Commit Graph

252 Commits

Author SHA1 Message Date
Sean Christopherson
5f8a7cf25a KVM: x86/mmu: Skip mmu_notifier check when handling MMIO page fault
Don't retry a page fault due to an mmu_notifier invalidation when
handling a page fault for a GPA that did not resolve to a memslot, i.e.
an MMIO page fault.  Invalidations from the mmu_notifier signal a change
in a host virtual address (HVA) mapping; without a memslot, there is no
HVA and thus no possibility that the invalidation is relevant to the
page fault being handled.

Note, the MMIO vs. memslot generation checks handle the case where a
pending memslot will create a memslot overlapping the faulting GPA.  The
mmu_notifier checks are orthogonal to memslot updates.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210222024522.1751719-2-stevensd@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-22 13:13:30 -05:00
Sean Christopherson
96ad91ae4e KVM: x86/mmu: Remove a variety of unnecessary exports
Remove several exports from the MMU that are no longer necessary.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-15-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19 03:08:35 -05:00
Sean Christopherson
a1419f8b5b KVM: x86: Fold "write-protect large" use case into generic write-protect
Drop kvm_mmu_slot_largepage_remove_write_access() and refactor its sole
caller to use kvm_mmu_slot_remove_write_access().  Remove the now-unused
slot_handle_large_level() and slot_handle_all_level() helpers.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19 03:08:35 -05:00
Sean Christopherson
b6e16ae5d9 KVM: x86/mmu: Don't set dirty bits when disabling dirty logging w/ PML
Stop setting dirty bits for MMU pages when dirty logging is disabled for
a memslot, as PML is now completely disabled when there are no memslots
with dirty logging enabled.

This means that spurious PML entries will be created for memslots with
dirty logging disabled if at least one other memslot has dirty logging
enabled.  However, spurious PML entries are already possible since
dirty bits are set only when a dirty logging is turned off, i.e. memslots
that are never dirty logged will have dirty bits cleared.

In the end, it's faster overall to eat a few spurious PML entries in the
window where dirty logging is being disabled across all memslots.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19 03:08:35 -05:00
Sean Christopherson
a018eba538 KVM: x86: Move MMU's PML logic to common code
Drop the facade of KVM's PML logic being vendor specific and move the
bits that aren't truly VMX specific into common x86 code.  The MMU logic
for dealing with PML is tightly coupled to the feature and to VMX's
implementation, bouncing through kvm_x86_ops obfuscates the code without
providing any meaningful separation of concerns or encapsulation.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19 03:08:34 -05:00
Sean Christopherson
6dd03800b1 KVM: x86/mmu: Make dirty log size hook (PML) a value, not a function
Store the vendor-specific dirty log size in a variable, there's no need
to wrap it in a function since the value is constant after
hardware_setup() runs.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19 03:08:33 -05:00
Sean Christopherson
2855f98265 KVM: x86/mmu: Expand on the comment in kvm_vcpu_ad_need_write_protect()
Expand the comment about need to use write-protection for nested EPT
when PML is enabled to clarify that the tagging is a nop when PML is
_not_ enabled.  Without the clarification, omitting the PML check looks
wrong at first^Wfifth glance.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19 03:08:33 -05:00
Sean Christopherson
9eba50f8d7 KVM: x86/mmu: Consult max mapping level when zapping collapsible SPTEs
When zapping SPTEs in order to rebuild them as huge pages, use the new
helper that computes the max mapping level to detect whether or not a
SPTE should be zapped.  Doing so avoids zapping SPTEs that can't
possibly be rebuilt as huge pages, e.g. due to hardware constraints,
memslot alignment, etc...

This also avoids zapping SPTEs that are still large, e.g. if migration
was canceled before write-protected huge pages were shattered to enable
dirty logging.  Note, such pages are still write-protected at this time,
i.e. a page fault VM-Exit will still occur.  This will hopefully be
addressed in a future patch.

Sadly, TDP MMU loses its const on the memslot, but that's a pervasive
problem that's been around for quite some time.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19 03:08:28 -05:00
Sean Christopherson
0a234f5dd0 KVM: x86/mmu: Pass the memslot to the rmap callbacks
Pass the memslot to the rmap callbacks, it will be used when zapping
collapsible SPTEs to verify the memslot is compatible with hugepages
before zapping its SPTEs.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19 03:08:12 -05:00
Sean Christopherson
1b6d9d9ed5 KVM: x86/mmu: Split out max mapping level calculation to helper
Factor out the logic for determining the maximum mapping level given a
memslot and a gpa.  The helper will be used when zapping collapsible
SPTEs when disabling dirty logging, e.g. to avoid zapping SPTEs that
can't possibly be rebuilt as hugepages.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19 03:08:11 -05:00
Sean Christopherson
c060c72ffe KVM: x86/mmu: Expand collapsible SPTE zap for TDP MMU to ZONE_DEVICE and HugeTLB pages
Zap SPTEs that are backed by ZONE_DEVICE pages when zappings SPTEs to
rebuild them as huge pages in the TDP MMU.  ZONE_DEVICE huge pages are
managed differently than "regular" pages and are not compound pages.
Likewise, PageTransCompoundMap() will not detect HugeTLB, so switch
to PageCompound().

This matches the similar check in kvm_mmu_zap_collapsible_spte.

Cc: Ben Gardon <bgardon@google.com>
Fixes: 1488199856 ("kvm: x86/mmu: Support disabling dirty logging for the tdp MMU")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19 03:07:16 -05:00
Maciej S. Szmigiero
8f5c44f953 KVM: x86/mmu: Make HVA handler retpoline-friendly
When retpolines are enabled they have high overhead in the inner loop
inside kvm_handle_hva_range() that iterates over the provided memory area.

Let's mark this function and its TDP MMU equivalent __always_inline so
compiler will be able to change the call to the actual handler function
inside each of them into a direct one.

This significantly improves performance on the unmap test on the existing
kernel memslot code (tested on a Xeon 8167M machine):
30 slots in use:
Test       Before   After     Improvement
Unmap      0.0353s  0.0334s   5%
Unmap 2M   0.00104s 0.000407s 61%

509 slots in use:
Test       Before   After     Improvement
Unmap      0.0742s  0.0740s   None
Unmap 2M   0.00221s 0.00159s  28%

Looks like having an indirect call in these functions (and, so, a
retpoline) might have interfered with unrolling of the whole loop in the
CPU.

Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <732d3fe9eb68aa08402a638ab0309199fa89ae56.1612810129.git.maciej.szmigiero@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:42:09 -05:00
Paolo Bonzini
897218ff7c KVM: x86: compile out TDP MMU on 32-bit systems
The TDP MMU assumes that it can do atomic accesses to 64-bit PTEs.
Rather than just disabling it, compile it out completely so that it
is possible to use for example 64-bit xchg.

To limit the number of stubs, wrap all accesses to tdp_mmu_enabled
or tdp_mmu_page with a function.  Calls to all other functions in
tdp_mmu.c are eliminated and do not even reach the linker.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Tested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-08 14:49:01 -05:00
Sean Christopherson
6f8e65a601 KVM: x86/mmu: Add helper to generate mask of reserved HPA bits
Add a helper to generate the mask of reserved PA bits in the host.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 09:27:29 -05:00
Sean Christopherson
5b7f575ccd KVM: x86: Use reserved_gpa_bits to calculate reserved PxE bits
Use reserved_gpa_bits, which accounts for exceptions to the maxphyaddr
rule, e.g. SEV's C-bit, for the page {table,directory,etc...} entry (PxE)
reserved bits checks.  For SEV, the C-bit is ignored by hardware when
walking pages tables, e.g. the APM states:

  Note that while the guest may choose to set the C-bit explicitly on
  instruction pages and page table addresses, the value of this bit is a
  don't-care in such situations as hardware always performs these as
  private accesses.

Such behavior is expected to hold true for other features that repurpose
GPA bits, e.g. KVM could theoretically emulate SME or MKTME, which both
allow non-zero repurposed bits in the page tables.  Conceptually, KVM
should apply reserved GPA checks universally, and any features that do
not adhere to the basic rule should be explicitly handled, i.e. if a GPA
bit is repurposed but not allowed in page tables for whatever reason.

Refactor __reset_rsvds_bits_mask() to take the pre-generated reserved
bits mask, and opportunistically clean up its code, e.g. to align lines
and comments.

Practically speaking, this is change is a likely a glorified nop given
the current KVM code base.  SEV's C-bit is the only repurposed GPA bit,
and KVM doesn't support shadowing encrypted page tables (which is
theoretically possible via SEV debug APIs).

Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 09:27:29 -05:00
Ben Gardon
a2855afc7e KVM: x86/mmu: Allow parallel page faults for the TDP MMU
Make the last few changes necessary to enable the TDP MMU to handle page
faults in parallel while holding the mmu_lock in read mode.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-24-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:45 -05:00
Ben Gardon
e25f0e0cd5 KVM: x86/mmu: Mark SPTEs in disconnected pages as removed
When clearing TDP MMU pages what have been disconnected from the paging
structure root, set the SPTEs to a special non-present value which will
not be overwritten by other threads. This is needed to prevent races in
which a thread is clearing a disconnected page table, but another thread
has already acquired a pointer to that memory and installs a mapping in
an already cleared entry. This can lead to memory leaks and accounting
errors.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-23-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:45 -05:00
Ben Gardon
08f07c800e KVM: x86/mmu: Flush TLBs after zap in TDP MMU PF handler
When the TDP MMU is allowed to handle page faults in parallel there is
the possiblity of a race where an SPTE is cleared and then imediately
replaced with a present SPTE pointing to a different PFN, before the
TLBs can be flushed. This race would violate architectural specs. Ensure
that the TLBs are flushed properly before other threads are allowed to
install any present value for the SPTE.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>

Message-Id: <20210202185734.1680553-22-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:44 -05:00
Ben Gardon
9a77daacc8 KVM: x86/mmu: Use atomic ops to set SPTEs in TDP MMU map
To prepare for handling page faults in parallel, change the TDP MMU
page fault handler to use atomic operations to set SPTEs so that changes
are not lost if multiple threads attempt to modify the same SPTE.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>

Message-Id: <20210202185734.1680553-21-bgardon@google.com>
[Document new locking rules. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:44 -05:00
Ben Gardon
a9442f5941 KVM: x86/mmu: Factor out functions to add/remove TDP MMU pages
Move the work of adding and removing TDP MMU pages to/from  "secondary"
data structures to helper functions. These functions will be built on in
future commits to enable MMU operations to proceed (mostly) in parallel.

No functional change expected.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-20-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:44 -05:00
Ben Gardon
531810caa9 KVM: x86/mmu: Use an rwlock for the x86 MMU
Add a read / write lock to be used in place of the MMU spinlock on x86.
The rwlock will enable the TDP MMU to handle page faults, and other
operations in parallel in future commits.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>

Message-Id: <20210202185734.1680553-19-bgardon@google.com>
[Introduce virt/kvm/mmu_lock.h - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:43 -05:00
Ben Gardon
7cca2d0b7e KVM: x86/mmu: Protect TDP MMU page table memory with RCU
In order to enable concurrent modifications to the paging structures in
the TDP MMU, threads must be able to safely remove pages of page table
memory while other threads are traversing the same memory. To ensure
threads do not access PT memory after it is freed, protect PT memory
with RCU.

Protecting concurrent accesses to page table memory from use-after-free
bugs could also have been acomplished using
walk_shadow_page_lockless_begin/end() and READING_SHADOW_PAGE_TABLES,
coupling with the barriers in a TLB flush. The use of RCU for this case
has several distinct advantages over that approach.
1. Disabling interrupts for long running operations is not desirable.
   Future commits will allow operations besides page faults to operate
   without the exclusive protection of the MMU lock and those operations
   are too long to disable iterrupts for their duration.
2. The use of RCU here avoids long blocking / spinning operations in
   perfromance critical paths. By freeing memory with an asynchronous
   RCU API we avoid the longer wait times TLB flushes experience when
   overlapping with a thread in walk_shadow_page_lockless_begin/end().
3. RCU provides a separation of concerns when removing memory from the
   paging structure. Because the RCU callback to free memory can be
   scheduled immediately after a TLB flush, there's no need for the
   thread to manually free a queue of pages later, as commit_zap_pages
   does.

Fixes: 95fb5b0258 ("kvm: x86/mmu: Support MMIO in the TDP MMU")
Reviewed-by: Peter Feiner <pfeiner@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>

Message-Id: <20210202185734.1680553-18-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:42 -05:00
Ben Gardon
f1b3b06a05 KVM: x86/mmu: Clear dirtied pages mask bit before early break
In clear_dirty_pt_masked, the loop is intended to exit early after
processing each of the GFNs with corresponding bits set in mask. This
does not work as intended if another thread has already cleared the
dirty bit or writable bit on the SPTE. In that case, the loop would
proceed to the next iteration early and the bit in mask would not be
cleared. As a result the loop could not exit early and would proceed
uselessly. Move the unsetting of the mask bit before the check for a
no-op SPTE change.

Fixes: a6a0b05da9 ("kvm: x86/mmu: Support dirty logging for the TDP
MMU")

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-17-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:41 -05:00
Ben Gardon
0f99ee2c7a KVM: x86/mmu: Skip no-op changes in TDP MMU functions
Skip setting SPTEs if no change is expected.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>

Message-Id: <20210202185734.1680553-16-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:41 -05:00
Ben Gardon
1af4a96025 KVM: x86/mmu: Yield in TDU MMU iter even if no SPTES changed
Given certain conditions, some TDP MMU functions may not yield
reliably / frequently enough. For example, if a paging structure was
very large but had few, if any writable entries, wrprot_gfn_range
could traverse many entries before finding a writable entry and yielding
because the check for yielding only happens after an SPTE is modified.

Fix this issue by moving the yield to the beginning of the loop.

Fixes: a6a0b05da9 ("kvm: x86/mmu: Support dirty logging for the TDP MMU")
Reviewed-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>

Message-Id: <20210202185734.1680553-15-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:41 -05:00
Ben Gardon
ed5e484b79 KVM: x86/mmu: Ensure forward progress when yielding in TDP MMU iter
In some functions the TDP iter risks not making forward progress if two
threads livelock yielding to one another. This is possible if two threads
are trying to execute wrprot_gfn_range. Each could write protect an entry
and then yield. This would reset the tdp_iter's walk over the paging
structure and the loop would end up repeating the same entry over and
over, preventing either thread from making forward progress.

Fix this issue by only yielding if the loop has made forward progress
since the last yield.

Fixes: a6a0b05da9 ("kvm: x86/mmu: Support dirty logging for the TDP MMU")
Reviewed-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>

Message-Id: <20210202185734.1680553-14-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:40 -05:00
Ben Gardon
74953d3530 KVM: x86/mmu: Rename goal_gfn to next_last_level_gfn
The goal_gfn field in tdp_iter can be misleading as it implies that it
is the iterator's final goal. It is really a target for the lowest gfn
mapped by the leaf level SPTE the iterator will traverse towards. Change
the field's name to be more precise.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-13-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:40 -05:00
Ben Gardon
e139a34ef9 KVM: x86/mmu: Merge flush and non-flush tdp_mmu_iter_cond_resched
The flushing and non-flushing variants of tdp_mmu_iter_cond_resched have
almost identical implementations. Merge the two functions and add a
flush parameter.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-12-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:40 -05:00
Ben Gardon
8d1a182ea7 KVM: x86/mmu: Fix braces in kvm_recover_nx_lpages
No functional change intended.

Fixes: 29cf0f5007 ("kvm: x86/mmu: NX largepage recovery for TDP MMU")
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-10-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:39 -05:00
Ben Gardon
a066e61f13 KVM: x86/mmu: Factor out handling of removed page tables
Factor out the code to handle a disconnected subtree of the TDP paging
structure from the code to handle the change to an individual SPTE.
Future commits will build on this to allow asynchronous page freeing.

No functional change intended.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>

Message-Id: <20210202185734.1680553-6-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:39 -05:00
Ben Gardon
734e45b329 KVM: x86/mmu: Don't redundantly clear TDP MMU pt memory
The KVM MMU caches already guarantee that shadow page table memory will
be zeroed, so there is no reason to re-zero the page in the TDP MMU page
fault handler.

No functional change intended.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-5-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:39 -05:00
Ben Gardon
3a9a4aa565 KVM: x86/mmu: Add lockdep when setting a TDP MMU SPTE
Add lockdep to __tdp_mmu_set_spte to ensure that SPTEs are only modified
under the MMU lock.

No functional change intended.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-4-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:38 -05:00
Ben Gardon
fe43fa2f40 KVM: x86/mmu: Add comment on __tdp_mmu_set_spte
__tdp_mmu_set_spte is a very important function in the TDP MMU which
already accepts several arguments and will take more in future commits.
To offset this complexity, add a comment to the function describing each
of the arguemnts.

No functional change intended.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-3-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:38 -05:00
Ben Gardon
e28a436ca4 KVM: x86/mmu: change TDP MMU yield function returns to match cond_resched
Currently the TDP MMU yield / cond_resched functions either return
nothing or return true if the TLBs were not flushed. These are confusing
semantics, especially when making control flow decisions in calling
functions.

To clean things up, change both functions to have the same
return value semantics as cond_resched: true if the thread yielded,
false if it did not. If the function yielded in the _flush_ version,
then the TLBs will have been flushed.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-2-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:38 -05:00
Stephen Zhang
805a0f8390 KVM: x86/mmu: Add '__func__' in rmap_printk()
Given the common pattern:

rmap_printk("%s:"..., __func__,...)

we could improve this by adding '__func__' in rmap_printk().

Signed-off-by: Stephen Zhang <stephenzhangzsd@gmail.com>
Message-Id: <1611713325-3591-1-git-send-email-stephenzhangzsd@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:36 -05:00
Jason Baron
b3646477d4 KVM: x86: use static calls to reduce kvm_x86_ops overhead
Convert kvm_x86_ops to use static calls. Note that all kvm_x86_ops are
covered here except for 'pmu_ops and 'nested ops'.

Here are some numbers running cpuid in a loop of 1 million calls averaged
over 5 runs, measured in the vm (lower is better).

Intel Xeon 3000MHz:

           |default    |mitigations=off
-------------------------------------
vanilla    |.671s      |.486s
static call|.573s(-15%)|.458s(-6%)

AMD EPYC 2500MHz:

           |default    |mitigations=off
-------------------------------------
vanilla    |.710s      |.609s
static call|.664s(-6%) |.609s(0%)

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jason Baron <jbaron@akamai.com>
Message-Id: <e057bf1b8a7ad15652df6eeba3f907ae758d3399.1610680941.git.jbaron@akamai.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:30 -05:00
Cun Li
6e4e3b4df4 KVM: Stop using deprecated jump label APIs
The use of 'struct static_key' and 'static_key_false' is
deprecated. Use the new API.

Signed-off-by: Cun Li <cun.jia.li@gmail.com>
Message-Id: <20210111152435.50275-1-cun.jia.li@gmail.com>
[Make it compile.  While at it, rename kvm_no_apic_vcpu to
 kvm_has_noapic_vcpu; the former reads too much like "true if
 no vCPU has an APIC". - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:29 -05:00
Sean Christopherson
c5e2184d15 KVM: x86/mmu: Remove the defunct update_pte() paging hook
Remove the update_pte() shadow paging logic, which was obsoleted by
commit 4731d4c7a0 ("KVM: MMU: out of sync shadow core"), but never
removed.  As pointed out by Yu, KVM never write protects leaf page
tables for the purposes of shadow paging, and instead marks their
associated shadow page as unsync so that the guest can write PTEs at
will.

The update_pte() path, which predates the unsync logic, optimizes COW
scenarios by refreshing leaf SPTEs when they are written, as opposed to
zapping the SPTE, restarting the guest, and installing the new SPTE on
the subsequent fault.  Since KVM no longer write-protects leaf page
tables, update_pte() is unreachable and can be dropped.

Reported-by: Yu Zhang <yu.c.zhang@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210115004051.4099250-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:17 -05:00
Sean Christopherson
8fc517267f KVM: x86: Zap the oldest MMU pages, not the newest
Walk the list of MMU pages in reverse in kvm_mmu_zap_oldest_mmu_pages().
The list is FIFO, meaning new pages are inserted at the head and thus
the oldest pages are at the tail.  Using a "forward" iterator causes KVM
to zap MMU pages that were just added, which obliterates guest
performance once the max number of shadow MMU pages is reached.

Fixes: 6b82ef2c9c ("KVM: x86/mmu: Batch zap MMU pages when recycling oldest pages")
Reported-by: Zdenek Kaspar <zkaspar82@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210113205030.3481307-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:15 -05:00
Sean Christopherson
15e6a7e532 KVM: x86/mmu: Use boolean returns for (S)PTE accessors
Return a 'bool' instead of an 'int' for various PTE accessors that are
boolean in nature, e.g. is_shadow_present_pte().  Returning an int is
goofy and potentially dangerous, e.g. if a flag being checked is moved
into the upper 32 bits of a SPTE, then the compiler may silently squash
the entire check since casting to an int is guaranteed to yield a
return value of '0'.

Opportunistically refactor is_last_spte() so that it naturally returns
a bool value instead of letting it implicitly cast 0/1 to false/true.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210123003003.3137525-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:15 -05:00
Ben Gardon
87aa9ec939 KVM: x86/mmu: Fix TDP MMU zap collapsible SPTEs
There is a bug in the TDP MMU function to zap SPTEs which could be
replaced with a larger mapping which prevents the function from doing
anything. Fix this by correctly zapping the last level SPTEs.

Cc: stable@vger.kernel.org
Fixes: 1488199856 ("kvm: x86/mmu: Support disabling dirty logging for the tdp MMU")
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-11-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 04:38:53 -05:00
Ben Gardon
a889ea54b3 KVM: x86/mmu: Ensure TDP MMU roots are freed after yield
Many TDP MMU functions which need to perform some action on all TDP MMU
roots hold a reference on that root so that they can safely drop the MMU
lock in order to yield to other threads. However, when releasing the
reference on the root, there is a bug: the root will not be freed even
if its reference count (root_count) is reduced to 0.

To simplify acquiring and releasing references on TDP MMU root pages, and
to ensure that these roots are properly freed, move the get/put operations
into another TDP MMU root iterator macro.

Moving the get/put operations into an iterator macro also helps
simplify control flow when a root does need to be freed. Note that using
the list_for_each_entry_safe macro would not have been appropriate in
this situation because it could keep a pointer to the next root across
an MMU lock release + reacquire, during which time that root could be
freed.

Reported-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Fixes: faaf05b00a ("kvm: x86/mmu: Support zapping SPTEs in the TDP MMU")
Fixes: 063afacd87 ("kvm: x86/mmu: Support invalidate range MMU notifier for TDP MMU")
Fixes: a6a0b05da9 ("kvm: x86/mmu: Support dirty logging for the TDP MMU")
Fixes: 1488199856 ("kvm: x86/mmu: Support disabling dirty logging for the tdp MMU")
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210107001935.3732070-1-bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-01-07 18:11:31 -05:00
Paolo Bonzini
bc351f0726 Merge branch 'kvm-master' into kvm-next
Fixes to get_mmio_spte, destined to 5.10 stable branch.
2021-01-07 18:06:52 -05:00
Sean Christopherson
9aa418792f KVM: x86/mmu: Optimize not-present/MMIO SPTE check in get_mmio_spte()
Check only the terminal leaf for a "!PRESENT || MMIO" SPTE when looking
for reserved bits on valid, non-MMIO SPTEs.  The get_walk() helpers
terminate their walks if a not-present or MMIO SPTE is encountered, i.e.
the non-terminal SPTEs have already been verified to be regular SPTEs.
This eliminates an extra check-and-branch in a relatively hot loop.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20201218003139.2167891-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-01-07 18:00:27 -05:00
Sean Christopherson
dde81f9477 KVM: x86/mmu: Use raw level to index into MMIO walks' sptes array
Bump the size of the sptes array by one and use the raw level of the
SPTE to index into the sptes array.  Using the SPTE level directly
improves readability by eliminating the need to reason out why the level
is being adjusted when indexing the array.  The array is on the stack
and is not explicitly initialized; bumping its size is nothing more than
a superficial adjustment to the stack frame.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20201218003139.2167891-4-seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-01-07 18:00:26 -05:00
Sean Christopherson
39b4d43e60 KVM: x86/mmu: Get root level from walkers when retrieving MMIO SPTE
Get the so called "root" level from the low level shadow page table
walkers instead of manually attempting to calculate it higher up the
stack, e.g. in get_mmio_spte().  When KVM is using PAE shadow paging,
the starting level of the walk, from the callers perspective, is not
the CR3 root but rather the PDPTR "root".  Checking for reserved bits
from the CR3 root causes get_mmio_spte() to consume uninitialized stack
data due to indexing into sptes[] for a level that was not filled by
get_walk().  This can result in false positives and/or negatives
depending on what garbage happens to be on the stack.

Opportunistically nuke a few extra newlines.

Fixes: 95fb5b0258 ("kvm: x86/mmu: Support MMIO in the TDP MMU")
Reported-by: Richard Herbert <rherbert@sympatico.ca>
Cc: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20201218003139.2167891-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-01-07 18:00:24 -05:00
Sean Christopherson
2aa078932f KVM: x86/mmu: Use -1 to flag an undefined spte in get_mmio_spte()
Return -1 from the get_walk() helpers if the shadow walk doesn't fill at
least one spte, which can theoretically happen if the walk hits a
not-present PDPTR.  Returning the root level in such a case will cause
get_mmio_spte() to return garbage (uninitialized stack data).  In
practice, such a scenario should be impossible as KVM shouldn't get a
reserved-bit page fault with a not-present PDPTR.

Note, using mmu->root_level in get_walk() is wrong for other reasons,
too, but that's now a moot point.

Fixes: 95fb5b0258 ("kvm: x86/mmu: Support MMIO in the TDP MMU")
Cc: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20201218003139.2167891-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-01-07 18:00:23 -05:00
Maciej S. Szmigiero
34c0f6f269 KVM: mmu: Fix SPTE encoding of MMIO generation upper half
Commit cae7ed3c2c ("KVM: x86: Refactor the MMIO SPTE generation handling")
cleaned up the computation of MMIO generation SPTE masks, however it
introduced a bug how the upper part was encoded:
SPTE bits 52-61 were supposed to contain bits 10-19 of the current
generation number, however a missing shift encoded bits 1-10 there instead
(mostly duplicating the lower part of the encoded generation number that
then consisted of bits 1-9).

In the meantime, the upper part was shrunk by one bit and moved by
subsequent commits to become an upper half of the encoded generation number
(bits 9-17 of bits 0-17 encoded in a SPTE).

In addition to the above, commit 56871d444b ("KVM: x86: fix overlap between SPTE_MMIO_MASK and generation")
has changed the SPTE bit range assigned to encode the generation number and
the total number of bits encoded but did not update them in the comment
attached to their defines, nor in the KVM MMU doc.
Let's do it here, too, since it is too trivial thing to warrant a separate
commit.

Fixes: cae7ed3c2c ("KVM: x86: Refactor the MMIO SPTE generation handling")
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <156700708db2a5296c5ed7a8b9ac71f1e9765c85.1607129096.git.maciej.szmigiero@oracle.com>
Cc: stable@vger.kernel.org
[Reorganize macros so that everything is computed from the bit ranges. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-11 19:18:43 -05:00
Rick Edgecombe
339f5a7fb2 kvm: x86/mmu: Use cpuid to determine max gfn
In the TDP MMU, use shadow_phys_bits to dermine the maximum possible GFN
mapped in the guest for zapping operations. boot_cpu_data.x86_phys_bits
may be reduced in the case of HW features that steal HPA bits for other
purposes. However, this doesn't necessarily reduce GPA space that can be
accessed via TDP. So zap based on a maximum gfn calculated with MAXPHYADDR
retrieved from CPUID. This is already stored in shadow_phys_bits, so use
it instead of x86_phys_bits.

Fixes: faaf05b00a ("kvm: x86/mmu: Support zapping SPTEs in the TDP MMU")
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Message-Id: <20201203231120.27307-1-rick.p.edgecombe@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-04 03:48:33 -05:00
Vitaly Kuznetsov
9a2a0d3ca1 kvm: x86/mmu: Fix get_mmio_spte() on CPUs supporting 5-level PT
Commit 95fb5b0258 ("kvm: x86/mmu: Support MMIO in the TDP MMU") caused
the following WARNING on an Intel Ice Lake CPU:

 get_mmio_spte: detect reserved bits on spte, addr 0xb80a0, dump hierarchy:
 ------ spte 0xb80a0 level 5.
 ------ spte 0xfcd210107 level 4.
 ------ spte 0x1004c40107 level 3.
 ------ spte 0x1004c41107 level 2.
 ------ spte 0x1db00000000b83b6 level 1.
 WARNING: CPU: 109 PID: 10254 at arch/x86/kvm/mmu/mmu.c:3569 kvm_mmu_page_fault.cold.150+0x54/0x22f [kvm]
...
 Call Trace:
  ? kvm_io_bus_get_first_dev+0x55/0x110 [kvm]
  vcpu_enter_guest+0xaa1/0x16a0 [kvm]
  ? vmx_get_cs_db_l_bits+0x17/0x30 [kvm_intel]
  ? skip_emulated_instruction+0xaa/0x150 [kvm_intel]
  kvm_arch_vcpu_ioctl_run+0xca/0x520 [kvm]

The guest triggering this crashes. Note, this happens with the traditional
MMU and EPT enabled, not with the newly introduced TDP MMU. Turns out,
there was a subtle change in the above mentioned commit. Previously,
walk_shadow_page_get_mmio_spte() was setting 'root' to 'iterator.level'
which is returned by shadow_walk_init() and this equals to
'vcpu->arch.mmu->shadow_root_level'. Now, get_mmio_spte() sets it to
'int root = vcpu->arch.mmu->root_level'.

The difference between 'root_level' and 'shadow_root_level' on CPUs
supporting 5-level page tables is that in some case we don't want to
use 5-level, in particular when 'cpuid_maxphyaddr(vcpu) <= 48'
kvm_mmu_get_tdp_level() returns '4'. In case upper layer is not used,
the corresponding SPTE will fail '__is_rsvd_bits_set()' check.

Revert to using 'shadow_root_level'.

Fixes: 95fb5b0258 ("kvm: x86/mmu: Support MMIO in the TDP MMU")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20201126110206.2118959-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-27 11:14:27 -05:00