mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-14 22:44:27 +08:00
63773d2b59
180 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Josef Bacik
|
fccf0c842e |
btrfs: move btrfs_abort_transaction to transaction.c
While trying to sync messages.[ch] I ended up with this dependency on messages.h in the rest of btrfs-progs code base because it's where btrfs_abort_transaction() was now held. We want to keep messages.[ch] limited to the kernel code, and the btrfs_abort_transaction() code better fits in the transaction code and not in messages. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ move the __cold attributes ] Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
55e5cfd36d |
btrfs: remove fs_info::pending_changes and related code
Now that we're not using this code anywhere we can remove it as well as the member from fs_info. We don't have any mount options or on/off features that would utilize the pending infrastructure, the last one was inode_cache. There was a patchset [1] to enable some features from sysfs that would break things if it would be set immediately. In case we'll need that kind of logic again the patch can be reverted, but for the current use it can be replaced by the single state bit to do the commit. [1] https://lore.kernel.org/linux-btrfs/1422609654-19519-1-git-send-email-quwenruo@cn.fujitsu.com/ Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add note ] Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
cc37ea6192 |
btrfs: convert __TRANS_* defines to enum bits
The base transaction bits can be defined as bits in a contiguous sequence, although right now there's a hole from bit 1 to 8. The bits are used for btrfs_trans_handle::type, and there's another set of TRANS_STATE_* defines that are for btrfs_transaction::state. They are mutually exclusive though the hole in the sequence looks like was made for the states. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
956504a331 |
btrfs: move trans_handle_cachep out of ctree.h
This is local to the transaction code, remove it from ctree.h and inode.c, create new helpers in the transaction to handle the init work and move the cachep locally to transaction.c. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
33c4418499 |
btrfs: pass btrfs_fs_info for deleting snapshots and cleaner
We're passing a root around here, but we only really need the fs_info, so fix up btrfs_clean_one_deleted_snapshot() to take an fs_info instead, and then fix up all the callers appropriately. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
b4be6aefa7 |
btrfs: do not start relocation until in progress drops are done
We hit a bug with a recovering relocation on mount for one of our file systems in production. I reproduced this locally by injecting errors into snapshot delete with balance running at the same time. This presented as an error while looking up an extent item WARNING: CPU: 5 PID: 1501 at fs/btrfs/extent-tree.c:866 lookup_inline_extent_backref+0x647/0x680 CPU: 5 PID: 1501 Comm: btrfs-balance Not tainted 5.16.0-rc8+ #8 RIP: 0010:lookup_inline_extent_backref+0x647/0x680 RSP: 0018:ffffae0a023ab960 EFLAGS: 00010202 RAX: 0000000000000001 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 000000000000000c RDI: 0000000000000000 RBP: ffff943fd2a39b60 R08: 0000000000000000 R09: 0000000000000001 R10: 0001434088152de0 R11: 0000000000000000 R12: 0000000001d05000 R13: ffff943fd2a39b60 R14: ffff943fdb96f2a0 R15: ffff9442fc923000 FS: 0000000000000000(0000) GS:ffff944e9eb40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1157b1fca8 CR3: 000000010f092000 CR4: 0000000000350ee0 Call Trace: <TASK> insert_inline_extent_backref+0x46/0xd0 __btrfs_inc_extent_ref.isra.0+0x5f/0x200 ? btrfs_merge_delayed_refs+0x164/0x190 __btrfs_run_delayed_refs+0x561/0xfa0 ? btrfs_search_slot+0x7b4/0xb30 ? btrfs_update_root+0x1a9/0x2c0 btrfs_run_delayed_refs+0x73/0x1f0 ? btrfs_update_root+0x1a9/0x2c0 btrfs_commit_transaction+0x50/0xa50 ? btrfs_update_reloc_root+0x122/0x220 prepare_to_merge+0x29f/0x320 relocate_block_group+0x2b8/0x550 btrfs_relocate_block_group+0x1a6/0x350 btrfs_relocate_chunk+0x27/0xe0 btrfs_balance+0x777/0xe60 balance_kthread+0x35/0x50 ? btrfs_balance+0xe60/0xe60 kthread+0x16b/0x190 ? set_kthread_struct+0x40/0x40 ret_from_fork+0x22/0x30 </TASK> Normally snapshot deletion and relocation are excluded from running at the same time by the fs_info->cleaner_mutex. However if we had a pending balance waiting to get the ->cleaner_mutex, and a snapshot deletion was running, and then the box crashed, we would come up in a state where we have a half deleted snapshot. Again, in the normal case the snapshot deletion needs to complete before relocation can start, but in this case relocation could very well start before the snapshot deletion completes, as we simply add the root to the dead roots list and wait for the next time the cleaner runs to clean up the snapshot. Fix this by setting a bit on the fs_info if we have any DEAD_ROOT's that had a pending drop_progress key. If they do then we know we were in the middle of the drop operation and set a flag on the fs_info. Then balance can wait until this flag is cleared to start up again. If there are DEAD_ROOT's that don't have a drop_progress set then we're safe to start balance right away as we'll be properly protected by the cleaner_mutex. CC: stable@vger.kernel.org # 5.10+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
28b21c558a |
btrfs: fix use-after-free after failure to create a snapshot
At ioctl.c:create_snapshot(), we allocate a pending snapshot structure and then attach it to the transaction's list of pending snapshots. After that we call btrfs_commit_transaction(), and if that returns an error we jump to 'fail' label, where we kfree() the pending snapshot structure. This can result in a later use-after-free of the pending snapshot: 1) We allocated the pending snapshot and added it to the transaction's list of pending snapshots; 2) We call btrfs_commit_transaction(), and it fails either at the first call to btrfs_run_delayed_refs() or btrfs_start_dirty_block_groups(). In both cases, we don't abort the transaction and we release our transaction handle. We jump to the 'fail' label and free the pending snapshot structure. We return with the pending snapshot still in the transaction's list; 3) Another task commits the transaction. This time there's no error at all, and then during the transaction commit it accesses a pointer to the pending snapshot structure that the snapshot creation task has already freed, resulting in a user-after-free. This issue could actually be detected by smatch, which produced the following warning: fs/btrfs/ioctl.c:843 create_snapshot() warn: '&pending_snapshot->list' not removed from list So fix this by not having the snapshot creation ioctl directly add the pending snapshot to the transaction's list. Instead add the pending snapshot to the transaction handle, and then at btrfs_commit_transaction() we add the snapshot to the list only when we can guarantee that any error returned after that point will result in a transaction abort, in which case the ioctl code can safely free the pending snapshot and no one can access it anymore. CC: stable@vger.kernel.org # 5.10+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
7a60751a33 |
btrfs: remove trans_handle->root
Nobody is using this anymore, remove it. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
fdfbf02066 |
btrfs: rework async transaction committing
Currently we do this awful thing where we get another ref on a trans handle, async off that handle and commit the transaction from that work. Because we do this we have to mess with current->journal_info and the freeze counting stuff. We already have an async thing to kick for the transaction commit, the transaction kthread. Replace this work struct with a flag on the fs_info to tell the kthread to go ahead and commit even if it's before our timeout. Then we can drastically simplify the async transaction commit path. Note: this can be simplified and functionality based on the pending operation COMMIT. Signed-off-by: Josef Bacik <josef@toxicpanda.com> [ add note ] Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
79bd37120b |
btrfs: rework chunk allocation to avoid exhaustion of the system chunk array
Commit
|
||
Filipe Manana
|
1cb3db1cf3 |
btrfs: fix deadlock with concurrent chunk allocations involving system chunks
When a task attempting to allocate a new chunk verifies that there is not currently enough free space in the system space_info and there is another task that allocated a new system chunk but it did not finish yet the creation of the respective block group, it waits for that other task to finish creating the block group. This is to avoid exhaustion of the system chunk array in the superblock, which is limited, when we have a thundering herd of tasks allocating new chunks. This problem was described and fixed by commit |
||
Filipe Manana
|
35b22c19af |
btrfs: send: fix crash when memory allocations trigger reclaim
When doing a send we don't expect the task to ever start a transaction after the initial check that verifies if commit roots match the regular roots. This is because after that we set current->journal_info with a stub (special value) that signals we are in send context, so that we take a read lock on an extent buffer when reading it from disk and verifying it is valid (its generation matches the generation stored in the parent). This stub was introduced in 2014 by commit |
||
David Sterba
|
32cc4f8759 |
btrfs: sink wait_for_unblock parameter to async commit
There's only one caller left btrfs_ioctl_start_sync that passes 0, so we
can remove the switch in btrfs_commit_transaction_async.
A cleanup
|
||
Josef Bacik
|
5963ffcaf3 |
btrfs: always abort the transaction if we abort a trans handle
While stress testing our error handling I noticed that sometimes we would still commit the transaction even though we had aborted the transaction. Currently we track if a trans handle has dirtied any metadata, and if it hasn't we mark the filesystem as having an error (so no new transactions can be started), but we will allow the current transaction to complete as we do not mark the transaction itself as having been aborted. This sounds good in theory, but we were not properly tracking IO errors in btrfs_finish_ordered_io, and thus committing the transaction with bogus free space data. This isn't necessarily a problem per-se with the free space cache, as the other guards in place would have kept us from accepting the free space cache as valid, but highlights a real world case where we had a bug and could have corrupted the filesystem because of it. This "skip abort on empty trans handle" is nice in theory, but assumes we have perfect error handling everywhere, which we clearly do not. Also we do not allow further transactions to be started, so all this does is save the last transaction that was happening, which doesn't necessarily gain us anything other than the potential for real corruption. Remove this particular bit of code, if we decide we need to abort the transaction then abort the current one and keep us from doing real harm to the file system, regardless of whether this specific trans handle dirtied anything or not. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
eafa4fd0ad |
btrfs: fix exhaustion of the system chunk array due to concurrent allocations
When we are running out of space for updating the chunk tree, that is, when we are low on available space in the system space info, if we have many task concurrently allocating block groups, via fallocate for example, many of them can end up all allocating new system chunks when only one is needed. In extreme cases this can lead to exhaustion of the system chunk array, which has a size limit of 2048 bytes, and results in a transaction abort with errno EFBIG, producing a trace in dmesg like the following, which was triggered on a PowerPC machine with a node/leaf size of 64K: [1359.518899] ------------[ cut here ]------------ [1359.518980] BTRFS: Transaction aborted (error -27) [1359.519135] WARNING: CPU: 3 PID: 16463 at ../fs/btrfs/block-group.c:1968 btrfs_create_pending_block_groups+0x340/0x3c0 [btrfs] [1359.519152] Modules linked in: (...) [1359.519239] Supported: Yes, External [1359.519252] CPU: 3 PID: 16463 Comm: stress-ng Tainted: G X 5.3.18-47-default #1 SLE15-SP3 [1359.519274] NIP: c008000000e36fe8 LR: c008000000e36fe4 CTR: 00000000006de8e8 [1359.519293] REGS: c00000056890b700 TRAP: 0700 Tainted: G X (5.3.18-47-default) [1359.519317] MSR: 800000000282b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 48008222 XER: 00000007 [1359.519356] CFAR: c00000000013e170 IRQMASK: 0 [1359.519356] GPR00: c008000000e36fe4 c00000056890b990 c008000000e83200 0000000000000026 [1359.519356] GPR04: 0000000000000000 0000000000000000 0000d52a3b027651 0000000000000007 [1359.519356] GPR08: 0000000000000003 0000000000000001 0000000000000007 0000000000000000 [1359.519356] GPR12: 0000000000008000 c00000063fe44600 000000001015e028 000000001015dfd0 [1359.519356] GPR16: 000000000000404f 0000000000000001 0000000000010000 0000dd1e287affff [1359.519356] GPR20: 0000000000000001 c000000637c9a000 ffffffffffffffe5 0000000000000000 [1359.519356] GPR24: 0000000000000004 0000000000000000 0000000000000100 ffffffffffffffc0 [1359.519356] GPR28: c000000637c9a000 c000000630e09230 c000000630e091d8 c000000562188b08 [1359.519561] NIP [c008000000e36fe8] btrfs_create_pending_block_groups+0x340/0x3c0 [btrfs] [1359.519613] LR [c008000000e36fe4] btrfs_create_pending_block_groups+0x33c/0x3c0 [btrfs] [1359.519626] Call Trace: [1359.519671] [c00000056890b990] [c008000000e36fe4] btrfs_create_pending_block_groups+0x33c/0x3c0 [btrfs] (unreliable) [1359.519729] [c00000056890ba90] [c008000000d68d44] __btrfs_end_transaction+0xbc/0x2f0 [btrfs] [1359.519782] [c00000056890bae0] [c008000000e309ac] btrfs_alloc_data_chunk_ondemand+0x154/0x610 [btrfs] [1359.519844] [c00000056890bba0] [c008000000d8a0fc] btrfs_fallocate+0xe4/0x10e0 [btrfs] [1359.519891] [c00000056890bd00] [c0000000004a23b4] vfs_fallocate+0x174/0x350 [1359.519929] [c00000056890bd50] [c0000000004a3cf8] ksys_fallocate+0x68/0xf0 [1359.519957] [c00000056890bda0] [c0000000004a3da8] sys_fallocate+0x28/0x40 [1359.519988] [c00000056890bdc0] [c000000000038968] system_call_exception+0xe8/0x170 [1359.520021] [c00000056890be20] [c00000000000cb70] system_call_common+0xf0/0x278 [1359.520037] Instruction dump: [1359.520049] 7d0049ad 40c2fff4 7c0004ac 71490004 40820024 2f83fffb 419e0048 3c620000 [1359.520082] e863bcb8 7ec4b378 48010d91 e8410018 <0fe00000> 3c820000 e884bcc8 7ec6b378 [1359.520122] ---[ end trace d6c186e151022e20 ]--- The following steps explain how we can end up in this situation: 1) Task A is at check_system_chunk(), either because it is allocating a new data or metadata block group, at btrfs_chunk_alloc(), or because it is removing a block group or turning a block group RO. It does not matter why; 2) Task A sees that there is not enough free space in the system space_info object, that is 'left' is < 'thresh'. And at this point the system space_info has a value of 0 for its 'bytes_may_use' counter; 3) As a consequence task A calls btrfs_alloc_chunk() in order to allocate a new system block group (chunk) and then reserves 'thresh' bytes in the chunk block reserve with the call to btrfs_block_rsv_add(). This changes the chunk block reserve's 'reserved' and 'size' counters by an amount of 'thresh', and changes the 'bytes_may_use' counter of the system space_info object from 0 to 'thresh'. Also during its call to btrfs_alloc_chunk(), we end up increasing the value of the 'total_bytes' counter of the system space_info object by 8MiB (the size of a system chunk stripe). This happens through the call chain: btrfs_alloc_chunk() create_chunk() btrfs_make_block_group() btrfs_update_space_info() 4) After it finishes the first phase of the block group allocation, at btrfs_chunk_alloc(), task A unlocks the chunk mutex; 5) At this point the new system block group was added to the transaction handle's list of new block groups, but its block group item, device items and chunk item were not yet inserted in the extent, device and chunk trees, respectively. That only happens later when we call btrfs_finish_chunk_alloc() through a call to btrfs_create_pending_block_groups(); Note that only when we update the chunk tree, through the call to btrfs_finish_chunk_alloc(), we decrement the 'reserved' counter of the chunk block reserve as we COW/allocate extent buffers, through: btrfs_alloc_tree_block() btrfs_use_block_rsv() btrfs_block_rsv_use_bytes() And the system space_info's 'bytes_may_use' is decremented everytime we allocate an extent buffer for COW operations on the chunk tree, through: btrfs_alloc_tree_block() btrfs_reserve_extent() find_free_extent() btrfs_add_reserved_bytes() If we end up COWing less chunk btree nodes/leaves than expected, which is the typical case since the amount of space we reserve is always pessimistic to account for the worst possible case, we release the unused space through: btrfs_create_pending_block_groups() btrfs_trans_release_chunk_metadata() btrfs_block_rsv_release() block_rsv_release_bytes() btrfs_space_info_free_bytes_may_use() But before task A gets into btrfs_create_pending_block_groups()... 6) Many other tasks start allocating new block groups through fallocate, each one does the first phase of block group allocation in a serialized way, since btrfs_chunk_alloc() takes the chunk mutex before calling check_system_chunk() and btrfs_alloc_chunk(). However before everyone enters the final phase of the block group allocation, that is, before calling btrfs_create_pending_block_groups(), new tasks keep coming to allocate new block groups and while at check_system_chunk(), the system space_info's 'bytes_may_use' keeps increasing each time a task reserves space in the chunk block reserve. This means that eventually some other task can end up not seeing enough free space in the system space_info and decide to allocate yet another system chunk. This may repeat several times if yet more new tasks keep allocating new block groups before task A, and all the other tasks, finish the creation of the pending block groups, which is when reserved space in excess is released. Eventually this can result in exhaustion of system chunk array in the superblock, with btrfs_add_system_chunk() returning EFBIG, resulting later in a transaction abort. Even when we don't reach the extreme case of exhausting the system array, most, if not all, unnecessarily created system block groups end up being unused since when finishing creation of the first pending system block group, the creation of the following ones end up not needing to COW nodes/leaves of the chunk tree, so we never allocate and deallocate from them, resulting in them never being added to the list of unused block groups - as a consequence they don't get deleted by the cleaner kthread - the only exceptions are if we unmount and mount the filesystem again, which adds any unused block groups to the list of unused block groups, if a scrub is run, which also adds unused block groups to the unused list, and under some circumstances when using a zoned filesystem or async discard, which may also add unused block groups to the unused list. So fix this by: *) Tracking the number of reserved bytes for the chunk tree per transaction, which is the sum of reserved chunk bytes by each transaction handle currently being used; *) When there is not enough free space in the system space_info, if there are other transaction handles which reserved chunk space, wait for some of them to complete in order to have enough excess reserved space released, and then try again. Otherwise proceed with the creation of a new system chunk. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
bc0939fcfa |
btrfs: fix race between marking inode needs to be logged and log syncing
We have a race between marking that an inode needs to be logged, either at btrfs_set_inode_last_trans() or at btrfs_page_mkwrite(), and between btrfs_sync_log(). The following steps describe how the race happens. 1) We are at transaction N; 2) Inode I was previously fsynced in the current transaction so it has: inode->logged_trans set to N; 3) The inode's root currently has: root->log_transid set to 1 root->last_log_commit set to 0 Which means only one log transaction was committed to far, log transaction 0. When a log tree is created we set ->log_transid and ->last_log_commit of its parent root to 0 (at btrfs_add_log_tree()); 4) One more range of pages is dirtied in inode I; 5) Some task A starts an fsync against some other inode J (same root), and so it joins log transaction 1. Before task A calls btrfs_sync_log()... 6) Task B starts an fsync against inode I, which currently has the full sync flag set, so it starts delalloc and waits for the ordered extent to complete before calling btrfs_inode_in_log() at btrfs_sync_file(); 7) During ordered extent completion we have btrfs_update_inode() called against inode I, which in turn calls btrfs_set_inode_last_trans(), which does the following: spin_lock(&inode->lock); inode->last_trans = trans->transaction->transid; inode->last_sub_trans = inode->root->log_transid; inode->last_log_commit = inode->root->last_log_commit; spin_unlock(&inode->lock); So ->last_trans is set to N and ->last_sub_trans set to 1. But before setting ->last_log_commit... 8) Task A is at btrfs_sync_log(): - it increments root->log_transid to 2 - starts writeback for all log tree extent buffers - waits for the writeback to complete - writes the super blocks - updates root->last_log_commit to 1 It's a lot of slow steps between updating root->log_transid and root->last_log_commit; 9) The task doing the ordered extent completion, currently at btrfs_set_inode_last_trans(), then finally runs: inode->last_log_commit = inode->root->last_log_commit; spin_unlock(&inode->lock); Which results in inode->last_log_commit being set to 1. The ordered extent completes; 10) Task B is resumed, and it calls btrfs_inode_in_log() which returns true because we have all the following conditions met: inode->logged_trans == N which matches fs_info->generation && inode->last_subtrans (1) <= inode->last_log_commit (1) && inode->last_subtrans (1) <= root->last_log_commit (1) && list inode->extent_tree.modified_extents is empty And as a consequence we return without logging the inode, so the existing logged version of the inode does not point to the extent that was written after the previous fsync. It should be impossible in practice for one task be able to do so much progress in btrfs_sync_log() while another task is at btrfs_set_inode_last_trans() right after it reads root->log_transid and before it reads root->last_log_commit. Even if kernel preemption is enabled we know the task at btrfs_set_inode_last_trans() can not be preempted because it is holding the inode's spinlock. However there is another place where we do the same without holding the spinlock, which is in the memory mapped write path at: vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) { (...) BTRFS_I(inode)->last_trans = fs_info->generation; BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; (...) So with preemption happening after setting ->last_sub_trans and before setting ->last_log_commit, it is less of a stretch to have another task do enough progress at btrfs_sync_log() such that the task doing the memory mapped write ends up with ->last_sub_trans and ->last_log_commit set to the same value. It is still a big stretch to get there, as the task doing btrfs_sync_log() has to start writeback, wait for its completion and write the super blocks. So fix this in two different ways: 1) For btrfs_set_inode_last_trans(), simply set ->last_log_commit to the value of ->last_sub_trans minus 1; 2) For btrfs_page_mkwrite() only set the inode's ->last_sub_trans, just like we do for buffered and direct writes at btrfs_file_write_iter(), which is all we need to make sure multiple writes and fsyncs to an inode in the same transaction never result in an fsync missing that the inode changed and needs to be logged. Turn this into a helper function and use it both at btrfs_page_mkwrite() and at btrfs_file_write_iter() - this also fixes the problem that at btrfs_page_mkwrite() we were setting those fields without the protection of the inode's spinlock. This is an extremely unlikely race to happen in practice. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Naohiro Aota
|
d3575156f6 |
btrfs: zoned: redirty released extent buffers
Tree manipulating operations like merging nodes often release once-allocated tree nodes. Such nodes are cleaned so that pages in the node are not uselessly written out. On zoned volumes, however, such optimization blocks the following IOs as the cancellation of the write out of the freed blocks breaks the sequential write sequence expected by the device. Introduce a list of clean and unwritten extent buffers that have been released in a transaction. Redirty the buffers so that btree_write_cache_pages() can send proper bios to the devices. Besides it clears the entire content of the extent buffer not to confuse raw block scanners e.g. 'btrfs check'. By clearing the content, csum_dirty_buffer() complains about bytenr mismatch, so avoid the checking and checksum using newly introduced buffer flag EXTENT_BUFFER_NO_CHECK. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
d0c2f4fa55 |
btrfs: make concurrent fsyncs wait less when waiting for a transaction commit
Often an fsync needs to fallback to a transaction commit for several reasons (to ensure consistency after a power failure, a new block group was allocated or a temporary error such as ENOMEM or ENOSPC happened). In that case the log is marked as needing a full commit and any concurrent tasks attempting to log inodes or commit the log will also fallback to the transaction commit. When this happens they all wait for the task that first started the transaction commit to finish the transaction commit - however they wait until the full transaction commit happens, which is not needed, as they only need to wait for the superblocks to be persisted and not for unpinning all the extents pinned during the transaction's lifetime, which even for short lived transactions can be a few thousand and take some significant amount of time to complete - for dbench workloads I have observed up to 4~5 milliseconds of time spent unpinning extents in the worst cases, and the number of pinned extents was between 2 to 3 thousand. So allow fsync tasks to skip waiting for the unpinning of extents when they call btrfs_commit_transaction() and they were not the task that started the transaction commit (that one has to do it, the alternative would be to offload the transaction commit to another task so that it could avoid waiting for the extent unpinning or offload the extent unpinning to another task). This patch is part of a patchset comprised of the following patches: btrfs: remove unnecessary directory inode item update when deleting dir entry btrfs: stop setting nbytes when filling inode item for logging btrfs: avoid logging new ancestor inodes when logging new inode btrfs: skip logging directories already logged when logging all parents btrfs: skip logging inodes already logged when logging new entries btrfs: remove unnecessary check_parent_dirs_for_sync() btrfs: make concurrent fsyncs wait less when waiting for a transaction commit After applying the entire patchset, dbench shows improvements in respect to throughput and latency. The script used to measure it is the following: $ cat dbench-test.sh #!/bin/bash DEV=/dev/sdk MNT=/mnt/sdk MOUNT_OPTIONS="-o ssd" MKFS_OPTIONS="-m single -d single" echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor umount $DEV &> /dev/null mkfs.btrfs -f $MKFS_OPTIONS $DEV mount $MOUNT_OPTIONS $DEV $MNT dbench -D $MNT -t 300 64 umount $MNT The test was run on a physical machine with 12 cores (Intel corei7), 64G of ram, using a NVMe device and a non-debug kernel configuration (Debian's default configuration). Before applying patchset, 32 clients: Operation Count AvgLat MaxLat ---------------------------------------- NTCreateX |
||
Nikolay Borisov
|
a2633b6a29 |
btrfs: return bool from btrfs_should_end_transaction
Results in slightly smaller code. add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-11 (-11) Function old new delta btrfs_should_end_transaction 96 85 -11 Total: Before=20070, After=20059, chg -0.05% Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Goldwyn Rodrigues
|
ecfdc08b8c |
btrfs: remove dio iomap DSYNC workaround
This effectively reverts 09745ff88d93 ("btrfs: dio iomap DSYNC workaround") now that the iomap API has been updated to allow iomap_dio_complete() not to be called under i_rwsem anymore. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
0eb79294db |
btrfs: dio iomap DSYNC workaround
iomap dio will run generic_write_sync() for us if the iocb is DSYNC. This is problematic for us because of 2 reasons: 1. we hold the inode_lock() during this operation, and we take it in generic_write_sync() 2. we hold a read lock on the dio_sem but take the write lock in fsync Since we don't want to rip out this code right now, but reworking the locking is a bit much to do at this point, work around this problem with this masterpiece of a patch. First, we clear DSYNC on the iocb so that the iomap stuff doesn't know that it needs to handle the sync. We save this fact in current->journal_info, because we need to see do special things once we're in iomap_begin, and we have no way to pass private information into iomap_dio_rw(). Next we specify a separate iomap_dio_ops for sync, which implements an ->end_io() callback that gets called when the dio completes. This is important for AIO, because we really do need to run generic_write_sync() if we complete asynchronously. However if we're still in the submitting context when we enter ->end_io() we clear the flag so that the submitter knows they're the ones that needs to run generic_write_sync(). This is meant to be temporary. We need to work out how to eliminate the inode_lock() and the dio_sem in our fsync and use another mechanism to protect these operations. Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
487781796d |
btrfs: make fast fsyncs wait only for writeback
Currently regardless of a full or a fast fsync we always wait for ordered
extents to complete, and then start logging the inode after that. However
for fast fsyncs we can just wait for the writeback to complete, we don't
need to wait for the ordered extents to complete since we use the list of
modified extents maps to figure out which extents we must log and we can
get their checksums directly from the ordered extents that are still in
flight, otherwise look them up from the checksums tree.
Until commit
|
||
Qu Wenruo
|
adca4d945c |
btrfs: qgroup: remove ASYNC_COMMIT mechanism in favor of reserve retry-after-EDQUOT
commit
|
||
Qu Wenruo
|
2dfb1e43f5 |
btrfs: preallocate anon block device at first phase of snapshot creation
[BUG] When the anonymous block device pool is exhausted, subvolume/snapshot creation fails with EMFILE (Too many files open). This has been reported by a user. The allocation happens in the second phase during transaction commit where it's only way out is to abort the transaction BTRFS: Transaction aborted (error -24) WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs] RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs] Call Trace: create_pending_snapshots+0x82/0xa0 [btrfs] btrfs_commit_transaction+0x275/0x8c0 [btrfs] btrfs_mksubvol+0x4b9/0x500 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0x11a4/0x2da0 [btrfs] do_vfs_ioctl+0xa9/0x640 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace 33f2f83f3d5250e9 ]--- BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown BTRFS info (device sda1): forced readonly BTRFS warning (device sda1): Skipping commit of aborted transaction. BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown [CAUSE] When the global anonymous block device pool is exhausted, the following call chain will fail, and lead to transaction abort: btrfs_ioctl_snap_create_v2() |- btrfs_ioctl_snap_create_transid() |- btrfs_mksubvol() |- btrfs_commit_transaction() |- create_pending_snapshot() |- btrfs_get_fs_root() |- btrfs_init_fs_root() |- get_anon_bdev() [FIX] Although we can't enlarge the anonymous block device pool, at least we can preallocate anon_dev for subvolume/snapshot in the first phase, outside of transaction context and exactly at the moment the user calls the creation ioctl. Reported-by: Greed Rong <greedrong@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/ CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Nikolay Borisov
|
d90944141b |
btrfs: make btrfs_set_inode_last_trans take btrfs_inode
Instead of making multiple calls to BTRFS_I simply take btrfs_inode as an input paramter. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Josef Bacik
|
7f9fe61440 |
btrfs: improve global reserve stealing logic
For unlink transactions and block group removal btrfs_start_transaction_fallback_global_rsv will first try to start an ordinary transaction and if it fails it will fall back to reserving the required amount by stealing from the global reserve. This is problematic because of all the same reasons we had with previous iterations of the ENOSPC handling, thundering herd. We get a bunch of failures all at once, everybody tries to allocate from the global reserve, some win and some lose, we get an ENSOPC. Fix this behavior by introducing BTRFS_RESERVE_FLUSH_ALL_STEAL. It's used to mark unlink reservation. To fix this we need to integrate this logic into the normal ENOSPC infrastructure. We still go through all of the normal flushing work, and at the moment we begin to fail all the tickets we try to satisfy any tickets that are allowed to steal by stealing from the global reserve. If this works we start the flushing system over again just like we would with a normal ticket satisfaction. This serializes our global reserve stealing, so we don't have the thundering herd problem. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Nikolay Borisov
|
fe119a6eeb |
btrfs: switch to per-transaction pinned extents
This commit flips the switch to start tracking/processing pinned extents on a per-transaction basis. It mostly replaces all references from btrfs_fs_info::(pinned_extents|freed_extents[]) to btrfs_transaction::pinned_extents. Two notable modifications that warrant explicit mention are changing clean_pinned_extents to get a reference to the previously running transaction. The other one is removal of call to btrfs_destroy_pinned_extent since transactions are going to be cleaned in btrfs_cleanup_one_transaction. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
bf31f87f71 |
btrfs: add wrapper for transaction abort predicate
The status of aborted transaction can change between calls and it needs to be accessed by READ_ONCE. Add a helper that also wraps the unlikely hint. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Nikolay Borisov
|
8d510121bf |
btrfs: Rename btrfs_join_transaction_nolock
This function is used only during the final phase of freespace cache writeout. This is necessary since using the plain btrfs_join_transaction api is deadlock prone. The deadlock looks like: T1: btrfs_commit_transaction commit_cowonly_roots btrfs_write_dirty_block_groups btrfs_wait_cache_io __btrfs_wait_cache_io btrfs_wait_ordered_range <-- Triggers ordered IO for freespace inode and blocks transaction commit until freespace cache writeout T2: <-- after T1 has triggered the writeout finish_ordered_fn btrfs_finish_ordered_io btrfs_join_transaction <--- this would block waiting for current transaction to commit, but since trans commit is waiting for this writeout to finish The special purpose functions prevents it by simply skipping the "wait for writeout" since it's guaranteed the transaction won't proceed until we are done. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Qu Wenruo
|
3296bf5624 |
btrfs: transaction: Cleanup unused TRANS_STATE_BLOCKED
The state was introduced in commit |
||
Filipe Manana
|
b9fae2ebee |
Btrfs: make btrfs_wait_extents() static
It's not used ouside of transaction.c Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
a6d155d2e3 |
Btrfs: fix deadlock between fiemap and transaction commits
The fiemap handler locks a file range that can have unflushed delalloc,
and after locking the range, it tries to attach to a running transaction.
If the running transaction started its commit, that is, it is in state
TRANS_STATE_COMMIT_START, and either the filesystem was mounted with the
flushoncommit option or the transaction is creating a snapshot for the
subvolume that contains the file that fiemap is operating on, we end up
deadlocking. This happens because fiemap is blocked on the transaction,
waiting for it to complete, and the transaction is waiting for the flushed
dealloc to complete, which requires locking the file range that the fiemap
task already locked. The following stack traces serve as an example of
when this deadlock happens:
(...)
[404571.515510] Workqueue: btrfs-endio-write btrfs_endio_write_helper [btrfs]
[404571.515956] Call Trace:
[404571.516360] ? __schedule+0x3ae/0x7b0
[404571.516730] schedule+0x3a/0xb0
[404571.517104] lock_extent_bits+0x1ec/0x2a0 [btrfs]
[404571.517465] ? remove_wait_queue+0x60/0x60
[404571.517832] btrfs_finish_ordered_io+0x292/0x800 [btrfs]
[404571.518202] normal_work_helper+0xea/0x530 [btrfs]
[404571.518566] process_one_work+0x21e/0x5c0
[404571.518990] worker_thread+0x4f/0x3b0
[404571.519413] ? process_one_work+0x5c0/0x5c0
[404571.519829] kthread+0x103/0x140
[404571.520191] ? kthread_create_worker_on_cpu+0x70/0x70
[404571.520565] ret_from_fork+0x3a/0x50
[404571.520915] kworker/u8:6 D 0 31651 2 0x80004000
[404571.521290] Workqueue: btrfs-flush_delalloc btrfs_flush_delalloc_helper [btrfs]
(...)
[404571.537000] fsstress D 0 13117 13115 0x00004000
[404571.537263] Call Trace:
[404571.537524] ? __schedule+0x3ae/0x7b0
[404571.537788] schedule+0x3a/0xb0
[404571.538066] wait_current_trans+0xc8/0x100 [btrfs]
[404571.538349] ? remove_wait_queue+0x60/0x60
[404571.538680] start_transaction+0x33c/0x500 [btrfs]
[404571.539076] btrfs_check_shared+0xa3/0x1f0 [btrfs]
[404571.539513] ? extent_fiemap+0x2ce/0x650 [btrfs]
[404571.539866] extent_fiemap+0x2ce/0x650 [btrfs]
[404571.540170] do_vfs_ioctl+0x526/0x6f0
[404571.540436] ksys_ioctl+0x70/0x80
[404571.540734] __x64_sys_ioctl+0x16/0x20
[404571.540997] do_syscall_64+0x60/0x1d0
[404571.541279] entry_SYSCALL_64_after_hwframe+0x49/0xbe
(...)
[404571.543729] btrfs D 0 14210 14208 0x00004000
[404571.544023] Call Trace:
[404571.544275] ? __schedule+0x3ae/0x7b0
[404571.544526] ? wait_for_completion+0x112/0x1a0
[404571.544795] schedule+0x3a/0xb0
[404571.545064] schedule_timeout+0x1ff/0x390
[404571.545351] ? lock_acquire+0xa6/0x190
[404571.545638] ? wait_for_completion+0x49/0x1a0
[404571.545890] ? wait_for_completion+0x112/0x1a0
[404571.546228] wait_for_completion+0x131/0x1a0
[404571.546503] ? wake_up_q+0x70/0x70
[404571.546775] btrfs_wait_ordered_extents+0x27c/0x400 [btrfs]
[404571.547159] btrfs_commit_transaction+0x3b0/0xae0 [btrfs]
[404571.547449] ? btrfs_mksubvol+0x4a4/0x640 [btrfs]
[404571.547703] ? remove_wait_queue+0x60/0x60
[404571.547969] btrfs_mksubvol+0x605/0x640 [btrfs]
[404571.548226] ? __sb_start_write+0xd4/0x1c0
[404571.548512] ? mnt_want_write_file+0x24/0x50
[404571.548789] btrfs_ioctl_snap_create_transid+0x169/0x1a0 [btrfs]
[404571.549048] btrfs_ioctl_snap_create_v2+0x11d/0x170 [btrfs]
[404571.549307] btrfs_ioctl+0x133f/0x3150 [btrfs]
[404571.549549] ? mem_cgroup_charge_statistics+0x4c/0xd0
[404571.549792] ? mem_cgroup_commit_charge+0x84/0x4b0
[404571.550064] ? __handle_mm_fault+0xe3e/0x11f0
[404571.550306] ? do_raw_spin_unlock+0x49/0xc0
[404571.550608] ? _raw_spin_unlock+0x24/0x30
[404571.550976] ? __handle_mm_fault+0xedf/0x11f0
[404571.551319] ? do_vfs_ioctl+0xa2/0x6f0
[404571.551659] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs]
[404571.552087] do_vfs_ioctl+0xa2/0x6f0
[404571.552355] ksys_ioctl+0x70/0x80
[404571.552621] __x64_sys_ioctl+0x16/0x20
[404571.552864] do_syscall_64+0x60/0x1d0
[404571.553104] entry_SYSCALL_64_after_hwframe+0x49/0xbe
(...)
If we were joining the transaction instead of attaching to it, we would
not risk a deadlock because a join only blocks if the transaction is in a
state greater then or equals to TRANS_STATE_COMMIT_DOING, and the delalloc
flush performed by a transaction is done before it reaches that state,
when it is in the state TRANS_STATE_COMMIT_START. However a transaction
join is intended for use cases where we do modify the filesystem, and
fiemap only needs to peek at delayed references from the current
transaction in order to determine if extents are shared, and, besides
that, when there is no current transaction or when it blocks to wait for
a current committing transaction to complete, it creates a new transaction
without reserving any space. Such unnecessary transactions, besides doing
unnecessary IO, can cause transaction aborts (-ENOSPC) and unnecessary
rotation of the precious backup roots.
So fix this by adding a new transaction join variant, named join_nostart,
which behaves like the regular join, but it does not create a transaction
when none currently exists or after waiting for a committing transaction
to complete.
Fixes:
|
||
Josef Bacik
|
fb6dea2660 |
btrfs: migrate btrfs_trans_release_chunk_metadata
Move this into transaction.c with the rest of the transaction related code. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
74f657d89c |
Btrfs: remove no longer used member num_dirty_bgs from transaction
The member num_dirty_bgs of struct btrfs_transaction is not used anymore,
it is set and incremented but nothing reads its value anymore. Its last
read use was removed by commit
|
||
Jeff Mahoney
|
1c11b63eff |
btrfs: replace pending/pinned chunks lists with io tree
The pending chunks list contains chunks that are allocated in the current transaction but haven't been created yet. The pinned chunks list contains chunks that are being released in the current transaction. Both describe chunks that are not reflected on disk as in use but are unavailable just the same. The pending chunks list is anchored by the transaction handle, which means that we need to hold a reference to a transaction when working with the list. The way we use them is by iterating over both lists to perform comparisons on the stripes they describe for each device. This is backwards and requires that we keep a transaction handle open while we're trimming. This patchset adds an extent_io_tree to btrfs_device that maintains the allocation state of the device. Extents are set dirty when chunks are first allocated -- when the extent maps are added to the mapping tree. They're cleared when last removed -- when the extent maps are removed from the mapping tree. This matches the lifespan of the pending and pinned chunks list and allows us to do trims on unallocated space safely without pinning the transaction for what may be a lengthy operation. We can also use this io tree to mark which chunks have already been trimmed so we don't repeat the operation. Signed-off-by: Jeff Mahoney <jeffm@suse.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Nikolay Borisov
|
bbbf7243d6 |
btrfs: combine device update operations during transaction commit
We currently overload the pending_chunks list to handle updating btrfs_device->commit_bytes used. We don't actually care about the extent mapping or even the device mapping for the chunk - we just need the device, and we can end up processing it multiple times. The fs_devices->resized_list does more or less the same thing, but with the disk size. They are called consecutively during commit and have more or less the same purpose. We can combine the two lists into a single list that attaches to the transaction and contains a list of devices that need updating. Since we always add the device to a list when we change bytes_used or disk_total_size, there's no harm in copying both values at once. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
3b1da515c6 |
Btrfs: remove no longer used 'sync' member from transaction handle
Commit
|
||
David Sterba
|
bbe339cc32 |
btrfs: drop extra enum initialization where using defaults
The first auto-assigned value to enum is 0, we can use that and not initialize all members where the auto-increment does the same. This is used for values that are not part of on-disk format. Reviewed-by: Omar Sandoval <osandov@fb.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
85dd506c8e |
Btrfs: remove no longer used stuff for tracking pending ordered extents
Tracking pending ordered extents per transaction was introduced in commit |
||
Allen Pais
|
a944442c2b |
btrfs: replace get_seconds with new 64bit time API
The get_seconds() function is deprecated as it truncates the timestamp to 32 bits. Change it to or ktime_get_real_seconds(). Signed-off-by: Allen Pais <allen.lkml@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com> |
||
Gu JinXiang
|
6b0cb1f901 |
btrfs: drop useless member qgroup_reserved of btrfs_pending_snapshot
Since there is no more use of qgroup_reserved member in struct btrfs_pending_snapshot, remove it. Signed-off-by: Gu JinXiang <gujx@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Qu Wenruo
|
a514d63882 |
btrfs: qgroup: Commit transaction in advance to reduce early EDQUOT
Unlike previous method that tries to commit transaction inside qgroup_reserve(), this time we will try to commit transaction using fs_info->transaction_kthread to avoid nested transaction and no need to worry about locking context. Since it's an asynchronous function call and we won't wait for transaction commit, unlike previous method, we must call it before we hit the qgroup limit. So this patch will use the ratio and size of qgroup meta_pertrans reservation as indicator to check if we should trigger a transaction commit. (meta_prealloc won't be cleaned in transaction committ, it's useless anyway) Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
9888c3402c |
btrfs: replace GPL boilerplate by SPDX -- headers
Remove GPL boilerplate text (long, short, one-line) and keep the rest, ie. personal, company or original source copyright statements. Add the SPDX header. Unify the include protection macros to match the file names. Signed-off-by: David Sterba <dsterba@suse.com> |
||
Nikolay Borisov
|
bcf3a3e7fb |
btrfs: Remove code referencing unused TRANS_USERSPACE
Now that the userspace transaction ioctls have been removed, TRANS_USERSPACE is no longer used hence we can remove it. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Nikolay Borisov
|
45ae2c1841 |
btrfs: Document consistency of transaction->io_bgs list
The reason why io_bgs can be modified without holding any lock is non-obvious. Document it and reference that documentation from the respective call sites. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Nikolay Borisov
|
7806c6eb15 |
btrfs: Remove unused btrfs_start_transaction_lflush function
Commit
|
||
David Sterba
|
5302e08964 |
btrfs: reorder btrfs_transaction members for better packing
There are now 20 bytes of holes, we can reduce that to 4 by minor changes. Moving 'aborted' to the status and flags is also more logical, similar for num_dirty_bgs. The size goes from 432 to 416. Reviewed-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
165c8b022c |
btrfs: use narrower type for btrfs_transaction::num_dirty_bgs
The u64 is an overkill here, we could not possibly create that many blockgroups in one transaction. Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
1ca4bb63f6 |
btrfs: reorder btrfs_trans_handle members for better packing
Recent updates to the structure left some holes, reorder the types so the packing is tight. The size goes from 112 to 104 on 64bit. Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
b50fff816c |
btrfs: switch to refcount_t type for btrfs_trans_handle::use_count
The use_count is a reference counter, we can use the refcount_t type, though we don't use the atomicity. This is not a performance critical code and we could catch the underflows. The type is changed from long, but the number of references will fit an int. Signed-off-by: David Sterba <dsterba@suse.com> |