Commit Graph

1691 Commits

Author SHA1 Message Date
Rafael J. Wysocki
0e7767687f time: tick-sched: Reorganize idle tick management code
Prepare the scheduler tick code for reworking the idle loop to
avoid stopping the tick in some cases.

The idea is to split the nohz idle entry call to decouple the idle
time stats accounting and preparatory work from the actual tick stop
code, in order to later be able to delay the tick stop once we reach
more power-knowledgeable callers.

Move away the tick_nohz_start_idle() invocation from
__tick_nohz_idle_enter(), rename the latter to
__tick_nohz_idle_stop_tick() and define tick_nohz_idle_stop_tick()
as a wrapper around it for calling it from the outside.

Make tick_nohz_idle_enter() only call tick_nohz_start_idle() instead
of calling the entire __tick_nohz_idle_enter(), add another wrapper
disabling and enabling interrupts around tick_nohz_idle_stop_tick()
and make the current callers of tick_nohz_idle_enter() call it too
to retain their current functionality.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2018-04-05 18:58:47 +02:00
Dominik Brodowski
7303e30ec1 syscalls/core: Prepare CONFIG_ARCH_HAS_SYSCALL_WRAPPER=y for compat syscalls
It may be useful for an architecture to override the definitions of the
COMPAT_SYSCALL_DEFINE0() and __COMPAT_SYSCALL_DEFINEx() macros in
<linux/compat.h>, in particular to use a different calling convention
for syscalls. This patch provides a mechanism to do so, based on the
previously introduced CONFIG_ARCH_HAS_SYSCALL_WRAPPER. If it is enabled,
<asm/sycall_wrapper.h> is included in <linux/compat.h> and may be used
to define the macros mentioned above. Moreover, as the syscall calling
convention may be different if CONFIG_ARCH_HAS_SYSCALL_WRAPPER is set,
the compat syscall function prototypes in <linux/compat.h> are #ifndef'd
out in that case.

As some of the syscalls and/or compat syscalls may not be present,
the COND_SYSCALL() and COND_SYSCALL_COMPAT() macros in kernel/sys_ni.c
as well as the SYS_NI() and COMPAT_SYS_NI() macros in
kernel/time/posix-stubs.c can be re-defined in <asm/syscall_wrapper.h> iff
CONFIG_ARCH_HAS_SYSCALL_WRAPPER is enabled.

Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180405095307.3730-5-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-04-05 16:59:38 +02:00
Linus Torvalds
680014d6d1 Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull time(r) updates from Thomas Gleixner:
 "A small set of updates for timers and timekeeping:

   - The most interesting change is the consolidation of clock MONOTONIC
     and clock BOOTTIME.

     Clock MONOTONIC behaves now exactly like clock BOOTTIME and does
     not longer ignore the time spent in suspend. A new clock
     MONOTONIC_ACTIVE is provived which behaves like clock MONOTONIC in
     kernels before this change. This allows applications to
     programmatically check for the clock MONOTONIC behaviour.

     As discussed in the review thread, this has the potential of
     breaking user space and we might have to revert this. Knock on wood
     that we can avoid that exercise.

   - Updates to the NTP mechanism to improve accuracy

   - A new kernel internal data structure to aid the ongoing Y2038 work.

   - Cleanups and simplifications of the clocksource code.

   - Make the alarmtimer code play nicely with debugobjects"

* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  alarmtimer: Init nanosleep alarm timer on stack
  y2038: Introduce struct __kernel_old_timeval
  tracing: Unify the "boot" and "mono" tracing clocks
  hrtimer: Unify MONOTONIC and BOOTTIME clock behavior
  posix-timers: Unify MONOTONIC and BOOTTIME clock behavior
  timekeeping: Remove boot time specific code
  Input: Evdev - unify MONOTONIC and BOOTTIME clock behavior
  timekeeping: Make the MONOTONIC clock behave like the BOOTTIME clock
  timekeeping: Add the new CLOCK_MONOTONIC_ACTIVE clock
  timekeeping/ntp: Determine the multiplier directly from NTP tick length
  timekeeping/ntp: Don't align NTP frequency adjustments to ticks
  clocksource: Use ATTRIBUTE_GROUPS
  clocksource: Use DEVICE_ATTR_RW/RO/WO to define device attributes
  clocksource: Don't walk the clocksource list for empty override
2018-04-04 14:50:29 -07:00
Linus Torvalds
46e0d28bdb Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
 "The main scheduler changes in this cycle were:

   - NUMA balancing improvements (Mel Gorman)

   - Further load tracking improvements (Patrick Bellasi)

   - Various NOHZ balancing cleanups and optimizations (Peter Zijlstra)

   - Improve blocked load handling, in particular we can now reduce and
     eventually stop periodic load updates on 'very idle' CPUs. (Vincent
     Guittot)

   - On isolated CPUs offload the final 1Hz scheduler tick as well, plus
     related cleanups and reorganization. (Frederic Weisbecker)

   - Core scheduler code cleanups (Ingo Molnar)"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
  sched/core: Update preempt_notifier_key to modern API
  sched/cpufreq: Rate limits for SCHED_DEADLINE
  sched/fair: Update util_est only on util_avg updates
  sched/cpufreq/schedutil: Use util_est for OPP selection
  sched/fair: Use util_est in LB and WU paths
  sched/fair: Add util_est on top of PELT
  sched/core: Remove TASK_ALL
  sched/completions: Use bool in try_wait_for_completion()
  sched/fair: Update blocked load when newly idle
  sched/fair: Move idle_balance()
  sched/nohz: Merge CONFIG_NO_HZ_COMMON blocks
  sched/fair: Move rebalance_domains()
  sched/nohz: Optimize nohz_idle_balance()
  sched/fair: Reduce the periodic update duration
  sched/nohz: Stop NOHZ stats when decayed
  sched/cpufreq: Provide migration hint
  sched/nohz: Clean up nohz enter/exit
  sched/fair: Update blocked load from NEWIDLE
  sched/fair: Add NOHZ stats balancing
  sched/fair: Restructure nohz_balance_kick()
  ...
2018-04-02 11:49:41 -07:00
Linus Torvalds
8747a29173 Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU updates from Ingo Molnar:
 "The main RCU subsystem changes in this cycle were:

  - Miscellaneous fixes, perhaps most notably removing obsolete code
    whose only purpose in life was to gather information for the
    now-removed RCU debugfs facility. Other notable changes include
    removing NO_HZ_FULL_ALL in favor of the nohz_full kernel boot
    parameter, minor optimizations for expedited grace periods, some
    added tracing, creating an RCU-specific workqueue using Tejun's new
    WQ_MEM_RECLAIM flag, and several cleanups to code and comments.

  - SRCU cleanups and optimizations.

  - Torture-test updates, perhaps most notably the adding of ARMv8
    support, but also including numerous cleanups and usability fixes"

* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
  rcu: Create RCU-specific workqueues with rescuers
  torture: Provide more sensible nreader/nwriter defaults for rcuperf
  torture: Grace periods do not piggyback off of themselves
  torture: Adjust rcuperf trace processing to allow for workqueues
  torture: Default jitter off when running rcuperf
  torture: Specify qemu memory size with --memory argument
  rcutorture: Add basic ARM64 support to run scripts
  rcutorture: Update kvm.sh header comment
  rcutorture: Record which grace-period primitives are tested
  rcutorture: Re-enable testing of dynamic expediting
  rcutorture: Avoid fake-writer use of undefined primitives
  rcutorture: Abstract function and module names
  rcutorture: Replace multi-instance kzalloc() with kcalloc()
  rcu: Remove SRCU throttling
  srcu: Remove dead code in srcu_gp_end()
  srcu: Reduce scans of srcu_data in counter wrap check
  srcu: Prevent sdp->srcu_gp_seq_needed_exp counter wrap
  srcu: Abstract function name
  rcu: Make expedited RCU CPU selection avoid unnecessary stores
  rcu: Trace expedited GP delays due to transitioning CPUs
  ...
2018-04-02 09:59:09 -07:00
Thomas Gleixner
bd03143007 alarmtimer: Init nanosleep alarm timer on stack
syszbot reported the following debugobjects splat:

 ODEBUG: object is on stack, but not annotated
 WARNING: CPU: 0 PID: 4185 at lib/debugobjects.c:328

 RIP: 0010:debug_object_is_on_stack lib/debugobjects.c:327 [inline]
 debug_object_init+0x17/0x20 lib/debugobjects.c:391
 debug_hrtimer_init kernel/time/hrtimer.c:410 [inline]
 debug_init kernel/time/hrtimer.c:458 [inline]
 hrtimer_init+0x8c/0x410 kernel/time/hrtimer.c:1259
 alarm_init kernel/time/alarmtimer.c:339 [inline]
 alarm_timer_nsleep+0x164/0x4d0 kernel/time/alarmtimer.c:787
 SYSC_clock_nanosleep kernel/time/posix-timers.c:1226 [inline]
 SyS_clock_nanosleep+0x235/0x330 kernel/time/posix-timers.c:1204
 do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287
 entry_SYSCALL_64_after_hwframe+0x42/0xb7

This happens because the hrtimer for the alarm nanosleep is on stack, but
the code does not use the proper debug objects initialization.

Split out the code for the allocated use cases and invoke
hrtimer_init_on_stack() for the nanosleep related functions.

Reported-by: syzbot+a3e0726462b2e346a31d@syzkaller.appspotmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: syzkaller-bugs@googlegroups.com
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1803261528270.1585@nanos.tec.linutronix.de
2018-03-29 16:10:07 +02:00
Thomas Gleixner
19b558db12 posix-timers: Protect posix clock array access against speculation
The clockid argument of clockid_to_kclock() comes straight from user space
via various syscalls and is used as index into the posix_clocks array.

Protect it against spectre v1 array out of bounds speculation. Remove the
redundant check for !posix_clock[id] as this is another source for
speculation and does not provide any advantage over the return
posix_clock[id] path which returns NULL in that case anyway.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Rasmus Villemoes <rasmus.villemoes@prevas.dk>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: stable@vger.kernel.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1802151718320.1296@nanos.tec.linutronix.de
2018-03-22 12:29:27 +01:00
Arnd Bergmann
a84d116916 y2038: Introduce struct __kernel_old_timeval
Dealing with 'struct timeval' users in the y2038 series is a bit tricky:

We have two definitions of timeval that are visible to user space,
one comes from glibc (or some other C library), the other comes from
linux/time.h. The kernel copy is what we want to be used for a number of
structures defined by the kernel itself, e.g. elf_prstatus (used it core
dumps), sysinfo and rusage (used in system calls).  These generally tend
to be used for passing time intervals rather than absolute (epoch-based)
times, so they do not suffer from the y2038 overflow. Some of them
could be changed to use 64-bit timestamps by creating new system calls,
others like the core files cannot easily be changed.

An application using these interfaces likely also uses gettimeofday()
or other interfaces that use absolute times, and pass 'struct timeval'
pointers directly into kernel interfaces, so glibc must redefine their
timeval based on a 64-bit time_t when they introduce their y2038-safe
interfaces.

The only reasonable way forward I see is to remove the 'timeval'
definion from the kernel's uapi headers, and change the interfaces that
we do not want to (or cannot) duplicate for 64-bit times to use a new
__kernel_old_timeval definition instead. This type should be avoided
for all new interfaces (those can use 64-bit nanoseconds, or the 64-bit
version of timespec instead), and should be used with great care when
converting existing interfaces from timeval, to be sure they don't suffer
from the y2038 overflow, and only with consensus for the particular user
that using __kernel_old_timeval is better than moving to a 64-bit based
interface. The structure name is intentionally chosen to not conflict
with user space types, and to be ugly enough to discourage its use.

Note that ioctl based interfaces that pass a bare 'timeval' pointer
cannot change to '__kernel_old_timeval' because the user space source
code refers to 'timeval' instead, and we don't want to modify the user
space sources if possible. However, any application that relies on a
structure to contain an embedded 'timeval' (e.g. by passing a pointer
to the member into a function call that expects a timeval pointer) is
broken when that structure gets converted to __kernel_old_timeval. I
don't see any way around that, and we have to rely on the compiler to
produce a warning or compile failure that will alert users when they
recompile their sources against a new libc.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Link: https://lkml.kernel.org/r/20180315161739.576085-1-arnd@arndb.de
2018-03-19 15:23:03 +01:00
Thomas Gleixner
127bfa5f43 hrtimer: Unify MONOTONIC and BOOTTIME clock behavior
Now that th MONOTONIC and BOOTTIME clocks are indentical remove all the special
casing.

The user space visible interfaces still support both clocks, but their behavior
is identical.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kevin Easton <kevin@guarana.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Salyzyn <salyzyn@android.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20180301165150.410218515@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-13 07:34:23 +01:00
Thomas Gleixner
7250a4047a posix-timers: Unify MONOTONIC and BOOTTIME clock behavior
Now that the MONOTONIC and BOOTTIME clocks are indentical remove all the special
casing.

The user space visible interfaces still support both clocks, but their behavior
is identical.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kevin Easton <kevin@guarana.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Salyzyn <salyzyn@android.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20180301165150.315745557@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-13 07:34:22 +01:00
Thomas Gleixner
d6c7270e91 timekeeping: Remove boot time specific code
Now that the MONOTONIC and BOOTTIME clocks are the same, remove all the
special handling from timekeeping. Keep wrappers for the existing users of
the *boot* timekeeper interfaces.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kevin Easton <kevin@guarana.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Salyzyn <salyzyn@android.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20180301165150.236279497@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-13 07:34:22 +01:00
Thomas Gleixner
d6ed449afd timekeeping: Make the MONOTONIC clock behave like the BOOTTIME clock
The MONOTONIC clock is not fast forwarded by the time spent in suspend on
resume. This is only done for the BOOTTIME clock. The reason why the
MONOTONIC clock is not forwarded is historical: the original Linux
implementation was using jiffies as a base for the MONOTONIC clock and
jiffies have never been advanced after resume.

At some point when timekeeping was unified in the core code, the
MONONOTIC clock was advanced after resume which also advanced jiffies causing
interesting side effects. As a consequence the the MONOTONIC clock forwarding
was disabled again and the BOOTTIME clock was introduced, which allows to read
time since boot.

Back then it was not possible to completely distangle the MONOTONIC clock and
jiffies because there were still interfaces which exposed the MONOTONIC clock
behaviour based on the timer wheel and therefore jiffies.

As of today none of the MONOTONIC clock facilities depends on jiffies
anymore so the forwarding can be done seperately. This is achieved by
forwarding the variables which are used for the jiffies update after resume
before the tick is restarted,

In timekeeping resume, the change is rather simple. Instead of updating the
offset between the MONOTONIC clock and the REALTIME/BOOTTIME clocks, advance the
time keeper base for the MONOTONIC and the MONOTONIC_RAW clocks by the time
spent in suspend.

The MONOTONIC clock is now the same as the BOOTTIME clock and the offset between
the REALTIME and the MONOTONIC clocks is the same as before suspend.

There might be side effects in applications, which rely on the
(unfortunately) well documented behaviour of the MONOTONIC clock, but the
downsides of the existing behaviour are probably worse.

There is one obvious issue. Up to now it was possible to retrieve the time
spent in suspend by observing the delta between the MONOTONIC clock and the
BOOTTIME clock. This is not longer available, but the previously introduced
mechanism to read the active non-suspended monotonic time can mitigate that
in a detectable fashion.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kevin Easton <kevin@guarana.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Salyzyn <salyzyn@android.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20180301165150.062975504@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-13 07:34:22 +01:00
Thomas Gleixner
72199320d4 timekeeping: Add the new CLOCK_MONOTONIC_ACTIVE clock
The planned change to unify the behaviour of the MONOTONIC and BOOTTIME
clocks vs. suspend removes the ability to retrieve the active
non-suspended time of a system.

Provide a new CLOCK_MONOTONIC_ACTIVE clock which returns the active
non-suspended time of the system via clock_gettime().

This preserves the old behaviour of CLOCK_MONOTONIC before the
BOOTTIME/MONOTONIC unification.

This new clock also allows applications to detect programmatically that
the MONOTONIC and BOOTTIME clocks are identical.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kevin Easton <kevin@guarana.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Salyzyn <salyzyn@android.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20180301165149.965235774@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-13 07:34:21 +01:00
Ingo Molnar
c4fb5f3700 Merge branch 'for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into core/rcu
Pull RCU updates from Paul E. McKenney:

 - Miscellaneous fixes, perhaps most notably removing obsolete
   code whose only purpose in life was to gather information for
   the now-removed RCU debugfs facility.  Other notable changes
   include removing NO_HZ_FULL_ALL in favor of the nohz_full kernel
   boot parameter, minor optimizations for expedited grace periods,
   some added tracing, creating an RCU-specific workqueue using Tejun's
   new WQ_MEM_RECLAIM flag, and several cleanups to code and comments.

 - SRCU cleanups and optimizations.

 - Torture-test updates, perhaps most notably the adding of ARMv8
   support, but also including numerous cleanups and usability fixes.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-11 10:42:16 +01:00
Miroslav Lichvar
78b98e3c5a timekeeping/ntp: Determine the multiplier directly from NTP tick length
When the length of the NTP tick changes significantly, e.g. when an
NTP/PTP application is correcting the initial offset of the clock, a
large value may accumulate in the NTP error before the multiplier
converges to the correct value. It may then take a very long time (hours
or even days) before the error is corrected. This causes the clock to
have an unstable frequency offset, which has a negative impact on the
stability of synchronization with precise time sources (e.g. NTP/PTP
using hardware timestamping or the PTP KVM clock).

Use division to determine the correct multiplier directly from the NTP
tick length and replace the iterative approach. This removes the last
major source of the NTP error. The only remaining source is now limited
resolution of the multiplier, which is corrected by adding 1 to the
multiplier when the system clock is behind the NTP time.

Signed-off-by: Miroslav Lichvar <mlichvar@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Stephen Boyd <stephen.boyd@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1520620971-9567-3-git-send-email-john.stultz@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-10 09:12:41 +01:00
Miroslav Lichvar
c2cda2a5bd timekeeping/ntp: Don't align NTP frequency adjustments to ticks
When the timekeeping multiplier is changed, the NTP error is updated to
correct the clock for the delay between the tick and the update of the
clock. This error is corrected in later updates and the clock appears as
if the frequency was changed exactly on the tick.

Remove this correction to keep the point where the frequency is
effectively changed at the time of the update. This removes a major
source of the NTP error.

Signed-off-by: Miroslav Lichvar <mlichvar@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Stephen Boyd <stephen.boyd@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1520620971-9567-2-git-send-email-john.stultz@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-10 09:12:41 +01:00
Peter Zijlstra
00357f5ec5 sched/nohz: Clean up nohz enter/exit
The primary observation is that nohz enter/exit is always from the
current CPU, therefore NOHZ_TICK_STOPPED does not in fact need to be
an atomic.

Secondary is that we appear to have 2 nearly identical hooks in the
nohz enter code, set_cpu_sd_state_idle() and
nohz_balance_enter_idle(). Fold the whole set_cpu_sd_state thing into
nohz_balance_{enter,exit}_idle.

Removes an atomic op from both enter and exit paths.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-09 07:59:19 +01:00
Ingo Molnar
fc4c5a3828 Merge branch 'linus' into sched/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-09 07:32:20 +01:00
Lingutla Chandrasekhar
c52232a49e timers: Forward timer base before migrating timers
On CPU hotunplug the enqueued timers of the unplugged CPU are migrated to a
live CPU. This happens from the control thread which initiated the unplug.

If the CPU on which the control thread runs came out from a longer idle
period then the base clock of that CPU might be stale because the control
thread runs prior to any event which forwards the clock.

In such a case the timers from the unplugged CPU are queued on the live CPU
based on the stale clock which can cause large delays due to increased
granularity of the outer timer wheels which are far away from base:;clock.

But there is a worse problem than that. The following sequence of events
illustrates it:

 - CPU0 timer1 is queued expires = 59969 and base->clk = 59131.

   The timer is queued at wheel level 2, with resulting expiry time = 60032
   (due to level granularity).

 - CPU1 enters idle @60007, with next timer expiry @60020.

 - CPU0 is hotplugged at @60009

 - CPU1 exits idle and runs the control thread which migrates the
   timers from CPU0

   timer1 is now queued in level 0 for immediate handling in the next
   softirq because the requested expiry time 59969 is before CPU1 base->clk
   60007

 - CPU1 runs code which forwards the base clock which succeeds because the
   next expiring timer. which was collected at idle entry time is still set
   to 60020.

   So it forwards beyond 60007 and therefore misses to expire the migrated
   timer1. That timer gets expired when the wheel wraps around again, which
   takes between 63 and 630ms depending on the HZ setting.

Address both problems by invoking forward_timer_base() for the control CPUs
timer base. All other places, which might run into a similar problem
(mod_timer()/add_timer_on()) already invoke forward_timer_base() to avoid
that.

[ tglx: Massaged comment and changelog ]

Fixes: a683f390b9 ("timers: Forward the wheel clock whenever possible")
Co-developed-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Lingutla Chandrasekhar <clingutla@codeaurora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: linux-arm-msm@vger.kernel.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180118115022.6368-1-clingutla@codeaurora.org
2018-02-28 23:34:33 +01:00
Baolin Wang
27263e8dc0 clocksource: Use ATTRIBUTE_GROUPS
Use ATTRIBUTE_GROUPS instead of manually creating the individual device
files.

Signed-off-by: Baolin Wang <baolin.wang@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: arnd@arndb.de
Cc: sboyd@codeaurora.org
Cc: broonie@kernel.org
Cc: john.stultz@linaro.org
Link: https://lkml.kernel.org/r/d80dccb981dc2461781ebb8d71a32ccdc1b0e6f9.1516167691.git.baolin.wang@linaro.org
2018-02-28 14:05:07 +01:00
Baolin Wang
e87821d18c clocksource: Use DEVICE_ATTR_RW/RO/WO to define device attributes
Convert DEVICE_ATTR to DEVICE_ATTR_RW/RO/WO which is the preferred and
simpler way of implementation.

Signed-off-by: Baolin Wang <baolin.wang@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: arnd@arndb.de
Cc: sboyd@codeaurora.org
Cc: broonie@kernel.org
Cc: john.stultz@linaro.org
Link: https://lkml.kernel.org/r/8f35c77e753e957b61187e8e7b2e4a3d61e4a72b.1516167691.git.baolin.wang@linaro.org
2018-02-28 14:04:52 +01:00
Baolin Wang
7f852afe44 clocksource: Don't walk the clocksource list for empty override
If the override clocksource name is empty there is no point in walking the
clocksource list for a match.

Signed-off-by: Baolin Wang <baolin.wang@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: arnd@arndb.de
Cc: sboyd@codeaurora.org
Cc: broonie@kernel.org
Cc: john.stultz@linaro.org
Link: https://lkml.kernel.org/r/069ce2a605546bcad6552968cff755f0a03f9f10.1516167691.git.baolin.wang@linaro.org
2018-02-28 14:04:52 +01:00
Frederic Weisbecker
dcdedb2415 sched/nohz: Remove the 1 Hz tick code
Now that the 1Hz tick is offloaded to workqueues, we can safely remove
the residual code that used to handle it locally.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1519186649-3242-7-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-21 09:49:09 +01:00
Frederic Weisbecker
22ab8bc02a nohz: Allow to check if remote CPU tick is stopped
This check is racy but provides a good heuristic to determine whether
a CPU may need a remote tick or not.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1519186649-3242-4-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-21 09:49:08 +01:00
Frederic Weisbecker
a364298359 nohz: Convert tick_nohz_tick_stopped() to bool
It makes this function more self-explanatory about what it does and how
to use it.

Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Link: http://lkml.kernel.org/r/1519186649-3242-3-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-21 09:49:08 +01:00
Paul E. McKenney
a7c8655b07 sched/isolation: Eliminate NO_HZ_FULL_ALL
Commit 6f1982fedd ("sched/isolation: Handle the nohz_full= parameter")
broke CONFIG_NO_HZ_FULL_ALL=y kernels.  This breakage is due to the code
under CONFIG_NO_HZ_FULL_ALL failing to invoke the shiny new housekeeping
functions.  This means that rcutorture scenario TREE04 now emits RCU CPU
stall warnings due to the RCU grace-period kthreads not being awakened
at a time of their choosing, or perhaps even not at all:

[   27.731422] rcu_bh kthread starved for 21001 jiffies! g18446744073709551369 c18446744073709551368 f0x0 RCU_GP_WAIT_FQS(3) ->state=0x402 ->cpu=3
[   27.731423] rcu_bh          I14936     9      2 0x80080000
[   27.731435] Call Trace:
[   27.731440]  __schedule+0x31a/0x6d0
[   27.731442]  schedule+0x31/0x80
[   27.731446]  schedule_timeout+0x15a/0x320
[   27.731453]  ? call_timer_fn+0x130/0x130
[   27.731457]  rcu_gp_kthread+0x66c/0xea0
[   27.731458]  ? rcu_gp_kthread+0x66c/0xea0

Because no one has complained about CONFIG_NO_HZ_FULL_ALL=y being broken,
I hypothesize that no one is in fact using it, other than rcutorture.
This commit therefore eliminates CONFIG_NO_HZ_FULL_ALL and updates
rcutorture's config files to instead use the nohz_full= kernel parameter
to put the desired CPUs into nohz_full mode.

Fixes: 6f1982fedd ("sched/isolation: Handle the nohz_full= parameter")

Reported-by: kernel test robot <xiaolong.ye@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Jonathan Corbet <corbet@lwn.net>
2018-02-15 15:40:37 -08:00
Linus Torvalds
a9a08845e9 vfs: do bulk POLL* -> EPOLL* replacement
This is the mindless scripted replacement of kernel use of POLL*
variables as described by Al, done by this script:

    for V in IN OUT PRI ERR RDNORM RDBAND WRNORM WRBAND HUP RDHUP NVAL MSG; do
        L=`git grep -l -w POLL$V | grep -v '^t' | grep -v /um/ | grep -v '^sa' | grep -v '/poll.h$'|grep -v '^D'`
        for f in $L; do sed -i "-es/^\([^\"]*\)\(\<POLL$V\>\)/\\1E\\2/" $f; done
    done

with de-mangling cleanups yet to come.

NOTE! On almost all architectures, the EPOLL* constants have the same
values as the POLL* constants do.  But they keyword here is "almost".
For various bad reasons they aren't the same, and epoll() doesn't
actually work quite correctly in some cases due to this on Sparc et al.

The next patch from Al will sort out the final differences, and we
should be all done.

Scripted-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-11 14:34:03 -08:00
Sergey Senozhatsky
64fce87b62 hrtimer: remove unneeded kallsyms include
hrtimer does not seem to use any of kallsyms functions/defines.

Link: http://lkml.kernel.org/r/20171208025616.16267-9-sergey.senozhatsky@gmail.com
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:47 -08:00
Linus Torvalds
168fe32a07 Merge branch 'misc.poll' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull poll annotations from Al Viro:
 "This introduces a __bitwise type for POLL### bitmap, and propagates
  the annotations through the tree. Most of that stuff is as simple as
  'make ->poll() instances return __poll_t and do the same to local
  variables used to hold the future return value'.

  Some of the obvious brainos found in process are fixed (e.g. POLLIN
  misspelled as POLL_IN). At that point the amount of sparse warnings is
  low and most of them are for genuine bugs - e.g. ->poll() instance
  deciding to return -EINVAL instead of a bitmap. I hadn't touched those
  in this series - it's large enough as it is.

  Another problem it has caught was eventpoll() ABI mess; select.c and
  eventpoll.c assumed that corresponding POLL### and EPOLL### were
  equal. That's true for some, but not all of them - EPOLL### are
  arch-independent, but POLL### are not.

  The last commit in this series separates userland POLL### values from
  the (now arch-independent) kernel-side ones, converting between them
  in the few places where they are copied to/from userland. AFAICS, this
  is the least disruptive fix preserving poll(2) ABI and making epoll()
  work on all architectures.

  As it is, it's simply broken on sparc - try to give it EPOLLWRNORM and
  it will trigger only on what would've triggered EPOLLWRBAND on other
  architectures. EPOLLWRBAND and EPOLLRDHUP, OTOH, are never triggered
  at all on sparc. With this patch they should work consistently on all
  architectures"

* 'misc.poll' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (37 commits)
  make kernel-side POLL... arch-independent
  eventpoll: no need to mask the result of epi_item_poll() again
  eventpoll: constify struct epoll_event pointers
  debugging printk in sg_poll() uses %x to print POLL... bitmap
  annotate poll(2) guts
  9p: untangle ->poll() mess
  ->si_band gets POLL... bitmap stored into a user-visible long field
  ring_buffer_poll_wait() return value used as return value of ->poll()
  the rest of drivers/*: annotate ->poll() instances
  media: annotate ->poll() instances
  fs: annotate ->poll() instances
  ipc, kernel, mm: annotate ->poll() instances
  net: annotate ->poll() instances
  apparmor: annotate ->poll() instances
  tomoyo: annotate ->poll() instances
  sound: annotate ->poll() instances
  acpi: annotate ->poll() instances
  crypto: annotate ->poll() instances
  block: annotate ->poll() instances
  x86: annotate ->poll() instances
  ...
2018-01-30 17:58:07 -08:00
Linus Torvalds
d4173023e6 Merge branch 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull siginfo cleanups from Eric Biederman:
 "Long ago when 2.4 was just a testing release copy_siginfo_to_user was
  made to copy individual fields to userspace, possibly for efficiency
  and to ensure initialized values were not copied to userspace.

  Unfortunately the design was complex, it's assumptions unstated, and
  humans are fallible and so while it worked much of the time that
  design failed to ensure unitialized memory is not copied to userspace.

  This set of changes is part of a new design to clean up siginfo and
  simplify things, and hopefully make the siginfo handling robust enough
  that a simple inspection of the code can be made to ensure we don't
  copy any unitializied fields to userspace.

  The design is to unify struct siginfo and struct compat_siginfo into a
  single definition that is shared between all architectures so that
  anyone adding to the set of information shared with struct siginfo can
  see the whole picture. Hopefully ensuring all future si_code
  assignments are arch independent.

  The design is to unify copy_siginfo_to_user32 and
  copy_siginfo_from_user32 so that those function are complete and cope
  with all of the different cases documented in signinfo_layout. I don't
  think there was a single implementation of either of those functions
  that was complete and correct before my changes unified them.

  The design is to introduce a series of helpers including
  force_siginfo_fault that take the values that are needed in struct
  siginfo and build the siginfo structure for their callers. Ensuring
  struct siginfo is built correctly.

  The remaining work for 4.17 (unless someone thinks it is post -rc1
  material) is to push usage of those helpers down into the
  architectures so that architecture specific code will not need to deal
  with the fiddly work of intializing struct siginfo, and then when
  struct siginfo is guaranteed to be fully initialized change copy
  siginfo_to_user into a simple wrapper around copy_to_user.

  Further there is work in progress on the issues that have been
  documented requires arch specific knowledge to sort out.

  The changes below fix or at least document all of the issues that have
  been found with siginfo generation. Then proceed to unify struct
  siginfo the 32 bit helpers that copy siginfo to and from userspace,
  and generally clean up anything that is not arch specific with regards
  to siginfo generation.

  It is a lot but with the unification you can of siginfo you can
  already see the code reduction in the kernel"

* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (45 commits)
  signal/memory-failure: Use force_sig_mceerr and send_sig_mceerr
  mm/memory_failure: Remove unused trapno from memory_failure
  signal/ptrace: Add force_sig_ptrace_errno_trap and use it where needed
  signal/powerpc: Remove unnecessary signal_code parameter of do_send_trap
  signal: Helpers for faults with specialized siginfo layouts
  signal: Add send_sig_fault and force_sig_fault
  signal: Replace memset(info,...) with clear_siginfo for clarity
  signal: Don't use structure initializers for struct siginfo
  signal/arm64: Better isolate the COMPAT_TASK portion of ptrace_hbptriggered
  ptrace: Use copy_siginfo in setsiginfo and getsiginfo
  signal: Unify and correct copy_siginfo_to_user32
  signal: Remove the code to clear siginfo before calling copy_siginfo_from_user32
  signal: Unify and correct copy_siginfo_from_user32
  signal/blackfin: Remove pointless UID16_SIGINFO_COMPAT_NEEDED
  signal/blackfin: Move the blackfin specific si_codes to asm-generic/siginfo.h
  signal/tile: Move the tile specific si_codes to asm-generic/siginfo.h
  signal/frv: Move the frv specific si_codes to asm-generic/siginfo.h
  signal/ia64: Move the ia64 specific si_codes to asm-generic/siginfo.h
  signal/powerpc: Remove redefinition of NSIGTRAP on powerpc
  signal: Move addr_lsb into the _sigfault union for clarity
  ...
2018-01-30 14:18:52 -08:00
Linus Torvalds
af8c5e2d60 Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
 "The main changes in this cycle were:

   - Implement frequency/CPU invariance and OPP selection for
     SCHED_DEADLINE (Juri Lelli)

   - Tweak the task migration logic for better multi-tasking
     workload scalability (Mel Gorman)

   - Misc cleanups, fixes and improvements"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/deadline: Make bandwidth enforcement scale-invariant
  sched/cpufreq: Move arch_scale_{freq,cpu}_capacity() outside of #ifdef CONFIG_SMP
  sched/cpufreq: Remove arch_scale_freq_capacity()'s 'sd' parameter
  sched/cpufreq: Always consider all CPUs when deciding next freq
  sched/cpufreq: Split utilization signals
  sched/cpufreq: Change the worker kthread to SCHED_DEADLINE
  sched/deadline: Move CPU frequency selection triggering points
  sched/cpufreq: Use the DEADLINE utilization signal
  sched/deadline: Implement "runtime overrun signal" support
  sched/fair: Only immediately migrate tasks due to interrupts if prev and target CPUs share cache
  sched/fair: Correct obsolete comment about cpufreq_update_util()
  sched/fair: Remove impossible condition from find_idlest_group_cpu()
  sched/cpufreq: Don't pass flags to sugov_set_iowait_boost()
  sched/cpufreq: Initialize sg_cpu->flags to 0
  sched/fair: Consider RT/IRQ pressure in capacity_spare_wake()
  sched/fair: Use 'unsigned long' for utilization, consistently
  sched/core: Rework and clarify prepare_lock_switch()
  sched/fair: Remove unused 'curr' parameter from wakeup_gran
  sched/headers: Constify object_is_on_stack()
2018-01-30 11:55:56 -08:00
Thomas Gleixner
303c146df1 Merge branch 'timers/urgent' into timers/core
Pick up urgent bug fix and resolve the conflict.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-01-27 15:35:29 +01:00
Thomas Gleixner
d5421ea43d hrtimer: Reset hrtimer cpu base proper on CPU hotplug
The hrtimer interrupt code contains a hang detection and mitigation
mechanism, which prevents that a long delayed hrtimer interrupt causes a
continous retriggering of interrupts which prevent the system from making
progress. If a hang is detected then the timer hardware is programmed with
a certain delay into the future and a flag is set in the hrtimer cpu base
which prevents newly enqueued timers from reprogramming the timer hardware
prior to the chosen delay. The subsequent hrtimer interrupt after the delay
clears the flag and resumes normal operation.

If such a hang happens in the last hrtimer interrupt before a CPU is
unplugged then the hang_detected flag is set and stays that way when the
CPU is plugged in again. At that point the timer hardware is not armed and
it cannot be armed because the hang_detected flag is still active, so
nothing clears that flag. As a consequence the CPU does not receive hrtimer
interrupts and no timers expire on that CPU which results in RCU stalls and
other malfunctions.

Clear the flag along with some other less critical members of the hrtimer
cpu base to ensure starting from a clean state when a CPU is plugged in.

Thanks to Paul, Sebastian and Anna-Maria for their help to get down to the
root cause of that hard to reproduce heisenbug. Once understood it's
trivial and certainly justifies a brown paperbag.

Fixes: 41d2e49493 ("hrtimer: Tune hrtimer_interrupt hang logic")
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Sewior <bigeasy@linutronix.de>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801261447590.2067@nanos
2018-01-27 15:12:22 +01:00
Arnd Bergmann
6909e29fde kdb: use __ktime_get_real_seconds instead of __current_kernel_time
kdb is the only user of the __current_kernel_time() interface, which is
not y2038 safe and should be removed at some point.

The kdb code also goes to great lengths to print the time in a
human-readable format from 'struct timespec', again using a non-y2038-safe
re-implementation of the generic time_to_tm() code.

Using __current_kernel_time() here is necessary since the regular
accessors that require a sequence lock might hang when called during the
xtime update. However, this is safe in the particular case since kdb is
only interested in the tv_sec field that is updated atomically.

In order to make this y2038-safe, I'm converting the code to the generic
time64_to_tm helper, but that introduces the problem that we have no
interface like __current_kernel_time() that provides a 64-bit timestamp
in a lockless, safe and architecture-independent way. I have multiple
ideas for how to solve that:

- __ktime_get_real_seconds() is lockless, but can return
  incorrect results on 32-bit architectures in the special case that
  we are in the process of changing the time across the epoch, either
  during the timer tick that overflows the seconds in 2038, or while
  calling settimeofday.

- ktime_get_real_fast_ns() would work in this context, but does
  require a call into the clocksource driver to return a high-resolution
  timestamp. This may have undesired side-effects in the debugger,
  since we want to limit the interactions with the rest of the kernel.

- Adding a ktime_get_real_fast_seconds() based on tk_fast_mono
  plus tkr->base_real without the tk_clock_read() delta. Not sure about
  the value of adding yet another interface here.

- Changing the existing ktime_get_real_seconds() to use
  tk_fast_mono on 32-bit architectures rather than xtime_sec.  I think
  this could work, but am not entirely sure if this is an improvement.

I picked the first of those for simplicity here. It's technically
not correct but probably good enough as the time is only used for the
debugging output and the race will likely never be hit in practice.
Another downside is having to move the declaration into a public header
file.

Let me know if anyone has a different preference.

Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://patchwork.kernel.org/patch/9775309/
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
2018-01-25 08:40:18 -06:00
Eric W. Biederman
3b10db2b06 signal: Replace memset(info,...) with clear_siginfo for clarity
The function clear_siginfo is just a nice wrapper around memset so
this results in no functional change.  This change makes mistakes
a little more difficult and it makes it clearer what is going on.

Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-01-22 19:07:08 -06:00
Anna-Maria Gleixner
42f42da41b hrtimer: Implement SOFT/HARD clock base selection
All prerequisites to handle hrtimers for expiry in either hard or soft
interrupt context are in place.

Add the missing bit in hrtimer_init() which associates the timer to the
hard or the softirq clock base.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-30-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 09:51:22 +01:00
Anna-Maria Gleixner
5da7016046 hrtimer: Implement support for softirq based hrtimers
hrtimer callbacks are always invoked in hard interrupt context. Several
users in tree require soft interrupt context for their callbacks and
achieve this by combining a hrtimer with a tasklet. The hrtimer schedules
the tasklet in hard interrupt context and the tasklet callback gets invoked
in softirq context later.

That's suboptimal and aside of that the real-time patch moves most of the
hrtimers into softirq context. So adding native support for hrtimers
expiring in softirq context is a valuable extension for both mainline and
the RT patch set.

Each valid hrtimer clock id has two associated hrtimer clock bases: one for
timers expiring in hardirq context and one for timers expiring in softirq
context.

Implement the functionality to associate a hrtimer with the hard or softirq
related clock bases and update the relevant functions to take them into
account when the next expiry time needs to be evaluated.

Add a check into the hard interrupt context handler functions to check
whether the first expiring softirq based timer has expired. If it's expired
the softirq is raised and the accounting of softirq based timers to
evaluate the next expiry time for programming the timer hardware is skipped
until the softirq processing has finished. At the end of the softirq
processing the regular processing is resumed.

Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-29-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 09:51:22 +01:00
Anna-Maria Gleixner
c458b1d102 hrtimer: Prepare handling of hard and softirq based hrtimers
The softirq based hrtimer can utilize most of the existing hrtimers
functions, but need to operate on a different data set.

Add an 'active_mask' parameter to various functions so the hard and soft bases
can be selected. Fixup the existing callers and hand in the ACTIVE_HARD
mask.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-28-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 03:01:20 +01:00
Anna-Maria Gleixner
98ecadd430 hrtimer: Add clock bases and hrtimer mode for softirq context
Currently hrtimer callback functions are always executed in hard interrupt
context. Users of hrtimers, which need their timer function to be executed
in soft interrupt context, make use of tasklets to get the proper context.

Add additional hrtimer clock bases for timers which must expire in softirq
context, so the detour via the tasklet can be avoided. This is also
required for RT, where the majority of hrtimer is moved into softirq
hrtimer context.

The selection of the expiry mode happens via a mode bit. Introduce
HRTIMER_MODE_SOFT and the matching combinations with the ABS/REL/PINNED
bits and update the decoding of hrtimer_mode in tracepoints.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-27-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 03:00:50 +01:00
Anna-Maria Gleixner
dd934aa8ad hrtimer: Use irqsave/irqrestore around __run_hrtimer()
__run_hrtimer() is called with the hrtimer_cpu_base.lock held and
interrupts disabled. Before invoking the timer callback the base lock is
dropped, but interrupts stay disabled.

The upcoming support for softirq based hrtimers requires that interrupts
are enabled before the timer callback is invoked.

To avoid code duplication, take hrtimer_cpu_base.lock with
raw_spin_lock_irqsave(flags) at the call site and hand in the flags as
a parameter. So raw_spin_unlock_irqrestore() before the callback invocation
will either keep interrupts disabled in interrupt context or restore to
interrupt enabled state when called from softirq context.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-26-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 03:00:47 +01:00
Anna-Maria Gleixner
ad38f596d8 hrtimer: Factor out __hrtimer_next_event_base()
Preparatory patch for softirq based hrtimers to avoid code duplication.

No functional change.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-25-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 03:00:43 +01:00
Anna-Maria Gleixner
138a6b7ae4 hrtimer: Factor out __hrtimer_start_range_ns()
Preparatory patch for softirq based hrtimers to avoid code duplication,
factor out the __hrtimer_start_range_ns() function from hrtimer_start_range_ns().

No functional change.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-24-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:53:59 +01:00
Anna-Maria Gleixner
3ec7a3ee9f hrtimer: Remove the 'base' parameter from hrtimer_reprogram()
hrtimer_reprogram() must have access to the hrtimer_clock_base of the new
first expiring timer to access hrtimer_clock_base.offset for adjusting the
expiry time to CLOCK_MONOTONIC. This is required to evaluate whether the
new left most timer in the hrtimer_clock_base is the first expiring timer
of all clock bases in a hrtimer_cpu_base.

The only user of hrtimer_reprogram() is hrtimer_start_range_ns(), which has
a pointer to hrtimer_clock_base() already and hands it in as a parameter. But
hrtimer_start_range_ns() will be split for the upcoming support for softirq
based hrtimers to avoid code duplication and will lose the direct access to
the clock base pointer.

Instead of handing in timer and timer->base as a parameter remove the base
parameter from hrtimer_reprogram() instead and retrieve the clock base internally.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-23-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:53:59 +01:00
Anna-Maria Gleixner
2ac2dccce9 hrtimer: Make remote enqueue decision less restrictive
The current decision whether a timer can be queued on a remote CPU checks
for timer->expiry <= remote_cpu_base.expires_next.

This is too restrictive because a timer with the same expiry time as an
existing timer will be enqueued on right-hand size of the existing timer
inside the rbtree, i.e. behind the first expiring timer.

So its safe to allow enqueuing timers with the same expiry time as the
first expiring timer on a remote CPU base.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-22-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:53:58 +01:00
Anna-Maria Gleixner
14c803419d hrtimer: Unify remote enqueue handling
hrtimer_reprogram() is conditionally invoked from hrtimer_start_range_ns()
when hrtimer_cpu_base.hres_active is true.

In the !hres_active case there is a special condition for the nohz_active
case:

  If the newly enqueued timer expires before the first expiring timer on a
  remote CPU then the remote CPU needs to be notified and woken up from a
  NOHZ idle sleep to take the new first expiring timer into account.

Previous changes have already established the prerequisites to make the
remote enqueue behaviour the same whether high resolution mode is active or
not:

  If the to be enqueued timer expires before the first expiring timer on a
  remote CPU, then it cannot be enqueued there.

This was done for the high resolution mode because there is no way to
access the remote CPU timer hardware. The same is true for NOHZ, but was
handled differently by unconditionally enqueuing the timer and waking up
the remote CPU so it can reprogram its timer. Again there is no compelling
reason for this difference.

hrtimer_check_target(), which makes the 'can remote enqueue' decision is
already unconditional, but not yet functional because nothing updates
hrtimer_cpu_base.expires_next in the !hres_active case.

To unify this the following changes are required:

 1) Make the store of the new first expiry time unconditonal in
    hrtimer_reprogram() and check __hrtimer_hres_active() before proceeding
    to the actual hardware access. This check also lets the compiler
    eliminate the rest of the function in case of CONFIG_HIGH_RES_TIMERS=n.

 2) Invoke hrtimer_reprogram() unconditionally from
    hrtimer_start_range_ns()

 3) Remove the remote wakeup special case for the !high_res && nohz_active
    case.

Confine the timers_nohz_active static key to timer.c which is the only user
now.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-21-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:53:58 +01:00
Anna-Maria Gleixner
61bb4bcb79 hrtimer: Unify hrtimer removal handling
When the first hrtimer on the current CPU is removed,
hrtimer_force_reprogram() is invoked but only when
CONFIG_HIGH_RES_TIMERS=y and hrtimer_cpu_base.hres_active is set.

hrtimer_force_reprogram() updates hrtimer_cpu_base.expires_next and
reprograms the clock event device. When CONFIG_HIGH_RES_TIMERS=y and
hrtimer_cpu_base.hres_active is set, a pointless hrtimer interrupt can be
prevented.

hrtimer_check_target() makes the 'can remote enqueue' decision. As soon as
hrtimer_check_target() is unconditionally available and
hrtimer_cpu_base.expires_next is updated by hrtimer_reprogram(),
hrtimer_force_reprogram() needs to be available unconditionally as well to
prevent the following scenario with CONFIG_HIGH_RES_TIMERS=n:

- the first hrtimer on this CPU is removed and hrtimer_force_reprogram() is
  not executed

- CPU goes idle (next timer is calculated and hrtimers are taken into
  account)

- a hrtimer is enqueued remote on the idle CPU: hrtimer_check_target()
  compares expiry value and hrtimer_cpu_base.expires_next. The expiry value
  is after expires_next, so the hrtimer is enqueued. This timer will fire
  late, if it expires before the effective first hrtimer on this CPU and
  the comparison was with an outdated expires_next value.

To prevent this scenario, make hrtimer_force_reprogram() unconditional
except the effective reprogramming part, which gets eliminated by the
compiler in the CONFIG_HIGH_RES_TIMERS=n case.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-20-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:53:58 +01:00
Anna-Maria Gleixner
ebba2c723f hrtimer: Make hrtimer_force_reprogramm() unconditionally available
hrtimer_force_reprogram() needs to be available unconditionally for softirq
based hrtimers. Move the function and all required struct members out of
the CONFIG_HIGH_RES_TIMERS #ifdef.

There is no functional change because hrtimer_force_reprogram() is only
invoked when hrtimer_cpu_base.hres_active is true and
CONFIG_HIGH_RES_TIMERS=y.

Making it unconditional increases the text size for the
CONFIG_HIGH_RES_TIMERS=n case slightly, but avoids replication of that code
for the upcoming softirq based hrtimers support. Most of the code gets
eliminated in the CONFIG_HIGH_RES_TIMERS=n case by the compiler.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-19-anna-maria@linutronix.de
[ Made it build on !CONFIG_HIGH_RES_TIMERS ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:53:28 +01:00
Anna-Maria Gleixner
11a9fe069e hrtimer: Make hrtimer_reprogramm() unconditional
hrtimer_reprogram() needs to be available unconditionally for softirq based
hrtimers. Move the function and all required struct members out of the
CONFIG_HIGH_RES_TIMERS #ifdef.

There is no functional change because hrtimer_reprogram() is only invoked
when hrtimer_cpu_base.hres_active is true. Making it unconditional
increases the text size for the CONFIG_HIGH_RES_TIMERS=n case, but avoids
replication of that code for the upcoming softirq based hrtimers support.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-18-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:35:47 +01:00
Anna-Maria Gleixner
eb27926ba0 hrtimer: Make hrtimer_cpu_base.next_timer handling unconditional
hrtimer_cpu_base.next_timer stores the pointer to the next expiring timer
in a CPU base.

This pointer cannot be dereferenced and is solely used to check whether a
hrtimer which is removed is the hrtimer which is the first to expire in the
CPU base. If this is the case, then the timer hardware needs to be
reprogrammed to avoid an extra interrupt for nothing.

Again, this is conditional functionality, but there is no compelling reason
to make this conditional. As a preparation, hrtimer_cpu_base.next_timer
needs to be available unconditonally.

Aside of that the upcoming support for softirq based hrtimers requires access
to this pointer unconditionally as well, so our motivation is not entirely
simplicity based.

Make the update of hrtimer_cpu_base.next_timer unconditional and remove the
#ifdef cruft. The impact on CONFIG_HIGH_RES_TIMERS=n && CONFIG_NOHZ=n is
marginal as it's just a store on an already dirtied cacheline.

No functional change.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-17-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:35:47 +01:00
Anna-Maria Gleixner
07a9a7eae8 hrtimer: Make the remote enqueue check unconditional
hrtimer_cpu_base.expires_next is used to cache the next event armed in the
timer hardware. The value is used to check whether an hrtimer can be
enqueued remotely. If the new hrtimer is expiring before expires_next, then
remote enqueue is not possible as the remote hrtimer hardware cannot be
accessed for reprogramming to an earlier expiry time.

The remote enqueue check is currently conditional on
CONFIG_HIGH_RES_TIMERS=y and hrtimer_cpu_base.hres_active. There is no
compelling reason to make this conditional.

Move hrtimer_cpu_base.expires_next out of the CONFIG_HIGH_RES_TIMERS=y
guarded area and remove the conditionals in hrtimer_check_target().

The check is currently a NOOP for the CONFIG_HIGH_RES_TIMERS=n and the
!hrtimer_cpu_base.hres_active case because in these cases nothing updates
hrtimer_cpu_base.expires_next yet. This will be changed with later patches
which further reduce the #ifdef zoo in this code.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-16-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:35:47 +01:00
Anna-Maria Gleixner
851cff8caf hrtimer: Use accesor functions instead of direct access
__hrtimer_hres_active() is now available unconditionally, so replace open
coded direct accesses to hrtimer_cpu_base.hres_active.

No functional change.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-15-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:35:47 +01:00
Anna-Maria Gleixner
28bfd18bf3 hrtimer: Make the hrtimer_cpu_base::hres_active field unconditional, to simplify the code
The hrtimer_cpu_base::hres_active_member field depends on CONFIG_HIGH_RES_TIMERS=y
currently, and all related functions to this member are conditional as well.

To simplify the code make it unconditional and set it to zero during initialization.

(This will also help with the upcoming softirq based hrtimers code.)

The conditional code sections can be avoided by adding IS_ENABLED(HIGHRES)
conditionals into common functions, which ensures dead code elimination.

There is no functional change.

Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-14-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:35:47 +01:00
Anna-Maria Gleixner
3f0b9e8eec hrtimer: Store running timer in hrtimer_clock_base
The pointer to the currently running timer is stored in hrtimer_cpu_base
before the base lock is dropped and the callback is invoked.

This results in two levels of indirections and the upcoming support for
softirq based hrtimer requires splitting the "running" storage into soft
and hard IRQ context expiry.

Storing both in the cpu base would require conditionals in all code paths
accessing that information.

It's possible to have a per clock base sequence count and running pointer
without changing the semantics of the related mechanisms because the timer
base pointer cannot be changed while a timer is running the callback.

Unfortunately this makes cpu_clock base larger than 32 bytes on 32-bit
kernels. Instead of having huge gaps due to alignment, remove the alignment
and let the compiler pack CPU base for 32-bit kernels. The resulting cache access
patterns are fortunately not really different from the current
behaviour. On 64-bit kernels the 64-byte alignment stays and the behaviour is
unchanged. This was determined by analyzing the resulting layout and
looking at the number of cache lines involved for the frequently used
clocks.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-12-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:35:46 +01:00
Anna-Maria Gleixner
c272ca58c3 hrtimer: Switch 'for' loop to _ffs() evaluation
Looping over all clock bases to find active bits is suboptimal if not all
bases are active.

Avoid this by converting it to a __ffs() evaluation. The functionallity is
outsourced into its own function and is called via a macro as suggested by
Peter Zijlstra.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-11-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:35:46 +01:00
Anna-Maria Gleixner
63e2ed3659 tracing/hrtimer: Print the hrtimer mode in the 'hrtimer_start' tracepoint
The 'hrtimer_start' tracepoint lacks the mode information. The mode is
important because consecutive starts can switch from ABS to REL or from
PINNED to non PINNED.

Append the mode field.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-10-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:35:46 +01:00
Anna-Maria Gleixner
48d0c9becc hrtimer: Ensure POSIX compliance (relative CLOCK_REALTIME hrtimers)
The POSIX specification defines that relative CLOCK_REALTIME timers are not
affected by clock modifications. Those timers have to use CLOCK_MONOTONIC
to ensure POSIX compliance.

The introduction of the additional HRTIMER_MODE_PINNED mode broke this
requirement for pinned timers.

There is no user space visible impact because user space timers are not
using pinned mode, but for consistency reasons this needs to be fixed.

Check whether the mode has the HRTIMER_MODE_REL bit set instead of
comparing with HRTIMER_MODE_ABS.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Fixes: 597d027573 ("timers: Framework for identifying pinned timers")
Link: http://lkml.kernel.org/r/20171221104205.7269-7-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:35:45 +01:00
Anna-Maria Gleixner
6de6250c75 hrtimer: Fix hrtimer_start[_range_ns]() function descriptions
The hrtimer_start[_range_ns]() functions start a timer reliably on this CPU only
when HRTIMER_MODE_PINNED is set.

Furthermore the HRTIMER_MODE_PINNED mode is not considered when a hrtimer is initialized.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-6-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:35:45 +01:00
Anna-Maria Gleixner
907777136f hrtimer: Clean up the 'int clock' parameter of schedule_hrtimeout_range_clock()
schedule_hrtimeout_range_clock() uses an 'int clock' parameter for the
clock ID, instead of the customary predefined "clockid_t" type.

In hrtimer coding style the canonical variable name for the clock ID is
'clock_id', therefore change the name of the parameter here as well
to make it all consistent.

While at it, clean up the description for the 'clock_id' and 'mode'
function parameters. The clock modes and the clock IDs are not
restricted as the comment suggests.

Fix the mode description as well for the callers of schedule_hrtimeout_range_clock().

No functional changes intended.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-5-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:35:44 +01:00
Thomas Gleixner
d05ca13b8d hrtimer: Correct blatantly incorrect comment
The protection of a hrtimer which runs its callback against migration to a
different CPU has nothing to do with hard interrupt context.

The protection against migration of a hrtimer running the expiry callback
is the pointer in the cpu_base which holds a pointer to the currently
running timer. This pointer is evaluated in the code which potentially
switches the timer base and makes sure it's kept on the CPU on which the
callback is running.

Reported-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-3-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:35:44 +01:00
Thomas Gleixner
ae67badaa1 hrtimer: Optimize the hrtimer code by using static keys for migration_enable/nohz_active
The hrtimer_cpu_base::migration_enable and ::nohz_active fields
were originally introduced to avoid accessing global variables
for these decisions.

Still that results in a (cache hot) load and conditional branch,
which can be avoided by using static keys.

Implement it with static keys and optimize for the most critical
case of high performance networking which tends to disable the
timer migration functionality.

No change in functionality.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1801142327490.2371@nanos
Link: https://lkml.kernel.org/r/20171221104205.7269-2-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:35:44 +01:00
Ingo Molnar
57957fb519 Merge branch 'timers/urgent' into timers/core, to pick up dependent fix
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:33:42 +01:00
Thomas Gleixner
ed4bbf7910 timers: Unconditionally check deferrable base
When the timer base is checked for expired timers then the deferrable base
must be checked as well. This was missed when making the deferrable base
independent of base::nohz_active.

Fixes: ced6d5c11d ("timers: Use deferrable base independent of base::nohz_active")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: stable@vger.kernel.org
Cc: rt@linutronix.de
2018-01-14 23:25:33 +01:00
Max R. P. Grossmann
a9445e47d8 posix-cpu-timers: Make set_process_cpu_timer() more robust
Because the return value of cpu_timer_sample_group() is not checked,
compilers and static checkers can legitimately warn about a potential use
of the uninitialized variable 'now'. This is not a runtime issue as all call
sites hand in valid clock ids.

Also cpu_timer_sample_group() is invoked unconditionally even when the
result is not used because *oldval is NULL.

Make the invocation conditional and check the return value.

[ tglx: Massage changelog ]

Signed-off-by: Max R. P. Grossmann <m@max.pm>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: john.stultz@linaro.org
Link: https://lkml.kernel.org/r/20180108190157.10048-1-m@max.pm
2018-01-14 20:50:59 +01:00
Juri Lelli
34be39305a sched/deadline: Implement "runtime overrun signal" support
This patch adds the possibility of getting the delivery of a SIGXCPU
signal whenever there is a runtime overrun. The request is done through
the sched_flags field within the sched_attr structure.

Forward port of https://lkml.org/lkml/2009/10/16/170

Tested-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Claudio Scordino <claudio@evidence.eu.com>
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@sssup.it>
Link: http://lkml.kernel.org/r/1513077024-25461-1-git-send-email-claudio@evidence.eu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-10 11:30:31 +01:00
Nick Desaulniers
29f1b2b0fe posix-timers: Prevent UB from shifting negative signed value
Shifting a negative signed number is undefined behavior. Looking at the
macros MAKE_PROCESS_CPUCLOCK and FD_TO_CLOCKID, it seems that the
subexpression:

(~(clockid_t) (pid) << 3)

where clockid_t resolves to a signed int, which once negated, is
undefined behavior to shift the value of if the results thus far are
negative.

It was further suggested to make these macros into inline functions.

Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Nick Desaulniers <nick.desaulniers@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Dimitri Sivanich <sivanich@hpe.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-kselftest@vger.kernel.org
Cc: Shuah Khan <shuah@kernel.org>
Cc: Deepa Dinamani <deepa.kernel@gmail.com>
Link: https://lkml.kernel.org/r/1514517100-18051-1-git-send-email-nick.desaulniers@gmail.com
2018-01-04 14:57:10 +01:00
Linus Torvalds
cea92e843e Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer fixes from Thomas Gleixner:
 "A pile of fixes for long standing issues with the timer wheel and the
  NOHZ code:

   - Prevent timer base confusion accross the nohz switch, which can
     cause unlocked access and data corruption

   - Reinitialize the stale base clock on cpu hotplug to prevent subtle
     side effects including rollovers on 32bit

   - Prevent an interrupt storm when the timer softirq is already
     pending caused by tick_nohz_stop_sched_tick()

   - Move the timer start tracepoint to a place where it actually makes
     sense

   - Add documentation to timerqueue functions as they caused confusion
     several times now"

* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  timerqueue: Document return values of timerqueue_add/del()
  timers: Invoke timer_start_debug() where it makes sense
  nohz: Prevent a timer interrupt storm in tick_nohz_stop_sched_tick()
  timers: Reinitialize per cpu bases on hotplug
  timers: Use deferrable base independent of base::nohz_active
2017-12-31 12:30:34 -08:00
Linus Torvalds
4c470317f9 Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Thomas Gleixner:
 "Three patches addressing the fallout of the CPU_ISOLATION changes
  especially with NO_HZ_FULL plus documentation of boot parameter
  dependency"

* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/isolation: Document boot parameters dependency on CONFIG_CPU_ISOLATION=y
  sched/isolation: Enable CONFIG_CPU_ISOLATION=y by default
  sched/isolation: Make CONFIG_NO_HZ_FULL select CONFIG_CPU_ISOLATION
2017-12-31 12:27:19 -08:00
Thomas Gleixner
fd45bb77ad timers: Invoke timer_start_debug() where it makes sense
The timer start debug function is called before the proper timer base is
set. As a consequence the trace data contains the stale CPU and flags
values.

Call the debug function after setting the new base and flags.

Fixes: 500462a9de ("timers: Switch to a non-cascading wheel")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: stable@vger.kernel.org
Cc: rt@linutronix.de
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Link: https://lkml.kernel.org/r/20171222145337.792907137@linutronix.de
2017-12-29 23:13:10 +01:00
Thomas Gleixner
5d62c183f9 nohz: Prevent a timer interrupt storm in tick_nohz_stop_sched_tick()
The conditions in irq_exit() to invoke tick_nohz_irq_exit() which
subsequently invokes tick_nohz_stop_sched_tick() are:

  if ((idle_cpu(cpu) && !need_resched()) || tick_nohz_full_cpu(cpu))

If need_resched() is not set, but a timer softirq is pending then this is
an indication that the softirq code punted and delegated the execution to
softirqd. need_resched() is not true because the current interrupted task
takes precedence over softirqd.

Invoking tick_nohz_irq_exit() in this case can cause an endless loop of
timer interrupts because the timer wheel contains an expired timer, but
softirqs are not yet executed. So it returns an immediate expiry request,
which causes the timer to fire immediately again. Lather, rinse and
repeat....

Prevent that by adding a check for a pending timer soft interrupt to the
conditions in tick_nohz_stop_sched_tick() which avoid calling
get_next_timer_interrupt(). That keeps the tick sched timer on the tick and
prevents a repetitive programming of an already expired timer.

Reported-by: Sebastian Siewior <bigeasy@linutronix.d>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1712272156050.2431@nanos
2017-12-29 23:13:10 +01:00
Thomas Gleixner
26456f87ac timers: Reinitialize per cpu bases on hotplug
The timer wheel bases are not (re)initialized on CPU hotplug. That leaves
them with a potentially stale clk and next_expiry valuem, which can cause
trouble then the CPU is plugged.

Add a prepare callback which forwards the clock, sets next_expiry to far in
the future and reset the control flags to a known state.

Set base->must_forward_clk so the first timer which is queued will try to
forward the clock to current jiffies.

Fixes: 500462a9de ("timers: Switch to a non-cascading wheel")
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1712272152200.2431@nanos
2017-12-29 23:13:09 +01:00
Anna-Maria Gleixner
ced6d5c11d timers: Use deferrable base independent of base::nohz_active
During boot and before base::nohz_active is set in the timer bases, deferrable
timers are enqueued into the standard timer base. This works correctly as
long as base::nohz_active is false.

Once it base::nohz_active is set and a timer which was enqueued before that
is accessed the lock selector code choses the lock of the deferred
base. This causes unlocked access to the standard base and in case the
timer is removed it does not clear the pending flag in the standard base
bitmap which causes get_next_timer_interrupt() to return bogus values.

To prevent that, the deferrable timers must be enqueued in the deferrable
base, even when base::nohz_active is not set. Those deferrable timers also
need to be expired unconditional.

Fixes: 500462a9de ("timers: Switch to a non-cascading wheel")
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: stable@vger.kernel.org
Cc: rt@linutronix.de
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Link: https://lkml.kernel.org/r/20171222145337.633328378@linutronix.de
2017-12-29 23:13:09 +01:00
Joel Fernandes
466a2b42d6 cpufreq: schedutil: Use idle_calls counter of the remote CPU
Since the recent remote cpufreq callback work, its possible that a cpufreq
update is triggered from a remote CPU. For single policies however, the current
code uses the local CPU when trying to determine if the remote sg_cpu entered
idle or is busy. This is incorrect. To remedy this, compare with the nohz tick
idle_calls counter of the remote CPU.

Fixes: 674e75411f (sched: cpufreq: Allow remote cpufreq callbacks)
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Joel Fernandes <joelaf@google.com>
Cc: 4.14+ <stable@vger.kernel.org> # 4.14+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-12-28 12:26:54 +01:00
Paul E. McKenney
bf29cb238d sched/isolation: Make CONFIG_NO_HZ_FULL select CONFIG_CPU_ISOLATION
CONFIG_NO_HZ_FULL doesn't make sense without CONFIG_CPU_ISOLATION. In
fact enabling the first without the second is a regression as nohz_full=
boot parameter gets silently ignored.

Besides this unnatural combination hangs RCU gp kthread when running
rcutorture for reasons that are not yet fully understood:

	rcu_preempt kthread starved for 9974 jiffies! g4294967208
	+c4294967207 f0x0 RCU_GP_WAIT_FQS(3) ->state=0x402 ->cpu=0
	rcu_preempt     I 7464     8      2 0x80000000
	Call Trace:
		__schedule+0x493/0x620
		schedule+0x24/0x40
		schedule_timeout+0x330/0x3b0
		? preempt_count_sub+0xea/0x140
		? collect_expired_timers+0xb0/0xb0
		rcu_gp_kthread+0x6bf/0xef0

This commit therefore makes NO_HZ_FULL select CPU_ISOLATION, which
prevents all these bad behaviours.

Reported-by: kernel test robot <xiaolong.ye@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <kernellwp@gmail.com>
Fixes: 5c4991e24c ("sched/isolation: Split out new CONFIG_CPU_ISOLATION=y config from CONFIG_NO_HZ_FULL")
Link: http://lkml.kernel.org/r/1513275507-29200-2-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-18 13:46:42 +01:00
Thomas Gleixner
cef31d9af9 posix-timer: Properly check sigevent->sigev_notify
timer_create() specifies via sigevent->sigev_notify the signal delivery for
the new timer. The valid modes are SIGEV_NONE, SIGEV_SIGNAL, SIGEV_THREAD
and (SIGEV_SIGNAL | SIGEV_THREAD_ID).

The sanity check in good_sigevent() is only checking the valid combination
for the SIGEV_THREAD_ID bit, i.e. SIGEV_SIGNAL, but if SIGEV_THREAD_ID is
not set it accepts any random value.

This has no real effects on the posix timer and signal delivery code, but
it affects show_timer() which handles the output of /proc/$PID/timers. That
function uses a string array to pretty print sigev_notify. The access to
that array has no bound checks, so random sigev_notify cause access beyond
the array bounds.

Add proper checks for the valid notify modes and remove the SIGEV_THREAD_ID
masking from various code pathes as SIGEV_NONE can never be set in
combination with SIGEV_THREAD_ID.

Reported-by: Eric Biggers <ebiggers3@gmail.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reported-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: stable@vger.kernel.org
2017-12-15 11:08:40 +01:00
Al Viro
9dd957485d ipc, kernel, mm: annotate ->poll() instances
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-11-27 16:20:05 -05:00
Thomas Gleixner
866c9b94ef - final batch of "non trivial" timer conversions (multi-tree dependencies,
things Coccinelle couldn't handle, etc).
 - treewide conversions via Coccinelle, in 4 steps:
   - DEFINE_TIMER() functions converted to struct timer_list * argument
   - init_timer() -> setup_timer()
   - setup_timer() -> timer_setup()
   - setup_timer() -> timer_setup() (with a single embedded structure)
 - deprecated timer API removals (init_timer(), setup_*timer())
 - finalization of new API (remove global casts)
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 Comment: Kees Cook <kees@outflux.net>
 
 iQIcBAABCgAGBQJaFMcSAAoJEIly9N/cbcAmsToQAIrAIWJIj/buzoXgvsesBWE0
 B+l7fZr4q0xwx7gU1FEBcNu3MTJz3GQgpfSD5x5HhXX4vxwVQJWnYIkQvvM2YjVG
 d/wgwqPu24hIyU2i3WX584K+r7uwhN85eL8CN/YB264bTnMc+aZAIOqY2jwLRr1u
 uSa7JNCyjEpENIiZ3zWgojGu/izCoW4KBzKOpWWqrfrfGgmx+ImFlLgneSmgOhg4
 9y1pqqifYbMx313ZWfln4XVdiQwuqG7weE6oPZ7j9ypM4UX1lQUG+SdZmYYvBHcV
 /LopB7zGwbbCoUDwzDTz4a/xYobteXaqEkFlwFAqsGtjqvYks+n0IKgzcKRvOF6R
 O9j4lWPK87B1uIKtkO/W0bJs5KA1w273U+mUvjEH+fTyjvpAJLkMzpEP3NxM3BJ4
 ilYXNNvfFaT3lslOhyaces54Q2eAVzodL4zcaeKfPKxrdv0V58nOYKUqFpIKBp7n
 JKcZm58xTiLcpqT/Zg31in83kBMg499LAorjvY1y68GjFtXQ0YBNA4EaxDZD4z56
 /N2tQarAu7xmo1VTSM+NVDY4X5H122XINIcpPRQ/qEF9usQDoBY1N8vusUis05R9
 IKvn+cpS20dLYyPZUgV5zHx+HNjIxUoANiQTHRLI7HvADUDXCcMXM4CZoKdCWXNG
 cf6CGbhH9hOIAQpUD154
 =Tj+I
 -----END PGP SIGNATURE-----

Merge tag 'for-linus-timers-conversion-final-v4.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux into timers/urgent

Pull the last batch of manual timer conversions from Kees Cook:

 - final batch of "non trivial" timer conversions (multi-tree dependencies,
   things Coccinelle couldn't handle, etc).

 - treewide conversions via Coccinelle, in 4 steps:
   - DEFINE_TIMER() functions converted to struct timer_list * argument
   - init_timer() -> setup_timer()
   - setup_timer() -> timer_setup()
   - setup_timer() -> timer_setup() (with a single embedded structure)

 - deprecated timer API removals (init_timer(), setup_*timer())

 - finalization of new API (remove global casts)
2017-11-23 16:29:05 +01:00
Kees Cook
188665b2d6 timer: Pass function down to initialization routines
In preparation for removing more macros, pass the function down to the
initialization routines instead of doing it in macros.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
2017-11-21 15:57:14 -08:00
Kees Cook
354b46b1a0 timer: Switch callback prototype to take struct timer_list * argument
Since all callbacks have been converted, we can switch the core
prototype to "struct timer_list *" now too.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
2017-11-21 15:57:13 -08:00
Kees Cook
c1eba5bcb6 timer: Pass timer_list pointer to callbacks unconditionally
Now that all timer callbacks are already taking their struct timer_list
pointer as the callback argument, just do this unconditionally and remove
the .data field.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
2017-11-21 15:57:12 -08:00
Kees Cook
e99e88a9d2 treewide: setup_timer() -> timer_setup()
This converts all remaining cases of the old setup_timer() API into using
timer_setup(), where the callback argument is the structure already
holding the struct timer_list. These should have no behavioral changes,
since they just change which pointer is passed into the callback with
the same available pointers after conversion. It handles the following
examples, in addition to some other variations.

Casting from unsigned long:

    void my_callback(unsigned long data)
    {
        struct something *ptr = (struct something *)data;
    ...
    }
    ...
    setup_timer(&ptr->my_timer, my_callback, ptr);

and forced object casts:

    void my_callback(struct something *ptr)
    {
    ...
    }
    ...
    setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr);

become:

    void my_callback(struct timer_list *t)
    {
        struct something *ptr = from_timer(ptr, t, my_timer);
    ...
    }
    ...
    timer_setup(&ptr->my_timer, my_callback, 0);

Direct function assignments:

    void my_callback(unsigned long data)
    {
        struct something *ptr = (struct something *)data;
    ...
    }
    ...
    ptr->my_timer.function = my_callback;

have a temporary cast added, along with converting the args:

    void my_callback(struct timer_list *t)
    {
        struct something *ptr = from_timer(ptr, t, my_timer);
    ...
    }
    ...
    ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback;

And finally, callbacks without a data assignment:

    void my_callback(unsigned long data)
    {
    ...
    }
    ...
    setup_timer(&ptr->my_timer, my_callback, 0);

have their argument renamed to verify they're unused during conversion:

    void my_callback(struct timer_list *unused)
    {
    ...
    }
    ...
    timer_setup(&ptr->my_timer, my_callback, 0);

The conversion is done with the following Coccinelle script:

spatch --very-quiet --all-includes --include-headers \
	-I ./arch/x86/include -I ./arch/x86/include/generated \
	-I ./include -I ./arch/x86/include/uapi \
	-I ./arch/x86/include/generated/uapi -I ./include/uapi \
	-I ./include/generated/uapi --include ./include/linux/kconfig.h \
	--dir . \
	--cocci-file ~/src/data/timer_setup.cocci

@fix_address_of@
expression e;
@@

 setup_timer(
-&(e)
+&e
 , ...)

// Update any raw setup_timer() usages that have a NULL callback, but
// would otherwise match change_timer_function_usage, since the latter
// will update all function assignments done in the face of a NULL
// function initialization in setup_timer().
@change_timer_function_usage_NULL@
expression _E;
identifier _timer;
type _cast_data;
@@

(
-setup_timer(&_E->_timer, NULL, _E);
+timer_setup(&_E->_timer, NULL, 0);
|
-setup_timer(&_E->_timer, NULL, (_cast_data)_E);
+timer_setup(&_E->_timer, NULL, 0);
|
-setup_timer(&_E._timer, NULL, &_E);
+timer_setup(&_E._timer, NULL, 0);
|
-setup_timer(&_E._timer, NULL, (_cast_data)&_E);
+timer_setup(&_E._timer, NULL, 0);
)

@change_timer_function_usage@
expression _E;
identifier _timer;
struct timer_list _stl;
identifier _callback;
type _cast_func, _cast_data;
@@

(
-setup_timer(&_E->_timer, _callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, &_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, &_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)&_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, &_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, &_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
 _E->_timer@_stl.function = _callback;
|
 _E->_timer@_stl.function = &_callback;
|
 _E->_timer@_stl.function = (_cast_func)_callback;
|
 _E->_timer@_stl.function = (_cast_func)&_callback;
|
 _E._timer@_stl.function = _callback;
|
 _E._timer@_stl.function = &_callback;
|
 _E._timer@_stl.function = (_cast_func)_callback;
|
 _E._timer@_stl.function = (_cast_func)&_callback;
)

// callback(unsigned long arg)
@change_callback_handle_cast
 depends on change_timer_function_usage@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _origtype;
identifier _origarg;
type _handletype;
identifier _handle;
@@

 void _callback(
-_origtype _origarg
+struct timer_list *t
 )
 {
(
	... when != _origarg
	_handletype *_handle =
-(_handletype *)_origarg;
+from_timer(_handle, t, _timer);
	... when != _origarg
|
	... when != _origarg
	_handletype *_handle =
-(void *)_origarg;
+from_timer(_handle, t, _timer);
	... when != _origarg
|
	... when != _origarg
	_handletype *_handle;
	... when != _handle
	_handle =
-(_handletype *)_origarg;
+from_timer(_handle, t, _timer);
	... when != _origarg
|
	... when != _origarg
	_handletype *_handle;
	... when != _handle
	_handle =
-(void *)_origarg;
+from_timer(_handle, t, _timer);
	... when != _origarg
)
 }

// callback(unsigned long arg) without existing variable
@change_callback_handle_cast_no_arg
 depends on change_timer_function_usage &&
                     !change_callback_handle_cast@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _origtype;
identifier _origarg;
type _handletype;
@@

 void _callback(
-_origtype _origarg
+struct timer_list *t
 )
 {
+	_handletype *_origarg = from_timer(_origarg, t, _timer);
+
	... when != _origarg
-	(_handletype *)_origarg
+	_origarg
	... when != _origarg
 }

// Avoid already converted callbacks.
@match_callback_converted
 depends on change_timer_function_usage &&
            !change_callback_handle_cast &&
	    !change_callback_handle_cast_no_arg@
identifier change_timer_function_usage._callback;
identifier t;
@@

 void _callback(struct timer_list *t)
 { ... }

// callback(struct something *handle)
@change_callback_handle_arg
 depends on change_timer_function_usage &&
	    !match_callback_converted &&
            !change_callback_handle_cast &&
            !change_callback_handle_cast_no_arg@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _handletype;
identifier _handle;
@@

 void _callback(
-_handletype *_handle
+struct timer_list *t
 )
 {
+	_handletype *_handle = from_timer(_handle, t, _timer);
	...
 }

// If change_callback_handle_arg ran on an empty function, remove
// the added handler.
@unchange_callback_handle_arg
 depends on change_timer_function_usage &&
	    change_callback_handle_arg@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _handletype;
identifier _handle;
identifier t;
@@

 void _callback(struct timer_list *t)
 {
-	_handletype *_handle = from_timer(_handle, t, _timer);
 }

// We only want to refactor the setup_timer() data argument if we've found
// the matching callback. This undoes changes in change_timer_function_usage.
@unchange_timer_function_usage
 depends on change_timer_function_usage &&
            !change_callback_handle_cast &&
            !change_callback_handle_cast_no_arg &&
	    !change_callback_handle_arg@
expression change_timer_function_usage._E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type change_timer_function_usage._cast_data;
@@

(
-timer_setup(&_E->_timer, _callback, 0);
+setup_timer(&_E->_timer, _callback, (_cast_data)_E);
|
-timer_setup(&_E._timer, _callback, 0);
+setup_timer(&_E._timer, _callback, (_cast_data)&_E);
)

// If we fixed a callback from a .function assignment, fix the
// assignment cast now.
@change_timer_function_assignment
 depends on change_timer_function_usage &&
            (change_callback_handle_cast ||
             change_callback_handle_cast_no_arg ||
             change_callback_handle_arg)@
expression change_timer_function_usage._E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type _cast_func;
typedef TIMER_FUNC_TYPE;
@@

(
 _E->_timer.function =
-_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E->_timer.function =
-&_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E->_timer.function =
-(_cast_func)_callback;
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E->_timer.function =
-(_cast_func)&_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E._timer.function =
-_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E._timer.function =
-&_callback;
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E._timer.function =
-(_cast_func)_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E._timer.function =
-(_cast_func)&_callback
+(TIMER_FUNC_TYPE)_callback
 ;
)

// Sometimes timer functions are called directly. Replace matched args.
@change_timer_function_calls
 depends on change_timer_function_usage &&
            (change_callback_handle_cast ||
             change_callback_handle_cast_no_arg ||
             change_callback_handle_arg)@
expression _E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type _cast_data;
@@

 _callback(
(
-(_cast_data)_E
+&_E->_timer
|
-(_cast_data)&_E
+&_E._timer
|
-_E
+&_E->_timer
)
 )

// If a timer has been configured without a data argument, it can be
// converted without regard to the callback argument, since it is unused.
@match_timer_function_unused_data@
expression _E;
identifier _timer;
identifier _callback;
@@

(
-setup_timer(&_E->_timer, _callback, 0);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, 0L);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, 0UL);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0L);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0UL);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0L);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0UL);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0);
+timer_setup(_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0L);
+timer_setup(_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0UL);
+timer_setup(_timer, _callback, 0);
)

@change_callback_unused_data
 depends on match_timer_function_unused_data@
identifier match_timer_function_unused_data._callback;
type _origtype;
identifier _origarg;
@@

 void _callback(
-_origtype _origarg
+struct timer_list *unused
 )
 {
	... when != _origarg
 }

Signed-off-by: Kees Cook <keescook@chromium.org>
2017-11-21 15:57:07 -08:00
Kees Cook
b9eaf18722 treewide: init_timer() -> setup_timer()
This mechanically converts all remaining cases of ancient open-coded timer
setup with the old setup_timer() API, which is the first step in timer
conversions. This has no behavioral changes, since it ultimately just
changes the order of assignment to fields of struct timer_list when
finding variations of:

    init_timer(&t);
    f.function = timer_callback;
    t.data = timer_callback_arg;

to be converted into:

    setup_timer(&t, timer_callback, timer_callback_arg);

The conversion is done with the following Coccinelle script, which
is an improved version of scripts/cocci/api/setup_timer.cocci, in the
following ways:
 - assignments-before-init_timer() cases
 - limit the .data case removal to the specific struct timer_list instance
 - handling calls by dereference (timer->field vs timer.field)

spatch --very-quiet --all-includes --include-headers \
	-I ./arch/x86/include -I ./arch/x86/include/generated \
	-I ./include -I ./arch/x86/include/uapi \
	-I ./arch/x86/include/generated/uapi -I ./include/uapi \
	-I ./include/generated/uapi --include ./include/linux/kconfig.h \
	--dir . \
	--cocci-file ~/src/data/setup_timer.cocci

@fix_address_of@
expression e;
@@

 init_timer(
-&(e)
+&e
 , ...)

// Match the common cases first to avoid Coccinelle parsing loops with
// "... when" clauses.

@match_immediate_function_data_after_init_timer@
expression e, func, da;
@@

-init_timer
+setup_timer
 ( \(&e\|e\)
+, func, da
 );
(
-\(e.function\|e->function\) = func;
-\(e.data\|e->data\) = da;
|
-\(e.data\|e->data\) = da;
-\(e.function\|e->function\) = func;
)

@match_immediate_function_data_before_init_timer@
expression e, func, da;
@@

(
-\(e.function\|e->function\) = func;
-\(e.data\|e->data\) = da;
|
-\(e.data\|e->data\) = da;
-\(e.function\|e->function\) = func;
)
-init_timer
+setup_timer
 ( \(&e\|e\)
+, func, da
 );

@match_function_and_data_after_init_timer@
expression e, e2, e3, e4, e5, func, da;
@@

-init_timer
+setup_timer
 ( \(&e\|e\)
+, func, da
 );
 ... when != func = e2
     when != da = e3
(
-e.function = func;
... when != da = e4
-e.data = da;
|
-e->function = func;
... when != da = e4
-e->data = da;
|
-e.data = da;
... when != func = e5
-e.function = func;
|
-e->data = da;
... when != func = e5
-e->function = func;
)

@match_function_and_data_before_init_timer@
expression e, e2, e3, e4, e5, func, da;
@@
(
-e.function = func;
... when != da = e4
-e.data = da;
|
-e->function = func;
... when != da = e4
-e->data = da;
|
-e.data = da;
... when != func = e5
-e.function = func;
|
-e->data = da;
... when != func = e5
-e->function = func;
)
... when != func = e2
    when != da = e3
-init_timer
+setup_timer
 ( \(&e\|e\)
+, func, da
 );

@r1 exists@
expression t;
identifier f;
position p;
@@

f(...) { ... when any
  init_timer@p(\(&t\|t\))
  ... when any
}

@r2 exists@
expression r1.t;
identifier g != r1.f;
expression e8;
@@

g(...) { ... when any
  \(t.data\|t->data\) = e8
  ... when any
}

// It is dangerous to use setup_timer if data field is initialized
// in another function.
@script:python depends on r2@
p << r1.p;
@@

cocci.include_match(False)

@r3@
expression r1.t, func, e7;
position r1.p;
@@

(
-init_timer@p(&t);
+setup_timer(&t, func, 0UL);
... when != func = e7
-t.function = func;
|
-t.function = func;
... when != func = e7
-init_timer@p(&t);
+setup_timer(&t, func, 0UL);
|
-init_timer@p(t);
+setup_timer(t, func, 0UL);
... when != func = e7
-t->function = func;
|
-t->function = func;
... when != func = e7
-init_timer@p(t);
+setup_timer(t, func, 0UL);
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2017-11-21 15:57:06 -08:00
Miroslav Lichvar
aea3706cfc timekeeping: Remove CONFIG_GENERIC_TIME_VSYSCALL_OLD
As of d4d1fc61eb (ia64: Update fsyscall gettime to use modern
vsyscall_update)the last user of CONFIG_GENERIC_TIME_VSYSCALL_OLD
have been updated, the legacy support for old-style vsyscall
implementations can be removed from the timekeeping code.

(Thanks again to Tony Luck for helping remove the last user!)

[jstultz: Commit message rework]

Signed-off-by: Miroslav Lichvar <mlichvar@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Stephen Boyd <stephen.boyd@linaro.org>
Link: https://lkml.kernel.org/r/1510613491-16695-1-git-send-email-john.stultz@linaro.org
2017-11-14 11:20:25 +01:00
Thomas Gleixner
d4bfeabe9f Merge branch 'linus' into timers/urgent
Get upstream changes so dependent patches can be applied.
2017-11-14 10:01:49 +01:00
Linus Torvalds
2bcc673101 Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
 "Yet another big pile of changes:

   - More year 2038 work from Arnd slowly reaching the point where we
     need to think about the syscalls themself.

   - A new timer function which allows to conditionally (re)arm a timer
     only when it's either not running or the new expiry time is sooner
     than the armed expiry time. This allows to use a single timer for
     multiple timeout requirements w/o caring about the first expiry
     time at the call site.

   - A new NMI safe accessor to clock real time for the printk timestamp
     work. Can be used by tracing, perf as well if required.

   - A large number of timer setup conversions from Kees which got
     collected here because either maintainers requested so or they
     simply got ignored. As Kees pointed out already there are a few
     trivial merge conflicts and some redundant commits which was
     unavoidable due to the size of this conversion effort.

   - Avoid a redundant iteration in the timer wheel softirq processing.

   - Provide a mechanism to treat RTC implementations depending on their
     hardware properties, i.e. don't inflict the write at the 0.5
     seconds boundary which originates from the PC CMOS RTC to all RTCs.
     No functional change as drivers need to be updated separately.

   - The usual small updates to core code clocksource drivers. Nothing
     really exciting"

* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (111 commits)
  timers: Add a function to start/reduce a timer
  pstore: Use ktime_get_real_fast_ns() instead of __getnstimeofday()
  timer: Prepare to change all DEFINE_TIMER() callbacks
  netfilter: ipvs: Convert timers to use timer_setup()
  scsi: qla2xxx: Convert timers to use timer_setup()
  block/aoe: discover_timer: Convert timers to use timer_setup()
  ide: Convert timers to use timer_setup()
  drbd: Convert timers to use timer_setup()
  mailbox: Convert timers to use timer_setup()
  crypto: Convert timers to use timer_setup()
  drivers/pcmcia: omap1: Fix error in automated timer conversion
  ARM: footbridge: Fix typo in timer conversion
  drivers/sgi-xp: Convert timers to use timer_setup()
  drivers/pcmcia: Convert timers to use timer_setup()
  drivers/memstick: Convert timers to use timer_setup()
  drivers/macintosh: Convert timers to use timer_setup()
  hwrng/xgene-rng: Convert timers to use timer_setup()
  auxdisplay: Convert timers to use timer_setup()
  sparc/led: Convert timers to use timer_setup()
  mips: ip22/32: Convert timers to use timer_setup()
  ...
2017-11-13 17:56:58 -08:00
Linus Torvalds
3e2014637c Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
 "The main updates in this cycle were:

   - Group balancing enhancements and cleanups (Brendan Jackman)

   - Move CPU isolation related functionality into its separate
     kernel/sched/isolation.c file, with related 'housekeeping_*()'
     namespace and nomenclature et al. (Frederic Weisbecker)

   - Improve the interactive/cpu-intense fairness calculation (Josef
     Bacik)

   - Improve the PELT code and related cleanups (Peter Zijlstra)

   - Improve the logic of pick_next_task_fair() (Uladzislau Rezki)

   - Improve the RT IPI based balancing logic (Steven Rostedt)

   - Various micro-optimizations:

   - better !CONFIG_SCHED_DEBUG optimizations (Patrick Bellasi)

   - better idle loop (Cheng Jian)

   - ... plus misc fixes, cleanups and updates"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
  sched/core: Optimize sched_feat() for !CONFIG_SCHED_DEBUG builds
  sched/sysctl: Fix attributes of some extern declarations
  sched/isolation: Document isolcpus= boot parameter flags, mark it deprecated
  sched/isolation: Add basic isolcpus flags
  sched/isolation: Move isolcpus= handling to the housekeeping code
  sched/isolation: Handle the nohz_full= parameter
  sched/isolation: Introduce housekeeping flags
  sched/isolation: Split out new CONFIG_CPU_ISOLATION=y config from CONFIG_NO_HZ_FULL
  sched/isolation: Rename is_housekeeping_cpu() to housekeeping_cpu()
  sched/isolation: Use its own static key
  sched/isolation: Make the housekeeping cpumask private
  sched/isolation: Provide a dynamic off-case to housekeeping_any_cpu()
  sched/isolation, watchdog: Use housekeeping_cpumask() instead of ad-hoc version
  sched/isolation: Move housekeeping related code to its own file
  sched/idle: Micro-optimize the idle loop
  sched/isolcpus: Fix "isolcpus=" boot parameter handling when !CONFIG_CPUMASK_OFFSTACK
  x86/tsc: Append the 'tsc=' description for the 'tsc=unstable' boot parameter
  sched/rt: Simplify the IPI based RT balancing logic
  block/ioprio: Use a helper to check for RT prio
  sched/rt: Add a helper to test for a RT task
  ...
2017-11-13 13:37:52 -08:00
Ingo Molnar
8e7df2b5b7 timer/debug: Change /proc/timer_list from 0444 to 0400
While it uses %pK, there's still few reasons to read this file
as non-root.

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-13 16:04:06 +01:00
David Howells
b24591e2fc timers: Add a function to start/reduce a timer
Add a function, similar to mod_timer(), that will start a timer if it isn't
running and will modify it if it is running and has an expiry time longer
than the new time.  If the timer is running with an expiry time that's the
same or sooner, no change is made.

The function looks like:

	int timer_reduce(struct timer_list *timer, unsigned long expires);

This can be used by code such as networking code to make it easier to share
a timer for multiple timeouts.  For instance, in upcoming AF_RXRPC code,
the rxrpc_call struct will maintain a number of timeouts:

	unsigned long	ack_at;
	unsigned long	resend_at;
	unsigned long	ping_at;
	unsigned long	expect_rx_by;
	unsigned long	expect_req_by;
	unsigned long	expect_term_by;

each of which is set independently of the others.  With timer reduction
available, when the code needs to set one of the timeouts, it only needs to
look at that timeout and then call timer_reduce() to modify the timer,
starting it or bringing it forward if necessary.  There is no need to refer
to the other timeouts to see which is earliest and no need to take any lock
other than, potentially, the timer lock inside timer_reduce().

Note, that this does not protect against concurrent invocations of any of
the timer functions.

As an example, the expect_rx_by timeout above, which terminates a call if
we don't get a packet from the server within a certain time window, would
be set something like this:

	unsigned long now = jiffies;
	unsigned long expect_rx_by = now + packet_receive_timeout;
	WRITE_ONCE(call->expect_rx_by, expect_rx_by);
	timer_reduce(&call->timer, expect_rx_by);

The timer service code (which might, say, be in a work function) would then
check all the timeouts to see which, if any, had triggered, deal with
those:

	t = READ_ONCE(call->ack_at);
	if (time_after_eq(now, t)) {
		cmpxchg(&call->ack_at, t, now + MAX_JIFFY_OFFSET);
		set_bit(RXRPC_CALL_EV_ACK, &call->events);
	}

and then restart the timer if necessary by finding the soonest timeout that
hasn't yet passed and then calling timer_reduce().

The disadvantage of doing things this way rather than comparing the timers
each time and calling mod_timer() is that you *will* take timer events
unless you can finish what you're doing and delete the timer in time.

The advantage of doing things this way is that you don't need to use a lock
to work out when the next timer should be set, other than the timer's own
lock - which you might not have to take.

[ tglx: Fixed weird formatting and adopted it to pending changes ]

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: keyrings@vger.kernel.org
Cc: linux-afs@lists.infradead.org
Link: https://lkml.kernel.org/r/151023090769.23050.1801643667223880753.stgit@warthog.procyon.org.uk
2017-11-12 15:10:27 +01:00
Arnd Bergmann
df27067e60 pstore: Use ktime_get_real_fast_ns() instead of __getnstimeofday()
__getnstimeofday() is a rather odd interface, with a number of quirks:

- The caller may come from NMI context, but the implementation is not NMI safe,
  one way to get there from NMI is

      NMI handler:
        something bad
          panic()
            kmsg_dump()
              pstore_dump()
                 pstore_record_init()
                   __getnstimeofday()

- The calling conventions are different from any other timekeeping functions,
  to deal with returning an error code during suspended timekeeping.

Address the above issues by using a completely different method to get the
time: ktime_get_real_fast_ns() is NMI safe and has a reasonable behavior
when timekeeping is suspended: it returns the time at which it got
suspended. As Thomas Gleixner explained, this is safe, as
ktime_get_real_fast_ns() does not call into the clocksource driver that
might be suspended.

The result can easily be transformed into a timespec structure. Since
ktime_get_real_fast_ns() was not exported to modules, add the export.

The pstore behavior for the suspended case changes slightly, as it now
stores the timestamp at which timekeeping was suspended instead of storing
a zero timestamp.

This change is not addressing y2038-safety, that's subject to a more
complex follow up patch.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Anton Vorontsov <anton@enomsg.org>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Colin Cross <ccross@android.com>
Link: https://lkml.kernel.org/r/20171110152530.1926955-1-arnd@arndb.de
2017-11-12 15:05:52 +01:00
Frederic Weisbecker
a69682200d timers/posix-cpu-timers: Use lockdep to assert IRQs are disabled/enabled
Use lockdep to check that IRQs are enabled or disabled as expected. This
way the sanity check only shows overhead when concurrency correctness
debug code is enabled.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: David S . Miller <davem@davemloft.net>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1509980490-4285-13-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-08 11:13:54 +01:00
Frederic Weisbecker
53bef3fd47 timers/hrtimer: Use lockdep to assert IRQs are disabled/enabled
Use lockdep to check that IRQs are enabled or disabled as expected. This
way the sanity check only shows overhead when concurrency correctness
debug code is enabled.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: David S . Miller <davem@davemloft.net>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1509980490-4285-6-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-08 11:13:49 +01:00
Frederic Weisbecker
ebf3adbad0 timers/nohz: Use lockdep to assert IRQs are disabled/enabled
Use lockdep to check that IRQs are enabled or disabled as expected. This
way the sanity check only shows overhead when concurrency correctness
debug code is enabled.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: David S . Miller <davem@davemloft.net>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1509980490-4285-5-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-08 11:13:49 +01:00
Ingo Molnar
8a103df440 Merge branch 'linus' into sched/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-08 10:17:15 +01:00
Randy Dunlap
6082a6e444 kernel/time/Kconfig: Fix typo in comment
Fix typo in Kconfig comment text.

Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Cc: Jiri Kosina <trivial@kernel.org>
Link: https://lkml.kernel.org/r/0e586dd4-2b27-864e-c252-bc72df52fd01@infradead.org
2017-11-02 12:50:34 +01:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Prasad Sodagudi
39c82caff8 clockevents: Update clockevents device next_event on stop
clockevent_device::next_event holds the next timer event of a clock event
device. The value is updated in clockevents_program_event(), i.e. when the
hardware timer is armed for the next expiry.

When there are no software timers armed on a CPU, the corresponding per CPU
clockevent device is brought into ONESHOT_STOPPED state, but
clockevent_device::next_event is not updated, because
clockevents_program_event() is not called.

So the content of clockevent_device::next_event is stale, which is not an
issue when real hardware is used. But the hrtimer broadcast device relies
on that information and the stale value causes spurious wakeups.

Update clockevent_device::next_event to KTIME_MAX when it has been brought
into ONESHOT_STOPPED state to avoid spurious wakeups. This reflects the
proper expiry time of the stopped timer: infinity.

[ tglx: Massaged changelog ]

Signed-off-by: Prasad Sodagudi <psodagud@codeaurora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: viresh.kumar@linaro.org
Link: https://lkml.kernel.org/r/1509043042-32486-1-git-send-email-psodagud@codeaurora.org
2017-11-01 18:20:17 +01:00
Thomas Gleixner
fb56d689fb Merge branch 'fortglx/4.15/time' of https://git.linaro.org/people/john.stultz/linux into timers/core
Pull timekeeping updates from John Stultz:

 - More y2038 work from Arnd Bergmann

 - A new mechanism to allow RTC drivers to specify the resolution of the
   RTC so the suspend/resume code can make informed decisions whether to
   inject the suspended time or not in case of fast suspend/resume cycles.
2017-10-31 23:17:28 +01:00
Arnd Bergmann
abc8f96e3e time: Move time_t conversion helpers to time32.h
On 64-bit architectures, the timespec64 based helpers in linux/time.h
are defined as macros pointing to their timespec based counterparts.
This made sense when they were first introduced, but as we are migrating
away from timespec in general, it's much less intuitive now.

This changes the macros to work in the exact opposite way: we always
provide the timespec64 based helpers and define the old interfaces as
macros for them. Now we can move those macros into linux/time32.h, which
already contains the respective helpers for 32-bit architectures.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Stephen Boyd <stephen.boyd@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
2017-10-30 15:17:19 -07:00
Arnd Bergmann
85bf19e7df time: Remove unused functions
The (slow but) ongoing work on conversion from timespec to timespec64
has led some timespec based helper functions to become unused.

No new code should use them, so we can remove the functions entirely.
I'm planning to obsolete additional interfaces next and remove
more of these.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Stephen Boyd <stephen.boyd@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
2017-10-30 15:14:18 -07:00
Arnd Bergmann
1572fa0378 timekeeping: Use timespec64 in timekeeping_inject_offset
As part of changing all the timekeeping code to use 64-bit
time_t consistently, this removes the uses of timeval
and timespec as much as possible from do_adjtimex() and
timekeeping_inject_offset(). The timeval_inject_offset_valid()
and timespec_inject_offset_valid() just complicate this,
so I'm folding them into the respective callers.

This leaves the actual 'struct timex' definition, which
is part of the user-space ABI and should be dealt with
separately when we have agreed on the ABI change.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Stephen Boyd <stephen.boyd@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
2017-10-30 15:14:17 -07:00
Arnd Bergmann
e0956dcc4b timekeeping: Consolidate timekeeping_inject_offset code
The code to check the adjtimex() or clock_adjtime() arguments is spread
out across multiple files for presumably only historic reasons. As a
preparatation for a rework to get rid of the use of 'struct timeval'
and 'struct timespec' in there, this moves all the portions into
kernel/time/timekeeping.c and marks them as 'static'.

The warp_clock() function here is not as closely related as the others,
but I feel it still makes sense to move it here in order to consolidate
all callers of timekeeping_inject_offset().

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Stephen Boyd <stephen.boyd@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
[jstultz: Whitespace fixup]
Signed-off-by: John Stultz <john.stultz@linaro.org>
2017-10-30 15:13:35 -07:00