This will make syncing fs.h to user space a little easier if we can pull
the super block specific helpers out of fs.h and put them in super.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move these out of ctree.h into verity.h to cut down on code in ctree.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move these out of ctree.h into relocation.h to cut down on code in
ctree.h
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move these out of ctree.h into acl.h to cut down on code in ctree.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move these out of ctree.h into file.h to cut down on code in ctree.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move these out of ctree.h into ioctl.h to cut down on code in ctree.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move these out of ctree.h into uuid-tree.h to cut down on the code in
ctree.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move these prototypes out of ctree.h and into file-item.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move these prototypes out of ctree.h and into their own header file.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that the defrag code is all in one file, create a defrag.h and move
all the defrag related prototypes and helper out of ctree.h and into
defrag.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Update, reformat or reword function comments. This also removes the kdoc
marker so we don't get reports when the function name is missing.
Changes made:
- remove kdoc markers
- reformat the brief description to be a proper sentence
- reword to imperative voice
- align parameter list
- fix typos
Signed-off-by: David Sterba <dsterba@suse.com>
Move all the root-tree.c prototypes to root-tree.h, and then update all
the necessary files to include the new header.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move all the extent tree related prototypes to extent-tree.h out of
ctree.h, and then go include it everywhere needed so everything
compiles.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For directories with encrypted files/filenames, we need to store a flag
indicating this fact. There's no room in other fields, so we'll need to
borrow a bit from dir_type. Since it's now a combination of type and
flags, we rename it to dir_flags to reflect its new usage.
The new flag, FT_ENCRYPTED, indicates a directory containing encrypted
data, which is orthogonal to file type; therefore, add the new
flag, and make conversion from directory type to file type strip the
flag.
As the file types almost never change we can afford to use the bits.
Actual usage will be guarded behind an incompat bit, this patch only
adds the support for later use by fscrypt.
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While struct qstr is more natural without fscrypt, since it's provided
by dentries, struct fscrypt_str is provided by the fscrypt handlers
processing dentries, and is thus more natural in the fscrypt world.
Replace all of the struct qstr uses with struct fscrypt_str.
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Most places where we get a struct qstr, we are doing so from a dentry.
With fscrypt, the dentry's name may be encrypted on-disk, so fscrypt
provides a helper to convert a dentry name to the appropriate disk name
if necessary. Convert each of the dentry name accesses to use
fscrypt_setup_filename(), then convert the resulting fscrypt_name back
to an unencrypted qstr. This does not work for nokey names, but the
specific locations that could spawn nokey names are noted.
At present, since there are no encrypted directories, nothing goes down
the filename encryption paths.
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Many functions throughout btrfs take name buffer and name length
arguments. Most of these functions at the highest level are usually
called with these arguments extracted from a supplied dentry's name.
But the entire name can be passed instead, making each function a little
more elegant.
Each function whose arguments are currently the name and length
extracted from a dentry is herein converted to instead take a pointer to
the name in the dentry. The couple of calls to these calls without a
struct dentry are converted to create an appropriate qstr to pass in.
Additionally, every function which is only called with a name/len
extracted directly from a qstr is also converted.
This change has positive effect on stack consumption, frame of many
functions is reduced but this will be used in the future for fscrypt
related structures.
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is specific to the item-accessor code, move it out of ctree.h into
accessor.h/.c and then update the users to include the new header file.
This un-inlines btrfs_init_map_token, however this is only called once
per function so it's not critical to be inlined. This also saves 904
bytes of code on a release build.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have several fs wide related helpers in ctree.h. The bulk of these
are the incompat flag test helpers, but there are things such as
btrfs_fs_closing() and the read only helpers that also aren't directly
related to the ctree code. Move these into a fs.h header, which will
serve as the location for file system wide related helpers.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is local to the free-space-cache.c code, remove it from ctree.h and
inode.c, create new init/exit functions for the cachep, and move it
locally to free-space-cache.c.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is local to the ctree code, remove it from ctree.h and inode.c,
create new init/exit functions for the cachep, and move it locally to
ctree.c.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is local to the transaction code, remove it from ctree.h and
inode.c, create new helpers in the transaction to handle the init work
and move the cachep locally to transaction.c.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This isn't used outside of inode.c, there's no reason to define it in
btrfs_inode.h. Drop the inline and add __cold as it's for errors that
are not in any hot path.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With nowait becoming more pervasive throughout our codebase go ahead and
add a cached_state to try_lock_extent(). This allows us to be faster
about clearing the locked area if we have contention, and then gives us
the same optimization for unlock if we are able to lock the range.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmNj2yMACgkQxWXV+ddt
WDsRPg/+Mgp4lLF6WCUhWNbO7K7EdJ+YEikDr7/35TTUcnpqZ6oBrWiHwwcG4d2S
V7eQLf/yId5zVfSD+aZEOSz8gC6Mh+0CujVdj09BYuDl7fDIEjFaoH38JsAhANFO
uUaqxzgZw2feWpwiEF9P2iwZD8VqUMAELjASjBBZVMs6WCpM6SDQRPDj/IkfI2BN
qgtKB7Im9VYBN92eIKlg6+MQCwuMMXKZRQH3dkPfYGJYQMDRyYrDxoeVWSAf9pGX
Xvb3mEUZEcPQmE6ue78Ny0OGXX2sh7Mvz4cEFBJvFUPi99Iu6TluVBgN0akuMTwZ
oZbV/1Abs+KV+yOICAhE/u7mKkLPsfRZeR4Ly8qjIlMUN12r1MR1BuGOJj750nsi
LLBohtfQ+BQYpEOrJ32MbdxXy6/CBinC6Xqz+J3M+F/AMYREPLaND7Co5YkgWyT4
pViRpgxLV+plP5bizbiXtnXI1h4OMBRx7idAZmeBNFtquHSzgf9psUz+sHI8Wvr2
tAI+6n7RSnUDG/N+p0cJSqZf4RZWevjVJrUS4pko56t9ixK/xPkyVFbYLIdcd3bC
N83tDgNtdBuyuFw3f2Ye+f0BxBhpZx6getQW2W9mb+6ylN5nyHFWmQpDGO5sDec0
KJRR3w8vQ/0+64P2JhjFbYW55CzpmB279qGxemsnGakDweEcs+o=
=Ltzp
-----END PGP SIGNATURE-----
Merge tag 'for-6.1-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A batch of error handling fixes for resource leaks, fixes for nowait
mode in combination with direct and buffered IO:
- direct IO + dsync + nowait could miss a sync of the file after
write, add handling for this combination
- buffered IO + nowait should not fail with ENOSPC, only blocking IO
could determine that
- error handling fixes:
- fix inode reserve space leak due to nowait buffered write
- check the correct variable after allocation (direct IO submit)
- fix inode list leak during backref walking
- fix ulist freeing in self tests"
* tag 'for-6.1-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix inode reserve space leak due to nowait buffered write
btrfs: fix nowait buffered write returning -ENOSPC
btrfs: remove pointless and double ulist frees in error paths of qgroup tests
btrfs: fix ulist leaks in error paths of qgroup self tests
btrfs: fix inode list leak during backref walking at find_parent_nodes()
btrfs: fix inode list leak during backref walking at resolve_indirect_refs()
btrfs: fix lost file sync on direct IO write with nowait and dsync iocb
btrfs: fix a memory allocation failure test in btrfs_submit_direct
When doing a direct IO write using a iocb with nowait and dsync set, we
end up not syncing the file once the write completes.
This is because we tell iomap to not call generic_write_sync(), which
would result in calling btrfs_sync_file(), in order to avoid a deadlock
since iomap can call it while we are holding the inode's lock and
btrfs_sync_file() needs to acquire the inode's lock. The deadlock happens
only if the write happens synchronously, when iomap_dio_rw() calls
iomap_dio_complete() before it returns. Instead we do the sync ourselves
at btrfs_do_write_iter().
For a nowait write however we can end up not doing the sync ourselves at
at btrfs_do_write_iter() because the write could have been queued, and
therefore we get -EIOCBQUEUED returned from iomap in such case. That makes
us skip the sync call at btrfs_do_write_iter(), as we don't do it for
any error returned from btrfs_direct_write(). We can't simply do the call
even if -EIOCBQUEUED is returned, since that would block the task waiting
for IO, both for the data since there are bios still in progress as well
as potentially blocking when joining a log transaction and when syncing
the log (writing log trees, super blocks, etc).
So let iomap do the sync call itself and in order to avoid deadlocks for
the case of synchronous writes (without nowait), use __iomap_dio_rw() and
have ourselves call iomap_dio_complete() after unlocking the inode.
A test case will later be sent for fstests, after this is fixed in Linus'
tree.
Fixes: 51bd9563b6 ("btrfs: fix deadlock due to page faults during direct IO reads and writes")
Reported-by: Марк Коренберг <socketpair@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CAEmTpZGRKbzc16fWPvxbr6AfFsQoLmz-Lcg-7OgJOZDboJ+SGQ@mail.gmail.com/
CC: stable@vger.kernel.org # 6.0+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After allocation 'dip' is tested instead of 'dip->csums'. Fix it.
Fixes: 642c5d34da ("btrfs: allocate the btrfs_dio_private as part of the iomap dio bio")
CC: stable@vger.kernel.org # 5.19+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The current way of setting and getting posix acls through the generic
xattr interface is error prone and type unsafe. The vfs needs to
interpret and fixup posix acls before storing or reporting it to
userspace. Various hacks exist to make this work. The code is hard to
understand and difficult to maintain in it's current form. Instead of
making this work by hacking posix acls through xattr handlers we are
building a dedicated posix acl api around the get and set inode
operations. This removes a lot of hackiness and makes the codepaths
easier to maintain. A lot of background can be found in [1].
The current inode operation for getting posix acls takes an inode
argument but various filesystems (e.g., 9p, cifs, overlayfs) need access
to the dentry. In contrast to the ->set_acl() inode operation we cannot
simply extend ->get_acl() to take a dentry argument. The ->get_acl()
inode operation is called from:
acl_permission_check()
-> check_acl()
-> get_acl()
which is part of generic_permission() which in turn is part of
inode_permission(). Both generic_permission() and inode_permission() are
called in the ->permission() handler of various filesystems (e.g.,
overlayfs). So simply passing a dentry argument to ->get_acl() would
amount to also having to pass a dentry argument to ->permission(). We
should avoid this unnecessary change.
So instead of extending the existing inode operation rename it from
->get_acl() to ->get_inode_acl() and add a ->get_acl() method later that
passes a dentry argument and which filesystems that need access to the
dentry can implement instead of ->get_inode_acl(). Filesystems like cifs
which allow setting and getting posix acls but not using them for
permission checking during lookup can simply not implement
->get_inode_acl().
This is intended to be a non-functional change.
Link: https://lore.kernel.org/all/20220801145520.1532837-1-brauner@kernel.org [1]
Suggested-by/Inspired-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
The current way of setting and getting posix acls through the generic
xattr interface is error prone and type unsafe. The vfs needs to
interpret and fixup posix acls before storing or reporting it to
userspace. Various hacks exist to make this work. The code is hard to
understand and difficult to maintain in it's current form. Instead of
making this work by hacking posix acls through xattr handlers we are
building a dedicated posix acl api around the get and set inode
operations. This removes a lot of hackiness and makes the codepaths
easier to maintain. A lot of background can be found in [1].
Since some filesystem rely on the dentry being available to them when
setting posix acls (e.g., 9p and cifs) they cannot rely on set acl inode
operation. But since ->set_acl() is required in order to use the generic
posix acl xattr handlers filesystems that do not implement this inode
operation cannot use the handler and need to implement their own
dedicated posix acl handlers.
Update the ->set_acl() inode method to take a dentry argument. This
allows all filesystems to rely on ->set_acl().
As far as I can tell all codepaths can be switched to rely on the dentry
instead of just the inode. Note that the original motivation for passing
the dentry separate from the inode instead of just the dentry in the
xattr handlers was because of security modules that call
security_d_instantiate(). This hook is called during
d_instantiate_new(), d_add(), __d_instantiate_anon(), and
d_splice_alias() to initialize the inode's security context and possibly
to set security.* xattrs. Since this only affects security.* xattrs this
is completely irrelevant for posix acls.
Link: https://lore.kernel.org/all/20220801145520.1532837-1-brauner@kernel.org [1]
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCY0DP2AAKCRBZ7Krx/gZQ
6/+qAQCEGQWpcC5MB17zylaX7gqzhgAsDrwtpevlno3aIv/1pQD/YWr/E8tf7WTW
ERXRXMRx1cAzBJhUhVgIY+3ANfU2Rg4=
=cko4
-----END PGP SIGNATURE-----
Merge tag 'pull-tmpfile' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs tmpfile updates from Al Viro:
"Miklos' ->tmpfile() signature change; pass an unopened struct file to
it, let it open the damn thing. Allows to add tmpfile support to FUSE"
* tag 'pull-tmpfile' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fuse: implement ->tmpfile()
vfs: open inside ->tmpfile()
vfs: move open right after ->tmpfile()
vfs: make vfs_tmpfile() static
ovl: use vfs_tmpfile_open() helper
cachefiles: use vfs_tmpfile_open() helper
cachefiles: only pass inode to *mark_inode_inuse() helpers
cachefiles: tmpfile error handling cleanup
hugetlbfs: cleanup mknod and tmpfile
vfs: add vfs_tmpfile_open() helper
When flushing delalloc, in COW mode at cow_file_range(), before entering
the loop that allocates extents and creates ordered extents, we do a call
to btrfs_drop_extent_map_range() for the whole range. This is pointless
because in the loop we call create_io_em(), which will also call
btrfs_drop_extent_map_range() before inserting the new extent map.
So remove that call at cow_file_range() not only because it is not needed,
but also because it will make the btrfs_drop_extent_map_range() calls made
from create_io_em() waste time searching the extent map tree, and that
tree can be large for files with many extents. It also makes us waste time
at btrfs_drop_extent_map_range() allocating and freeing the split extent
maps for nothing.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have several places that need to drop all the extent maps in a given
file range and then add a new extent map for that range. Currently they
call btrfs_drop_extent_map_range() to delete all extent maps in the range
and then keep trying to add the new extent map in a loop that keeps
retrying while the insertion of the new extent map fails with -EEXIST.
So instead of repeating this logic, add a helper to extent_map.c that
does these steps and name it btrfs_replace_extent_map_range(). Also add
a comment about why the retry loop is necessary.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move the loop that removes all the extent maps from the inode's extent
map tree during inode eviction out of inode.c and into extent_map.c, to
btrfs_drop_extent_map_range(). Anything manipulating extent maps or the
extent map tree should be in extent_map.c.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At evict_inode_truncate_pages(), instead of manually checking if
rescheduling is needed, then unlock the extent map tree, reschedule and
then write lock again the tree, use the helper cond_resched_rwlock_write()
which does all that.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_drop_extent_cache() doesn't really belong at file.c
because what it does is drop a range of extent maps for a file range.
It directly allocates and manipulates extent maps, by dropping,
splitting and replacing them in an extent map tree, so it should be
located at extent_map.c, where all manipulations of an extent map tree
and its extent maps are supposed to be done.
So move it out of file.c and into extent_map.c. Additionally do the
following changes:
1) Rename it into btrfs_drop_extent_map_range(), as this makes it more
clear about what it does. The term "cache" is a bit confusing as it's
not widely used, "extent maps" or "extent mapping" is much more common;
2) Change its 'skip_pinned' argument from int to bool;
3) Turn several of its local variables from int to bool, since they are
used as booleans;
4) Move the declaration of some variables out of the function's main
scope and into the scopes where they are used;
5) Remove pointless assignment of false to 'modified' early in the while
loop, as later that variable is set and it's not used before that
second assignment;
6) Remove checks for NULL before calling free_extent_map().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now all the helpers that btrfs_check_nocow_lock uses handle nowait, add
a nowait flag to btrfs_check_nocow_lock so it can be used by the write
path.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Stefan Roesch <shr@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In order to accommodate NOWAIT IOCB's we need to be able to do NO_FLUSH
data reservations, so plumb this through the delalloc reservation
system.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Stefan Roesch <shr@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we have NOWAIT specified on our IOCB and we're writing into a
PREALLOC or NOCOW extent then we need to be able to tell
can_nocow_extent that we don't want to wait on any locks or metadata IO.
Fix can_nocow_extent to allow for NOWAIT.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Stefan Roesch <shr@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We always check the root of an inode as well as it's inode number to
determine if it's a free space inode. This is problematic as the helper
is in a header file where it doesn't have the fs_info definition. To
avoid this and make the check a little cleaner simply add a flag to the
runtime_flags to indicate that the inode is a free space inode, set that
when we create the inode, and then change the helper to check for this
flag.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This helper is only used in inode.c, move it locally to that file
instead of defining it in ctree.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We only use this for normal inodes, so don't set it if we're not a
normal inode.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of taking up a whole argument to indicate we're clearing
everything in a range, simply add another EXTENT bit to control this,
and then update all the callers to drop this argument from the
clear_extent_bit variants.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit 78361f64ff42 ("btrfs: remove unnecessary EXTENT_UPTODATE
state in buffered I/O path") we no longer check ->track_uptodate, remove
it.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have two variants of lock/unlock extent, one set that takes a cached
state, another that does not. This is slightly annoying, and generally
speaking there are only a few places where we don't have a cached state.
Simplify this by making lock_extent/unlock_extent the only variant and
make it take a cached state, then convert all the callers appropriately.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The only places that set extent_changeset is set_record_extent_bits,
everywhere else sets it to NULL. Drop this argument from
set_extent_bit.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is only used for internal locking related helpers, everybody else
just passes in NULL. I've changed set_extent_bit to __set_extent_bit
and made it static, removed failed_start from set_extent_bit and have it
call __set_extent_bit with a NULL failed_start, and I've moved some code
down below the now static __set_extent_bit.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is only used in the case that we are clearing EXTENT_LOCKED, so
infer this value from the bits passed in instead of taking it as an
argument.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is only ever set if we have EXTENT_LOCKED set, so simply push this
into the function itself and remove the function argument.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We still have this oddity of stashing the io_failure_record in the
extent state for the io_failure_tree, which is leftover from when we
used to stuff private pointers in extent_io_trees.
However this doesn't make a lot of sense for the io failure records, we
can simply use a normal rb_tree for this. This will allow us to further
simplify the extent_io_tree code by removing the io_failure_rec pointer
from the extent state.
Convert the io_failure_tree to an rb tree + spinlock in the inode, and
then use our rb tree simple helpers to insert and find failed records.
This greatly cleans up this code and makes it easier to separate out the
extent_io_tree code.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is exported, so rename it to btrfs_clean_io_failure. Additionally
we are passing in the io tree's and such from the inode, so instead of
doing all that simply pass in the inode itself and get all the
components we need directly inside of btrfs_clean_io_failure.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The current fiemap implementation does not scale very well with the number
of extents a file has. This is both because the main algorithm to find out
the extents has a high algorithmic complexity and because for each extent
we have to check if it's shared. This second part, checking if an extent
is shared, is significantly improved by the two previous patches in this
patchset, while the first part is improved by this specific patch. Every
now and then we get reports from users mentioning fiemap is too slow or
even unusable for files with a very large number of extents, such as the
two recent reports referred to by the Link tags at the bottom of this
change log.
To understand why the part of finding which extents a file has is very
inefficient, consider the example of doing a full ranged fiemap against
a file that has over 100K extents (normal for example for a file with
more than 10G of data and using compression, which limits the extent size
to 128K). When we enter fiemap at extent_fiemap(), the following happens:
1) Before entering the main loop, we call get_extent_skip_holes() to get
the first extent map. This leads us to btrfs_get_extent_fiemap(), which
in turn calls btrfs_get_extent(), to find the first extent map that
covers the file range [0, LLONG_MAX).
btrfs_get_extent() will first search the inode's extent map tree, to
see if we have an extent map there that covers the range. If it does
not find one, then it will search the inode's subvolume b+tree for a
fitting file extent item. After finding the file extent item, it will
allocate an extent map, fill it in with information extracted from the
file extent item, and add it to the inode's extent map tree (which
requires a search for insertion in the tree).
2) Then we enter the main loop at extent_fiemap(), emit the details of
the extent, and call again get_extent_skip_holes(), with a start
offset matching the end of the extent map we previously processed.
We end up at btrfs_get_extent() again, will search the extent map tree
and then search the subvolume b+tree for a file extent item if we could
not find an extent map in the extent tree. We allocate an extent map,
fill it in with the details in the file extent item, and then insert
it into the extent map tree (yet another search in this tree).
3) The second step is repeated over and over, until we have processed the
whole file range. Each iteration ends at btrfs_get_extent(), which
does a red black tree search on the extent map tree, then searches the
subvolume b+tree, allocates an extent map and then does another search
in the extent map tree in order to insert the extent map.
In the best scenario we have all the extent maps already in the extent
tree, and so for each extent we do a single search on a red black tree,
so we have a complexity of O(n log n).
In the worst scenario we don't have any extent map already loaded in
the extent map tree, or have very few already there. In this case the
complexity is much higher since we do:
- A red black tree search on the extent map tree, which has O(log n)
complexity, initially very fast since the tree is empty or very
small, but as we end up allocating extent maps and adding them to
the tree when we don't find them there, each subsequent search on
the tree gets slower, since it's getting bigger and bigger after
each iteration.
- A search on the subvolume b+tree, also O(log n) complexity, but it
has items for all inodes in the subvolume, not just items for our
inode. Plus on a filesystem with concurrent operations on other
inodes, we can block doing the search due to lock contention on
b+tree nodes/leaves.
- Allocate an extent map - this can block, and can also fail if we
are under serious memory pressure.
- Do another search on the extent maps red black tree, with the goal
of inserting the extent map we just allocated. Again, after every
iteration this tree is getting bigger by 1 element, so after many
iterations the searches are slower and slower.
- We will not need the allocated extent map anymore, so it's pointless
to add it to the extent map tree. It's just wasting time and memory.
In short we end up searching the extent map tree multiple times, on a
tree that is growing bigger and bigger after each iteration. And
besides that we visit the same leaf of the subvolume b+tree many times,
since a leaf with the default size of 16K can easily have more than 200
file extent items.
This is very inefficient overall. This patch changes the algorithm to
instead iterate over the subvolume b+tree, visiting each leaf only once,
and only searching in the extent map tree for file ranges that have holes
or prealloc extents, in order to figure out if we have delalloc there.
It will never allocate an extent map and add it to the extent map tree.
This is very similar to what was previously done for the lseek's hole and
data seeking features.
Also, the current implementation relying on extent maps for figuring out
which extents we have is not correct. This is because extent maps can be
merged even if they represent different extents - we do this to minimize
memory utilization and keep extent map trees smaller. For example if we
have two extents that are contiguous on disk, once we load the two extent
maps, they get merged into a single one - however if only one of the
extents is shared, we end up reporting both as shared or both as not
shared, which is incorrect.
This reproducer triggers that bug:
$ cat fiemap-bug.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
mkfs.btrfs -f $DEV
mount $DEV $MNT
# Create a file with two 256K extents.
# Since there is no other write activity, they will be contiguous,
# and their extent maps merged, despite having two distinct extents.
xfs_io -f -c "pwrite -S 0xab 0 256K" \
-c "fsync" \
-c "pwrite -S 0xcd 256K 256K" \
-c "fsync" \
$MNT/foo
# Now clone only the second extent into another file.
xfs_io -f -c "reflink $MNT/foo 256K 0 256K" $MNT/bar
# Filefrag will report a single 512K extent, and say it's not shared.
echo
filefrag -v $MNT/foo
umount $MNT
Running the reproducer:
$ ./fiemap-bug.sh
wrote 262144/262144 bytes at offset 0
256 KiB, 64 ops; 0.0038 sec (65.479 MiB/sec and 16762.7030 ops/sec)
wrote 262144/262144 bytes at offset 262144
256 KiB, 64 ops; 0.0040 sec (61.125 MiB/sec and 15647.9218 ops/sec)
linked 262144/262144 bytes at offset 0
256 KiB, 1 ops; 0.0002 sec (1.034 GiB/sec and 4237.2881 ops/sec)
Filesystem type is: 9123683e
File size of /mnt/sdj/foo is 524288 (128 blocks of 4096 bytes)
ext: logical_offset: physical_offset: length: expected: flags:
0: 0.. 127: 3328.. 3455: 128: last,eof
/mnt/sdj/foo: 1 extent found
We end up reporting that we have a single 512K that is not shared, however
we have two 256K extents, and the second one is shared. Changing the
reproducer to clone instead the first extent into file 'bar', makes us
report a single 512K extent that is shared, which is algo incorrect since
we have two 256K extents and only the first one is shared.
This patch is part of a larger patchset that is comprised of the following
patches:
btrfs: allow hole and data seeking to be interruptible
btrfs: make hole and data seeking a lot more efficient
btrfs: remove check for impossible block start for an extent map at fiemap
btrfs: remove zero length check when entering fiemap
btrfs: properly flush delalloc when entering fiemap
btrfs: allow fiemap to be interruptible
btrfs: rename btrfs_check_shared() to a more descriptive name
btrfs: speedup checking for extent sharedness during fiemap
btrfs: skip unnecessary extent buffer sharedness checks during fiemap
btrfs: make fiemap more efficient and accurate reporting extent sharedness
The patchset was tested on a machine running a non-debug kernel (Debian's
default config) and compared the tests below on a branch without the
patchset versus the same branch with the whole patchset applied.
The following test for a large compressed file without holes:
$ cat fiemap-perf-test.sh
#!/bin/bash
DEV=/dev/sdi
MNT=/mnt/sdi
mkfs.btrfs -f $DEV
mount -o compress=lzo $DEV $MNT
# 40G gives 327680 128K file extents (due to compression).
xfs_io -f -c "pwrite -S 0xab -b 1M 0 20G" $MNT/foobar
umount $MNT
mount -o compress=lzo $DEV $MNT
start=$(date +%s%N)
filefrag $MNT/foobar
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo "fiemap took $dur milliseconds (metadata not cached)"
start=$(date +%s%N)
filefrag $MNT/foobar
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo "fiemap took $dur milliseconds (metadata cached)"
umount $MNT
Before patchset:
$ ./fiemap-perf-test.sh
(...)
/mnt/sdi/foobar: 327680 extents found
fiemap took 3597 milliseconds (metadata not cached)
/mnt/sdi/foobar: 327680 extents found
fiemap took 2107 milliseconds (metadata cached)
After patchset:
$ ./fiemap-perf-test.sh
(...)
/mnt/sdi/foobar: 327680 extents found
fiemap took 1214 milliseconds (metadata not cached)
/mnt/sdi/foobar: 327680 extents found
fiemap took 684 milliseconds (metadata cached)
That's a speedup of about 3x for both cases (no metadata cached and all
metadata cached).
The test provided by Pavel (first Link tag at the bottom), which uses
files with a large number of holes, was also used to measure the gains,
and it consists on a small C program and a shell script to invoke it.
The C program is the following:
$ cat pavels-test.c
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/ioctl.h>
#include <linux/fs.h>
#include <linux/fiemap.h>
#define FILE_INTERVAL (1<<13) /* 8Kb */
long long interval(struct timeval t1, struct timeval t2)
{
long long val = 0;
val += (t2.tv_usec - t1.tv_usec);
val += (t2.tv_sec - t1.tv_sec) * 1000 * 1000;
return val;
}
int main(int argc, char **argv)
{
struct fiemap fiemap = {};
struct timeval t1, t2;
char data = 'a';
struct stat st;
int fd, off, file_size = FILE_INTERVAL;
if (argc != 3 && argc != 2) {
printf("usage: %s <path> [size]\n", argv[0]);
return 1;
}
if (argc == 3)
file_size = atoi(argv[2]);
if (file_size < FILE_INTERVAL)
file_size = FILE_INTERVAL;
file_size -= file_size % FILE_INTERVAL;
fd = open(argv[1], O_RDWR | O_CREAT | O_TRUNC, 0644);
if (fd < 0) {
perror("open");
return 1;
}
for (off = 0; off < file_size; off += FILE_INTERVAL) {
if (pwrite(fd, &data, 1, off) != 1) {
perror("pwrite");
close(fd);
return 1;
}
}
if (ftruncate(fd, file_size)) {
perror("ftruncate");
close(fd);
return 1;
}
if (fstat(fd, &st) < 0) {
perror("fstat");
close(fd);
return 1;
}
printf("size: %ld\n", st.st_size);
printf("actual size: %ld\n", st.st_blocks * 512);
fiemap.fm_length = FIEMAP_MAX_OFFSET;
gettimeofday(&t1, NULL);
if (ioctl(fd, FS_IOC_FIEMAP, &fiemap) < 0) {
perror("fiemap");
close(fd);
return 1;
}
gettimeofday(&t2, NULL);
printf("fiemap: fm_mapped_extents = %d\n",
fiemap.fm_mapped_extents);
printf("time = %lld us\n", interval(t1, t2));
close(fd);
return 0;
}
$ gcc -o pavels_test pavels_test.c
And the wrapper shell script:
$ cat fiemap-pavels-test.sh
#!/bin/bash
DEV=/dev/sdi
MNT=/mnt/sdi
mkfs.btrfs -f -O no-holes $DEV
mount $DEV $MNT
echo
echo "*********** 256M ***********"
echo
./pavels-test $MNT/testfile $((1 << 28))
echo
./pavels-test $MNT/testfile $((1 << 28))
echo
echo "*********** 512M ***********"
echo
./pavels-test $MNT/testfile $((1 << 29))
echo
./pavels-test $MNT/testfile $((1 << 29))
echo
echo "*********** 1G ***********"
echo
./pavels-test $MNT/testfile $((1 << 30))
echo
./pavels-test $MNT/testfile $((1 << 30))
umount $MNT
Running his reproducer before applying the patchset:
*********** 256M ***********
size: 268435456
actual size: 134217728
fiemap: fm_mapped_extents = 32768
time = 4003133 us
size: 268435456
actual size: 134217728
fiemap: fm_mapped_extents = 32768
time = 4895330 us
*********** 512M ***********
size: 536870912
actual size: 268435456
fiemap: fm_mapped_extents = 65536
time = 30123675 us
size: 536870912
actual size: 268435456
fiemap: fm_mapped_extents = 65536
time = 33450934 us
*********** 1G ***********
size: 1073741824
actual size: 536870912
fiemap: fm_mapped_extents = 131072
time = 224924074 us
size: 1073741824
actual size: 536870912
fiemap: fm_mapped_extents = 131072
time = 217239242 us
Running it after applying the patchset:
*********** 256M ***********
size: 268435456
actual size: 134217728
fiemap: fm_mapped_extents = 32768
time = 29475 us
size: 268435456
actual size: 134217728
fiemap: fm_mapped_extents = 32768
time = 29307 us
*********** 512M ***********
size: 536870912
actual size: 268435456
fiemap: fm_mapped_extents = 65536
time = 58996 us
size: 536870912
actual size: 268435456
fiemap: fm_mapped_extents = 65536
time = 59115 us
*********** 1G ***********
size: 1073741824
actual size: 536870912
fiemap: fm_mapped_extents = 116251
time = 124141 us
size: 1073741824
actual size: 536870912
fiemap: fm_mapped_extents = 131072
time = 119387 us
The speedup is massive, both on the first fiemap call and on the second
one as well, as his test creates files with many holes and small extents
(every extent follows a hole and precedes another hole).
For the 256M file we go from 4 seconds down to 29 milliseconds in the
first run, and then from 4.9 seconds down to 29 milliseconds again in the
second run, a speedup of 138x and 169x, respectively.
For the 512M file we go from 30.1 seconds down to 59 milliseconds in the
first run, and then from 33.5 seconds down to 59 milliseconds again in the
second run, a speedup of 510x and 568x, respectively.
For the 1G file, we go from 225 seconds down to 124 milliseconds in the
first run, and then from 217 seconds down to 119 milliseconds in the
second run, a speedup of 1815x and 1824x, respectively.
Reported-by: Pavel Tikhomirov <ptikhomirov@virtuozzo.com>
Link: https://lore.kernel.org/linux-btrfs/21dd32c6-f1f9-f44a-466a-e18fdc6788a7@virtuozzo.com/
Reported-by: Dominique MARTINET <dominique.martinet@atmark-techno.com>
Link: https://lore.kernel.org/linux-btrfs/Ysace25wh5BbLd5f@atmark-techno.com/
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If the flag FIEMAP_FLAG_SYNC is passed to fiemap, it means all delalloc
should be flushed and writeback complete. We call the generic helper
fiemap_prep() which does a filemap_write_and_wait() in case that flag is
given, however that is not enough if we have compression. Because a
single filemap_fdatawrite_range() only starts compression (in an async
thread) and therefore returns before the compression is done and writeback
is started.
So make btrfs_fiemap(), actually wait for all writeback to start and
complete if FIEMAP_FLAG_SYNC is set. We start and wait for writeback
on the whole possible file range, from 0 to LLONG_MAX, because that is
what the generic code at fiemap_prep() does.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_bio end I/O handling is a bit of a mess. The bi_end_io
handler and bi_private pointer of the embedded struct bio are both used
to handle the completion of the high-level btrfs_bio and for the I/O
completion for the low-level device that the embedded bio ends up being
sent to.
To support this bi_end_io and bi_private are saved into the
btrfs_io_context structure and then restored after the bio sent to the
underlying device has completed the actual I/O.
Untangle this by adding an end I/O handler and private data to struct
btrfs_bio for the high-level btrfs_bio based completions, and leave the
actual bio bi_end_io handler and bi_private pointer entirely to the
low-level device I/O.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Pass the operation to btrfs_bio_alloc, matching what bio_alloc_bioset
set does.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After we copied data to page cache in buffered I/O, we
1. Insert a EXTENT_UPTODATE state into inode's io_tree, by
endio_readpage_release_extent(), set_extent_delalloc() or
set_extent_defrag().
2. Set page uptodate before we unlock the page.
But the only place we check io_tree's EXTENT_UPTODATE state is in
btrfs_do_readpage(). We know we enter btrfs_do_readpage() only when we
have a non-uptodate page, so it is unnecessary to set EXTENT_UPTODATE.
For example, when performing a buffered random read:
fio --rw=randread --ioengine=libaio --direct=0 --numjobs=4 \
--filesize=32G --size=4G --bs=4k --name=job \
--filename=/mnt/file --name=job
Then check how many extent_state in io_tree:
cat /proc/slabinfo | grep btrfs_extent_state | awk '{print $2}'
w/o this patch, we got 640567 btrfs_extent_state.
w/ this patch, we got 204 btrfs_extent_state.
Maintaining such a big tree brings overhead since every I/O needs to insert
EXTENT_LOCKED, insert EXTENT_UPTODATE, then remove EXTENT_LOCKED. And in
every insert or remove, we need to lock io_tree, do tree search, alloc or
dealloc extent states. By removing unnecessary EXTENT_UPTODATE, we keep
io_tree in a minimal size and reduce overhead when performing buffered I/O.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Robbie Ko <robbieko@synology.com>
Signed-off-by: Ethan Lien <ethanlien@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_insert_file_extent() is only ever used to insert holes, so rename
it and remove the redundant parameters.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This wait event is very similar to the pending ordered wait event in the
sense that it occurs in a different context than the condition signaling
for the event. The signaling occurs in btrfs_remove_ordered_extent()
while the wait event is implemented in btrfs_start_ordered_extent() in
fs/btrfs/ordered-data.c
However, in this case a thread must not acquire the lockdep map for the
ordered extents wait event when the ordered extent is related to a free
space inode. That is because lockdep creates dependencies between locks
acquired both in execution paths related to normal inodes and paths
related to free space inodes, thus leading to false positives.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Ioannis Angelakopoulos <iangelak@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is in preparation for adding tmpfile support to fuse, which requires
that the tmpfile creation and opening are done as a single operation.
Replace the 'struct dentry *' argument of i_op->tmpfile with
'struct file *'.
Call finish_open_simple() as the last thing in ->tmpfile() instances (may
be omitted in the error case).
Change d_tmpfile() argument to 'struct file *' as well to make callers more
readable.
Reviewed-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmMaPukACgkQxWXV+ddt
WDsWKw/+IcpMsb08sjudn4dtFQ3HSA1E+dOYDzXwUJTS7ZpZhLRniLe1XQwHxe4D
7DUQA+e1RKGq4+TiznoLhaG/YCCcrLPZL/1aWhwO0M5Wj6BCIxSUa00BJNpxyBMw
kWb9vQltc5w5zJXHeIr7m2ByzT+YIl0v1lf2GQrJVieHhGiKslfkJHLoJt49oJ0L
9ka183VR/OCi/3uxUw6NMAjfv+0OGEsFZX/CF8Vo64IKg0I0Q248H4enZt43aDHA
dQDapAyAr4f6RLDs6ULS2GSzKfZIKMLHlvSeg1BSPyUt/NZFVlC0VwVX0NmwP62a
5NECYdimlQOGSlaahNEQpLIiyNYboi3Mq7m63BofWduDQanpnM1FByln9JVEizlm
VuUs3+O0CMp81HecSk3VbSe3ukO2fqAdQjM5cdpRx30TYu7WRiYNE3aHchgLmXLP
0zw9JV6ePg04Mstx+/3lo8D/X/7fMAT3NrqYmuImoekFWbdJfsiUtgdXNOglT9dt
6lb1/0jBEbdiXnQ/jT1OreGwSdGZqkEKF4OE26kPRxURyTDESzglNVyhXmshIANC
qnNuUFGea5d7LbyozYyfdcsQS7rEqLVKmUWrOb/3O/K1947/DegYodnhRwjCUSS7
iUaetkYUWxHa7U9303KneCUAyLEf1S8NXRPIObL6YIw7D09wato=
=WD7B
-----END PGP SIGNATURE-----
Merge tag 'for-6.0-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few more fixes to zoned mode and one regression fix for chunk limit:
- Zoned mode fixes:
- fix how wait/wake up is done when finishing zone
- fix zone append limit in emulated mode
- fix mount on devices with conventional zones
- fix regression, user settable data chunk limit got accidentally
lowered and causes allocation problems on some profiles (raid0,
raid1)"
* tag 'for-6.0-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix the max chunk size and stripe length calculation
btrfs: zoned: fix mounting with conventional zones
btrfs: zoned: set pseudo max append zone limit in zone emulation mode
btrfs: zoned: fix API misuse of zone finish waiting
The commit 2ce543f478 ("btrfs: zoned: wait until zone is finished when
allocation didn't progress") implemented a zone finish waiting mechanism
to the write path of zoned mode. However, using
wait_var_event()/wake_up_all() on fs_info->zone_finish_wait is wrong and
wait_var_event() just hangs because no one ever wakes it up once it goes
into sleep.
Instead, we can simply use wait_on_bit_io() and clear_and_wake_up_bit()
on fs_info->flags with a proper barrier installed.
Fixes: 2ce543f478 ("btrfs: zoned: wait until zone is finished when allocation didn't progress")
CC: stable@vger.kernel.org # 5.16+
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmMLY9oACgkQxWXV+ddt
WDue/w/8C3ZF8nLAI/sMrUpef2vSD62bvkKRRS45wzR2uod6yc0Fle9upzBssJQZ
qO3mQ53+QV+imCq7dY5mmtmwCUJNmbV5gbiMoF1OoV9TYtpZb/NIDklSX8se2eJX
drdAWQr2pYwU2M4duA4IEW08TvQ2TFh0JiqMi0aYM5apyL80uv3WniOu+xpRipA3
CMFAnDqayIgQ5OIsedqNy2MBLBopodUL5PZv/H7/g6KSKIuAZP9zgg1eKPfaz2t3
HO183ubmMbVtxgxeu+EnvCkg/iQ5hQiuGmyi0FLYMs/A6/NglwBnIJU5jCMQhcp6
HO5+FSUn6lHQetVzt2uHb9Lo+gX4FtCaHqVv1bXT62lnmDsZO1D7RVSg1Fra+CY+
jJmi8vvIbfbYlSZPZlJANoWe8ODOMVPk+pM4SFHlxOWGAY6HViX2RfHnIjNj5x9O
iDSTGvH6++nBF1Wu2/Xja/VKZ1avxRyTu2srW8JOF62j/tTU/EoPJcO9rxXOBBmC
Hi4UmJ690p3h5xZeeiyE8CmaSlPtfdCcnc/97FnusEjBao9O7THX0PCDVJX6VBkm
hVk01Z6+az1UNcD18KecvCpKYF/At4WpjaUGgf7q+LBfJXuXA6jfzOVDJMKV3TFd
n1yMFg+duGj90l8gT0aa/VQiBlUlnzQKz6ceqyKkPccwveNis6I=
=p8YV
-----END PGP SIGNATURE-----
Merge tag 'for-6.0-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Fixes:
- check that subvolume is writable when changing xattrs from security
namespace
- fix memory leak in device lookup helper
- update generation of hole file extent item when merging holes
- fix space cache corruption and potential double allocations; this
is a rare bug but can be serious once it happens, stable backports
and analysis tool will be provided
- fix error handling when deleting root references
- fix crash due to assert when attempting to cancel suspended device
replace, add message what to do if mount fails due to missing
replace item
Regressions:
- don't merge pages into bio if their page offset is not contiguous
- don't allow large NOWAIT direct reads, this could lead to short
reads eg. in io_uring"
* tag 'for-6.0-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: add info when mount fails due to stale replace target
btrfs: replace: drop assert for suspended replace
btrfs: fix silent failure when deleting root reference
btrfs: fix space cache corruption and potential double allocations
btrfs: don't allow large NOWAIT direct reads
btrfs: don't merge pages into bio if their page offset is not contiguous
btrfs: update generation of hole file extent item when merging holes
btrfs: fix possible memory leak in btrfs_get_dev_args_from_path()
btrfs: check if root is readonly while setting security xattr
Dylan and Jens reported a problem where they had an io_uring test that
was returning short reads, and bisected it to ee5b46a353 ("btrfs:
increase direct io read size limit to 256 sectors").
The root cause is their test was doing larger reads via io_uring with
NOWAIT and async. This was triggering a page fault during the direct
read, however the first page was able to work just fine and thus we
submitted a 4k read for a larger iocb.
Btrfs allows for partial IO's in this case specifically because we don't
allow page faults, and thus we'll attempt to do any io that we can,
submit what we could, come back and fault in the rest of the range and
try to do the remaining IO.
However for !is_sync_kiocb() we'll call ->ki_complete() as soon as the
partial dio is done, which is incorrect. In the sync case we can exit
the iomap code, submit more io's, and return with the amount of IO we
were able to complete successfully.
We were always doing short reads in this case, but for NOWAIT we were
getting saved by the fact that we were limiting direct reads to
sectorsize, and if we were larger than that we would return EAGAIN.
Fix the regression by simply returning EAGAIN in the NOWAIT case with
larger reads, that way io_uring can retry and get the larger IO and have
the fault logic handle everything properly.
This still leaves the AIO short read case, but that existed before this
change. The way to properly fix this would be to handle partial iocb
completions, but that's a lot of work, for now deal with the regression
in the most straightforward way possible.
Reported-by: Dylan Yudaken <dylany@fb.com>
Fixes: ee5b46a353 ("btrfs: increase direct io read size limit to 256 sectors")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmLnyNUACgkQxWXV+ddt
WDt9vA/9HcF+v5EkknyW07tatTap/Hm/ZB86Z5OZi6ikwIEcHsWhp3rUICejm88e
GecDPIluDtCtyD6x4stuqkwOm22aDP5q2T9H6+gyw92ozyb436OV1Z8IrmftzXKY
EpZO70PHZT+E6E/WYvyoTmmoCrjib7YlqCWZZhSLUFpsqqlOInmHEH49PW6KvM4r
acUZ/RxHurKdmI3kNY6ECbAQl6CASvtTdYcVCx8fT2zN0azoLIQxpYa7n/9ca1R6
8WnYilCbLbNGtcUXvO2M3tMZ4/5kvxrwQsUn93ccCJYuiN0ASiDXbLZ2g4LZ+n56
JGu+y5v5oBwjpVf+46cuvnENP5BQ61594WPseiVjrqODWnPjN28XkcVC0XmPsiiZ
lszeHO2cuIrIFoCah8ELMl8usu8+qxfXmPxIXtPu9rEyKsDtOjxVYc8SMXqLp0qQ
qYtBoFm0JcZHqtZRpB+dhQ37/xXtH4ljUi/mI6x8iALVujeR273URs7yO9zgIdeW
uZoFtbwpHFLUk+TL7Ku82/zOXp3fCwtDpNmlYbxeMbea/be3ShjncM4+mYzvHYri
dYON2LFrq+mnRDqtIXTCaAYwX7zU8Y18Ev9QwlNll8dKlKwS89+jpqLoa+eVYy3c
/HitHFza70KxmOj4dvDVZlzDpPvl7kW1UBkmskg4u3jnNWzedkM=
=sS1q
-----END PGP SIGNATURE-----
Merge tag 'for-5.20-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"This brings some long awaited changes, the send protocol bump,
otherwise lots of small improvements and fixes. The main core part is
reworking bio handling, cleaning up the submission and endio and
improving error handling.
There are some changes outside of btrfs adding helpers or updating
API, listed at the end of the changelog.
Features:
- sysfs:
- export chunk size, in debug mode add tunable for setting its size
- show zoned among features (was only in debug mode)
- show commit stats (number, last/max/total duration)
- send protocol updated to 2
- new commands:
- ability write larger data chunks than 64K
- send raw compressed extents (uses the encoded data ioctls),
ie. no decompression on send side, no compression needed on
receive side if supported
- send 'otime' (inode creation time) among other timestamps
- send file attributes (a.k.a file flags and xflags)
- this is first version bump, backward compatibility on send and
receive side is provided
- there are still some known and wanted commands that will be
implemented in the near future, another version bump will be
needed, however we want to minimize that to avoid causing
usability issues
- print checksum type and implementation at mount time
- don't print some messages at mount (mentioned as people asked about
it), we want to print messages namely for new features so let's
make some space for that
- big metadata - this has been supported for a long time and is
not a feature that's worth mentioning
- skinny metadata - same reason, set by default by mkfs
Performance improvements:
- reduced amount of reserved metadata for delayed items
- when inserted items can be batched into one leaf
- when deleting batched directory index items
- when deleting delayed items used for deletion
- overall improved count of files/sec, decreased subvolume lock
contention
- metadata item access bounds checker micro-optimized, with a few
percent of improved runtime for metadata-heavy operations
- increase direct io limit for read to 256 sectors, improved
throughput by 3x on sample workload
Notable fixes:
- raid56
- reduce parity writes, skip sectors of stripe when there are no
data updates
- restore reading from on-disk data instead of using stripe cache,
this reduces chances to damage correct data due to RMW cycle
- refuse to replay log with unknown incompat read-only feature bit
set
- zoned
- fix page locking when COW fails in the middle of allocation
- improved tracking of active zones, ZNS drives may limit the
number and there are ENOSPC errors due to that limit and not
actual lack of space
- adjust maximum extent size for zone append so it does not cause
late ENOSPC due to underreservation
- mirror reading error messages show the mirror number
- don't fallback to buffered IO for NOWAIT direct IO writes, we don't
have the NOWAIT semantics for buffered io yet
- send, fix sending link commands for existing file paths when there
are deleted and created hardlinks for same files
- repair all mirrors for profiles with more than 1 copy (raid1c34)
- fix repair of compressed extents, unify where error detection and
repair happen
Core changes:
- bio completion cleanups
- don't double defer compression bios
- simplify endio workqueues
- add more data to btrfs_bio to avoid allocation for read requests
- rework bio error handling so it's same what block layer does,
the submission works and errors are consumed in endio
- when asynchronous bio offload fails fall back to synchronous
checksum calculation to avoid errors under writeback or memory
pressure
- new trace points
- raid56 events
- ordered extent operations
- super block log_root_transid deprecated (never used)
- mixed_backref and big_metadata sysfs feature files removed, they've
been default for sufficiently long time, there are no known users
and mixed_backref could be confused with mixed_groups
Non-btrfs changes, API updates:
- minor highmem API update to cover const arguments
- switch all kmap/kmap_atomic to kmap_local
- remove redundant flush_dcache_page()
- address_space_operations::writepage callback removed
- add bdev_max_segments() helper"
* tag 'for-5.20-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (163 commits)
btrfs: don't call btrfs_page_set_checked in finish_compressed_bio_read
btrfs: fix repair of compressed extents
btrfs: remove the start argument to check_data_csum and export
btrfs: pass a btrfs_bio to btrfs_repair_one_sector
btrfs: simplify the pending I/O counting in struct compressed_bio
btrfs: repair all known bad mirrors
btrfs: merge btrfs_dev_stat_print_on_error with its only caller
btrfs: join running log transaction when logging new name
btrfs: simplify error handling in btrfs_lookup_dentry
btrfs: send: always use the rbtree based inode ref management infrastructure
btrfs: send: fix sending link commands for existing file paths
btrfs: send: introduce recorded_ref_alloc and recorded_ref_free
btrfs: zoned: wait until zone is finished when allocation didn't progress
btrfs: zoned: write out partially allocated region
btrfs: zoned: activate necessary block group
btrfs: zoned: activate metadata block group on flush_space
btrfs: zoned: disable metadata overcommit for zoned
btrfs: zoned: introduce space_info->active_total_bytes
btrfs: zoned: finish least available block group on data bg allocation
btrfs: let can_allocate_chunk return error
...
One of the goals is to reduce the overhead of using ->read_iter()
and ->write_iter() instead of ->read()/->write(); new_sync_{read,write}()
has a surprising amount of overhead, in particular inside iocb_flags().
That's why the beginning of the series is in this pile; it's not directly
iov_iter-related, but it's a part of the same work...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCYurGOQAKCRBZ7Krx/gZQ
6ysyAP91lvBfMRepcxpd9kvtuzWkU8A3rfSziZZteEHANB9Q7QEAiPn2a2OjWkcZ
uAyUWfCkHCNx+dSMkEvUgR5okQ0exAM=
=9UCV
-----END PGP SIGNATURE-----
Merge tag 'pull-work.iov_iter-base' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs iov_iter updates from Al Viro:
"Part 1 - isolated cleanups and optimizations.
One of the goals is to reduce the overhead of using ->read_iter() and
->write_iter() instead of ->read()/->write().
new_sync_{read,write}() has a surprising amount of overhead, in
particular inside iocb_flags(). That's the explanation for the
beginning of the series is in this pile; it's not directly
iov_iter-related, but it's a part of the same work..."
* tag 'pull-work.iov_iter-base' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
first_iovec_segment(): just return address
iov_iter: massage calling conventions for first_{iovec,bvec}_segment()
iov_iter: first_{iovec,bvec}_segment() - simplify a bit
iov_iter: lift dealing with maxpages out of first_{iovec,bvec}_segment()
iov_iter_get_pages{,_alloc}(): cap the maxsize with MAX_RW_COUNT
iov_iter_bvec_advance(): don't bother with bvec_iter
copy_page_{to,from}_iter(): switch iovec variants to generic
keep iocb_flags() result cached in struct file
iocb: delay evaluation of IS_SYNC(...) until we want to check IOCB_DSYNC
struct file: use anonymous union member for rcuhead and llist
btrfs: use IOMAP_DIO_NOSYNC
teach iomap_dio_rw() to suppress dsync
No need of likely/unlikely on calls of check_copy_size()
- Fix an accounting bug that made NR_FILE_DIRTY grow without limit
when running xfstests
- Convert more of mpage to use folios
- Remove add_to_page_cache() and add_to_page_cache_locked()
- Convert find_get_pages_range() to filemap_get_folios()
- Improvements to the read_cache_page() family of functions
- Remove a few unnecessary checks of PageError
- Some straightforward filesystem conversions to use folios
- Split PageMovable users out from address_space_operations into their
own movable_operations
- Convert aops->migratepage to aops->migrate_folio
- Remove nobh support (Christoph Hellwig)
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEejHryeLBw/spnjHrDpNsjXcpgj4FAmLpViQACgkQDpNsjXcp
gj5pBgf/f3+K7Hi3qw7aYQCYJQ7IA/bLyE/DLWI59kuiao6wDSve40B9YH9X++Ha
mRLp55bkQS+bwS2xa4jlqrIDJzAfNoWlXaXZHUXGL1C/52ChTF6jaH2cvO9PVlDS
7fLv1hy2LwiIdzpKJkUW7T+kcQGj3QLKqtQ4x8zD0LGMg055yvt/qndHSUi41nWT
/58+6W8Sk4vvRgkpeChFzF1lGLy00+FGT8y5V2kM9uRliFQ7XPCwqB2a3e5jbW6z
C1NXQmRnopCrnOT1TFIhK3DyX6MDIWV5qcikNAmCKFb9fQFPmjDLPt9iSoMGjw2M
Z+UVhJCaU3ISccd0DG5Ra/vzs9/O9Q==
=DgUi
-----END PGP SIGNATURE-----
Merge tag 'folio-6.0' of git://git.infradead.org/users/willy/pagecache
Pull folio updates from Matthew Wilcox:
- Fix an accounting bug that made NR_FILE_DIRTY grow without limit
when running xfstests
- Convert more of mpage to use folios
- Remove add_to_page_cache() and add_to_page_cache_locked()
- Convert find_get_pages_range() to filemap_get_folios()
- Improvements to the read_cache_page() family of functions
- Remove a few unnecessary checks of PageError
- Some straightforward filesystem conversions to use folios
- Split PageMovable users out from address_space_operations into
their own movable_operations
- Convert aops->migratepage to aops->migrate_folio
- Remove nobh support (Christoph Hellwig)
* tag 'folio-6.0' of git://git.infradead.org/users/willy/pagecache: (78 commits)
fs: remove the NULL get_block case in mpage_writepages
fs: don't call ->writepage from __mpage_writepage
fs: remove the nobh helpers
jfs: stop using the nobh helper
ext2: remove nobh support
ntfs3: refactor ntfs_writepages
mm/folio-compat: Remove migration compatibility functions
fs: Remove aops->migratepage()
secretmem: Convert to migrate_folio
hugetlb: Convert to migrate_folio
aio: Convert to migrate_folio
f2fs: Convert to filemap_migrate_folio()
ubifs: Convert to filemap_migrate_folio()
btrfs: Convert btrfs_migratepage to migrate_folio
mm/migrate: Add filemap_migrate_folio()
mm/migrate: Convert migrate_page() to migrate_folio()
nfs: Convert to migrate_folio
btrfs: Convert btree_migratepage to migrate_folio
mm/migrate: Convert expected_page_refs() to folio_expected_refs()
mm/migrate: Convert buffer_migrate_page() to buffer_migrate_folio()
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmLko3gQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpmQaD/90NKFj4v8I456TUQyg1jimXEsL+e84E6o2
ALWVb6JzQvlPVQXNLnK5YKIunMWOTtTMz0nyB8sVRwVJVJO0P5d7QopAkZM8fkyU
MK5OCzoryENw4DTc2wJS4in6cSbGylIuN74wMzlf7+M67JTImfoZQhbTMcjwzZfn
b3OlL6sID7zMXwGcuOJPZyUJICCpDhzdSF9JXqKma5PQuG2SBmQyvFxJAcsoFBPc
YetnoRIOIN6yBvsIZaPaYq7XI9MIvF0e67EQtyCEHj4tHpyVnyDWkeObVFULsISU
gGEKbkYPvNUzRAU5Q1NBBHh1tTfkf/MaUxTuZwoEwZ/s04IGBGMmrZGyfvdfzYo6
M7NwSEg/TrUSNfTwn65mQi7uOXu1pGkJrqz84Flm8u9Qid9Vd7LExLG5p/ggnWdH
5th93MDEmtEg29e9DXpEAuS5d0t3TtSvosflaKpyfNNfr+P0rWCN6GM/uW62VUTK
ls69SQh/AQJRbg64jU4xper6WhaYtSXK7TKEnxJycoEn9gYNyCcdot2uekth0xRH
ChHGmRlteiqe/y4uFWn/2dcxWjoleiHbFjTaiRL75WVl8wIDEjw02LGuoZ61Ss9H
WOV+MT7KqNjBGe6lreUY+O/PO02dzmoR6heJXN19p8zr/pBuLCTGX7UpO7rzgaBR
4N1HEozvIw==
=celk
-----END PGP SIGNATURE-----
Merge tag 'for-5.20/block-2022-07-29' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
- Improve the type checking of request flags (Bart)
- Ensure queue mapping for a single queues always picks the right queue
(Bart)
- Sanitize the io priority handling (Jan)
- rq-qos race fix (Jinke)
- Reserved tags handling improvements (John)
- Separate memory alignment from file/disk offset aligment for O_DIRECT
(Keith)
- Add new ublk driver, userspace block driver using io_uring for
communication with the userspace backend (Ming)
- Use try_cmpxchg() to cleanup the code in various spots (Uros)
- Finally remove bdevname() (Christoph)
- Clean up the zoned device handling (Christoph)
- Clean up independent access range support (Christoph)
- Clean up and improve block sysfs handling (Christoph)
- Clean up and improve teardown of block devices.
This turns the usual two step process into something that is simpler
to implement and handle in block drivers (Christoph)
- Clean up chunk size handling (Christoph)
- Misc cleanups and fixes (Bart, Bo, Dan, GuoYong, Jason, Keith, Liu,
Ming, Sebastian, Yang, Ying)
* tag 'for-5.20/block-2022-07-29' of git://git.kernel.dk/linux-block: (178 commits)
ublk_drv: fix double shift bug
ublk_drv: make sure that correct flags(features) returned to userspace
ublk_drv: fix error handling of ublk_add_dev
ublk_drv: fix lockdep warning
block: remove __blk_get_queue
block: call blk_mq_exit_queue from disk_release for never added disks
blk-mq: fix error handling in __blk_mq_alloc_disk
ublk: defer disk allocation
ublk: rewrite ublk_ctrl_get_queue_affinity to not rely on hctx->cpumask
ublk: fold __ublk_create_dev into ublk_ctrl_add_dev
ublk: cleanup ublk_ctrl_uring_cmd
ublk: simplify ublk_ch_open and ublk_ch_release
ublk: remove the empty open and release block device operations
ublk: remove UBLK_IO_F_PREFLUSH
ublk: add a MAINTAINERS entry
block: don't allow the same type rq_qos add more than once
mmc: fix disk/queue leak in case of adding disk failure
ublk_drv: fix an IS_ERR() vs NULL check
ublk: remove UBLK_IO_F_INTEGRITY
ublk_drv: remove unneeded semicolon
...
Use filemap_migrate_folio() to do the bulk of the work, and then copy
the ordered flag across if needed.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: David Sterba <dsterba@suse.com>
This flag was used to communicate that the low-level compression code
already did verify the checksum to the high-level I/O completion code.
But it has been unused for a long time as the upper btrfs_bio for the
decompressed data had a NULL csum pointer basically since that pointer
existed and the code already checks for that a little later.
Note that this does not affect the other use of the checked flag, which
is only used for the COW fixup worker.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently the checksum of compressed extents is verified based on the
compressed data and the lower btrfs_bio, but the actual repair process
is driven by end_bio_extent_readpage on the upper btrfs_bio for the
decompressed data.
This has a bunch of issues, including not being able to properly
communicate the failed mirror up in case that the I/O submission got
preempted, a general loss of if an error was an I/O error or a checksum
verification failure, but most importantly that this design causes
btrfs_clean_io_failure to eventually write back the uncompressed good
data onto the disk sectors that are supposed to contain compressed data.
Fix this by moving the repair to the lower btrfs_bio. To do so, a fair
amount of code has to be reshuffled:
a) the lower btrfs_bio now needs a valid csum pointer. The easiest way
to achieve that is to pass NULL btrfs_lookup_bio_sums and just use
the btrfs_bio management of csums. For a compressed_bio that is
split into multiple btrfs_bios this means additional memory
allocations, but the code becomes a lot more regular.
b) checksum verification now runs directly on the lower btrfs_bio instead
of the compressed_bio. This actually nicely simplifies the end I/O
processing.
c) btrfs_repair_one_sector can't just look up the logical address for
the file offset any more, as there is no corresponding relative
offsets that apply to the file offset and the logic address for
compressed extents. Instead require that the saved bvec_iter in the
btrfs_bio is filled out for all read bios and use that, which again
removes a fair amount of code.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Derive the value of start from the btrfs_bio now that ->file_offset is
always valid. Also export and rename the function so it's available
outside of inode.c as we'll need that soon.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pass the btrfs_bio instead of the plain bio to btrfs_repair_one_sector,
and remove the start and failed_mirror arguments in favor of deriving
them from the btrfs_bio. For this to work ensure that the file_offset
field is also initialized for buffered I/O.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_lookup_dentry releasing the reference of the sub_root and the
running orphan cleanup should only happen if the dentry found actually
represents a subvolume. This can only be true in the 'else' branch as
otherwise either fixup_tree_root_location returned an ENOENT error, in
which case sub_root wouldn't have been changed or if we got a different
errno this means btrfs_get_fs_root couldn't have executed successfully
again meaning sub_root will equal to root. So simplify all the branches
by moving the code into the 'else'.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When the allocated position doesn't progress, we cannot submit IOs to
finish a block group, but there should be ongoing IOs that will finish a
block group. So, in that case, we wait for a zone to be finished and retry
the allocation after that.
Introduce a new flag BTRFS_FS_NEED_ZONE_FINISH for fs_info->flags to
indicate we need a zone finish to have proceeded. The flag is set when the
allocator detected it cannot activate a new block group. And, it is cleared
once a zone is finished.
CC: stable@vger.kernel.org # 5.16+
Fixes: afba2bc036 ("btrfs: zoned: implement active zone tracking")
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
cow_file_range() works in an all-or-nothing way: if it fails to allocate an
extent for a part of the given region, it gives up all the region including
the successfully allocated parts. On cow_file_range(), run_delalloc_zoned()
writes data for the region only when it successfully allocate all the
region.
This all-or-nothing allocation and write-out are problematic when available
space in all the block groups are get tight with the active zone
restriction. btrfs_reserve_extent() try hard to utilize the left space in
the active block groups and gives up finally and fails with
-ENOSPC. However, if we send IOs for the successfully allocated region, we
can finish a zone and can continue on the rest of the allocation on a newly
allocated block group.
This patch implements the partial write-out for run_delalloc_zoned(). With
this patch applied, cow_file_range() returns -EAGAIN to tell the caller to
do something to progress the further allocation, and tells the successfully
allocated region with done_offset. Furthermore, the zoned extent allocator
returns -EAGAIN to tell cow_file_range() going back to the caller side.
Actually, we still need to wait for an IO to complete to continue the
allocation. The next patch implements that part.
CC: stable@vger.kernel.org # 5.16+
Fixes: afba2bc036 ("btrfs: zoned: implement active zone tracking")
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If count_max_extents() uses BTRFS_MAX_EXTENT_SIZE to calculate the number
of extents needed, btrfs release the metadata reservation too much on its
way to write out the data.
Now that BTRFS_MAX_EXTENT_SIZE is replaced with fs_info->max_extent_size,
convert count_max_extents() to use it instead, and fix the calculation of
the metadata reservation.
CC: stable@vger.kernel.org # 5.12+
Fixes: d8e3fb106f ("btrfs: zoned: use ZONE_APPEND write for zoned mode")
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
On zoned filesystem, data write out is limited by max_zone_append_size,
and a large ordered extent is split according the size of a bio. OTOH,
the number of extents to be written is calculated using
BTRFS_MAX_EXTENT_SIZE, and that estimated number is used to reserve the
metadata bytes to update and/or create the metadata items.
The metadata reservation is done at e.g, btrfs_buffered_write() and then
released according to the estimation changes. Thus, if the number of extent
increases massively, the reserved metadata can run out.
The increase of the number of extents easily occurs on zoned filesystem
if BTRFS_MAX_EXTENT_SIZE > max_zone_append_size. And, it causes the
following warning on a small RAM environment with disabling metadata
over-commit (in the following patch).
[75721.498492] ------------[ cut here ]------------
[75721.505624] BTRFS: block rsv 1 returned -28
[75721.512230] WARNING: CPU: 24 PID: 2327559 at fs/btrfs/block-rsv.c:537 btrfs_use_block_rsv+0x560/0x760 [btrfs]
[75721.581854] CPU: 24 PID: 2327559 Comm: kworker/u64:10 Kdump: loaded Tainted: G W 5.18.0-rc2-BTRFS-ZNS+ #109
[75721.597200] Hardware name: Supermicro Super Server/H12SSL-NT, BIOS 2.0 02/22/2021
[75721.607310] Workqueue: btrfs-endio-write btrfs_work_helper [btrfs]
[75721.616209] RIP: 0010:btrfs_use_block_rsv+0x560/0x760 [btrfs]
[75721.646649] RSP: 0018:ffffc9000fbdf3e0 EFLAGS: 00010286
[75721.654126] RAX: 0000000000000000 RBX: 0000000000004000 RCX: 0000000000000000
[75721.663524] RDX: 0000000000000004 RSI: 0000000000000008 RDI: fffff52001f7be6e
[75721.672921] RBP: ffffc9000fbdf420 R08: 0000000000000001 R09: ffff889f8d1fc6c7
[75721.682493] R10: ffffed13f1a3f8d8 R11: 0000000000000001 R12: ffff88980a3c0e28
[75721.692284] R13: ffff889b66590000 R14: ffff88980a3c0e40 R15: ffff88980a3c0e8a
[75721.701878] FS: 0000000000000000(0000) GS:ffff889f8d000000(0000) knlGS:0000000000000000
[75721.712601] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[75721.720726] CR2: 000055d12e05c018 CR3: 0000800193594000 CR4: 0000000000350ee0
[75721.730499] Call Trace:
[75721.735166] <TASK>
[75721.739886] btrfs_alloc_tree_block+0x1e1/0x1100 [btrfs]
[75721.747545] ? btrfs_alloc_logged_file_extent+0x550/0x550 [btrfs]
[75721.756145] ? btrfs_get_32+0xea/0x2d0 [btrfs]
[75721.762852] ? btrfs_get_32+0xea/0x2d0 [btrfs]
[75721.769520] ? push_leaf_left+0x420/0x620 [btrfs]
[75721.776431] ? memcpy+0x4e/0x60
[75721.781931] split_leaf+0x433/0x12d0 [btrfs]
[75721.788392] ? btrfs_get_token_32+0x580/0x580 [btrfs]
[75721.795636] ? push_for_double_split.isra.0+0x420/0x420 [btrfs]
[75721.803759] ? leaf_space_used+0x15d/0x1a0 [btrfs]
[75721.811156] btrfs_search_slot+0x1bc3/0x2790 [btrfs]
[75721.818300] ? lock_downgrade+0x7c0/0x7c0
[75721.824411] ? free_extent_buffer.part.0+0x107/0x200 [btrfs]
[75721.832456] ? split_leaf+0x12d0/0x12d0 [btrfs]
[75721.839149] ? free_extent_buffer.part.0+0x14f/0x200 [btrfs]
[75721.846945] ? free_extent_buffer+0x13/0x20 [btrfs]
[75721.853960] ? btrfs_release_path+0x4b/0x190 [btrfs]
[75721.861429] btrfs_csum_file_blocks+0x85c/0x1500 [btrfs]
[75721.869313] ? rcu_read_lock_sched_held+0x16/0x80
[75721.876085] ? lock_release+0x552/0xf80
[75721.881957] ? btrfs_del_csums+0x8c0/0x8c0 [btrfs]
[75721.888886] ? __kasan_check_write+0x14/0x20
[75721.895152] ? do_raw_read_unlock+0x44/0x80
[75721.901323] ? _raw_write_lock_irq+0x60/0x80
[75721.907983] ? btrfs_global_root+0xb9/0xe0 [btrfs]
[75721.915166] ? btrfs_csum_root+0x12b/0x180 [btrfs]
[75721.921918] ? btrfs_get_global_root+0x820/0x820 [btrfs]
[75721.929166] ? _raw_write_unlock+0x23/0x40
[75721.935116] ? unpin_extent_cache+0x1e3/0x390 [btrfs]
[75721.942041] btrfs_finish_ordered_io.isra.0+0xa0c/0x1dc0 [btrfs]
[75721.949906] ? try_to_wake_up+0x30/0x14a0
[75721.955700] ? btrfs_unlink_subvol+0xda0/0xda0 [btrfs]
[75721.962661] ? rcu_read_lock_sched_held+0x16/0x80
[75721.969111] ? lock_acquire+0x41b/0x4c0
[75721.974982] finish_ordered_fn+0x15/0x20 [btrfs]
[75721.981639] btrfs_work_helper+0x1af/0xa80 [btrfs]
[75721.988184] ? _raw_spin_unlock_irq+0x28/0x50
[75721.994643] process_one_work+0x815/0x1460
[75722.000444] ? pwq_dec_nr_in_flight+0x250/0x250
[75722.006643] ? do_raw_spin_trylock+0xbb/0x190
[75722.013086] worker_thread+0x59a/0xeb0
[75722.018511] kthread+0x2ac/0x360
[75722.023428] ? process_one_work+0x1460/0x1460
[75722.029431] ? kthread_complete_and_exit+0x30/0x30
[75722.036044] ret_from_fork+0x22/0x30
[75722.041255] </TASK>
[75722.045047] irq event stamp: 0
[75722.049703] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[75722.057610] hardirqs last disabled at (0): [<ffffffff8118a94a>] copy_process+0x1c1a/0x66b0
[75722.067533] softirqs last enabled at (0): [<ffffffff8118a989>] copy_process+0x1c59/0x66b0
[75722.077423] softirqs last disabled at (0): [<0000000000000000>] 0x0
[75722.085335] ---[ end trace 0000000000000000 ]---
To fix the estimation, we need to introduce fs_info->max_extent_size to
replace BTRFS_MAX_EXTENT_SIZE, which allow setting the different size for
regular vs zoned filesystem.
Set fs_info->max_extent_size to BTRFS_MAX_EXTENT_SIZE by default. On zoned
filesystem, it is set to fs_info->max_zone_append_size.
CC: stable@vger.kernel.org # 5.12+
Fixes: d8e3fb106f ("btrfs: zoned: use ZONE_APPEND write for zoned mode")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
kmap_atomic() is being deprecated in favor of kmap_local_page() where it
is feasible. With kmap_local_page() mappings are per thread, CPU local,
and not globally visible.
The last use of kmap_atomic is in inode.c where the context is atomic [1]
and can be safely replaced by kmap_local_page.
Tested with xfstests on a QEMU + KVM 32-bits VM with 4GB RAM and booting a
kernel with HIGHMEM64GB enabled.
[1] https://lore.kernel.org/linux-btrfs/20220601132545.GM20633@twin.jikos.cz/
Suggested-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Use simple bool type for the block reserve failfast status, there's
short to save space as there used to be int but there's no reason for
that.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Always consume the bio and call the end_io handler on error instead of
returning an error and letting the caller handle it. This matches what
the block layer submission and the other btrfs bio submission handlers do
and avoids any confusion on who needs to handle errors.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_wq_submit_bio is used for writeback under memory pressure.
Instead of failing the I/O when we can't allocate the async_submit_bio,
just punt back to the synchronous submission path.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_submit_data_write_bio special cases the reloc root because the
checksums are preloaded, but only does so for the !sync case. The sync
case can't happen for data relocation, but just handling it more generally
significantly simplifies the logic.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Always consume the bio and call the end_io handler on error instead of
returning an error and letting the caller handle it. This matches
what the block layer submission does and avoids any confusion on who
needs to handle errors.
As this requires touching all the callers, rename the function to
btrfs_submit_bio, which describes the functionality much better.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
The chained assignments may be convenient to write, but make readability
a bit worse as it's too easy to overlook that there are several values
set on the same line while this is rather an exception. Making it
consistent everywhere avoids surprises.
The pattern where inode times are initialized reuses the first value and
the order is mtime, ctime. In other blocks the assignments are expanded
so the order of variables is similar to the neighboring code.
Signed-off-by: David Sterba <dsterba@suse.com>
The 'goto out' in cow_file_range() in the exit block are not necessary
and jump back. Replace them with return, while still keeping 'goto out'
in the main code.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ keep goto in the main code, update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
When cow_file_range() fails in the middle of the allocation loop, it
unlocks the pages but leaves the ordered extents intact. Thus, we need
to call btrfs_cleanup_ordered_extents() to finish the created ordered
extents.
Also, we need to call end_extent_writepage() if locked_page is available
because btrfs_cleanup_ordered_extents() never processes the region on
the locked_page.
Furthermore, we need to set the mapping as error if locked_page is
unavailable before unlocking the pages, so that the errno is properly
propagated to the user space.
CC: stable@vger.kernel.org # 5.18+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_cleanup_ordered_extents() assumes locked_page to be non-NULL, so it
is not usable for submit_uncompressed_range() which can have NULL
locked_page.
Add support supports locked_page == NULL case. Also, it rewrites
redundant "page_offset(locked_page)".
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a hung_task report on zoned btrfs like below.
https://github.com/naota/linux/issues/59
[726.328648] INFO: task rocksdb:high0:11085 blocked for more than 241 seconds.
[726.329839] Not tainted 5.16.0-rc1+ #1
[726.330484] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[726.331603] task:rocksdb:high0 state:D stack: 0 pid:11085 ppid: 11082 flags:0x00000000
[726.331608] Call Trace:
[726.331611] <TASK>
[726.331614] __schedule+0x2e5/0x9d0
[726.331622] schedule+0x58/0xd0
[726.331626] io_schedule+0x3f/0x70
[726.331629] __folio_lock+0x125/0x200
[726.331634] ? find_get_entries+0x1bc/0x240
[726.331638] ? filemap_invalidate_unlock_two+0x40/0x40
[726.331642] truncate_inode_pages_range+0x5b2/0x770
[726.331649] truncate_inode_pages_final+0x44/0x50
[726.331653] btrfs_evict_inode+0x67/0x480
[726.331658] evict+0xd0/0x180
[726.331661] iput+0x13f/0x200
[726.331664] do_unlinkat+0x1c0/0x2b0
[726.331668] __x64_sys_unlink+0x23/0x30
[726.331670] do_syscall_64+0x3b/0xc0
[726.331674] entry_SYSCALL_64_after_hwframe+0x44/0xae
[726.331677] RIP: 0033:0x7fb9490a171b
[726.331681] RSP: 002b:00007fb943ffac68 EFLAGS: 00000246 ORIG_RAX: 0000000000000057
[726.331684] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fb9490a171b
[726.331686] RDX: 00007fb943ffb040 RSI: 000055a6bbe6ec20 RDI: 00007fb94400d300
[726.331687] RBP: 00007fb943ffad00 R08: 0000000000000000 R09: 0000000000000000
[726.331688] R10: 0000000000000031 R11: 0000000000000246 R12: 00007fb943ffb000
[726.331690] R13: 00007fb943ffb040 R14: 0000000000000000 R15: 00007fb943ffd260
[726.331693] </TASK>
While we debug the issue, we found running fstests generic/551 on 5GB
non-zoned null_blk device in the emulated zoned mode also had a
similar hung issue.
Also, we can reproduce the same symptom with an error injected
cow_file_range() setup.
The hang occurs when cow_file_range() fails in the middle of
allocation. cow_file_range() called from do_allocation_zoned() can
split the give region ([start, end]) for allocation depending on
current block group usages. When btrfs can allocate bytes for one part
of the split regions but fails for the other region (e.g. because of
-ENOSPC), we return the error leaving the pages in the succeeded regions
locked. Technically, this occurs only when @unlock == 0. Otherwise, we
unlock the pages in an allocated region after creating an ordered
extent.
Considering the callers of cow_file_range(unlock=0) won't write out
the pages, we can unlock the pages on error exit from
cow_file_range(). So, we can ensure all the pages except @locked_page
are unlocked on error case.
In summary, cow_file_range now behaves like this:
- page_started == 1 (return value)
- All the pages are unlocked. IO is started.
- unlock == 1
- All the pages except @locked_page are unlocked in any case
- unlock == 0
- On success, all the pages are locked for writing out them
- On failure, all the pages except @locked_page are unlocked
Fixes: 42c0110009 ("btrfs: zoned: introduce dedicated data write path for zoned filesystems")
CC: stable@vger.kernel.org # 5.12+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Same as in commit 21b4ee7029 ("xfs: drop ->writepage completely"): we
can remove the callback as it's only used in one place - single page
writeback from memory reclaim and is not called for cgroup writeback at
all.
We only allow such writeback from kswapd, not from direct memory
reclaim, and so it is rarely used. When it comes from kswapd, it is
effectively random dirty page shoot-down, which is horrible for IO
patterns. We can rely on background writeback to clean all dirty pages
in an efficient way and not let it be interrupted by kswapd.
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Btrfs currently limits direct I/O reads to a single sector, which goes
back to commit c329861da4 ("Btrfs: don't allocate a separate csums
array for direct reads") from Josef. That commit changes the direct I/O
code to ".. use the private part of the io_tree for our csums.", but ten
years later that isn't how checksums for direct reads work, instead they
use a csums allocation on a per-btrfs_dio_private basis (which have their
own performance problem for small I/O, but that will be addressed later).
There is no fundamental limit in btrfs itself to limit the I/O size
except for the size of the checksum array that scales linearly with
the number of sectors in an I/O. Pick a somewhat arbitrary limit of
256 limits, which matches what the buffered reads typically see as
the upper limit as the limit for direct I/O as well.
This significantly improves direct read performance. For example a fio
run doing 1 MiB aio reads with a queue depth of 1 roughly triples the
throughput:
Baseline:
READ: bw=65.3MiB/s (68.5MB/s), 65.3MiB/s-65.3MiB/s (68.5MB/s-68.5MB/s), io=19.1GiB (20.6GB), run=300013-300013msec
With this patch:
READ: bw=196MiB/s (206MB/s), 196MiB/s-196MiB/s (206MB/s-206MB/s), io=57.5GiB (61.7GB), run=300006-300006msc
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
finish_func is always set to finish_ordered_fn, so remove it and also
the now pointless and somewhat confusingly named
__endio_write_update_ordered wrapper.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
The bits are passed to all extent state helpers for no apparent reason,
the value only read and never updated so remove the indirection and pass
it directly. Also unify the type to u32 where needed.
Signed-off-by: David Sterba <dsterba@suse.com>
The use of kmap() is being deprecated in favor of kmap_local_page() where
it is feasible. With kmap_local_page(), the mapping is per thread, CPU
local and not globally visible.
Therefore, use kmap_local_page() / kunmap_local() in inode.c wherever the
mappings are per thread and not globally visible.
Tested on QEMU + KVM 32 bits VM with 4GB of RAM and HIGHMEM64G enabled.
Suggested-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All reads bio that go through btrfs_map_bio need to be completed in
user context. And read I/Os are the most common and timing critical
in almost any file system workloads.
Embed a work_struct into struct btrfs_bio and use it to complete all
read bios submitted through btrfs_map, using the REQ_META flag to decide
which workqueue they are placed on.
This removes the need for a separate 128 byte allocation (typically
rounded up to 192 bytes by slab) for all reads with a size increase
of 24 bytes for struct btrfs_bio. Future patches will reorganize
struct btrfs_bio to make use of this extra space for writes as well.
(All sizes are based a on typical 64-bit non-debug build)
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
The bio completion handler of the bio used for the compressed data is
already run in a workqueue using btrfs_bio_wq_end_io, so don't schedule
the completion of the original bio to the same workqueue again but just
execute it directly.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Split btrfs_submit_data_bio into one helper for reads and one for writes.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is no exit block and cleanup and the function is reasonably short
so we can use inline return and not the goto. This makes the function
more straight forward.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that all of the pieces are in place, we can use the ENCODED_WRITE
command to send compressed extents when appropriate.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When creating an inode, through btrfs_create_new_inode(), we release the
path we allocated before once we don't need it anymore. But we keep it
allocated until we return from that function, which is wasteful because
after we release the path we do several things that can allocate yet
another path: inheriting properties, setting the xattrs used by ACLs and
secutiry modules, adding an orphan item (O_TMPFILE case) or adding a
dir item (for the non-O_TMPFILE case).
So instead of releasing the path once we don't need it anymore, free it
instead. This way we avoid having two paths allocated until we return
from btrfs_create_new_inode().
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A rename operation modifies a subvolume's btree, to remove the old dir
item, add the new dir item, remove an inode ref and add a new inode ref.
It can also create the delayed inode for the inodes involved in the
operation, and it creates two delayed dir index items, one to delete
the old name and another one to add the new name.
However we are neither balancing the btree dirty pages nor the delayed
items after a rename, which can result in accumulation of too many
btree dirty pages and delayed items, specially if a task is doing a
series of rename operations (for example it can happen for package
installations/upgrades through the zypper tool).
So just call btrfs_btree_balance_dirty() after a rename, just like we
do for every other system call that results on modifying a btree and
adding delayed items.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Both memzero_page and memcpy_to_page already call flush_dcache_page so
we can remove the calls from btrfs code.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Use the new btrfs_bio_for_each_sector iterator to simplify
btrfs_check_read_dio_bio.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a helper to find the csum for a byte offset into the csum buffer.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Although we have several data csum verification code, we never have a
function really just to verify checksum for one sector.
Function check_data_csum() do extra work for error reporting, thus it
requires a lot of extra things like file offset, bio_offset etc.
Function btrfs_verify_data_csum() is even worse, it will utilize page
checked flag, which means it can not be utilized for direct IO pages.
Here we introduce a new helper, btrfs_check_sector_csum(), which really
only accept a sector in page, and expected checksum pointer.
We use this function to implement check_data_csum(), and export it for
incoming patch.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
[hch: keep passing the csum array as an arguments, as the callers want
to print it, rename per request]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The <linux/mm.h> already provides the PAGE_ALIGNED macro. Let's
use it instead of IS_ALIGNED and passing PAGE_SIZE directly.
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Fanjun Kong <bh1scw@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmLRpPgACgkQxWXV+ddt
WDtu/BAAnfx7CXKIfWKpz6FZEio9Qb3mUHVOglyKzqR0qB72OdrC1dQMvEWPJc6h
N65di6+8tTNmRIlaFBMU0MDHODR2aDRpDtlR9eUzUuidTc4iOp1fi31uBwl31r7b
k8mCZBc/IAdfH13lBtcfkb2HGid7rik5ZC6Kx/glMcqh647QkSMAleupUsIYHKsK
IgcUWuN3wFIUK2WVgsja7+ljlwIHBHKRp9yrEYw+ef/B0NCNKvOnrIOPJzO7nxMP
1FbqJ6F7u7HjoMFcMwn5rbV/BoIwSSvXyKRqOW+EhGeQR/imVmkH9jXJ7wXdblSz
IvSqaZ0DaWWSvivdMpwbr8Z0Cu4iIYhVY6PSA0hukR63qB5GwKKJ6j1L0zoYoz8C
IDWJPW03FNRIu5ZOduvUQ3qG7jcJQZ3WPCCfrDST1cO2xHT/7f65Tjz4k0hvp4za
edITetC1mEv310CHeGsJaLxGYPNrRe38VZYPxgJ7yFpteGYjh0ZwsuyUHb4MH1no
JWwgElNW+m1BatdWSUBYk6xhqod1s2LOFPNqo7jNlv8I27hPViqCbBA2i9FlkXf+
FwL5kWyJXs69gfjUIj59381Z0U1VdA1tvU8GP2m2+JvIDS6ooAcZj7yEQ69mCZxi
2RFJIU0NFbnc/5j2ARSzOTGs9glDD0yffgXJM+cK+TWsQ3AC31I=
=/47A
-----END PGP SIGNATURE-----
Merge tag 'for-5.19-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs reverts from David Sterba:
"Due to a recent report [1] we need to revert the radix tree to xarray
conversion patches.
There's a problem with sleeping under spinlock, when xa_insert could
allocate memory under pressure. We use GFP_NOFS so this is a real
problem that we unfortunately did not discover during review.
I'm sorry to do such change at rc6 time but the revert is IMO the
safer option, there are patches to use mutex instead of the spin locks
but that would need more testing. The revert branch has been tested on
a few setups, all seem ok.
The conversion to xarray will be revisited in the future"
Link: https://lore.kernel.org/linux-btrfs/cover.1657097693.git.fdmanana@suse.com/ [1]
* tag 'for-5.19-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
Revert "btrfs: turn delayed_nodes_tree into an XArray"
Revert "btrfs: turn name_cache radix tree into XArray in send_ctx"
Revert "btrfs: turn fs_info member buffer_radix into XArray"
Revert "btrfs: turn fs_roots_radix in btrfs_fs_info into an XArray"
This reverts commit 253bf57555.
Revert the xarray conversion, there's a problem with potential
sleep-inside-spinlock [1] when calling xa_insert that triggers GFP_NOFS
allocation. The radix tree used the preloading mechanism to avoid
sleeping but this is not available in xarray.
Conversion from spin lock to mutex is possible but at time of rc6 is
riskier than a clean revert.
[1] https://lore.kernel.org/linux-btrfs/cover.1657097693.git.fdmanana@suse.com/
Reported-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This reverts commit 48b36a602a.
Revert the xarray conversion, there's a problem with potential
sleep-inside-spinlock [1] when calling xa_insert that triggers GFP_NOFS
allocation. The radix tree used the preloading mechanism to avoid
sleeping but this is not available in xarray.
Conversion from spin lock to mutex is possible but at time of rc6 is
riskier than a clean revert.
[1] https://lore.kernel.org/linux-btrfs/cover.1657097693.git.fdmanana@suse.com/
Reported-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Improve static type checking by using the enum req_op type for variables
that represent a request operation and the new blk_opf_t type for
variables that represent request flags.
Acked-by: David Sterba <dsterba@suse.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Link: https://lore.kernel.org/r/20220714180729.1065367-51-bvanassche@acm.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmLMiQQACgkQxWXV+ddt
WDvBQg/+I1ebfW2DFY8kBwy7c1qKZWIhNx1VVk2AegIXvrW/Tos7wp5O6fi7p/jL
d6k8zO/zFLlfiI4Ckmz3gt7cxaMTNXxr6+GQpNNm1b92Wdcy1a+3gquzcehT9Q10
ZB4ecPWzEDXgORvdBYG2eD2Z8PrsF0Wu88XRDiiJOBQLjZ+k2sVp8QvJlOllLDoC
m7rPoq98jC6VpZwFJ+fGk2jC7y4+1QXrOuQMy7LRTe59Thp6wUFDDPtkKfr5scDC
UxkctlUdInD7A6DVvPzwaBFNoT8UeEByGHcMd3KjjrTdmqSWW6k8FiF4ckZwA3zJ
oPdJVzdC5a2W7t6BHw+t7VNmkKd+swnr2sVSGQ8eIzF7z3/JSqyYVwziOD1YzAdU
QUmawWm4/SFvsbO8aoLrEKNbUiTgQwVbKzJh4Dhu9VJ43jeCwCX7pa/uZI4evgyG
T0tuwm58bWCk4y1o1fcFYgf4JcVgK23F2vKckUFZeHoV3Q8R0DnPCCGTqs1qT5vY
irZ9AIawmaR09JptMjjsAEjDA9qb16Ut/J6/anukyCgL610EyYZG7zb1WH1cUD1o
zNXY6O/iKyNdiXj7V1fTMiG/M8hGDcFu4pOpBk3hFjHEXX9BefoVC0J5YzvCecPz
isqboD5Lt1I4mrzac1X+serMYfVbFH6+tsEPBQBZf/o/a0u43jI=
=Cxvn
-----END PGP SIGNATURE-----
Merge tag 'for-5.19-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A more fixes that seem to me to be important enough to get merged
before release:
- in zoned mode, fix leak of a structure when reading zone info, this
happens on normal path so this can be significant
- in zoned mode, revert an optimization added in 5.19-rc1 to finish a
zone when the capacity is full, but this is not reliable in all
cases
- try to avoid short reads for compressed data or inline files when
it's a NOWAIT read, applications should handle that but there are
two, qemu and mariadb, that are affected"
* tag 'for-5.19-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: zoned: drop optimization of zone finish
btrfs: zoned: fix a leaked bioc in read_zone_info
btrfs: return -EAGAIN for NOWAIT dio reads/writes on compressed and inline extents
When doing a direct IO read or write, we always return -ENOTBLK when we
find a compressed extent (or an inline extent) so that we fallback to
buffered IO. This however is not ideal in case we are in a NOWAIT context
(io_uring for example), because buffered IO can block and we currently
have no support for NOWAIT semantics for buffered IO, so if we need to
fallback to buffered IO we should first signal the caller that we may
need to block by returning -EAGAIN instead.
This behaviour can also result in short reads being returned to user
space, which although it's not incorrect and user space should be able
to deal with partial reads, it's somewhat surprising and even some popular
applications like QEMU (Link tag #1) and MariaDB (Link tag #2) don't
deal with short reads properly (or at all).
The short read case happens when we try to read from a range that has a
non-compressed and non-inline extent followed by a compressed extent.
After having read the first extent, when we find the compressed extent we
return -ENOTBLK from btrfs_dio_iomap_begin(), which results in iomap to
treat the request as a short read, returning 0 (success) and waiting for
previously submitted bios to complete (this happens at
fs/iomap/direct-io.c:__iomap_dio_rw()). After that, and while at
btrfs_file_read_iter(), we call filemap_read() to use buffered IO to
read the remaining data, and pass it the number of bytes we were able to
read with direct IO. Than at filemap_read() if we get a page fault error
when accessing the read buffer, we return a partial read instead of an
-EFAULT error, because the number of bytes previously read is greater
than zero.
So fix this by returning -EAGAIN for NOWAIT direct IO when we find a
compressed or an inline extent.
Reported-by: Dominique MARTINET <dominique.martinet@atmark-techno.com>
Link: https://lore.kernel.org/linux-btrfs/YrrFGO4A1jS0GI0G@atmark-techno.com/
Link: https://jira.mariadb.org/browse/MDEV-27900?focusedCommentId=216582&page=com.atlassian.jira.plugin.system.issuetabpanels%3Acomment-tabpanel#comment-216582
Tested-by: Dominique MARTINET <dominique.martinet@atmark-techno.com>
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmK4dV4ACgkQxWXV+ddt
WDs4uQ/7B0XqPK05NJntJfwnuIoT/yOreKf47wt/6DyFV3CDMFte/qzaZwthwu6P
F0GMpSYAlVszLlML5elvF9VXymlV+e+QROtbD6QCNLNW1IwHA7ZiF5fV/a1Rj930
XSuaDyVFPAK7892RR6yMQ20IeMBuvqiAhXWEzaIJ2tIcAHn+fP+VkY8Nc0aZj3iC
mI+ep4n93karDxmnHVGUxJTxAe0l/uNopx+fYBWQDj7HuoMLo0Cu+rAdv0gRIxi2
RWUBkR4e4PBwV1OFScwNCsljjt6bHdUHrtdB3fo5Hzu9cO5hHdL7NEsKB1K2w7rV
bgNuNqfj6Y4xUBchAfQO5CCJ9ISci5KoJ4RBpk6EprZR3QN40kN8GPlhi2519K7w
F3d8jolDDHlkqxIsqoe47MYOcSepNEadVNsiYKb0rM6doilfxyXiu6dtTFMrC8Vy
K2HDCdTyuIgw+TnwqT1puaUwxiIL8DFJf1CVyjwGuQ4UgaIEkHXKIsCssyyJ76Jh
QkWX1aeRldbfkVArJWHQWqDQopx9pFBz1gjlws0YjAsU5YijOOXva464P9Rxg+Gq
4pRlgnO48joQam9bRirP2Z6yhqa4O6jkzKDOXSYduAUYD7IMfpsYnz09wKS95jj+
QCrR7VmKnpQdsXg5a/mqyacfIH30ph002VywRxPiFM89Syd25yo=
=rUrf
-----END PGP SIGNATURE-----
Merge tag 'for-5.19-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- zoned relocation fixes:
- fix critical section end for extent writeback, this could lead
to out of order write
- prevent writing to previous data relocation block group if space
gets low
- reflink fixes:
- fix race between reflinking and ordered extent completion
- proper error handling when block reserve migration fails
- add missing inode iversion/mtime/ctime updates on each iteration
when replacing extents
- fix deadlock when running fsync/fiemap/commit at the same time
- fix false-positive KCSAN report regarding pid tracking for read locks
and data race
- minor documentation update and link to new site
* tag 'for-5.19-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
Documentation: update btrfs list of features and link to readthedocs.io
btrfs: fix deadlock with fsync+fiemap+transaction commit
btrfs: don't set lock_owner when locking extent buffer for reading
btrfs: zoned: fix critical section of relocation inode writeback
btrfs: zoned: prevent allocation from previous data relocation BG
btrfs: do not BUG_ON() on failure to migrate space when replacing extents
btrfs: add missing inode updates on each iteration when replacing extents
btrfs: fix race between reflinking and ordered extent completion
After commit 5f0addf7b8 ("btrfs: zoned: use dedicated lock for data
relocation"), we observe IO errors on e.g, btrfs/232 like below.
[09.0][T4038707] WARNING: CPU: 3 PID: 4038707 at fs/btrfs/extent-tree.c:2381 btrfs_cross_ref_exist+0xfc/0x120 [btrfs]
<snip>
[09.9][T4038707] Call Trace:
[09.5][T4038707] <TASK>
[09.3][T4038707] run_delalloc_nocow+0x7f1/0x11a0 [btrfs]
[09.6][T4038707] ? test_range_bit+0x174/0x320 [btrfs]
[09.2][T4038707] ? fallback_to_cow+0x980/0x980 [btrfs]
[09.3][T4038707] ? find_lock_delalloc_range+0x33e/0x3e0 [btrfs]
[09.5][T4038707] btrfs_run_delalloc_range+0x445/0x1320 [btrfs]
[09.2][T4038707] ? test_range_bit+0x320/0x320 [btrfs]
[09.4][T4038707] ? lock_downgrade+0x6a0/0x6a0
[09.2][T4038707] ? orc_find.part.0+0x1ed/0x300
[09.5][T4038707] ? __module_address.part.0+0x25/0x300
[09.0][T4038707] writepage_delalloc+0x159/0x310 [btrfs]
<snip>
[09.4][ C3] sd 10:0:1:0: [sde] tag#2620 FAILED Result: hostbyte=DID_OK driverbyte=DRIVER_OK cmd_age=0s
[09.5][ C3] sd 10:0:1:0: [sde] tag#2620 Sense Key : Illegal Request [current]
[09.9][ C3] sd 10:0:1:0: [sde] tag#2620 Add. Sense: Unaligned write command
[09.5][ C3] sd 10:0:1:0: [sde] tag#2620 CDB: Write(16) 8a 00 00 00 00 00 02 f3 63 87 00 00 00 2c 00 00
[09.4][ C3] critical target error, dev sde, sector 396041272 op 0x1:(WRITE) flags 0x800 phys_seg 3 prio class 0
[09.9][ C3] BTRFS error (device dm-1): bdev /dev/mapper/dml_102_2 errs: wr 1, rd 0, flush 0, corrupt 0, gen 0
The IO errors occur when we allocate a regular extent in previous data
relocation block group.
On zoned btrfs, we use a dedicated block group to relocate a data
extent. Thus, we allocate relocating data extents (pre-alloc) only from
the dedicated block group and vice versa. Once the free space in the
dedicated block group gets tight, a relocating extent may not fit into
the block group. In that case, we need to switch the dedicated block
group to the next one. Then, the previous one is now freed up for
allocating a regular extent. The BG is already not enough to allocate
the relocating extent, but there is still room to allocate a smaller
extent. Now the problem happens. By allocating a regular extent while
nocow IOs for the relocation is still on-going, we will issue WRITE IOs
(for relocation) and ZONE APPEND IOs (for the regular writes) at the
same time. That mixed IOs confuses the write pointer and arises the
unaligned write errors.
This commit introduces a new bit 'zoned_data_reloc_ongoing' to the
btrfs_block_group. We set this bit before releasing the dedicated block
group, and no extent are allocated from a block group having this bit
set. This bit is similar to setting block_group->ro, but is different from
it by allowing nocow writes to start.
Once all the nocow IO for relocation is done (hooked from
btrfs_finish_ordered_io), we reset the bit to release the block group for
further allocation.
Fixes: c2707a2556 ("btrfs: zoned: add a dedicated data relocation block group")
CC: stable@vger.kernel.org # 5.16+
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When replacing file extents, called during fallocate, hole punching,
clone and deduplication, we may not be able to replace/drop all the
target file extent items with a single transaction handle. We may get
-ENOSPC while doing it, in which case we release the transaction handle,
balance the dirty pages of the btree inode, flush delayed items and get
a new transaction handle to operate on what's left of the target range.
By dropping and replacing file extent items we have effectively modified
the inode, so we should bump its iversion and update its mtime/ctime
before we update the inode item. This is because if the transaction
we used for partially modifying the inode gets committed by someone after
we release it and before we finish the rest of the range, a power failure
happens, then after mounting the filesystem our inode has an outdated
iversion and mtime/ctime, corresponding to the values it had before we
changed it.
So add the missing iversion and mtime/ctime updates.
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
... instead of messing with iocb flags
Suggested-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
- Appoint myself page cache maintainer
- Fix how scsicam uses the page cache
- Use the memalloc_nofs_save() API to replace AOP_FLAG_NOFS
- Remove the AOP flags entirely
- Remove pagecache_write_begin() and pagecache_write_end()
- Documentation updates
- Convert several address_space operations to use folios:
- is_dirty_writeback
- readpage becomes read_folio
- releasepage becomes release_folio
- freepage becomes free_folio
- Change filler_t to require a struct file pointer be the first argument
like ->read_folio
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEejHryeLBw/spnjHrDpNsjXcpgj4FAmKNMDUACgkQDpNsjXcp
gj4/mwf/bpHhXH4ZoNIvtUpTF6rZbqeffmc0VrbxCZDZ6igRnRPglxZ9H9v6L53O
7B0FBQIfxgNKHZpdqGdOkv8cjg/GMe/HJUbEy5wOakYPo4L9fZpHbDZ9HM2Eankj
xBqLIBgBJ7doKr+Y62DAN19TVD8jfRfVtli5mqXJoNKf65J7BkxljoTH1L3EXD9d
nhLAgyQjR67JQrT/39KMW+17GqLhGefLQ4YnAMONtB6TVwX/lZmigKpzVaCi4r26
bnk5vaR/3PdjtNxIoYvxdc71y2Eg05n2jEq9Wcy1AaDv/5vbyZUlZ2aBSaIVbtKX
WfrhN9O3L0bU5qS7p9PoyfLc9wpq8A==
=djLv
-----END PGP SIGNATURE-----
Merge tag 'folio-5.19' of git://git.infradead.org/users/willy/pagecache
Pull page cache updates from Matthew Wilcox:
- Appoint myself page cache maintainer
- Fix how scsicam uses the page cache
- Use the memalloc_nofs_save() API to replace AOP_FLAG_NOFS
- Remove the AOP flags entirely
- Remove pagecache_write_begin() and pagecache_write_end()
- Documentation updates
- Convert several address_space operations to use folios:
- is_dirty_writeback
- readpage becomes read_folio
- releasepage becomes release_folio
- freepage becomes free_folio
- Change filler_t to require a struct file pointer be the first
argument like ->read_folio
* tag 'folio-5.19' of git://git.infradead.org/users/willy/pagecache: (107 commits)
nilfs2: Fix some kernel-doc comments
Appoint myself page cache maintainer
fs: Remove aops->freepage
secretmem: Convert to free_folio
nfs: Convert to free_folio
orangefs: Convert to free_folio
fs: Add free_folio address space operation
fs: Convert drop_buffers() to use a folio
fs: Change try_to_free_buffers() to take a folio
jbd2: Convert release_buffer_page() to use a folio
jbd2: Convert jbd2_journal_try_to_free_buffers to take a folio
reiserfs: Convert release_buffer_page() to use a folio
fs: Remove last vestiges of releasepage
ubifs: Convert to release_folio
reiserfs: Convert to release_folio
orangefs: Convert to release_folio
ocfs2: Convert to release_folio
nilfs2: Remove comment about releasepage
nfs: Convert to release_folio
jfs: Convert to release_folio
...
When reserving metadata units for creating an inode, we don't need to
reserve one extra unit for the inode ref item because when creating the
inode, at btrfs_create_new_inode(), we always insert the inode item and
the inode ref item in a single batch (a single btree insert operation,
and both ending up in the same leaf).
As we have accounted already one unit for the inode item, the extra unit
for the inode ref item is superfluous, it only makes us reserve more
metadata than necessary and often adding more reclaim pressure if we are
low on available metadata space.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Create a new bio_set that contains all the per-bio private data needed
by btrfs for direct I/O and tell the iomap code to use that instead
of separately allocation the btrfs_dio_private structure.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The btrfs_dio_private structure is only used in inode.c, so move the
definition there.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This field is never used, so remove it. Last use was probably in
23ea8e5a07 ("Btrfs: load checksum data once when submitting a direct
read io").
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Make use of the new iomap_iter->private field to avoid a memory
allocation per iomap range.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Allow the file system to keep state for all iterations. For now only
wire it up for direct I/O as there is an immediate need for it there.
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a wrapper around iomap_dio_rw that keeps the direct I/O internals
isolated in inode.c.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Several functions take parameter bio_flags that was simplified to just
compress type, unify it and change the type accordingly.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The bio_flags are used only to encode the compression and there are no
other EXTENT_BIO_* flags, so the compress type can be stored directly.
The struct member name is left unchanged and will be cleaned in later
patches.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When reserving data space for a direct IO write we can end up deadlocking
if we have multiple tasks attempting a write to the same file range, there
are multiple extents covered by that file range, we are low on available
space for data and the writes don't expand the inode's i_size.
The deadlock can happen like this:
1) We have a file with an i_size of 1M, at offset 0 it has an extent with
a size of 128K and at offset 128K it has another extent also with a
size of 128K;
2) Task A does a direct IO write against file range [0, 256K), and because
the write is within the i_size boundary, it takes the inode's lock (VFS
level) in shared mode;
3) Task A locks the file range [0, 256K) at btrfs_dio_iomap_begin(), and
then gets the extent map for the extent covering the range [0, 128K).
At btrfs_get_blocks_direct_write(), it creates an ordered extent for
that file range ([0, 128K));
4) Before returning from btrfs_dio_iomap_begin(), it unlocks the file
range [0, 256K);
5) Task A executes btrfs_dio_iomap_begin() again, this time for the file
range [128K, 256K), and locks the file range [128K, 256K);
6) Task B starts a direct IO write against file range [0, 256K) as well.
It also locks the inode in shared mode, as it's within the i_size limit,
and then tries to lock file range [0, 256K). It is able to lock the
subrange [0, 128K) but then blocks waiting for the range [128K, 256K),
as it is currently locked by task A;
7) Task A enters btrfs_get_blocks_direct_write() and tries to reserve data
space. Because we are low on available free space, it triggers the
async data reclaim task, and waits for it to reserve data space;
8) The async reclaim task decides to wait for all existing ordered extents
to complete (through btrfs_wait_ordered_roots()).
It finds the ordered extent previously created by task A for the file
range [0, 128K) and waits for it to complete;
9) The ordered extent for the file range [0, 128K) can not complete
because it blocks at btrfs_finish_ordered_io() when trying to lock the
file range [0, 128K).
This results in a deadlock, because:
- task B is holding the file range [0, 128K) locked, waiting for the
range [128K, 256K) to be unlocked by task A;
- task A is holding the file range [128K, 256K) locked and it's waiting
for the async data reclaim task to satisfy its space reservation
request;
- the async data reclaim task is waiting for ordered extent [0, 128K)
to complete, but the ordered extent can not complete because the
file range [0, 128K) is currently locked by task B, which is waiting
on task A to unlock file range [128K, 256K) and task A waiting
on the async data reclaim task.
This results in a deadlock between 4 task: task A, task B, the async
data reclaim task and the task doing ordered extent completion (a work
queue task).
This type of deadlock can sporadically be triggered by the test case
generic/300 from fstests, and results in a stack trace like the following:
[12084.033689] INFO: task kworker/u16:7:123749 blocked for more than 241 seconds.
[12084.034877] Not tainted 5.18.0-rc2-btrfs-next-115 #1
[12084.035562] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[12084.036548] task:kworker/u16:7 state:D stack: 0 pid:123749 ppid: 2 flags:0x00004000
[12084.036554] Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs]
[12084.036599] Call Trace:
[12084.036601] <TASK>
[12084.036606] __schedule+0x3cb/0xed0
[12084.036616] schedule+0x4e/0xb0
[12084.036620] btrfs_start_ordered_extent+0x109/0x1c0 [btrfs]
[12084.036651] ? prepare_to_wait_exclusive+0xc0/0xc0
[12084.036659] btrfs_run_ordered_extent_work+0x1a/0x30 [btrfs]
[12084.036688] btrfs_work_helper+0xf8/0x400 [btrfs]
[12084.036719] ? lock_is_held_type+0xe8/0x140
[12084.036727] process_one_work+0x252/0x5a0
[12084.036736] ? process_one_work+0x5a0/0x5a0
[12084.036738] worker_thread+0x52/0x3b0
[12084.036743] ? process_one_work+0x5a0/0x5a0
[12084.036745] kthread+0xf2/0x120
[12084.036747] ? kthread_complete_and_exit+0x20/0x20
[12084.036751] ret_from_fork+0x22/0x30
[12084.036765] </TASK>
[12084.036769] INFO: task kworker/u16:11:153787 blocked for more than 241 seconds.
[12084.037702] Not tainted 5.18.0-rc2-btrfs-next-115 #1
[12084.038540] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[12084.039506] task:kworker/u16:11 state:D stack: 0 pid:153787 ppid: 2 flags:0x00004000
[12084.039511] Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs]
[12084.039551] Call Trace:
[12084.039553] <TASK>
[12084.039557] __schedule+0x3cb/0xed0
[12084.039566] schedule+0x4e/0xb0
[12084.039569] schedule_timeout+0xed/0x130
[12084.039573] ? mark_held_locks+0x50/0x80
[12084.039578] ? _raw_spin_unlock_irq+0x24/0x50
[12084.039580] ? lockdep_hardirqs_on+0x7d/0x100
[12084.039585] __wait_for_common+0xaf/0x1f0
[12084.039587] ? usleep_range_state+0xb0/0xb0
[12084.039596] btrfs_wait_ordered_extents+0x3d6/0x470 [btrfs]
[12084.039636] btrfs_wait_ordered_roots+0x175/0x240 [btrfs]
[12084.039670] flush_space+0x25b/0x630 [btrfs]
[12084.039712] btrfs_async_reclaim_data_space+0x108/0x1b0 [btrfs]
[12084.039747] process_one_work+0x252/0x5a0
[12084.039756] ? process_one_work+0x5a0/0x5a0
[12084.039758] worker_thread+0x52/0x3b0
[12084.039762] ? process_one_work+0x5a0/0x5a0
[12084.039765] kthread+0xf2/0x120
[12084.039766] ? kthread_complete_and_exit+0x20/0x20
[12084.039770] ret_from_fork+0x22/0x30
[12084.039783] </TASK>
[12084.039800] INFO: task kworker/u16:17:217907 blocked for more than 241 seconds.
[12084.040709] Not tainted 5.18.0-rc2-btrfs-next-115 #1
[12084.041398] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[12084.042404] task:kworker/u16:17 state:D stack: 0 pid:217907 ppid: 2 flags:0x00004000
[12084.042411] Workqueue: btrfs-endio-write btrfs_work_helper [btrfs]
[12084.042461] Call Trace:
[12084.042463] <TASK>
[12084.042471] __schedule+0x3cb/0xed0
[12084.042485] schedule+0x4e/0xb0
[12084.042490] wait_extent_bit.constprop.0+0x1eb/0x260 [btrfs]
[12084.042539] ? prepare_to_wait_exclusive+0xc0/0xc0
[12084.042551] lock_extent_bits+0x37/0x90 [btrfs]
[12084.042601] btrfs_finish_ordered_io.isra.0+0x3fd/0x960 [btrfs]
[12084.042656] ? lock_is_held_type+0xe8/0x140
[12084.042667] btrfs_work_helper+0xf8/0x400 [btrfs]
[12084.042716] ? lock_is_held_type+0xe8/0x140
[12084.042727] process_one_work+0x252/0x5a0
[12084.042742] worker_thread+0x52/0x3b0
[12084.042750] ? process_one_work+0x5a0/0x5a0
[12084.042754] kthread+0xf2/0x120
[12084.042757] ? kthread_complete_and_exit+0x20/0x20
[12084.042763] ret_from_fork+0x22/0x30
[12084.042783] </TASK>
[12084.042798] INFO: task fio:234517 blocked for more than 241 seconds.
[12084.043598] Not tainted 5.18.0-rc2-btrfs-next-115 #1
[12084.044282] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[12084.045244] task:fio state:D stack: 0 pid:234517 ppid:234515 flags:0x00004000
[12084.045248] Call Trace:
[12084.045250] <TASK>
[12084.045254] __schedule+0x3cb/0xed0
[12084.045263] schedule+0x4e/0xb0
[12084.045266] wait_extent_bit.constprop.0+0x1eb/0x260 [btrfs]
[12084.045298] ? prepare_to_wait_exclusive+0xc0/0xc0
[12084.045306] lock_extent_bits+0x37/0x90 [btrfs]
[12084.045336] btrfs_dio_iomap_begin+0x336/0xc60 [btrfs]
[12084.045370] ? lock_is_held_type+0xe8/0x140
[12084.045378] iomap_iter+0x184/0x4c0
[12084.045383] __iomap_dio_rw+0x2c6/0x8a0
[12084.045406] iomap_dio_rw+0xa/0x30
[12084.045408] btrfs_do_write_iter+0x370/0x5e0 [btrfs]
[12084.045440] aio_write+0xfa/0x2c0
[12084.045448] ? __might_fault+0x2a/0x70
[12084.045451] ? kvm_sched_clock_read+0x14/0x40
[12084.045455] ? lock_release+0x153/0x4a0
[12084.045463] io_submit_one+0x615/0x9f0
[12084.045467] ? __might_fault+0x2a/0x70
[12084.045469] ? kvm_sched_clock_read+0x14/0x40
[12084.045478] __x64_sys_io_submit+0x83/0x160
[12084.045483] ? syscall_enter_from_user_mode+0x1d/0x50
[12084.045489] do_syscall_64+0x3b/0x90
[12084.045517] entry_SYSCALL_64_after_hwframe+0x44/0xae
[12084.045521] RIP: 0033:0x7fa76511af79
[12084.045525] RSP: 002b:00007ffd6d6b9058 EFLAGS: 00000246 ORIG_RAX: 00000000000000d1
[12084.045530] RAX: ffffffffffffffda RBX: 00007fa75ba6e760 RCX: 00007fa76511af79
[12084.045532] RDX: 0000557b304ff3f0 RSI: 0000000000000001 RDI: 00007fa75ba4c000
[12084.045535] RBP: 00007fa75ba4c000 R08: 00007fa751b76000 R09: 0000000000000330
[12084.045537] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000001
[12084.045540] R13: 0000000000000000 R14: 0000557b304ff3f0 R15: 0000557b30521eb0
[12084.045561] </TASK>
Fix this issue by always reserving data space before locking a file range
at btrfs_dio_iomap_begin(). If we can't reserve the space, then we don't
error out immediately - instead after locking the file range, check if we
can do a NOCOW write, and if we can we don't error out since we don't need
to allocate a data extent, however if we can't NOCOW then error out with
-ENOSPC. This also implies that we may end up reserving space when it's
not needed because the write will end up being done in NOCOW mode - in that
case we just release the space after we noticed we did a NOCOW write - this
is the same type of logic that is done in the path for buffered IO writes.
Fixes: f0bfa76a11 ("btrfs: fix ENOSPC failure when attempting direct IO write into NOCOW range")
CC: stable@vger.kernel.org # 5.17+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Derive the compression type from extent map as opposed to the bio flags
passed. This makes it more precise and not reliant on function
parameters.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
… rename it to simply fs_roots and adjust all usages of this object to use
the XArray API, because it is notionally easier to use and understand, as
it provides array semantics, and also takes care of locking for us,
further simplifying the code.
Also do some refactoring, esp. where the API change requires largely
rewriting some functions, anyway.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Gabriel Niebler <gniebler@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
… in the btrfs_root struct and adjust all usages of this object to use
the XArray API, because it is notionally easier to use and understand,
as it provides array semantics, and also takes care of locking for us,
further simplifying the code.
Also use the opportunity to do some light refactoring.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Gabriel Niebler <gniebler@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Both btrfs_repair_one_sector and submit_bio_one as the direct caller of
one of the instances ignore errors as they expect the methods themselves
to call ->bi_end_io on error. Remove the unused and dangerous return
value.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_submit_compressed_read already calls ->bi_end_io on error and
the caller must ignore the return value, so remove it.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Keep btrfs_readpage next to btrfs_do_readpage and the other address
space operations. This allows to keep submit_one_bio and
struct btrfs_bio_ctrl file local in extent_io.c.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing a NOCOW write, either through direct IO or buffered IO, we do
two lookups for the block group that contains the target extent: once
when we call btrfs_inc_nocow_writers() and then later again when we call
btrfs_dec_nocow_writers() after creating the ordered extent.
The lookups require taking a lock and navigating the red black tree used
to track all block groups, which can take a non-negligible amount of time
for a large filesystem with thousands of block groups, as well as lock
contention and cache line bouncing.
Improve on this by having a single block group search: making
btrfs_inc_nocow_writers() return the block group to its caller and then
have the caller pass that block group to btrfs_dec_nocow_writers().
This is part of a patchset comprised of the following patches:
btrfs: remove search start argument from first_logical_byte()
btrfs: use rbtree with leftmost node cached for tracking lowest block group
btrfs: use a read/write lock for protecting the block groups tree
btrfs: return block group directly at btrfs_next_block_group()
btrfs: avoid double search for block group during NOCOW writes
The following test was used to test these changes from a performance
perspective:
$ cat test.sh
#!/bin/bash
modprobe null_blk nr_devices=0
NULL_DEV_PATH=/sys/kernel/config/nullb/nullb0
mkdir $NULL_DEV_PATH
if [ $? -ne 0 ]; then
echo "Failed to create nullb0 directory."
exit 1
fi
echo 2 > $NULL_DEV_PATH/submit_queues
echo 16384 > $NULL_DEV_PATH/size # 16G
echo 1 > $NULL_DEV_PATH/memory_backed
echo 1 > $NULL_DEV_PATH/power
DEV=/dev/nullb0
MNT=/mnt/nullb0
LOOP_MNT="$MNT/loop"
MOUNT_OPTIONS="-o ssd -o nodatacow"
MKFS_OPTIONS="-R free-space-tree -O no-holes"
cat <<EOF > /tmp/fio-job.ini
[io_uring_writes]
rw=randwrite
fsync=0
fallocate=posix
group_reporting=1
direct=1
ioengine=io_uring
iodepth=64
bs=64k
filesize=1g
runtime=300
time_based
directory=$LOOP_MNT
numjobs=8
thread
EOF
echo performance | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
echo
echo "Using config:"
echo
cat /tmp/fio-job.ini
echo
umount $MNT &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV &> /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
mkdir $LOOP_MNT
truncate -s 4T $MNT/loopfile
mkfs.btrfs -f $MKFS_OPTIONS $MNT/loopfile &> /dev/null
mount $MOUNT_OPTIONS $MNT/loopfile $LOOP_MNT
# Trigger the allocation of about 3500 data block groups, without
# actually consuming space on underlying filesystem, just to make
# the tree of block group large.
fallocate -l 3500G $LOOP_MNT/filler
fio /tmp/fio-job.ini
umount $LOOP_MNT
umount $MNT
echo 0 > $NULL_DEV_PATH/power
rmdir $NULL_DEV_PATH
The test was run on a non-debug kernel (Debian's default kernel config),
the result were the following.
Before patchset:
WRITE: bw=1455MiB/s (1526MB/s), 1455MiB/s-1455MiB/s (1526MB/s-1526MB/s), io=426GiB (458GB), run=300006-300006msec
After patchset:
WRITE: bw=1503MiB/s (1577MB/s), 1503MiB/s-1503MiB/s (1577MB/s-1577MB/s), io=440GiB (473GB), run=300006-300006msec
+3.3% write throughput and +3.3% IO done in the same time period.
The test has somewhat limited coverage scope, as with only NOCOW writes
we get less contention on the red black tree of block groups, since we
don't have the extra contention caused by COW writes, namely when
allocating data extents, pinning and unpinning data extents, but on the
hand there's access to tree in the NOCOW path, when incrementing a block
group's number of NOCOW writers.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When running generic/475 with 64K page size and 4K sector size, it has a
very high chance (almost 100%) to hang, with mostly data page locked but
no one is going to unlock it.
[CAUSE]
With commit 1784b7d502 ("btrfs: handle csum lookup errors properly on
reads"), if we failed to lookup checksum due to metadata IO error, we
will return error for btrfs_submit_data_bio().
This will cause the page to be unlocked twice in btrfs_do_readpage():
btrfs_do_readpage()
|- submit_extent_page()
| |- submit_one_bio()
| |- btrfs_submit_data_bio()
| |- if (ret) {
| |- bio->bi_status = ret;
| |- bio_endio(bio); }
| In the endio function, we will call end_page_read()
| and unlock_extent() to cleanup the subpage range.
|
|- if (ret) {
|- unlock_extent(); end_page_read() }
Here we unlock the extent and cleanup the subpage range
again.
For unlock_extent(), it's mostly double unlock safe.
But for end_page_read(), it's not, especially for subpage case,
as for subpage case we will call btrfs_subpage_end_reader() to reduce
the reader number, and use that to number to determine if we need to
unlock the full page.
If double accounted, it can underflow the number and leave the page
locked without anyone to unlock it.
[FIX]
The commit 1784b7d502 ("btrfs: handle csum lookup errors properly on
reads") itself is completely fine, it's our existing code not properly
handling the error from bio submission hook properly.
This patch will make submit_one_bio() to return void so that the callers
will never be able to do cleanup when bio submission hook fails.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are still using the magic value of 2 at btrfs_create_new_inode(), but
there's now a constant for that, named BTRFS_DIR_START_INDEX, which was
introduced in commit 528ee69712 ("btrfs: put initial index value of a
directory in a constant"). So change that to use the constant.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When checking if we can do a NOCOW write against a range covered by a file
extent item, we do a quick a check to determine if the inode's root was
snapshotted in a generation older than the generation of the file extent
item or not. This is to quickly determine if the extent is likely shared
and avoid the expensive check for cross references (this was added in
commit 78d4295b1e ("btrfs: lift some btrfs_cross_ref_exist checks in
nocow path").
We restrict that check to the case where the inode is not a free space
inode (since commit 27a7ff554e ("btrfs: skip file_extent generation
check for free_space_inode in run_delalloc_nocow")). That is because when
we had the inode cache feature, inode caches were backed by a free space
inode that belonged to the inode's root.
However we don't have support for the inode cache feature since kernel
5.11, so we don't need this check anymore since free space inodes are
now always related to free space caches, which are always associated to
the root tree (which can't be snapshotted, and its last_snapshot field
is always 0).
So remove that condition.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Verifying if we can do a NOCOW write against a range fully or partially
covered by a file extent item requires verifying several constraints, and
these are currently duplicated at two different places: can_nocow_extent()
and run_delalloc_nocow().
This change moves those checks into a common helper function to avoid
duplication. It adds some comments and also preserves all existing
behaviour like for example can_nocow_extent() treating errors from the
calls to btrfs_cross_ref_exist() and csum_exist_in_range() as meaning
we can not NOCOW, instead of propagating the error back to the caller.
That specific behaviour is questionable but also reasonable to some
degree.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Several functions currently populate an array of page pointers one
allocated page at a time. Factor out the common code so as to allow
improvements to all of the sites at once.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Explicit type casts are not necessary when it's void* to another pointer
type.
Signed-off-by: Yu Zhe <yuzhe@nfschina.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The reason why we only support 64K page size for subpage is, for 64K
page size we can ensure no matter what the nodesize is, we can fit it
into one page.
When other page size come, especially like 16K, the limitation is a bit
limiting.
To remove such limitation, we allow nodesize >= PAGE_SIZE case to go the
non-subpage routine. By this, we can allow 4K sectorsize on 16K page
size.
Although this introduces another smaller limitation, the metadata can
not cross page boundary, which is already met by most recent mkfs.
Another small improvement is, we can avoid the overhead for metadata if
nodesize >= PAGE_SIZE.
For 4K sector size and 64K page size/node size, or 4K sector size and
16K page size/node size, we don't need to allocate extra memory for the
metadata pages.
Please note that, this patch will not yet enable other page size support
yet.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The original code resets the page to 0x1 for not apparent reason, it's
been like that since the initial 2007 code added in commit 07157aacb1
("Btrfs: Add file data csums back in via hooks in the extent map code").
It could mean that a failed buffer can be detected from the data but
that's just a guess and any value is good.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
When doing a NOWAIT direct IO write, if we can NOCOW then it means we can
proceed with the non-blocking, NOWAIT path. However reserving the metadata
space and qgroup meta space can often result in blocking - flushing
delalloc, wait for ordered extents to complete, trigger transaction
commits, etc, going against the semantics of a NOWAIT write.
So make the NOWAIT write path to try to reserve all the metadata it needs
without resulting in a blocking behaviour - if we get -ENOSPC or -EDQUOT
then return -EAGAIN to make the caller fallback to a blocking direct IO
write.
This is part of a patchset comprised of the following patches:
btrfs: avoid blocking on page locks with nowait dio on compressed range
btrfs: avoid blocking nowait dio when locking file range
btrfs: avoid double nocow check when doing nowait dio writes
btrfs: stop allocating a path when checking if cross reference exists
btrfs: free path at can_nocow_extent() before checking for checksum items
btrfs: release path earlier at can_nocow_extent()
btrfs: avoid blocking when allocating context for nowait dio read/write
btrfs: avoid blocking on space revervation when doing nowait dio writes
The following test was run before and after applying this patchset:
$ cat io-uring-nodatacow-test.sh
#!/bin/bash
DEV=/dev/sdc
MNT=/mnt/sdc
MOUNT_OPTIONS="-o ssd -o nodatacow"
MKFS_OPTIONS="-R free-space-tree -O no-holes"
NUM_JOBS=4
FILE_SIZE=8G
RUN_TIME=300
cat <<EOF > /tmp/fio-job.ini
[io_uring_rw]
rw=randrw
fsync=0
fallocate=posix
group_reporting=1
direct=1
ioengine=io_uring
iodepth=64
bssplit=4k/20:8k/20:16k/20:32k/10:64k/10:128k/5:256k/5:512k/5:1m/5
filesize=$FILE_SIZE
runtime=$RUN_TIME
time_based
filename=foobar
directory=$MNT
numjobs=$NUM_JOBS
thread
EOF
echo performance | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
umount $MNT &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV &> /dev/null
mount $MOUNT_OPTIONS $DEV $MNT
fio /tmp/fio-job.ini
umount $MNT
The test was run a 12 cores box with 64G of ram, using a non-debug kernel
config (Debian's default config) and a spinning disk.
Result before the patchset:
READ: bw=407MiB/s (427MB/s), 407MiB/s-407MiB/s (427MB/s-427MB/s), io=119GiB (128GB), run=300175-300175msec
WRITE: bw=407MiB/s (427MB/s), 407MiB/s-407MiB/s (427MB/s-427MB/s), io=119GiB (128GB), run=300175-300175msec
Result after the patchset:
READ: bw=436MiB/s (457MB/s), 436MiB/s-436MiB/s (457MB/s-457MB/s), io=128GiB (137GB), run=300044-300044msec
WRITE: bw=435MiB/s (456MB/s), 435MiB/s-435MiB/s (456MB/s-456MB/s), io=128GiB (137GB), run=300044-300044msec
That's about +7.2% throughput for reads and +6.9% for writes.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing a NOWAIT direct IO read/write, we allocate a context object
(struct btrfs_dio_data) with GFP_NOFS, which can result in blocking
waiting for memory allocation (GFP_NOFS is __GFP_RECLAIM | __GFP_IO).
This is undesirable for the NOWAIT semantics, so do the allocation with
GFP_NOWAIT if we are serving a NOWAIT request and if the allocation fails
return -EAGAIN, so that the caller can fallback to a blocking context and
retry with a non-blocking write.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At can_nocow_extent(), we are releasing the path only after checking if
the block group that has the target extent is read only, and after
checking if there's delalloc in the range in case our extent is a
preallocated extent. The read only extent check can be expensive if we
have a very large filesystem with many block groups, as well as the
check for delalloc in the inode's io_tree in case the io_tree is big
due to IO on other file ranges.
Our path is holding a read lock on a leaf and there's no need to keep
the lock while doing those two checks, so release the path before doing
them, immediately after the last use of the leaf.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we look for checksum items, through csum_exist_in_range(), at
can_nocow_extent(), we no longer need the path that we have previously
allocated. Through csum_exist_in_range() -> btrfs_lookup_csums_range(),
we also end up allocating a path, so we are adding unnecessary extra
memory usage. So free the path before calling csum_exist_in_range().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_cross_ref_exist() we always allocate a path, but we really don't
need to because all its callers (only 2) already have an allocated path
that is not being used when they call btrfs_cross_ref_exist(). So change
btrfs_cross_ref_exist() to take a path as an argument and update both
its callers to pass in the unused path they have when they call
btrfs_cross_ref_exist().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing a NOWAIT direct IO write we are checking twice if we can COW
into the target file range using can_nocow_extent() - once at the very
beginning of the write path, at btrfs_write_check() via
check_nocow_nolock(), and later again at btrfs_get_blocks_direct_write().
The can_nocow_extent() function does a lot of expensive things - searching
for the file extent item in the inode's subvolume tree, searching for the
extent item in the extent tree, checking delayed references, etc, so it
isn't a very cheap call.
We can remove the first check at btrfs_write_check(), and add there a
quick check to verify if the inode has the NODATACOW or PREALLOC flags,
and quickly bail out if it doesn't have neither of those flags, as that
means we have to COW and therefore can't comply with the NOWAIT semantics.
After this we do only one call to can_nocow_extent(), while we are at
btrfs_get_blocks_direct_write(), where we have already locked the file
range and we did a try lock on the range before, at
btrfs_dio_iomap_begin() (since the previous patch in the series).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we are doing a NOWAIT direct IO read/write, we can block when locking
the file range at btrfs_dio_iomap_begin(), as it's possible the range (or
a part of it) is already locked by another task (mmap writes, another
direct IO read/write racing with us, fiemap, etc). We are also waiting for
completion of any ordered extent we find in the range, which also can
block us for a significant amount of time.
There's also the incorrect fallback to buffered IO (returning -ENOTBLK)
when we are dealing with a NOWAIT request and we can't proceed. In this
case we should be returning -EAGAIN, as falling back to buffered IO can
result in blocking for many different reasons, so that the caller can
delegate a retry to a context where blocking is more acceptable.
Fix these cases by:
1) Doing a try lock on the file range and failing with -EAGAIN if we
can not lock right away;
2) Fail with -EAGAIN if we find an ordered extent;
3) Return -EAGAIN instead of -ENOTBLK when we need to fallback to
buffered IO and we have a NOWAIT request.
This will also allow us to avoid a duplicated check that verifies if we
are able to do a NOCOW write for NOWAIT direct IO writes, done in the
next patch.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we are doing NOWAIT direct IO read/write and our inode has compressed
extents, we call filemap_fdatawrite_range() against the range in order
to wait for compressed writeback to complete, since the generic code at
iomap_dio_rw() calls filemap_write_and_wait_range() once, which is not
enough to wait for compressed writeback to complete.
This call to filemap_fdatawrite_range() can block on page locks, since
the first writepages() on a range that we will try to compress results
only in queuing a work to compress the data while holding the pages
locked.
Even though the generic code at iomap_dio_rw() will do the right thing
and return -EAGAIN for NOWAIT requests in case there are pages in the
range, we can still end up at btrfs_dio_iomap_begin() with pages in the
range because either of the following can happen:
1) Memory mapped writes, as we haven't locked the range yet;
2) Buffered reads might have started, which lock the pages, and we do
the filemap_fdatawrite_range() call before locking the file range.
So don't call filemap_fdatawrite_range() at btrfs_dio_iomap_begin() if we
are doing a NOWAIT read/write. Instead call filemap_range_needs_writeback()
to check if there are any locked, dirty, or under writeback pages, and
return -EAGAIN if that's the case.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have four different scenarios where we don't expect to find ordered
extents after locking a file range:
1) During plain fallocate;
2) During hole punching;
3) During zero range;
4) During reflinks (both cloning and deduplication).
This is because in all these cases we follow the pattern:
1) Lock the inode's VFS lock in exclusive mode;
2) Lock the inode's i_mmap_lock in exclusive node, to serialize with
mmap writes;
3) Flush delalloc in a file range and wait for all ordered extents
to complete - both done through btrfs_wait_ordered_range();
4) Lock the file range in the inode's io_tree.
So add a helper that asserts that we don't have ordered extents for a
given range. Make the four scenarios listed above use this helper after
locking the respective file range.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
According to the tree checker, "all xattrs with a given objectid follow
the inode with that objectid in the tree" is an invariant. This was
broken by the recent change "btrfs: move common inode creation code into
btrfs_create_new_inode()", which moved acl creation and property
inheritance (stored in xattrs) to before inode insertion into the tree.
As a result, under certain timings, the xattrs could be written to the
tree before the inode, causing the tree checker to report violation of
the invariant.
Move property inheritance and acl creation back to their old ordering
after the inode insertion.
Suggested-by: Omar Sandoval <osandov@osandov.com>
Reported-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: David Sterba <dsterba@suse.com>
All of our inode creation code paths duplicate the calls to
btrfs_init_inode_security() and btrfs_add_link(). Subvolume creation
additionally duplicates property inheritance and the call to
btrfs_set_inode_index(). Fix this by moving the common code into
btrfs_create_new_inode(). This accomplishes a few things at once:
1. It reduces code duplication.
2. It allows us to set up the inode completely before inserting the
inode item, removing calls to btrfs_update_inode().
3. It fixes a leak of an inode on disk in some error cases. For example,
in btrfs_create(), if btrfs_new_inode() succeeds, then we have
inserted an inode item and its inode ref. However, if something after
that fails (e.g., btrfs_init_inode_security()), then we end the
transaction and then decrement the link count on the inode. If the
transaction is committed and the system crashes before the failed
inode is deleted, then we leak that inode on disk. Instead, this
refactoring aborts the transaction when we can't recover more
gracefully.
4. It exposes various ways that subvolume creation diverges from mkdir
in terms of inheriting flags, properties, permissions, and POSIX
ACLs, a lot of which appears to be accidental. This patch explicitly
does _not_ change the existing non-standard behavior, but it makes
those differences more clear in the code and documents them so that
we can discuss whether they should be changed.
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The various inode creation code paths do not account for the compression
property, POSIX ACLs, or the parent inode item when starting a
transaction. Fix it by refactoring all of these code paths to use a new
function, btrfs_new_inode_prepare(), which computes the correct number
of items. To do so, it needs to know whether POSIX ACLs will be created,
so move the ACL creation into that function. To reduce the number of
arguments that need to be passed around for inode creation, define
struct btrfs_new_inode_args containing all of the relevant information.
btrfs_new_inode_prepare() will also be a good place to set up the
fscrypt context and encrypted filename in the future.
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_{mknod,create,mkdir}() are now identical other than the inode
initialization and some inconsequential function call order differences.
Factor out the common code to reduce code duplication.
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of calling new_inode() and inode_init_owner() inside of
btrfs_new_inode(), do it in the callers. This allows us to pass in just
the inode instead of the mnt_userns and mode and removes the need for
memalloc_nofs_{save,restores}() since we do it before starting a
transaction. In create_subvol(), it also means we no longer have to look
up the inode again to instantiate it. This also paves the way for some
more cleanups in later patches.
This also removes the comments about Smack checking i_op, which are no
longer true since commit 5d6c31910b ("xattr: Add
__vfs_{get,set,remove}xattr helpers"). Now it checks inode->i_opflags &
IOP_XATTR, which is set based on sb->s_xattr.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function can be simplified by refactoring to use the new iterator
macro. No functional changes.
Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Signed-off-by: Gabriel Niebler <gniebler@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_new_inode() inherits the inode flags from the parent directory and
the mount options _after_ we fill the inode item. This works because all
of the callers of btrfs_new_inode() make further changes to the inode
and then call btrfs_update_inode(). It'd be better to fully initialize
the inode once to avoid the extra update, so as a first step, set the
inode flags _before_ filling the inode item.
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Every call of btrfs_new_inode() is immediately preceded by a call to
btrfs_get_free_objectid(). Since getting an inode number is part of
creating a new inode, this is better off being moved into
btrfs_new_inode(). While we're here, get rid of the comment about
reclaiming inode numbers, since we only did that when using the ino
cache, which was removed by commit 5297199a8b ("btrfs: remove inode
number cache feature").
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For everything other than a subvolume root inode, we get the parent
objectid from the parent directory. For the subvolume root inode, the
parent objectid is the same as the inode's objectid. We can find this
within btrfs_new_inode() instead of passing it.
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_new_inode() already returns an inode with nlink set to 1 (via
inode_init_always()). Get rid of the unnecessary set.
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
new_inode() always returns an inode with i_blocks and i_bytes set to 0
(via inode_init_always()). Remove the unnecessary call to
inode_set_bytes() in btrfs_new_inode().
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_new_inode() always returns an inode with i_size and disk_i_size
set to 0 (via inode_init_always() and btrfs_alloc_inode(),
respectively). Remove the unnecessary calls to btrfs_i_size_write() in
btrfs_mkdir() and btrfs_create_subvol_root().
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is a trivial wrapper around btrfs_add_link(). The only thing it
does other than moving arguments around is translating a > 0 return
value to -EEXIST. As far as I can tell, btrfs_add_link() won't return >
0 (and if it did, the existing callsites in, e.g., btrfs_mkdir() would
be broken). The check itself dates back to commit 2c90e5d658 ("Btrfs:
still corruption hunting"), so it's probably left over from debugging.
Let's just get rid of btrfs_add_nondir().
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_rename() and btrfs_rename_exchange() don't account for enough
items. Replace the incorrect explanations with a specific breakdown of
the number of items and account them accurately.
Note that this glosses over RENAME_WHITEOUT because the next commit is
going to rework that, too.
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
__btrfs_unlink_inode() calls btrfs_update_inode() on the parent
directory in order to update its size and sequence number. Make sure we
account for it.
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I've only converted the outer layers of the btrfs release_folio paths
to use folios; the use of folios should be pushed further down into
btrfs from here.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
This is a "weak" conversion which converts straight back to using pages.
A full conversion should be performed at some point, hopefully by
someone familiar with the filesystem.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmJwBoQACgkQxWXV+ddt
WDu/FQ/+L2LpN5Zu1NkjOAh2Lcvz5RYZjcVext4bbPUW2yhXYH3e6836R/feLOCG
RxRICOAQhJ7I6ct/N1aToI2AbjWnMSJK+IgageA1UdIS8McbcSP/qJOYwJ/+2Xhl
AvK5psoj+qwGbTI9e0luNe6b+UWTGIMyYRjmN0SlkBOdg9/xqQpBMQxfKJumMvEc
3ZwLpcNjhUUwdFKHvHZNCOQhZiZwloKFeq9MLaEL5LO30wKSY6ShiCA3pafFoVN0
mvEEVtIGgZUsgeQTzSzD8UhGDvZtZ1+aaX0dcNMRzwI2h2pkBmPkd5QtFM9Qs0xP
hGibSN9bC/SzQyE9v4cKohwS+g4dE4r+dUWFNpdZLIOpBt5PJBDA0tjcjxquFtMr
6JX77coAl9kt0jspBmHVPb3qmIc1Xo3Iw2PrVgTK14QUo46XwF5Rga68wKOfNt0u
LbD9+KCLnwxoOhvXh/LJX6nvPT8tuMrT/5AOXULI2oMCnpCY6Vl+kX8zFlAfbDk1
d4/jy42bgHCso60j2vAcdQmZB+/snpboOhKJwkE2FqOTs+hBR8PBln6BqEt5xkHZ
q2mBfYDujnmZWaiAU6+ETjOcCooWQioi3335tp/C9TdOrIkFDij1ztYRxhgP0g0X
w6d6wlbkcol1Zubb/zEiBiwe+6GR/KtNYc4PBEfVe5Vw0npFreU=
=7k9f
-----END PGP SIGNATURE-----
Merge tag 'for-5.18-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few more fixes mostly around how some file attributes could be set.
- fix handling of compression property:
- don't allow setting it on anything else than regular file or
directory
- do not allow setting it on nodatacow files via properties
- improved error handling when setting xattr
- make sure symlinks are always properly logged"
* tag 'for-5.18-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: skip compression property for anything other than files and dirs
btrfs: do not BUG_ON() on failure to update inode when setting xattr
btrfs: always log symlinks in full mode
btrfs: do not allow compression on nodatacow files
btrfs: export a helper for compression hard check
inode_can_compress will be used outside of inode.c to check the
availability of setting compression flag by xattr. This patch moves
this function as an internal helper and renames it to
btrfs_inode_can_compress.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Chung-Chiang Cheng <cccheng@synology.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmJnGGIACgkQxWXV+ddt
WDumDw//cE1NcawdnVkEaKr20PetHfzPyFSIIr17nedtnVvWYyOFF/0uJlHNhv8Z
CZIfJ7fmH/pO5oWPXN84wKNfumDWNwc36QrvoXC67TrKUSiBN8BzL83HvAjGwYFH
G+LfZXGnVbqq8F1iYkIsuH0Oo1x/N/LPM3s6iZy3O4l8s96u+J4GRnc8Tr0AH4MA
zgz3fab8Ec378HTG9fvdAQNLxFEe0VatD6WrzILnmM8UgeQK7g73dqH9Ni9gz2DW
2GDlO6aevQ1G6dm2AJ0ItExnbHH7TfOThkG56Gdqrzb/d39GzrVpeob7QiorETus
EWS1rXaeikUiD4Bzt/RszUNL80yMN1DjcN3QBkiDf3ShSDFteoHMPw3e6jcQCy1m
Dxf5oditQqltuFNLeSiVbZEMw2kXqBP7RoPiirF9rdvrDNLHhAE9wu0kpSGSSvT7
Tyu9JyLw2axU6wGTi1GHAXurlW2ItRRyFAewWWul1lLkuz/6YXI4F/EHm3Mbh6Nh
pMIFMNr4Oafdx+3Ful8ZA4PynirXub/xVDefcFBibz/PTGEnHG4ZVzRudmVnowh7
GP2pql1+Y/TFkXdD98V8GWD+E10JAmNCkQSoiggJooNWR28whukmDVX/HY8lGmWg
DjxwGkte3SltUBWNOTGnO7546hMwOxOPZHENPh+gffYkeMeIxPI=
=xDWz
-----END PGP SIGNATURE-----
Merge tag 'for-5.18-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- direct IO fixes:
- restore passing file offset to correctly calculate checksums
when repairing on read and bio split happens
- use correct bio when sumitting IO on zoned filesystem
- zoned mode fixes:
- fix selection of device to correctly calculate device
capabilities when allocating a new bio
- use a dedicated lock for exclusion during relocation
- fix leaked plug after failure syncing log
- fix assertion during scrub and relocation
* tag 'for-5.18-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: zoned: use dedicated lock for data relocation
btrfs: fix assertion failure during scrub due to block group reallocation
btrfs: fix direct I/O writes for split bios on zoned devices
btrfs: fix direct I/O read repair for split bios
btrfs: fix and document the zoned device choice in alloc_new_bio
btrfs: fix leaked plug after failure syncing log on zoned filesystems
When a bio is split in btrfs_submit_direct, dip->file_offset contains
the file offset for the first bio. But this means the start value used
in btrfs_end_dio_bio to record the write location for zone devices is
incorrect for subsequent bios.
CC: stable@vger.kernel.org # 5.16+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
When a bio is split in btrfs_submit_direct, dip->file_offset contains
the file offset for the first bio. But this means the start value used
in btrfs_check_read_dio_bio is incorrect for subsequent bios. Add
a file_offset field to struct btrfs_bio to pass along the correct offset.
Given that check_data_csum only uses start of an error message this
means problems with this miscalculation will only show up when I/O fails
or checksums mismatch.
The logic was removed in f4f39fc5dc ("btrfs: remove btrfs_bio::logical
member") but we need it due to the bio splitting.
CC: stable@vger.kernel.org # 5.16+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmJUfvwACgkQxWXV+ddt
WDtiuA//csj0CrJq7wyRvgDkbPtCCMyDtL4zfmjP4s++NWaMDOKTxBU8msuGUJgR
Xribel2zWqlFiOzptd9sGEfxfKfz1p5Rm/gtFj57WVSGV7YtiAGyFGuzn/vpCrgq
NP5LFY2z5N36VxDXUPKHzvdqczO5W2n9KdaysJCr6FpCz+vVrplFiT5U+X175Sgg
zWS/XrPIHYbtaEFdb3rUKol6riu7vXW3MxEA9di8K4Xo9TJrp0NtBoGZDsWFQxf7
vfVwtYsQPsACJxw+MjBcVQ5fNXO5iATL1JfBb9ltN589xouja7bDCb40Fm2gEwWB
IUatnCq/4MN2S2NdPtEcXQ52W9svT/87z6ZblefSEiQqvQBBJHN131RTM/s8LBG4
fkHcGV6PsiutSIFycrID0bpXr1Mhvg2aMjxdriLPBtYopaMPh+ivK6LPYoE5MggQ
/rshWfjiWJhPKXPsng+H7UGbViOiYeG0kUBuaqFx4ARnESpN1gF2dJRYvXYFL/8a
Q0wmLr1tf3M82VAaAFNOl/BVk8blutCSHcJDLDKxcl3DhVVlY5J8onEPXjneJRkk
rRB3zoxLlptgfW75CPNyFrpicPdAXzGCoccienIUoEdHSX/W5rNA4L6XpVE5Hv94
dWR1aVAbCUcuhY1QfBU7H2iYw0RHzqDO3+IRfqJuYsLGciijLbs=
=APMY
-----END PGP SIGNATURE-----
Merge tag 'for-5.18-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few more code and warning fixes.
There's one feature ioctl removal patch slated for 5.18 that did not
make it to the main pull request. It's just a one-liner and the ioctl
has a v2 that's in use for a long time, no point to postpone it to
5.19.
Late update:
- remove balance v1 ioctl, superseded by v2 in 2012
Fixes:
- add back cgroup attribution for compressed writes
- add super block write start/end annotations to asynchronous balance
- fix root reference count on an error handling path
- in zoned mode, activate zone at the chunk allocation time to avoid
ENOSPC due to timing issues
- fix delayed allocation accounting for direct IO
Warning fixes:
- simplify assertion condition in zoned check
- remove an unused variable"
* tag 'for-5.18-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix btrfs_submit_compressed_write cgroup attribution
btrfs: fix root ref counts in error handling in btrfs_get_root_ref
btrfs: zoned: activate block group only for extent allocation
btrfs: return allocated block group from do_chunk_alloc()
btrfs: mark resumed async balance as writing
btrfs: remove support of balance v1 ioctl
btrfs: release correct delalloc amount in direct IO write path
btrfs: remove unused variable in btrfs_{start,write}_dirty_block_groups()
btrfs: zoned: remove redundant condition in btrfs_run_delalloc_range
Running generic/406 causes the following WARNING in btrfs_destroy_inode()
which tells there are outstanding extents left.
In btrfs_get_blocks_direct_write(), we reserve a temporary outstanding
extents with btrfs_delalloc_reserve_metadata() (or indirectly from
btrfs_delalloc_reserve_space(()). We then release the outstanding extents
with btrfs_delalloc_release_extents(). However, the "len" can be modified
in the COW case, which releases fewer outstanding extents than expected.
Fix it by calling btrfs_delalloc_release_extents() for the original length.
To reproduce the warning, the filesystem should be 1 GiB. It's
triggering a short-write, due to not being able to allocate a large
extent and instead allocating a smaller one.
WARNING: CPU: 0 PID: 757 at fs/btrfs/inode.c:8848 btrfs_destroy_inode+0x1e6/0x210 [btrfs]
Modules linked in: btrfs blake2b_generic xor lzo_compress
lzo_decompress raid6_pq zstd zstd_decompress zstd_compress xxhash zram
zsmalloc
CPU: 0 PID: 757 Comm: umount Not tainted 5.17.0-rc8+ #101
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS d55cb5a 04/01/2014
RIP: 0010:btrfs_destroy_inode+0x1e6/0x210 [btrfs]
RSP: 0018:ffffc9000327bda8 EFLAGS: 00010206
RAX: 0000000000000000 RBX: ffff888100548b78 RCX: 0000000000000000
RDX: 0000000000026900 RSI: 0000000000000000 RDI: ffff888100548b78
RBP: ffff888100548940 R08: 0000000000000000 R09: ffff88810b48aba8
R10: 0000000000000001 R11: ffff8881004eb240 R12: ffff88810b48a800
R13: ffff88810b48ec08 R14: ffff88810b48ed00 R15: ffff888100490c68
FS: 00007f8549ea0b80(0000) GS:ffff888237c00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f854a09e733 CR3: 000000010a2e9003 CR4: 0000000000370eb0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
destroy_inode+0x33/0x70
dispose_list+0x43/0x60
evict_inodes+0x161/0x1b0
generic_shutdown_super+0x2d/0x110
kill_anon_super+0xf/0x20
btrfs_kill_super+0xd/0x20 [btrfs]
deactivate_locked_super+0x27/0x90
cleanup_mnt+0x12c/0x180
task_work_run+0x54/0x80
exit_to_user_mode_prepare+0x152/0x160
syscall_exit_to_user_mode+0x12/0x30
do_syscall_64+0x42/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f854a000fb7
Fixes: f0bfa76a11 ("btrfs: fix ENOSPC failure when attempting direct IO write into NOCOW range")
CC: stable@vger.kernel.org # 5.17
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The logic !A || A && B is equivalent to !A || B. so we can
make code clear.
Note: though it's preferred to be in the more human readable form, there
have been repeated reports and patches as the expression is detected by
tools so apply it to reduce the load.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Haowen Bai <baihaowen@meizu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add note ]
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmJLaJoACgkQxWXV+ddt
WDvd3g/+KXpWfPOg4h7rCKiZJoE0/XnAaqHacGmIy/8+TqiFm7VEdG2uA4wEjqYq
yeCr+2NhsWcGKOWARUPmP8sBmla98tE0+1abxQFYhGdsLMcgbI6EyW+j53E7++gY
0j4ZY4s7c1c4lsyStNrS7kauDcbZ3MHWhG1VNdTyWCf6wal/5jU93SwdDSz81Int
iD8y2nVQoHcWdyBbPA7t9dYL5cCGR425gRrSb3Yhvc3cI6KJLbPLDpt1AAnR6XVx
W/ELKYMVBF70nTqp3ptBTfbmm83/AcrA1/Epoe2sEV+3gaejx1vkIYwcWlvgW//+
e980zd0k/QSse8O8s66Z7c9QnLML+L/6xxK2vJObw85NFzEGkrmoZdCa7HyyI3MS
pkI0ox9z4I4OEgzBaH8ZpUYgRxQlRnbDv58GrTs/aEBuNaHGQJfiCmh4sx75jGvR
eXMnqmL/EIKqZqTsLfWVuMLC7ZgTG8V76VOJ3gDE4v5Yxi306bCLcdTS+0HYz5GA
fkCisFy69jSbkMbOClTegCkYiRHxV6GjI19yPqj29OsnFpk+htnubOvgs3Q1link
odpBavejmbVxffrYw92Qm7NRMEldZoSaMa39zFJ9Wgtwui7Oe66K3JFlrSnth5mD
YowfkApQCzsSiXzitwLEHmfs7F1MVh2a0jY4hTz1XrizxZPWKHE=
=XZaw
-----END PGP SIGNATURE-----
Merge tag 'for-5.18-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- prevent deleting subvolume with active swapfile
- fix qgroup reserve limit calculation overflow
- remove device count in superblock and its item in one transaction so
they cant't get out of sync
- skip defragmenting an isolated sector, this could cause some extra IO
- unify handling of mtime/permissions in hole punch with fallocate
- zoned mode fixes:
- remove assert checking for only single mode, we have the
DUP mode implemented
- fix potential lockdep warning while traversing devices
when checking for zone activation
* tag 'for-5.18-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: prevent subvol with swapfile from being deleted
btrfs: do not warn for free space inode in cow_file_range
btrfs: avoid defragging extents whose next extents are not targets
btrfs: fix fallocate to use file_modified to update permissions consistently
btrfs: remove device item and update super block in the same transaction
btrfs: fix qgroup reserve overflow the qgroup limit
btrfs: zoned: remove left over ASSERT checking for single profile
btrfs: zoned: traverse devices under chunk_mutex in btrfs_can_activate_zone
While btrfs doesn't use large folios yet, this should have been changed
as part of the conversion from invalidatepage to invalidate_folio.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
A subvolume with an active swapfile must not be deleted otherwise it
would not be possible to deactivate it.
After the subvolume is deleted, we cannot swapoff the swapfile in this
deleted subvolume because the path is unreachable. The swapfile is
still active and holding references, the filesystem cannot be unmounted.
The test looks like this:
mkfs.btrfs -f $dev > /dev/null
mount $dev $mnt
btrfs sub create $mnt/subvol
touch $mnt/subvol/swapfile
chmod 600 $mnt/subvol/swapfile
chattr +C $mnt/subvol/swapfile
dd if=/dev/zero of=$mnt/subvol/swapfile bs=1K count=4096
mkswap $mnt/subvol/swapfile
swapon $mnt/subvol/swapfile
btrfs sub delete $mnt/subvol
swapoff $mnt/subvol/swapfile # failed: No such file or directory
swapoff --all
unmount $mnt # target is busy.
To prevent above issue, we simply check that whether the subvolume
contains any active swapfile, and stop the deleting process. This
behavior is like snapshot ioctl dealing with a swapfile.
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Kaiwen Hu <kevinhu@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is a long time leftover from when I originally added the free space
inode, the point was to catch cases where we weren't honoring the NOCOW
flag. However there exists a race with relocation, if we allocate our
free space inode in a block group that is about to be relocated, we
could trigger the COW path before the relocation has the opportunity to
find the extents and delete the free space cache. In production where
we have auto-relocation enabled we're seeing this WARN_ON_ONCE() around
5k times in a 2 week period, so not super common but enough that it's at
the top of our metrics.
We're properly handling the error here, and with us phasing out v1 space
cache anyway just drop the WARN_ON_ONCE.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Primarily this series converts some of the address_space operations
to take a folio instead of a page.
->is_partially_uptodate() takes a folio instead of a page and changes the
type of the 'from' and 'count' arguments to make it obvious they're bytes.
->invalidatepage() becomes ->invalidate_folio() and has a similar type change.
->launder_page() becomes ->launder_folio()
->set_page_dirty() becomes ->dirty_folio() and adds the address_space as
an argument.
There are a couple of other misc changes up front that weren't worth
separating into their own pull request.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEejHryeLBw/spnjHrDpNsjXcpgj4FAmI4hqMACgkQDpNsjXcp
gj7r7Af/fVJ7m8kKqjP/IayX3HiJRuIDQw+vM++BlRNXdjz+IyED6whdmFGxJeOY
BMyT+8ApOAz7ErS4G+7fAv4ScJK/aEgFUsnSeAiCp0PliiEJ5NNJzElp6sVmQ7H5
SX7+Ek444FZUGsQuy0qL7/ELpR3ditnD7x+5U2g0p5TeaHGUQn84crRyfR4xuhNG
EBD9D71BOb7OxUcOHe93pTkK51QsQ0aCrcIsB1tkK5KR0BAthn1HqF7ehL90Rvrr
omx5M7aDWGY4oj7IKrhlAs+55Ah2WaOzrZBp0FXNbr4UENDBKWKyUxErwa4xPkf6
Gm1iQG/CspOHnxN3YWsd5WjtlL3A+A==
=cOiq
-----END PGP SIGNATURE-----
Merge tag 'folio-5.18b' of git://git.infradead.org/users/willy/pagecache
Pull filesystem folio updates from Matthew Wilcox:
"Primarily this series converts some of the address_space operations to
take a folio instead of a page.
Notably:
- a_ops->is_partially_uptodate() takes a folio instead of a page and
changes the type of the 'from' and 'count' arguments to make it
obvious they're bytes.
- a_ops->invalidatepage() becomes ->invalidate_folio() and has a
similar type change.
- a_ops->launder_page() becomes ->launder_folio()
- a_ops->set_page_dirty() becomes ->dirty_folio() and adds the
address_space as an argument.
There are a couple of other misc changes up front that weren't worth
separating into their own pull request"
* tag 'folio-5.18b' of git://git.infradead.org/users/willy/pagecache: (53 commits)
fs: Remove aops ->set_page_dirty
fb_defio: Use noop_dirty_folio()
fs: Convert __set_page_dirty_no_writeback to noop_dirty_folio
fs: Convert __set_page_dirty_buffers to block_dirty_folio
nilfs: Convert nilfs_set_page_dirty() to nilfs_dirty_folio()
mm: Convert swap_set_page_dirty() to swap_dirty_folio()
ubifs: Convert ubifs_set_page_dirty to ubifs_dirty_folio
f2fs: Convert f2fs_set_node_page_dirty to f2fs_dirty_node_folio
f2fs: Convert f2fs_set_data_page_dirty to f2fs_dirty_data_folio
f2fs: Convert f2fs_set_meta_page_dirty to f2fs_dirty_meta_folio
afs: Convert afs_dir_set_page_dirty() to afs_dir_dirty_folio()
btrfs: Convert extent_range_redirty_for_io() to use folios
fs: Convert trivial uses of __set_page_dirty_nobuffers to filemap_dirty_folio
btrfs: Convert from set_page_dirty to dirty_folio
fscache: Convert fscache_set_page_dirty() to fscache_dirty_folio()
fs: Add aops->dirty_folio
fs: Remove aops->launder_page
orangefs: Convert launder_page to launder_folio
nfs: Convert from launder_page to launder_folio
fuse: Convert from launder_page to launder_folio
...
The inode allocation is supposed to use alloc_inode_sb(), so convert
kmem_cache_alloc() of all filesystems to alloc_inode_sb().
Link: https://lkml.kernel.org/r/20220228122126.37293-5-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Theodore Ts'o <tytso@mit.edu> [ext4]
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These filesystems use __set_page_dirty_nobuffers() either directly or
with a very thin wrapper; convert them en masse.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Tested-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Acked-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Tested-by: Mike Marshall <hubcap@omnibond.com> # orangefs
Tested-by: David Howells <dhowells@redhat.com> # afs
A lot of the underlying infrastructure in btrfs needs to be switched
over to folios, but this at least documents that invalidatepage can't
be passed a tail page.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Tested-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Acked-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Tested-by: Mike Marshall <hubcap@omnibond.com> # orangefs
Tested-by: David Howells <dhowells@redhat.com> # afs
When an inode has a last_reflink_trans matching the current transaction,
we have to take special care when logging its checksums in order to
avoid getting checksum items with overlapping ranges in a log tree,
which could result in missing checksums after log replay (more on that
in the changelogs of commit 40e046acbd ("Btrfs: fix missing data
checksums after replaying a log tree") and commit e289f03ea7 ("btrfs:
fix corrupt log due to concurrent fsync of inodes with shared extents")).
We also need to make sure a full fsync will copy all old file extent
items it finds in modified leaves, because they might have been copied
from some other inode.
However once we fsync an inode, we don't need to keep paying the price of
that extra special care in future fsyncs done in the same transaction,
unless the inode is used for another reflink operation or the full sync
flag is set on it (truncate, failure to allocate extent maps for holes,
and other exceptional and infrequent cases).
So after we fsync an inode reset its last_unlink_trans to zero. In case
another reflink happens, we continue to update the last_reflink_trans of
the inode, just as before. Also set last_reflink_trans to the generation
of the last transaction that modified the inode whenever we need to set
the full sync flag on the inode, just like when we need to load an inode
from disk after eviction.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I hit some weird panics while fixing up the error handling from
btrfs_lookup_bio_sums(). Turns out the compression path will complete
the bio we use if we set up any of the compression bios and then return
an error, and then btrfs_submit_data_bio() will also call bio_endio() on
the bio.
Fix this by making btrfs_submit_compressed_read() responsible for
calling bio_endio() on the bio if there are any errors. Currently it
was only doing it if we created the compression bios, otherwise it was
depending on btrfs_submit_data_bio() to do the right thing. This
creates the above problem, so fix up btrfs_submit_compressed_read() to
always call bio_endio() in case of an error, and then simply return from
btrfs_submit_data_bio() if we had to call
btrfs_submit_compressed_read().
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The implementation resembles direct I/O: we have to flush any ordered
extents, invalidate the page cache, and do the io tree/delalloc/extent
map/ordered extent dance. From there, we can reuse the compression code
with a minor modification to distinguish the write from writeback. This
also creates inline extents when possible.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are 4 main cases:
1. Inline extents: we copy the data straight out of the extent buffer.
2. Hole/preallocated extents: we fill in zeroes.
3. Regular, uncompressed extents: we read the sectors we need directly
from disk.
4. Regular, compressed extents: we read the entire compressed extent
from disk and indicate what subset of the decompressed extent is in
the file.
This initial implementation simplifies a few things that can be improved
in the future:
- Cases 1, 3, and 4 allocate temporary memory to read into before
copying out to userspace.
- We don't do read repair, because it turns out that read repair is
currently broken for compressed data.
- We hold the inode lock during the operation.
Note that we don't need to hold the mmap lock. We may race with
btrfs_page_mkwrite() and read the old data from before the page was
dirtied:
btrfs_page_mkwrite btrfs_encoded_read
---------------------------------------------------
(enter) (enter)
btrfs_wait_ordered_range
lock_extent_bits
btrfs_page_set_dirty
unlock_extent_cached
(exit)
lock_extent_bits
read extent (dirty page hasn't been flushed,
so this is the old data)
unlock_extent_cached
(exit)
we read the old data from before the page was dirtied. But, that's true
even if we were to hold the mmap lock:
btrfs_page_mkwrite btrfs_encoded_read
-------------------------------------------------------------------
(enter) (enter)
btrfs_inode_lock(BTRFS_ILOCK_MMAP)
down_read(i_mmap_lock) (blocked)
btrfs_wait_ordered_range
lock_extent_bits
read extent (page hasn't been dirtied,
so this is the old data)
unlock_extent_cached
btrfs_inode_unlock(BTRFS_ILOCK_MMAP)
down_read(i_mmap_lock) returns
lock_extent_bits
btrfs_page_set_dirty
unlock_extent_cached
In other words, this is inherently racy, so it's fine that we return the
old data in this tiny window.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, an inline extent is always created after i_size is extended
from btrfs_dirty_pages(). However, for encoded writes, we only want to
update i_size after we successfully created the inline extent. Add an
update_i_size parameter to cow_file_range_inline() and
insert_inline_extent() and pass in the size of the extent rather than
determining it from i_size.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ reformat comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
The start parameter to cow_file_range_inline() (and
insert_inline_extent()) is always 0, so get rid of it and simplify the
logic in those two functions. Pass btrfs_inode to insert_inline_extent()
and remove the redundant root parameter. Also document the requirements
for creating an inline extent. No functional change.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, we always reserve the same extent size in the file and extent
size on disk for delalloc because the former is the worst case for the
latter. For BTRFS_IOC_ENCODED_WRITE writes, we know the exact size of
the extent on disk, which may be less than or greater than (for
bookends) the size in the file. Add a disk_num_bytes parameter to
btrfs_delalloc_reserve_metadata() so that we can reserve the correct
amount of csum bytes. No functional change.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, we only create ordered extents when ram_bytes == num_bytes
and offset == 0. However, BTRFS_IOC_ENCODED_WRITE writes may create
extents which only refer to a subset of the full unencoded extent, so we
need to plumb these fields through the ordered extent infrastructure and
pass them down to insert_reserved_file_extent().
Since we're changing the btrfs_add_ordered_extent* signature, let's get
rid of the trivial wrappers and add a kernel-doc.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_csum_one_bio() loops over each filesystem block in the bio while
keeping a cursor of its current logical position in the file in order to
look up the ordered extent to add the checksums to. However, this
doesn't make much sense for compressed extents, as a sector on disk does
not correspond to a sector of decompressed file data. It happens to work
because:
1) the compressed bio always covers one ordered extent
2) the size of the bio is always less than the size of the ordered
extent
However, the second point will not always be true for encoded writes.
Let's add a boolean parameter to btrfs_csum_one_bio() to indicate that
it can assume that the bio only covers one ordered extent. Since we're
already changing the signature, let's get rid of the contig parameter
and make it implied by the offset parameter, similar to the change we
recently made to btrfs_lookup_bio_sums(). Additionally, let's rename
nr_sectors to blockcount to make it clear that it's the number of
filesystem blocks, not the number of 512-byte sectors.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_do_readpage(), if we get an error when trying to lookup for an
extent map, we end up marking the page with the error bit, clearing
the uptodate bit on it, and doing everything else that should be done.
However we return success (0) to the caller, when we should return the
error encoded in the extent map pointer. So fix that by returning the
error encoded in the pointer.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The static_assert introduced in 6bab69c650 ("build_bug.h: add wrapper
for _Static_assert") has been supported by compilers for a long time
(gcc 4.6, clang 3.0) and can be used in header files. We don't need to
put BUILD_BUG_ON to random functions but rather keep it next to the
definition.
The exception here is the UAPI header btrfs_tree.h that could be
potentially included by userspace code and the static assert is not
defined (nor used in any other header).
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we stop tracking metadata blocks all of snapshotting will break, so
disable it until I add the snapshot root and drop tree support.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During a rename, we call __btrfs_unlink_inode(), which will call
btrfs_del_inode_ref_in_log() and btrfs_del_dir_entries_in_log(), in order
to remove an inode reference and a directory entry from the log. These
are necessary when __btrfs_unlink_inode() is called from the unlink path,
but not necessary when it's called from a rename context, because:
1) For the btrfs_del_inode_ref_in_log() call, it's pointless to delete the
inode reference related to the old name, because later in the rename
path we call btrfs_log_new_name(), which will drop all inode references
from the log and copy all inode references from the subvolume tree to
the log tree. So we are doing one unnecessary btree operation which
adds additional latency and lock contention in case there are other
tasks accessing the log tree;
2) For the btrfs_del_dir_entries_in_log() call, we are now doing the
equivalent at btrfs_log_new_name() since the previous patch in the
series, that has the subject "btrfs: avoid logging all directory
changes during renames". In fact, having __btrfs_unlink_inode() call
this function not only adds additional latency and lock contention due
to the extra btree operation, but also can make btrfs_log_new_name()
unnecessarily log a range item to track the deletion of the old name,
since it has no way to known that the directory entry related to the
old name was previously logged and already deleted by
__btrfs_unlink_inode() through its call to
btrfs_del_dir_entries_in_log().
So skip those calls at __btrfs_unlink_inode() when we are doing a rename.
Skipping them also allows us now to reduce the duration of time we are
pinning a log transaction during renames, which is always beneficial as
it's not delaying so much other tasks trying to sync the log tree, in
particular we end up not holding the log transaction pinned while adding
the new name (adding inode ref, directory entry, etc).
This change is part of a patchset comprised of the following patches:
1/5 btrfs: add helper to delete a dir entry from a log tree
2/5 btrfs: pass the dentry to btrfs_log_new_name() instead of the inode
3/5 btrfs: avoid logging all directory changes during renames
4/5 btrfs: stop doing unnecessary log updates during a rename
5/5 btrfs: avoid inode logging during rename and link when possible
Just like the previous patch in the series, "btrfs: avoid logging all
directory changes during renames", the following script mimics part of
what a package installation/upgrade with zypper does, which is basically
renaming a lot of files, in some directory under /usr, to a name with a
suffix of "-RPMDELETE":
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
NUM_FILES=10000
mkfs.btrfs -f $DEV
mount $DEV $MNT
mkdir $MNT/testdir
for ((i = 1; i <= $NUM_FILES; i++)); do
echo -n > $MNT/testdir/file_$i
done
sync
# Do some change to testdir and fsync it.
echo -n > $MNT/testdir/file_$((NUM_FILES + 1))
xfs_io -c "fsync" $MNT/testdir
echo "Renaming $NUM_FILES files..."
start=$(date +%s%N)
for ((i = 1; i <= $NUM_FILES; i++)); do
mv $MNT/testdir/file_$i $MNT/testdir/file_$i-RPMDELETE
done
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo "Renames took $dur milliseconds"
umount $MNT
Testing this change on box a using a non-debug kernel (Debian's default
kernel config) gave the following results:
NUM_FILES=10000, before patchset: 27399 ms
NUM_FILES=10000, after patches 1/5 to 3/5 applied: 9093 ms (-66.8%)
NUM_FILES=10000, after patches 1/5 to 4/5 applied: 9016 ms (-67.1%)
NUM_FILES=5000, before patchset: 9241 ms
NUM_FILES=5000, after patches 1/5 to 3/5 applied: 4642 ms (-49.8%)
NUM_FILES=5000, after patches 1/5 to 4/5 applied: 4553 ms (-50.7%)
NUM_FILES=2000, before patchset: 2550 ms
NUM_FILES=2000, after patches 1/5 to 3/5 applied: 1788 ms (-29.9%)
NUM_FILES=2000, after patches 1/5 to 4/5 applied: 1767 ms (-30.7%)
NUM_FILES=1000, before patchset: 1088 ms
NUM_FILES=1000, after patches 1/5 to 3/5 applied: 905 ms (-16.9%)
NUM_FILES=1000, after patches 1/5 to 4/5 applied: 883 ms (-18.8%)
The next patch in the series (5/5), also contains dbench results after
applying to whole patchset.
Link: https://bugzilla.opensuse.org/show_bug.cgi?id=1193549
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing a rename of a file, if the file or its old parent directory
were logged before, we log the new name of the file and then make sure
we log the old parent directory, to ensure that after a log replay the
old name of the file is deleted and the new name added.
The logging of the old parent directory can take some time, because it
will scan all leaves modified in the current transaction, check which
directory entries were already logged, copy the ones that were not
logged before, etc. In this rename context all we need to do is make
sure that the old name of the file is deleted on log replay, so instead
of triggering a directory log operation, we can just delete the old
directory entry from the log if it's there, or in case it isn't there,
just log a range item to signal log replay that the old name must be
deleted. So change btrfs_log_new_name() to do that.
This scenario is actually not uncommon to trigger, and recently on a
5.15 kernel, an openSUSE Tumbleweed user reported package installations
and upgrades, with the zypper tool, were often taking a long time to
complete, much more than usual. With strace it could be observed that
zypper was spending over 99% of its time on rename operations, and then
with further analysis we checked that directory logging was happening
too frequently and causing high latencies for the rename operations.
Taking into account that installation/upgrade of some of these packages
needed about a few thousand file renames, the slowdown was very noticeable
for the user.
The issue was caused indirectly due to an excessive number of inode
evictions on a 5.15 kernel, about 100x more compared to a 5.13, 5.14
or a 5.16-rc8 kernel. After an inode eviction we can't tell for sure,
in an efficient way, if an inode was previously logged in the current
transaction, so we are pessimistic and assume it was, because in case
it was we need to update the logged inode. More details on that in one
of the patches in the same series (subject "btrfs: avoid inode logging
during rename and link when possible"). Either way, in case the parent
directory was logged before, we currently do more work then necessary
during a rename, and this change minimizes that amount of work.
The following script mimics part of what a package installation/upgrade
with zypper does, which is basically renaming a lot of files, in some
directory under /usr, to a name with a suffix of "-RPMDELETE":
$ cat test.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/nvme0n1
NUM_FILES=10000
mkfs.btrfs -f $DEV
mount $DEV $MNT
mkdir $MNT/testdir
for ((i = 1; i <= $NUM_FILES; i++)); do
echo -n > $MNT/testdir/file_$i
done
sync
# Do some change to testdir and fsync it.
echo -n > $MNT/testdir/file_$((NUM_FILES + 1))
xfs_io -c "fsync" $MNT/testdir
echo "Renaming $NUM_FILES files..."
start=$(date +%s%N)
for ((i = 1; i <= $NUM_FILES; i++)); do
mv $MNT/testdir/file_$i $MNT/testdir/file_$i-RPMDELETE
done
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo "Renames took $dur milliseconds"
umount $MNT
Testing this change on box using a non-debug kernel (Debian's default
kernel config) gave the following results:
NUM_FILES=10000, before this patch: 27399 ms
NUM_FILES=10000, after this patch: 9093 ms (-66.8%)
NUM_FILES=5000, before this patch: 9241 ms
NUM_FILES=5000, after this patch: 4642 ms (-49.8%)
NUM_FILES=2000, before this patch: 2550 ms
NUM_FILES=2000, after this patch: 1788 ms (-29.9%)
NUM_FILES=1000, before this patch: 1088 ms
NUM_FILES=1000, after this patch: 905 ms (-16.9%)
Link: https://bugzilla.opensuse.org/show_bug.cgi?id=1193549
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the next patch in the series, there will be the need to access the old
name, and its length, of an inode when logging the inode during a rename.
So instead of passing the inode to btrfs_log_new_name() pass the dentry,
because from the dentry we can get the inode, the name and its length.
This will avoid passing 3 new parameters to btrfs_log_new_name() in the
next patch - the name, its length and an index number. This way we end
up passing only 1 new parameter, the index number.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>