Add a pointer to udev in struct xhci_virt_device. When allocate a new
virt_device, make the pointer point to the corresponding udev.
Modify xhci_check_args(), check if virt_dev->udev matches the target udev,
to make sure command is issued to the right device.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Most of the work for interrupt handling is done in xhci-ring.c, so it makes
sense to move the functions that are first called when an interrupt happens
(xhci_irq() or xhci_msi_irq()) into xhci-ring.c, so that the compiler can better
optimize them.
Shorten some lines to make it pass checkpatch.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
I've been using perf to measure the top symbols while transferring 1GB of data
on a USB 3.0 drive with dd. This is using the raw disk with /dev/sdb, with a
block size of 1K.
During performance testing, the top symbol was xhci_triad_to_transfer_ring(), a
function that should return immediately if streams are not enabled for an
endpoint. It turned out that the functions to find the endpoint ring was
defined in xhci-mem.c and used in xhci-ring.c and xhci-hcd.c. I moved a copy of
xhci_triad_to_transfer_ring() and xhci_urb_to_transfer_ring() into xhci-ring.c
and declared them static. I also made a static version of
xhci_urb_to_transfer_ring() in xhci.c.
This improved throughput on a 1GB read of the raw disk with dd from
186MB/s to 195MB/s, and perf reported sampling the xhci_triad_to_transfer_ring()
0.06% of the time, rather than 9.26% of the time.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Add urb_priv data structure to xHCI driver. This structure allows multiple
xhci TDs to be linked to one urb, which is essential for isochronous
transfer. For non-isochronous urb, only one TD is needed for one urb;
for isochronous urb, the TD number for the urb is equal to
urb->number_of_packets.
The length field of urb_priv indicates the number of TDs in the urb.
The td_cnt field indicates the number of TDs already processed by xHC.
When td_cnt matches length, the urb can be given back to usbcore.
When an urb is dequeued or cancelled, add all the unprocessed TDs to the
endpoint's cancelled_td_list. When process a cancelled TD, increase
td_cnt field. When td_cnt equals urb_priv->length, giveback the
cancelled urb.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Enable MSI/MSI-X supporting in xhci driver.
Provide the mechanism to fall back using MSI and Legacy IRQs
if MSI-X IRQs register failed.
Signed-off-by: Dong Nguyen <Dong.Nguyen@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>,
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch (as1393) converts several of the single-bit fields in
struct usb_hcd to atomic flags. This is for safety's sake; not all
CPUs can update bitfield values atomically, and these flags are used
in multiple contexts.
The flag fields that are set only during registration or removal can
remain as they are, since non-atomic accesses at those times will not
cause any problems.
(Strictly speaking, the authorized_default flag should become atomic
as well. I didn't bother with it because it gets changed only via
sysfs. It can be done later, if anyone wants.)
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
When code to manipulate the command register was refactored from
xhci_run() to xhci_start(), a debugging statement was left behind that no
longer applies. Remove that statement.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Reported-by: Sergei Shtylyov <sshtylyov@mvista.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
When a configured device is reset, the control endpoint's ring is reused.
If control transfers to the device were issued before the device is reset,
the dequeue pointer will be somewhere in the middle of the ring. If the
device is then issued an address with the set address command, the xHCI
driver must provide a valid input context for control endpoint zero.
The original code would give the hardware the original input context,
which had a dequeue pointer set to the top of the ring. This would cause
the host to re-execute any control transfers until it reached the ring's
enqueue pointer. When issuing a set address command for a device that has
just been configured and then reset, use the control endpoint's enqueue
pointer as the hardware's dequeue pointer.
Assumption: All control transfers will be completed or cancelled before
the set address command is issued to the device. If there are any
outstanding control transfers, this code will not work.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The NEC xHCI host controller firmware version can be found by putting a
vendor-specific command on the command ring and extracting the BCD
encoded-version out of the vendor-specific event TRB.
The firmware version debug line in dmesg will look like:
xhci_hcd 0000:05:00.0: NEC firmware version 30.21
(NEC merged with Renesas Technologies and became Renesas Electronics on
April 1, 2010. I have their OK to merge this vendor-specific code.)
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: Satoshi Otani <satoshi.otani.xm@renesas.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
When the run bit is set in the xHCI command register, it may take a few
microseconds for the host to start running. We cannot ring any doorbells
until the host is actually running, so wait until the status register says
the host is running.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Reported-by: Shinya Saito <shinya.saito.sx@renesas.com>
Cc: stable <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
After software resets an xHCI host controller, it must wait for the
"Controller Not Ready" (CNR) bit in the status register to be cleared.
Software is not supposed to ring any doorbells or write to any registers
except the status register until this bit is cleared.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
After using state stored in xhci_virt_ep to clean up a stalled endpoint,
be sure to set the stalled stream ID back to 0.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
When a device is disconnected, xhci_free_virt_device() is called. Ramya
found that if the device had streams enabled, and then the driver freed
the streams with a call to usb_free_streams(), then about a minute after
he had called this, his machine crashed with a Bad DMA error. It turns
out that xhci_free_virt_device() would attempt to free the endpoint's
stream_info data structure if it wasn't NULL, and the free streams
function was not setting it to NULL after freeing it.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Ramya Desai <ramya.desai@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch (as1375) eliminates the usb_host_ss_ep_comp structure used
for storing a dynamically-allocated copy of the SuperSpeed endpoint
companion descriptor. The SuperSpeed descriptor is placed directly in
the usb_host_endpoint structure, alongside the standard endpoint
descriptor.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Much of the xHCI driver code assumes that endpoints only have one ring.
Now an endpoint can have one ring per enabled stream ID, so correct that
assumption. Use functions that translate the stream_id field in the URB
or the DMA address of a TRB into the correct stream ring.
Correct the polling loop to print out all enabled stream rings. Make the
URB cancellation routine find the correct stream ring if the URB has
stream_id set. Make sure the URB enqueueing routine does the same. Also
correct the code that handles stalled/halted endpoints.
Check that commands and registers that can take stream IDs handle them
properly. That includes ringing an endpoint doorbell, resetting a
stalled/halted endpoint, and setting a transfer ring dequeue pointer
(since that command can set the dequeue pointer in a stream context or an
endpoint context).
Correct the transfer event handler to translate a TRB DMA address into the
stream ring it was enqueued to. Make the code to allocate and prepare TD
structures adds the TD to the right td_list for the stream ring. Make
sure the code to give the first TRB in a TD to the hardware manipulates
the correct stream ring.
When an endpoint stalls, store the stream ID of the stream ring that
stalled in the xhci_virt_ep structure. Use that instead of the stream ID
in the URB, since an URB may be re-used after it is given back after a
non-control endpoint stall.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Add support for allocating streams for USB 3.0 bulk endpoints. See
Documentation/usb/bulk-streams.txt for more information about how and why
you would use streams.
When an endpoint has streams enabled, instead of having one ring where all
transfers are enqueued to the hardware, it has several rings. The ring
dequeue pointer in the endpoint context is changed to point to a "Stream
Context Array". This is basically an array of pointers to transfer rings,
one for each stream ID that the driver wants to use.
The Stream Context Array size must be a power of two, and host controllers
can place a limit on the size of the array (4 to 2^16 entries). These
two facts make calculating the size of the Stream Context Array and the
number of entries actually used by the driver a bit tricky.
Besides the Stream Context Array and rings for all the stream IDs, we need
one more data structure. The xHCI hardware will not tell us which stream
ID a transfer event was for, but it will give us the slot ID, endpoint
index, and physical address for the TRB that caused the event. For every
endpoint on a device, add a radix tree to map physical TRB addresses to
virtual segments within a stream ring.
Keep track of whether an endpoint is transitioning to using streams, and
don't enqueue any URBs while that's taking place. Refuse to transition an
endpoint to streams if there are already URBs enqueued for that endpoint.
We need to make sure that freeing streams does not fail, since a driver's
disconnect() function may attempt to do this, and it cannot fail.
Pre-allocate the command structure used to issue the Configure Endpoint
command, and reserve space on the command ring for each stream endpoint.
This may be a bit overkill, but it is permissible for the driver to
allocate all streams in one call and free them in multiple calls. (It is
not advised, however, since it is a waste of resources and time.)
Even with the memory and ring room pre-allocated, freeing streams can
still fail because the xHC rejects the configure endpoint command. It is
valid (by the xHCI 0.96 spec) to return a "Bandwidth Error" or a "Resource
Error" for a configure endpoint command. We should never see a Bandwidth
Error, since bulk endpoints do not effect the reserved bandwidth. The
host controller can still return a Resource Error, but it's improbable
since the xHC would be going from a more resource-intensive configuration
(streams) to a less resource-intensive configuration (no streams).
If the xHC returns a Resource Error, the endpoint will be stuck with
streams and will be unusable for drivers. It's an unavoidable consequence
of broken host controller hardware.
Includes bug fixes from the original patch, contributed by
John Youn <John.Youn@synopsys.com> and Andy Green <AGreen@PLXTech.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
When the USB core installs a new interface, it unconditionally clears the
halts on all the endpoints on the new interface. Usually the xHCI host
needs to know when an endpoint is reset, so it can change its internal
endpoint state. In this case, it doesn't care, because the endpoints were
never halted in the first place.
To avoid issuing a redundant Reset Endpoint command, the xHCI driver looks
at xhci_virt_ep->stopped_td to determine if the endpoint was actually
halted. However, the functions that handle the stall never set that
variable to NULL after it dealt with the stall. So if an endpoint stalled
and a Reset Endpoint command completed, and then the class driver tried to
install a new alternate setting, the xHCI driver would access the old
xhci_virt_ep->stopped_td pointer. A similar problem occurs if the
endpoint has been stopped to cancel a transfer.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
When a signal interrupts a Configure Endpoint command, the cmd_completion used
in xhci_configure_endpoint() is not re-initialized and the
wait_for_completion_interruptible_timeout() will return failure. Initialize
cmd_completion in xhci_configure_endpoint().
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Naming consistency with other USB HCDs.
Signed-off-by: Alex Chiang <achiang@hp.com>
Cc: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>