annotations to init_mem_debugging_and_hardening()
It's only called by mm_init(). Add __init annotations to it. Link: https://lkml.kernel.org/r/20220916072257.9639-6-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Miaohe Lin
|
709924bc75 |
mm/page_alloc: remove obsolete comment in zone_statistics()
Since commit
|
||
Miaohe Lin
|
638a9ae97a |
mm: remove obsolete macro NR_PCP_ORDER_MASK and NR_PCP_ORDER_WIDTH
Since commit
|
||
Miaohe Lin
|
b89f173516 |
mm/page_alloc: make zone_pcp_update() static
Since commit
|
||
Miaohe Lin
|
ce96fa6223 |
mm/page_alloc: ensure kswapd doesn't accidentally go to sleep
Patch series "A few cleanup patches for mm", v2.
This series contains a few cleanup patches to remove the obsolete comments
and functions, use helper macro to improve readability and so on. More
details can be found in the respective changelogs.
This patch (of 16):
If ALLOC_KSWAPD is set, wake_all_kswapds() will be called to ensure kswapd
doesn't accidentally go to sleep. But when reserve_flags is set,
alloc_flags will be overwritten and ALLOC_KSWAPD is thus lost. Preserve
the ALLOC_KSWAPD flag in alloc_flags to ensure kswapd won't go to sleep
accidentally.
Link: https://lkml.kernel.org/r/20220916072257.9639-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20220916072257.9639-2-linmiaohe@huawei.com
Fixes:
|