Currently we have tracepoints for both active and inactive LRU lists
reclaim but we do not have any which would tell us why we we decided to
age the active list. Without that it is quite hard to diagnose
active/inactive lists balancing. Add mm_vmscan_inactive_list_is_low
tracepoint to tell us this information.
Link: http://lkml.kernel.org/r/20170104101942.4860-8-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm_vmscan_lru_shrink_inactive will currently report the number of
scanned and reclaimed pages. This doesn't give us an idea how the
reclaim went except for the overall effectiveness though. Export and
show other counters which will tell us why we couldn't reclaim some
pages.
- nr_dirty, nr_writeback, nr_congested and nr_immediate tells
us how many pages are blocked due to IO
- nr_activate tells us how many pages were moved to the active
list
- nr_ref_keep reports how many pages are kept on the LRU due
to references (mostly for the file pages which are about to
go for another round through the inactive list)
- nr_unmap_fail - how many pages failed to unmap
All these are rather low level so they might change in future but the
tracepoint is already implementation specific so no tools should be
depending on its stability.
Link: http://lkml.kernel.org/r/20170104101942.4860-7-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shrink_page_list returns quite some counters back to its caller.
Extract the existing 5 into struct reclaim_stat because this makes the
code easier to follow and also allows further counters to be returned.
While we are at it, make all of them unsigned rather than unsigned long
as we do not really need full 64b for them (we never scan more than
SWAP_CLUSTER_MAX pages at once). This should reduce some stack space.
This patch shouldn't introduce any functional change.
Link: http://lkml.kernel.org/r/20170104101942.4860-6-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm_vmscan_lru_isolate currently prints only whether the LRU we isolate
from is file or anonymous but we do not know which LRU this is.
It is useful to know whether the list is active or inactive, since we
are using the same function to isolate pages from both of them and it's
hard to distinguish otherwise.
Link: http://lkml.kernel.org/r/20170104101942.4860-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm_vmscan_lru_isolate shows the number of requested, scanned and taken
pages. This is mostly OK but on 32b systems the number of scanned pages
is quite misleading because it includes both the scanned and skipped
pages. Moreover the skipped part is scaled based on the number of taken
pages. Let's report the exact numbers without any additional logic and
add the number of skipped pages.
This should make the reported data much more easier to interpret.
Link: http://lkml.kernel.org/r/20170104101942.4860-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Our reclaim process has several tracepoints to tell us more about how
things are progressing. We are, however, missing a tracepoint to track
active list aging. Introduce mm_vmscan_lru_shrink_active which reports
the number of
- nr_taken is number of isolated pages from the active list
- nr_referenced pages which tells us that we are hitting referenced
pages which are deactivated. If this is a large part of the
reported nr_deactivated pages then we might be hitting into
the active list too early because they might be still part of
the working set. This might help to debug performance issues.
- nr_active pages which tells us how many pages are kept on the
active list - mostly exec file backed pages. A high number can
indicate that we might be trashing on executables.
[mhocko@suse.com: update]
Link: http://lkml.kernel.org/r/20170104135244.GJ25453@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20170104101942.4860-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nils Holland and Klaus Ethgen have reported unexpected OOM killer
invocations with 32b kernel starting with 4.8 kernels
kworker/u4:5 invoked oom-killer: gfp_mask=0x2400840(GFP_NOFS|__GFP_NOFAIL), nodemask=0, order=0, oom_score_adj=0
kworker/u4:5 cpuset=/ mems_allowed=0
CPU: 1 PID: 2603 Comm: kworker/u4:5 Not tainted 4.9.0-gentoo #2
[...]
Mem-Info:
active_anon:58685 inactive_anon:90 isolated_anon:0
active_file:274324 inactive_file:281962 isolated_file:0
unevictable:0 dirty:649 writeback:0 unstable:0
slab_reclaimable:40662 slab_unreclaimable:17754
mapped:7382 shmem:202 pagetables:351 bounce:0
free:206736 free_pcp:332 free_cma:0
Node 0 active_anon:234740kB inactive_anon:360kB active_file:1097296kB inactive_file:1127848kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:29528kB dirty:2596kB writeback:0kB shmem:0kB shmem_thp: 0kB shmem_pmdmapped: 184320kB anon_thp: 808kB writeback_tmp:0kB unstable:0kB pages_scanned:0 all_unreclaimable? no
DMA free:3952kB min:788kB low:984kB high:1180kB active_anon:0kB inactive_anon:0kB active_file:7316kB inactive_file:0kB unevictable:0kB writepending:96kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:3200kB slab_unreclaimable:1408kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 813 3474 3474
Normal free:41332kB min:41368kB low:51708kB high:62048kB active_anon:0kB inactive_anon:0kB active_file:532748kB inactive_file:44kB unevictable:0kB writepending:24kB present:897016kB managed:836248kB mlocked:0kB slab_reclaimable:159448kB slab_unreclaimable:69608kB kernel_stack:1112kB pagetables:1404kB bounce:0kB free_pcp:528kB local_pcp:340kB free_cma:0kB
lowmem_reserve[]: 0 0 21292 21292
HighMem free:781660kB min:512kB low:34356kB high:68200kB active_anon:234740kB inactive_anon:360kB active_file:557232kB inactive_file:1127804kB unevictable:0kB writepending:2592kB present:2725384kB managed:2725384kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:800kB local_pcp:608kB free_cma:0kB
the oom killer is clearly pre-mature because there there is still a lot
of page cache in the zone Normal which should satisfy this lowmem
request. Further debugging has shown that the reclaim cannot make any
forward progress because the page cache is hidden in the active list
which doesn't get rotated because inactive_list_is_low is not memcg
aware.
The code simply subtracts per-zone highmem counters from the respective
memcg's lru sizes which doesn't make any sense. We can simply end up
always seeing the resulting active and inactive counts 0 and return
false. This issue is not limited to 32b kernels but in practice the
effect on systems without CONFIG_HIGHMEM would be much harder to notice
because we do not invoke the OOM killer for allocations requests
targeting < ZONE_NORMAL.
Fix the issue by tracking per zone lru page counts in mem_cgroup_per_node
and subtract per-memcg highmem counts when memcg is enabled. Introduce
helper lruvec_zone_lru_size which redirects to either zone counters or
mem_cgroup_get_zone_lru_size when appropriate.
We are losing empty LRU but non-zero lru size detection introduced by
ca707239e8 ("mm: update_lru_size warn and reset bad lru_size") because
of the inherent zone vs. node discrepancy.
Fixes: f8d1a31163 ("mm: consider whether to decivate based on eligible zones inactive ratio")
Link: http://lkml.kernel.org/r/20170104100825.3729-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Nils Holland <nholland@tisys.org>
Tested-by: Nils Holland <nholland@tisys.org>
Reported-by: Klaus Ethgen <Klaus@Ethgen.de>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org> [4.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge updates from Andrew Morton:
- various misc bits
- most of MM (quite a lot of MM material is awaiting the merge of
linux-next dependencies)
- kasan
- printk updates
- procfs updates
- MAINTAINERS
- /lib updates
- checkpatch updates
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (123 commits)
init: reduce rootwait polling interval time to 5ms
binfmt_elf: use vmalloc() for allocation of vma_filesz
checkpatch: don't emit unified-diff error for rename-only patches
checkpatch: don't check c99 types like uint8_t under tools
checkpatch: avoid multiple line dereferences
checkpatch: don't check .pl files, improve absolute path commit log test
scripts/checkpatch.pl: fix spelling
checkpatch: don't try to get maintained status when --no-tree is given
lib/ida: document locking requirements a bit better
lib/rbtree.c: fix typo in comment of ____rb_erase_color
lib/Kconfig.debug: make CONFIG_STRICT_DEVMEM depend on CONFIG_DEVMEM
MAINTAINERS: add drm and drm/i915 irc channels
MAINTAINERS: add "C:" for URI for chat where developers hang out
MAINTAINERS: add drm and drm/i915 bug filing info
MAINTAINERS: add "B:" for URI where to file bugs
get_maintainer: look for arbitrary letter prefixes in sections
printk: add Kconfig option to set default console loglevel
printk/sound: handle more message headers
printk/btrfs: handle more message headers
printk/kdb: handle more message headers
...
Pull smp hotplug updates from Thomas Gleixner:
"This is the final round of converting the notifier mess to the state
machine. The removal of the notifiers and the related infrastructure
will happen around rc1, as there are conversions outstanding in other
trees.
The whole exercise removed about 2000 lines of code in total and in
course of the conversion several dozen bugs got fixed. The new
mechanism allows to test almost every hotplug step standalone, so
usage sites can exercise all transitions extensively.
There is more room for improvement, like integrating all the
pointlessly different architecture mechanisms of synchronizing,
setting cpus online etc into the core code"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
tracing/rb: Init the CPU mask on allocation
soc/fsl/qbman: Convert to hotplug state machine
soc/fsl/qbman: Convert to hotplug state machine
zram: Convert to hotplug state machine
KVM/PPC/Book3S HV: Convert to hotplug state machine
arm64/cpuinfo: Convert to hotplug state machine
arm64/cpuinfo: Make hotplug notifier symmetric
mm/compaction: Convert to hotplug state machine
iommu/vt-d: Convert to hotplug state machine
mm/zswap: Convert pool to hotplug state machine
mm/zswap: Convert dst-mem to hotplug state machine
mm/zsmalloc: Convert to hotplug state machine
mm/vmstat: Convert to hotplug state machine
mm/vmstat: Avoid on each online CPU loops
mm/vmstat: Drop get_online_cpus() from init_cpu_node_state/vmstat_cpu_dead()
tracing/rb: Convert to hotplug state machine
oprofile/nmi timer: Convert to hotplug state machine
net/iucv: Use explicit clean up labels in iucv_init()
x86/pci/amd-bus: Convert to hotplug state machine
x86/oprofile/nmi: Convert to hotplug state machine
...
Our system uses significantly more slab memory with memcg enabled with
the latest kernel. With 3.10 kernel, slab uses 2G memory, while with
4.6 kernel, 6G memory is used. The shrinker has problem. Let's see we
have two memcg for one shrinker. In do_shrink_slab:
1. Check cg1. nr_deferred = 0, assume total_scan = 700. batch size
is 1024, then no memory is freed. nr_deferred = 700
2. Check cg2. nr_deferred = 700. Assume freeable = 20, then
total_scan = 10 or 40. Let's assume it's 10. No memory is freed.
nr_deferred = 10.
The deferred share of cg1 is lost in this case. kswapd will free no
memory even run above steps again and again.
The fix makes sure one memcg's deferred share isn't lost.
Link: http://lkml.kernel.org/r/2414be961b5d25892060315fbb56bb19d81d0c07.1476227351.git.shli@fb.com
Signed-off-by: Shaohua Li <shli@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: <stable@vger.kernel.org> [4.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Boris Zhmurov has reported RCU stalls during the kswapd reclaim:
INFO: rcu_sched detected stalls on CPUs/tasks:
23-...: (22 ticks this GP) idle=92f/140000000000000/0 softirq=2638404/2638404 fqs=23
(detected by 4, t=6389 jiffies, g=786259, c=786258, q=42115)
Task dump for CPU 23:
kswapd1 R running task 0 148 2 0x00000008
Call Trace:
shrink_node+0xd2/0x2f0
kswapd+0x2cb/0x6a0
mem_cgroup_shrink_node+0x160/0x160
kthread+0xbd/0xe0
__switch_to+0x1fa/0x5c0
ret_from_fork+0x1f/0x40
kthread_create_on_node+0x180/0x180
a closer code inspection has shown that we might indeed miss all the
scheduling points in the reclaim path if no pages can be isolated from
the LRU list. This is a pathological case but other reports from Donald
Buczek have shown that we might indeed hit such a path:
clusterd-989 [009] .... 118023.654491: mm_vmscan_direct_reclaim_end: nr_reclaimed=193
kswapd1-86 [001] dN.. 118023.987475: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239830 nr_taken=0 file=1
kswapd1-86 [001] dN.. 118024.320968: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239844 nr_taken=0 file=1
kswapd1-86 [001] dN.. 118024.654375: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239858 nr_taken=0 file=1
kswapd1-86 [001] dN.. 118024.987036: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239872 nr_taken=0 file=1
kswapd1-86 [001] dN.. 118025.319651: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239886 nr_taken=0 file=1
kswapd1-86 [001] dN.. 118025.652248: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239900 nr_taken=0 file=1
kswapd1-86 [001] dN.. 118025.984870: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239914 nr_taken=0 file=1
[...]
kswapd1-86 [001] dN.. 118084.274403: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4241133 nr_taken=0 file=1
this is minute long snapshot which didn't take a single page from the
LRU. It is not entirely clear why only 1303 pages have been scanned
during that time (maybe there was a heavy IRQ activity interfering).
In any case it looks like we can really hit long periods without
scheduling on non preemptive kernels so an explicit cond_resched() in
shrink_node_memcg which is independent on the reclaim operation is due.
Link: http://lkml.kernel.org/r/20161202095841.16648-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Boris Zhmurov <bb@kernelpanic.ru>
Tested-by: Boris Zhmurov <bb@kernelpanic.ru>
Reported-by: Donald Buczek <buczek@molgen.mpg.de>
Reported-by: "Christopher S. Aker" <caker@theshore.net>
Reported-by: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On 4.0, we saw a stack corruption from a page fault entering direct
memory cgroup reclaim, calling into btrfs_releasepage(), which then
tried to allocate an extent and recursed back into a kmem charge ad
nauseam:
[...]
btrfs_releasepage+0x2c/0x30
try_to_release_page+0x32/0x50
shrink_page_list+0x6da/0x7a0
shrink_inactive_list+0x1e5/0x510
shrink_lruvec+0x605/0x7f0
shrink_zone+0xee/0x320
do_try_to_free_pages+0x174/0x440
try_to_free_mem_cgroup_pages+0xa7/0x130
try_charge+0x17b/0x830
memcg_charge_kmem+0x40/0x80
new_slab+0x2d9/0x5a0
__slab_alloc+0x2fd/0x44f
kmem_cache_alloc+0x193/0x1e0
alloc_extent_state+0x21/0xc0
__clear_extent_bit+0x2b5/0x400
try_release_extent_mapping+0x1a3/0x220
__btrfs_releasepage+0x31/0x70
btrfs_releasepage+0x2c/0x30
try_to_release_page+0x32/0x50
shrink_page_list+0x6da/0x7a0
shrink_inactive_list+0x1e5/0x510
shrink_lruvec+0x605/0x7f0
shrink_zone+0xee/0x320
do_try_to_free_pages+0x174/0x440
try_to_free_mem_cgroup_pages+0xa7/0x130
try_charge+0x17b/0x830
mem_cgroup_try_charge+0x65/0x1c0
handle_mm_fault+0x117f/0x1510
__do_page_fault+0x177/0x420
do_page_fault+0xc/0x10
page_fault+0x22/0x30
On later kernels, kmem charging is opt-in rather than opt-out, and that
particular kmem allocation in btrfs_releasepage() is no longer being
charged and won't recurse and overrun the stack anymore.
But it's not impossible for an accounted allocation to happen from the
memcg direct reclaim context, and we needed to reproduce this crash many
times before we even got a useful stack trace out of it.
Like other direct reclaimers, mark tasks in memcg reclaim PF_MEMALLOC to
avoid recursing into any other form of direct reclaim. Then let
recursive charges from PF_MEMALLOC contexts bypass the cgroup limit.
Link: http://lkml.kernel.org/r/20161025141050.GA13019@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the existing enums instead of hardcoded index when looking at the
zonelist. This makes it more readable. No functionality change by this
patch.
Link: http://lkml.kernel.org/r/1472227078-24852-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
throttle_vm_writeout() was introduced back in 2005 to fix OOMs caused by
excessive pageout activity during the reclaim. Too many pages could be
put under writeback therefore LRUs would be full of unreclaimable pages
until the IO completes and in turn the OOM killer could be invoked.
There have been some important changes introduced since then in the
reclaim path though. Writers are throttled by balance_dirty_pages when
initiating the buffered IO and later during the memory pressure, the
direct reclaim is throttled by wait_iff_congested if the node is
considered congested by dirty pages on LRUs and the underlying bdi is
congested by the queued IO. The kswapd is throttled as well if it
encounters pages marked for immediate reclaim or under writeback which
signals that that there are too many pages under writeback already.
Finally should_reclaim_retry does congestion_wait if the reclaim cannot
make any progress and there are too many dirty/writeback pages.
Another important aspect is that we do not issue any IO from the direct
reclaim context anymore. In a heavy parallel load this could queue a
lot of IO which would be very scattered and thus unefficient which would
just make the problem worse.
This three mechanisms should throttle and keep the amount of IO in a
steady state even under heavy IO and memory pressure so yet another
throttling point doesn't really seem helpful. Quite contrary, Mikulas
Patocka has reported that swap backed by dm-crypt doesn't work properly
because the swapout IO cannot make sufficient progress as the writeout
path depends on dm_crypt worker which has to allocate memory to perform
the encryption. In order to guarantee a forward progress it relies on
the mempool allocator. mempool_alloc(), however, prefers to use the
underlying (usually page) allocator before it grabs objects from the
pool. Such an allocation can dive into the memory reclaim and
consequently to throttle_vm_writeout. If there are too many dirty or
pages under writeback it will get throttled even though it is in fact a
flusher to clear pending pages.
kworker/u4:0 D ffff88003df7f438 10488 6 2 0x00000000
Workqueue: kcryptd kcryptd_crypt [dm_crypt]
Call Trace:
schedule+0x3c/0x90
schedule_timeout+0x1d8/0x360
io_schedule_timeout+0xa4/0x110
congestion_wait+0x86/0x1f0
throttle_vm_writeout+0x44/0xd0
shrink_zone_memcg+0x613/0x720
shrink_zone+0xe0/0x300
do_try_to_free_pages+0x1ad/0x450
try_to_free_pages+0xef/0x300
__alloc_pages_nodemask+0x879/0x1210
alloc_pages_current+0xa1/0x1f0
new_slab+0x2d7/0x6a0
___slab_alloc+0x3fb/0x5c0
__slab_alloc+0x51/0x90
kmem_cache_alloc+0x27b/0x310
mempool_alloc_slab+0x1d/0x30
mempool_alloc+0x91/0x230
bio_alloc_bioset+0xbd/0x260
kcryptd_crypt+0x114/0x3b0 [dm_crypt]
Let's just drop throttle_vm_writeout altogether. It is not very much
helpful anymore.
I have tried to test a potential writeback IO runaway similar to the one
described in the original patch which has introduced that [1]. Small
virtual machine (512MB RAM, 4 CPUs, 2G of swap space and disk image on a
rather slow NFS in a sync mode on the host) with 8 parallel writers each
writing 1G worth of data. As soon as the pagecache fills up and the
direct reclaim hits then I start anon memory consumer in a loop
(allocating 300M and exiting after populating it) in the background to
make the memory pressure even stronger as well as to disrupt the steady
state for the IO. The direct reclaim is throttled because of the
congestion as well as kswapd hitting congestion_wait due to nr_immediate
but throttle_vm_writeout doesn't ever trigger the sleep throughout the
test. Dirty+writeback are close to nr_dirty_threshold with some
fluctuations caused by the anon consumer.
[1] https://www2.kernel.org/pub/linux/kernel/people/akpm/patches/2.6/2.6.9-rc1/2.6.9-rc1-mm3/broken-out/vm-pageout-throttling.patch
Link: http://lkml.kernel.org/r/1471171473-21418-1-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: NeilBrown <neilb@suse.com>
Cc: Ondrej Kozina <okozina@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The compaction_ready() is used during direct reclaim for costly order
allocations to skip reclaim for zones where compaction should be
attempted instead. It's combining the standard compaction_suitable()
check with its own watermark check based on high watermark with extra
gap, and the result is confusing at best.
This patch attempts to better structure and document the checks
involved. First, compaction_suitable() can determine that the
allocation should either succeed already, or that compaction doesn't
have enough free pages to proceed. The third possibility is that
compaction has enough free pages, but we still decide to reclaim first -
unless we are already above the high watermark with gap. This does not
mean that the reclaim will actually reach this watermark during single
attempt, this is rather an over-reclaim protection. So document the
code as such. The check for compaction_deferred() is removed
completely, as it in fact had no proper role here.
The result after this patch is mainly a less confusing code. We also
skip some over-reclaim in cases where the allocation should already
succed.
Link: http://lkml.kernel.org/r/20160810091226.6709-12-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction uses a watermark gap of (2UL << order) pages at various
places and it's not immediately obvious why. Abstract it through a
compact_gap() wrapper to create a single place with a thorough
explanation.
[vbabka@suse.cz: clarify the comment of compact_gap()]
Link: http://lkml.kernel.org/r/7b6aed1f-fdf8-2063-9ff4-bbe4de712d37@suse.cz
Link: http://lkml.kernel.org/r/20160810091226.6709-9-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
COMPACT_PARTIAL has historically meant that compaction returned after
doing some work without fully compacting a zone. It however didn't
distinguish if compaction terminated because it succeeded in creating
the requested high-order page. This has changed recently and now we
only return COMPACT_PARTIAL when compaction thinks it succeeded, or the
high-order watermark check in compaction_suitable() passes and no
compaction needs to be done.
So at this point we can make the return value clearer by renaming it to
COMPACT_SUCCESS. The next patch will remove some redundant tests for
success where compaction just returned COMPACT_SUCCESS.
Link: http://lkml.kernel.org/r/20160810091226.6709-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
init_tlb_ubc() looked unnecessary to me: tlb_ubc is statically
initialized with zeroes in the init_task, and copied from parent to
child while it is quiescent in arch_dup_task_struct(); so I went to
delete it.
But inserted temporary debug WARN_ONs in place of init_tlb_ubc() to
check that it was always empty at that point, and found them firing:
because memcg reclaim can recurse into global reclaim (when allocating
biosets for swapout in my case), and arrive back at the init_tlb_ubc()
in shrink_node_memcg().
Resetting tlb_ubc.flush_required at that point is wrong: if the upper
level needs a deferred TLB flush, but the lower level turns out not to,
we miss a TLB flush. But fortunately, that's the only part of the
protocol that does not nest: with the initialization removed, cpumask
collects bits from upper and lower levels, and flushes TLB when needed.
Fixes: 72b252aed5 ("mm: send one IPI per CPU to TLB flush all entries after unmapping pages")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: stable@vger.kernel.org # 4.3+
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Firmware Assisted Dump (FA_DUMP) on ppc64 reserves substantial amounts
of memory when booting a secondary kernel. Srikar Dronamraju reported
that multiple nodes may have no memory managed by the buddy allocator
but still return true for populated_zone().
Commit 1d82de618d ("mm, vmscan: make kswapd reclaim in terms of
nodes") was reported to cause kswapd to spin at 100% CPU usage when
fadump was enabled. The old code happened to deal with the situation of
a populated node with zero free pages by co-incidence but the current
code tries to reclaim populated zones without realising that is
impossible.
We cannot just convert populated_zone() as many existing users really
need to check for present_pages. This patch introduces a managed_zone()
helper and uses it in the few cases where it is critical that the check
is made for managed pages -- zonelist construction and page reclaim.
Link: http://lkml.kernel.org/r/20160831195104.GB8119@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We must call shrink_slab() for each memory cgroup on both global and
memcg reclaim in shrink_node_memcg(). Commit d71df22b55099 accidentally
changed that so that now shrink_slab() is only called with memcg != NULL
on memcg reclaim. As a result, memcg-aware shrinkers (including
dentry/inode) are never invoked on global reclaim. Fix that.
Fixes: b2e18757f2 ("mm, vmscan: begin reclaiming pages on a per-node basis")
Link: http://lkml.kernel.org/r/1470056590-7177-1-git-send-email-vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With node-lru, if there are enough reclaimable pages in highmem but
nothing in lowmem, VM can try to shrink inactive list although the
requested zone is lowmem.
The problem is that if the inactive list is full of highmem pages then a
direct reclaimer searching for a lowmem page waste CPU scanning
uselessly. It just burns out CPU. Even, many direct reclaimers are
stalled by too_many_isolated if lots of parallel reclaimer are going on
although there are no reclaimable memory in inactive list.
I tried the experiment 4 times in 32bit 2G 8 CPU KVM machine to get
elapsed time.
hackbench 500 process 2
= Old =
1st: 289s 2nd: 310s 3rd: 112s 4th: 272s
= Now =
1st: 31s 2nd: 132s 3rd: 162s 4th: 50s.
[akpm@linux-foundation.org: fixes per Mel]
Link: http://lkml.kernel.org/r/1469433119-1543-1-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Page reclaim determines whether a pgdat is unreclaimable by examining
how many pages have been scanned since a page was freed and comparing
that to the LRU sizes. Skipped pages are not reclaim candidates but
contribute to scanned. This can prematurely mark a pgdat as
unreclaimable and trigger an OOM kill.
This patch accounts for skipped pages as a partial scan so that an
unreclaimable pgdat will still be marked as such but by scaling the cost
of a skip, it'll avoid the pgdat being marked prematurely.
Link: http://lkml.kernel.org/r/1469110261-7365-6-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Minchan Kim reported that with per-zone lru state it was possible to
identify that a normal zone with 8^M anonymous pages could trigger OOM
with non-atomic order-0 allocations as all pages in the zone were in the
active list.
gfp_mask=0x26004c0(GFP_KERNEL|__GFP_REPEAT|__GFP_NOTRACK), order=0
Call Trace:
__alloc_pages_nodemask+0xe52/0xe60
? new_slab+0x39c/0x3b0
new_slab+0x39c/0x3b0
___slab_alloc.constprop.87+0x6da/0x840
? __alloc_skb+0x3c/0x260
? enqueue_task_fair+0x73/0xbf0
? poll_select_copy_remaining+0x140/0x140
__slab_alloc.isra.81.constprop.86+0x40/0x6d
? __alloc_skb+0x3c/0x260
kmem_cache_alloc+0x22c/0x260
? __alloc_skb+0x3c/0x260
__alloc_skb+0x3c/0x260
alloc_skb_with_frags+0x4e/0x1a0
sock_alloc_send_pskb+0x16a/0x1b0
? wait_for_unix_gc+0x31/0x90
unix_stream_sendmsg+0x28d/0x340
sock_sendmsg+0x2d/0x40
sock_write_iter+0x6c/0xc0
__vfs_write+0xc0/0x120
vfs_write+0x9b/0x1a0
? __might_fault+0x49/0xa0
SyS_write+0x44/0x90
do_fast_syscall_32+0xa6/0x1e0
Mem-Info:
active_anon:101103 inactive_anon:102219 isolated_anon:0
active_file:503 inactive_file:544 isolated_file:0
unevictable:0 dirty:0 writeback:34 unstable:0
slab_reclaimable:6298 slab_unreclaimable:74669
mapped:863 shmem:0 pagetables:100998 bounce:0
free:23573 free_pcp:1861 free_cma:0
Node 0 active_anon:404412kB inactive_anon:409040kB active_file:2012kB inactive_file:2176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:3452kB dirty:0kB writeback:136kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1320845 all_unreclaimable? yes
DMA free:3296kB min:68kB low:84kB high:100kB active_anon:5540kB inactive_anon:0kB active_file:0kB inactive_file:0kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:248kB slab_unreclaimable:2628kB kernel_stack:792kB pagetables:2316kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 809 1965 1965
Normal free:3600kB min:3604kB low:4504kB high:5404kB active_anon:86304kB inactive_anon:0kB active_file:160kB inactive_file:376kB present:897016kB managed:858524kB mlocked:0kB slab_reclaimable:24944kB slab_unreclaimable:296048kB kernel_stack:163832kB pagetables:35892kB bounce:0kB free_pcp:3076kB local_pcp:656kB free_cma:0kB
lowmem_reserve[]: 0 0 9247 9247
HighMem free:86156kB min:512kB low:1796kB high:3080kB active_anon:312852kB inactive_anon:410024kB active_file:1924kB inactive_file:2012kB present:1183736kB managed:1183736kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:365784kB bounce:0kB free_pcp:3868kB local_pcp:720kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0
DMA: 8*4kB (UM) 8*8kB (UM) 4*16kB (M) 2*32kB (UM) 2*64kB (UM) 1*128kB (M) 3*256kB (UME) 2*512kB (UE) 1*1024kB (E) 0*2048kB 0*4096kB = 3296kB
Normal: 240*4kB (UME) 160*8kB (UME) 23*16kB (ME) 3*32kB (UE) 3*64kB (UME) 2*128kB (ME) 1*256kB (U) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 3408kB
HighMem: 10942*4kB (UM) 3102*8kB (UM) 866*16kB (UM) 76*32kB (UM) 11*64kB (UM) 4*128kB (UM) 1*256kB (M) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 86344kB
Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB
54409 total pagecache pages
53215 pages in swap cache
Swap cache stats: add 300982, delete 247765, find 157978/226539
Free swap = 3803244kB
Total swap = 4192252kB
524186 pages RAM
295934 pages HighMem/MovableOnly
9642 pages reserved
0 pages cma reserved
The problem is due to the active deactivation logic in
inactive_list_is_low:
Node 0 active_anon:404412kB inactive_anon:409040kB
IOW, (inactive_anon of node * inactive_ratio > active_anon of node) due
to highmem anonymous stat so VM never deactivates normal zone's
anonymous pages.
This patch is a modified version of Minchan's original solution but
based upon it. The problem with Minchan's patch is that any low zone
with an imbalanced list could force a rotation.
In this patch, a zone-constrained global reclaim will rotate the list if
the inactive/active ratio of all eligible zones needs to be corrected.
It is possible that higher zone pages will be initially rotated
prematurely but this is the safer choice to maintain overall LRU age.
Link: http://lkml.kernel.org/r/20160722090929.GJ10438@techsingularity.net
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If per-zone LRU accounting is available then there is no point
approximating whether reclaim and compaction should retry based on pgdat
statistics. This is effectively a revert of "mm, vmstat: remove zone
and node double accounting by approximating retries" with the difference
that inactive/active stats are still available. This preserves the
history of why the approximation was retried and why it had to be
reverted to handle OOM kills on 32-bit systems.
Link: http://lkml.kernel.org/r/1469110261-7365-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With node-lru, the locking is based on the pgdat. As Minchan pointed
out, there is an opportunity to reduce LRU lock release/acquire in
check_move_unevictable_pages by only changing lock on a pgdat change.
[mgorman@techsingularity.net: remove double initialisation]
Link: http://lkml.kernel.org/r/20160719074835.GC10438@techsingularity.net
Link: http://lkml.kernel.org/r/1468853426-12858-3-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As pointed out by Minchan Kim, shrink_zones() checks for populated zones
in a zonelist but a zonelist can never contain unpopulated zones. While
it's not related to the node-lru series, it can be cleaned up now.
Link: http://lkml.kernel.org/r/1468853426-12858-2-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Suggested-by: Minchan Kim <minchan@kernel.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Minchan Kim reported setting the following warning on a 32-bit system
although it can affect 64-bit systems.
WARNING: CPU: 4 PID: 1322 at mm/memcontrol.c:998 mem_cgroup_update_lru_size+0x103/0x110
mem_cgroup_update_lru_size(f44b4000, 1, -7): zid 1 lru_size 1 but empty
Modules linked in:
CPU: 4 PID: 1322 Comm: cp Not tainted 4.7.0-rc4-mm1+ #143
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
Call Trace:
dump_stack+0x76/0xaf
__warn+0xea/0x110
? mem_cgroup_update_lru_size+0x103/0x110
warn_slowpath_fmt+0x3b/0x40
mem_cgroup_update_lru_size+0x103/0x110
isolate_lru_pages.isra.61+0x2e2/0x360
shrink_active_list+0xac/0x2a0
? __delay+0xe/0x10
shrink_node_memcg+0x53c/0x7a0
shrink_node+0xab/0x2a0
do_try_to_free_pages+0xc6/0x390
try_to_free_pages+0x245/0x590
LRU list contents and counts are updated separately. Counts are updated
before pages are added to the LRU and updated after pages are removed.
The warning above is from a check in mem_cgroup_update_lru_size that
ensures that list sizes of zero are empty.
The problem is that node-lru needs to account for highmem pages if
CONFIG_HIGHMEM is set. One impact of the implementation is that the
sizes are updated in multiple passes when pages from multiple zones were
isolated. This happens whether HIGHMEM is set or not. When multiple
zones are isolated, it's possible for a debugging check in memcg to be
tripped.
This patch forces all the zone counts to be updated before the memcg
function is called.
Link: http://lkml.kernel.org/r/1468588165-12461-6-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Tested-by: Minchan Kim <minchan@kernel.org>
Reported-by: Minchan Kim <minchan@kernel.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The number of LRU pages, dirty pages and writeback pages must be
accounted for on both zones and nodes because of the reclaim retry
logic, compaction retry logic and highmem calculations all depending on
per-zone stats.
Many lowmem allocations are immune from OOM kill due to a check in
__alloc_pages_may_oom for (ac->high_zoneidx < ZONE_NORMAL) since commit
03668b3ceb ("oom: avoid oom killer for lowmem allocations"). The
exception is costly high-order allocations or allocations that cannot
fail. If the __alloc_pages_may_oom avoids OOM-kill for low-order lowmem
allocations then it would fall through to __alloc_pages_direct_compact.
This patch will blindly retry reclaim for zone-constrained allocations
in should_reclaim_retry up to MAX_RECLAIM_RETRIES. This is not ideal
but without per-zone stats there are not many alternatives. The impact
it that zone-constrained allocations may delay before considering the
OOM killer.
As there is no guarantee enough memory can ever be freed to satisfy
compaction, this patch avoids retrying compaction for zone-contrained
allocations.
In combination, that means that the per-node stats can be used when
deciding whether to continue reclaim using a rough approximation. While
it is possible this will make the wrong decision on occasion, it will
not infinite loop as the number of reclaim attempts is capped by
MAX_RECLAIM_RETRIES.
The final step is calculating the number of dirtyable highmem pages. As
those calculations only care about the global count of file pages in
highmem. This patch uses a global counter used instead of per-zone
stats as it is sufficient.
In combination, this allows the per-zone LRU and dirty state counters to
be removed.
[mgorman@techsingularity.net: fix acct_highmem_file_pages()]
Link: http://lkml.kernel.org/r/1468853426-12858-4-git-send-email-mgorman@techsingularity.netLink: http://lkml.kernel.org/r/1467970510-21195-35-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Suggested by: Michal Hocko <mhocko@kernel.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The vmstat allocstall was fairly useful in the general sense but
node-based LRUs change that. It's important to know if a stall was for
an address-limited allocation request as this will require skipping
pages from other zones. This patch adds pgstall_* counters to replace
allocstall. The sum of the counters will equal the old allocstall so it
can be trivially recalculated. A high number of address-limited
allocation requests may result in a lot of useless LRU scanning for
suitable pages.
As address-limited allocations require pages to be skipped, it's
important to know how much useless LRU scanning took place so this patch
adds pgskip* counters. This yields the following model
1. The number of address-space limited stalls can be accounted for (pgstall)
2. The amount of useless work required to reclaim the data is accounted (pgskip)
3. The total number of scans is available from pgscan_kswapd and pgscan_direct
so from that the ratio of useful to useless scans can be calculated.
[mgorman@techsingularity.net: s/pgstall/allocstall/]
Link: http://lkml.kernel.org/r/1468404004-5085-3-git-send-email-mgorman@techsingularity.netLink: http://lkml.kernel.org/r/1467970510-21195-33-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is convenient when tracking down why the skip count is high because
it'll show what classzone kswapd woke up at and what zones are being
isolated.
Link: http://lkml.kernel.org/r/1467970510-21195-29-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The buffer_heads_over_limit limit in kswapd is inconsistent with direct
reclaim behaviour. It may force an an attempt to reclaim from all zones
and then not reclaim at all because higher zones were balanced than
required by the original request.
This patch will causes kswapd to consider reclaiming from all zones if
buffer_heads_over_limit. However, if there are eligible zones for the
allocation request that woke kswapd then no reclaim will occur even if
buffer_heads_over_limit. This avoids kswapd over-reclaiming just
because buffer_heads_over_limit.
[mgorman@techsingularity.net: fix comment about buffer_heads_over_limit]
Link: http://lkml.kernel.org/r/1468404004-5085-2-git-send-email-mgorman@techsingularity.net
Link: http://lkml.kernel.org/r/1467970510-21195-28-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As pointed out by Minchan Kim, the first call to prepare_kswapd_sleep()
always passes in 0 for `remaining' and the second call can trivially
check the parameter in advance.
Suggested-by: Minchan Kim <minchan@kernel.org>
Link: http://lkml.kernel.org/r/1467970510-21195-27-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The scan_control structure has enough information available for
compaction_ready() to make a decision. The classzone_idx manipulations
in shrink_zones() are no longer necessary as the highest populated zone
is no longer used to determine if shrink_slab should be called or not.
[mgorman@techsingularity.net remove redundant check in shrink_zones()]
Link: http://lkml.kernel.org/r/1468588165-12461-3-git-send-email-mgorman@techsingularity.net
Link: http://lkml.kernel.org/r/1467970510-21195-26-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shrink_node receives all information it needs about classzone_idx from
sc->reclaim_idx so remove the aliases.
Link: http://lkml.kernel.org/r/1467970510-21195-25-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As reclaim is now per-node based, convert zone_reclaim to be
node_reclaim. It is possible that a node will be reclaimed multiple
times if it has multiple zones but this is unavoidable without caching
all nodes traversed so far. The documentation and interface to
userspace is the same from a configuration perspective and will will be
similar in behaviour unless the node-local allocation requests were also
limited to lower zones.
Link: http://lkml.kernel.org/r/1467970510-21195-24-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kswapd is woken when zones are below the low watermark but the wakeup
decision is not taking the classzone into account. Now that reclaim is
node-based, it is only required to wake kswapd once per node and only if
all zones are unbalanced for the requested classzone.
Note that one node might be checked multiple times if the zonelist is
ordered by node because there is no cheap way of tracking what nodes
have already been visited. For zone-ordering, each node should be
checked only once.
Link: http://lkml.kernel.org/r/1467970510-21195-22-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As reclaim is now node-based, it follows that page write activity due to
page reclaim should also be accounted for on the node. For consistency,
also account page writes and page dirtying on a per-node basis.
After this patch, there are a few remaining zone counters that may appear
strange but are fine. NUMA stats are still per-zone as this is a
user-space interface that tools consume. NR_MLOCK, NR_SLAB_*,
NR_PAGETABLE, NR_KERNEL_STACK and NR_BOUNCE are all allocations that
potentially pin low memory and cannot trivially be reclaimed on demand.
This information is still useful for debugging a page allocation failure
warning.
Link: http://lkml.kernel.org/r/1467970510-21195-21-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are now a number of accounting oddities such as mapped file pages
being accounted for on the node while the total number of file pages are
accounted on the zone. This can be coped with to some extent but it's
confusing so this patch moves the relevant file-based accounted. Due to
throttling logic in the page allocator for reliable OOM detection, it is
still necessary to track dirty and writeback pages on a per-zone basis.
[mgorman@techsingularity.net: fix NR_ZONE_WRITE_PENDING accounting]
Link: http://lkml.kernel.org/r/1468404004-5085-5-git-send-email-mgorman@techsingularity.net
Link: http://lkml.kernel.org/r/1467970510-21195-20-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reclaim makes decisions based on the number of pages that are mapped but
it's mixing node and zone information. Account NR_FILE_MAPPED and
NR_ANON_PAGES pages on the node.
Link: http://lkml.kernel.org/r/1467970510-21195-18-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memcg needs adjustment after moving LRUs to the node. Limits are
tracked per memcg but the soft-limit excess is tracked per zone. As
global page reclaim is based on the node, it is easy to imagine a
situation where a zone soft limit is exceeded even though the memcg
limit is fine.
This patch moves the soft limit tree the node. Technically, all the
variable names should also change but people are already familiar by the
meaning of "mz" even if "mn" would be a more appropriate name now.
Link: http://lkml.kernel.org/r/1467970510-21195-15-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Earlier patches focused on having direct reclaim and kswapd use data
that is node-centric for reclaiming but shrink_node() itself still uses
too much zone information. This patch removes unnecessary zone-based
information with the most important decision being whether to continue
reclaim or not. Some memcg APIs are adjusted as a result even though
memcg itself still uses some zone information.
[mgorman@techsingularity.net: optimization]
Link: http://lkml.kernel.org/r/1468588165-12461-2-git-send-email-mgorman@techsingularity.net
Link: http://lkml.kernel.org/r/1467970510-21195-14-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kswapd scans from highest to lowest for a zone that requires balancing.
This was necessary when reclaim was per-zone to fairly age pages on
lower zones. Now that we are reclaiming on a per-node basis, any
eligible zone can be used and pages will still be aged fairly. This
patch avoids reclaiming excessively unless buffer_heads are over the
limit and it's necessary to reclaim from a higher zone than requested by
the waker of kswapd to relieve low memory pressure.
[hillf.zj@alibaba-inc.com: Force kswapd reclaim no more than needed]
Link: http://lkml.kernel.org/r/1466518566-30034-12-git-send-email-mgorman@techsingularity.net
Link: http://lkml.kernel.org/r/1467970510-21195-13-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reclaim may stall if there is too much dirty or congested data on a
node. This was previously based on zone flags and the logic for
clearing the flags is in two places. As congestion/dirty tracking is
now tracked on a per-node basis, we can remove some duplicate logic.
Link: http://lkml.kernel.org/r/1467970510-21195-12-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Direct reclaim iterates over all zones in the zonelist and shrinking
them but this is in conflict with node-based reclaim. In the default
case, only shrink once per node.
Link: http://lkml.kernel.org/r/1467970510-21195-11-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kswapd goes through some complex steps trying to figure out if it should
stay awake based on the classzone_idx and the requested order. It is
unnecessarily complex and passes in an invalid classzone_idx to
balance_pgdat(). What matters most of all is whether a larger order has
been requsted and whether kswapd successfully reclaimed at the previous
order. This patch irons out the logic to check just that and the end
result is less headache inducing.
Link: http://lkml.kernel.org/r/1467970510-21195-10-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The balance gap was introduced to apply equal pressure to all zones when
reclaiming for a higher zone. With node-based LRU, the need for the
balance gap is removed and the code is dead so remove it.
[vbabka@suse.cz: Also remove KSWAPD_ZONE_BALANCE_GAP_RATIO]
Link: http://lkml.kernel.org/r/1467970510-21195-9-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch "mm: vmscan: Begin reclaiming pages on a per-node basis" started
thinking of reclaim in terms of nodes but kswapd is still zone-centric.
This patch gets rid of many of the node-based versus zone-based
decisions.
o A node is considered balanced when any eligible lower zone is balanced.
This eliminates one class of age-inversion problem because we avoid
reclaiming a newer page just because it's in the wrong zone
o pgdat_balanced disappears because we now only care about one zone being
balanced.
o Some anomalies related to writeback and congestion tracking being based on
zones disappear.
o kswapd no longer has to take care to reclaim zones in the reverse order
that the page allocator uses.
o Most importantly of all, reclaim from node 0 with multiple zones will
have similar aging and reclaiming characteristics as every
other node.
Link: http://lkml.kernel.org/r/1467970510-21195-8-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kswapd checks all eligible zones to see if they need balancing even if
it was woken for a lower zone. This made sense when we reclaimed on a
per-zone basis because we wanted to shrink zones fairly so avoid
age-inversion problems. Ideally this is completely unnecessary when
reclaiming on a per-node basis. In theory, there may still be anomalies
when all requests are for lower zones and very old pages are preserved
in higher zones but this should be the exceptional case.
Link: http://lkml.kernel.org/r/1467970510-21195-7-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>