This reverts commit df54d6fa54.
The commit isn't necessarily wrong, but because it recalculates the
random mmap_base every time, it seems to confuse user memory allocators
that expect contiguous mmap allocations even when the mmap address isn't
specified.
In particular, the MATLAB Java runtime seems to be unhappy. See
https://bugzilla.kernel.org/show_bug.cgi?id=60774
So we'll want to apply the random offset only once, and Radu has a patch
for that. Revert this older commit in order to apply the other one.
Reported-by: Jeff Shorey <shoreyjeff@gmail.com>
Cc: Radu Caragea <sinaelgl@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the stack is set to unlimited, the bottomup direction is used for
mmap-ings but the mmap_base is not used and thus effectively renders
ASLR for mmapings along with PIE useless.
Cc: Michel Lespinasse <walken@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Adrian Sendroiu <molecula2788@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
Note that some harmless section mismatch warnings may result, since
notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c)
are flagged as __cpuinit -- so if we remove the __cpuinit from
arch specific callers, we will also get section mismatch warnings.
As an intermediate step, we intend to turn the linux/init.h cpuinit
content into no-ops as early as possible, since that will get rid
of these warnings. In any case, they are temporary and harmless.
This removes all the arch/x86 uses of the __cpuinit macros from
all C files. x86 only had the one __CPUINIT used in assembly files,
and it wasn't paired off with a .previous or a __FINIT, so we can
delete it directly w/o any corresponding additional change there.
[1] https://lkml.org/lkml/2013/5/20/589
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Since all architectures have been converted to use vm_unmapped_area(),
there is no remaining use for the free_area_cache.
Signed-off-by: Michel Lespinasse <walken@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Richard Henderson <rth@twiddle.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The old codes accumulate addr to get right pmd, however, currently pmds
are preallocated and transfered as a parameter, there is unnecessary to
accumulate addr variable any more, this patch remove it.
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Concentrate code to modify totalram_pages into the mm core, so the arch
memory initialized code doesn't need to take care of it. With these
changes applied, only following functions from mm core modify global
variable totalram_pages: free_bootmem_late(), free_all_bootmem(),
free_all_bootmem_node(), adjust_managed_page_count().
With this patch applied, it will be much more easier for us to keep
totalram_pages and zone->managed_pages in consistence.
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Acked-by: David Howells <dhowells@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: <sworddragon2@aol.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michel Lespinasse <walken@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In order to simpilify management of totalram_pages and
zone->managed_pages, make __free_pages_bootmem() only available at boot
time. With this change applied, __free_pages_bootmem() will only be
used by bootmem.c and nobootmem.c at boot time, so mark it as __init.
Other callers of __free_pages_bootmem() have been converted to use
free_reserved_page(), which handles totalram_pages and
zone->managed_pages in a safer way.
This patch also fix a bug in free_pagetable() for x86_64, which should
increase zone->managed_pages instead of zone->present_pages when freeing
reserved pages.
And now we have managed_pages_count_lock to protect totalram_pages and
zone->managed_pages, so remove the redundant ppb_lock lock in
put_page_bootmem(). This greatly simplifies the locking rules.
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan@kernel.org>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: <sworddragon2@aol.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Tejun Heo <tj@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit "mm: introduce new field 'managed_pages' to struct zone" assumes
that all highmem pages will be freed into the buddy system by function
mem_init(). But that's not always true, some architectures may reserve
some highmem pages during boot. For example PPC may allocate highmem
pages for giagant HugeTLB pages, and several architectures have code to
check PageReserved flag to exclude highmem pages allocated during boot
when freeing highmem pages into the buddy system.
So treat highmem pages in the same way as normal pages, that is to:
1) reset zone->managed_pages to zero in mem_init().
2) recalculate managed_pages when freeing pages into the buddy system.
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: <sworddragon2@aol.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- KVM and Xen ports to AArch64
- Hugetlbfs and transparent huge pages support for arm64
- Applied Micro X-Gene Kconfig entry and dts file
- Cache flushing improvements
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.9 (GNU/Linux)
iQIcBAABAgAGBQJR0bZAAAoJEGvWsS0AyF7xTEEP/R/aRoqWwbVAMlwAhujq616O
t4RzIyBXZXqxS9I+raokCX4mgYxdeisJlzN2hoq73VEX2BQlXZoYh8vmfY9WeNSM
2pdfif2HF7oo9ymCRyqfuhbumPrTyJhpbguzOYrxPqpp2f1hv2D8hbUJEFj429yL
UjqTFoONngfouZmAlwrPGZQKhBI95vvN53yvDMH0PWfvpm07DKGIQMYp20y0pj8j
slhLH3bh2kfpS1cf23JtH6IICwWD2pXW0POo569CfZry6bI74xve+Trcsm7iPnsO
PSI1P046ME1mu3SBbKwiPIdN/FQqWwTHW07fvMmH/xuXu3Zs/mxgzi7vDzDrVvTg
PJSbKWD6N/IPPwKS/gCUmWWDASO0bXx3KlDuRZqAjbRojs0UPUOTUhzJM/BHUms1
vY2QS9lAm02LmZZrk1LeKKP85gB+qKQvHuOVhIOldWeLGKtsNufz1kynz6YTqsLq
uUB55KwbhQ7q8+aoY6lWujqiTXMoLkBgGdjHs2I407PAv7ZjlhRWk2fIry7xJifp
rKu2cIlWsRe4CGvGI410NvIJFrGvJAV4wA43sgBDjPumyILgT/5jw9r3RpJEBZZs
akw/Bl1CbL+gMjyoPUWgcWZdRkUCE0eLrgyMOmaYfst8cOTaWw4dWLvUG/bBZg+Y
mGnuEQUQtAPadk8P/Sv3
=PZ/e
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/linux-aarch64
Pull ARM64 updates from Catalin Marinas:
"Main features:
- KVM and Xen ports to AArch64
- Hugetlbfs and transparent huge pages support for arm64
- Applied Micro X-Gene Kconfig entry and dts file
- Cache flushing improvements
For arm64 huge pages support, there are x86 changes moving part of
arch/x86/mm/hugetlbpage.c into mm/hugetlb.c to be re-used by arm64"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/linux-aarch64: (66 commits)
arm64: Add initial DTS for APM X-Gene Storm SOC and APM Mustang board
arm64: Add defines for APM ARMv8 implementation
arm64: Enable APM X-Gene SOC family in the defconfig
arm64: Add Kconfig option for APM X-Gene SOC family
arm64/Makefile: provide vdso_install target
ARM64: mm: THP support.
ARM64: mm: Raise MAX_ORDER for 64KB pages and THP.
ARM64: mm: HugeTLB support.
ARM64: mm: Move PTE_PROT_NONE bit.
ARM64: mm: Make PAGE_NONE pages read only and no-execute.
ARM64: mm: Restore memblock limit when map_mem finished.
mm: thp: Correct the HPAGE_PMD_ORDER check.
x86: mm: Remove general hugetlb code from x86.
mm: hugetlb: Copy general hugetlb code from x86 to mm.
x86: mm: Remove x86 version of huge_pmd_share.
mm: hugetlb: Copy huge_pmd_share from x86 to mm.
arm64: KVM: document kernel object mappings in HYP
arm64: KVM: MAINTAINERS update
arm64: KVM: userspace API documentation
arm64: KVM: enable initialization of a 32bit vcpu
...
Pull x86 mm changes from Ingo Molnar:
"Misc improvements:
- Fix /proc/mtrr reporting
- Fix ioremap printout
- Remove the unused pvclock fixmap entry on 32-bit
- misc cleanups"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ioremap: Correct function name output
x86: Fix /proc/mtrr with base/size more than 44bits
ix86: Don't waste fixmap entries
x86/mm: Drop unneeded include <asm/*pgtable, page*_types.h>
x86_64: Correct phys_addr in cleanup_highmap comment
huge_pte_alloc, huge_pte_offset and follow_huge_p[mu]d have
already been copied over to mm.
This patch removes the x86 copies of these functions and activates
the general ones by enabling:
CONFIG_ARCH_WANT_GENERAL_HUGETLB
Signed-off-by: Steve Capper <steve.capper@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
The huge_pmd_share code has been copied over to mm/hugetlb.c to
make it accessible to other architectures.
Remove the x86 copy of the huge_pmd_share code and enable the
ARCH_WANT_HUGE_PMD_SHARE config flag. That way we reference the
general one.
Signed-off-by: Steve Capper <steve.capper@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Commit
8d57470d x86, mm: setup page table in top-down
causes a kernel panic while setting mem=2G.
[mem 0x00000000-0x000fffff] page 4k
[mem 0x7fe00000-0x7fffffff] page 1G
[mem 0x7c000000-0x7fdfffff] page 1G
[mem 0x00100000-0x001fffff] page 4k
[mem 0x00200000-0x7bffffff] page 2M
for last entry is not what we want, we should have
[mem 0x00200000-0x3fffffff] page 2M
[mem 0x40000000-0x7bffffff] page 1G
Actually we merge the continuous ranges with same page size too early.
in this case, before merging we have
[mem 0x00200000-0x3fffffff] page 2M
[mem 0x40000000-0x7bffffff] page 2M
after merging them, will get
[mem 0x00200000-0x7bffffff] page 2M
even we can use 1G page to map
[mem 0x40000000-0x7bffffff]
that will cause problem, because we already map
[mem 0x7fe00000-0x7fffffff] page 1G
[mem 0x7c000000-0x7fdfffff] page 1G
with 1G page, aka [0x40000000-0x7fffffff] is mapped with 1G page already.
During phys_pud_init() for [0x40000000-0x7bffffff], it will not
reuse existing that pud page, and allocate new one then try to use
2M page to map it instead, as page_size_mask does not include
PG_LEVEL_1G. At end will have [7c000000-0x7fffffff] not mapped, loop
in phys_pmd_init stop mapping at 0x7bffffff.
That is right behavoir, it maps exact range with exact page size that
we ask, and we should explicitly call it to map [7c000000-0x7fffffff]
before or after mapping 0x40000000-0x7bffffff.
Anyway we need to make sure ranges' page_size_mask correct and consistent
after split_mem_range for each range.
Fix that by calling adjust_range_size_mask before merging range
with same page size.
-v2: update change log.
-v3: add more explanation why [7c000000-0x7fffffff] is not mapped, and
it causes panic.
Bisected-by: "Xie, ChanglongX" <changlongx.xie@intel.com>
Bisected-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Reported-and-tested-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1370015587-20835-1-git-send-email-yinghai@kernel.org
Cc: <stable@vger.kernel.org> v3.9
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
For x86_64, we have phys_base, which means the delta between the
the address kernel is actually running at and the address kernel
is compiled to run at. Not phys_addr so correct it.
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Link: http://lkml.kernel.org/r/5192F9BF.2000802@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Two sets of comments were lost during patch-series shuffling:
- comments for init_range_memory_mapping()
- comments in init_mem_mapping that is helpful for reminding people
that the pagetable is setup top-down
The comments were written by Yinghai in his patch in:
https://lkml.org/lkml/2012/11/28/620
This patch reintroduces them.
Originally-From: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/518BC776.7010506@gmail.com
[ Tidied it all up a bit. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull VFS updates from Al Viro,
Misc cleanups all over the place, mainly wrt /proc interfaces (switch
create_proc_entry to proc_create(), get rid of the deprecated
create_proc_read_entry() in favor of using proc_create_data() and
seq_file etc).
7kloc removed.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (204 commits)
don't bother with deferred freeing of fdtables
proc: Move non-public stuff from linux/proc_fs.h to fs/proc/internal.h
proc: Make the PROC_I() and PDE() macros internal to procfs
proc: Supply a function to remove a proc entry by PDE
take cgroup_open() and cpuset_open() to fs/proc/base.c
ppc: Clean up scanlog
ppc: Clean up rtas_flash driver somewhat
hostap: proc: Use remove_proc_subtree()
drm: proc: Use remove_proc_subtree()
drm: proc: Use minor->index to label things, not PDE->name
drm: Constify drm_proc_list[]
zoran: Don't print proc_dir_entry data in debug
reiserfs: Don't access the proc_dir_entry in r_open(), r_start() r_show()
proc: Supply an accessor for getting the data from a PDE's parent
airo: Use remove_proc_subtree()
rtl8192u: Don't need to save device proc dir PDE
rtl8187se: Use a dir under /proc/net/r8180/
proc: Add proc_mkdir_data()
proc: Move some bits from linux/proc_fs.h to linux/{of.h,signal.h,tty.h}
proc: Move PDE_NET() to fs/proc/proc_net.c
...
Pull x86 mm changes from Ingo Molnar:
"Misc smaller changes all over the map"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/iommu/dmar: Remove warning for HPET scope type
x86/mm/gart: Drop unnecessary check
x86/mm/hotplug: Put kernel_physical_mapping_remove() declaration in CONFIG_MEMORY_HOTREMOVE
x86/mm/fixmap: Remove unused FIX_CYCLONE_TIMER
x86/mm/numa: Simplify some bit mangling
x86/mm: Re-enable DEBUG_TLBFLUSH for X86_32
x86/mm/cpa: Cleanup split_large_page() and its callee
x86: Drop always empty .text..page_aligned section
Pull scheduler changes from Ingo Molnar:
"The main changes in this development cycle were:
- full dynticks preparatory work by Frederic Weisbecker
- factor out the cpu time accounting code better, by Li Zefan
- multi-CPU load balancer cleanups and improvements by Joonsoo Kim
- various smaller fixes and cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
sched: Fix init NOHZ_IDLE flag
sched: Prevent to re-select dst-cpu in load_balance()
sched: Rename load_balance_tmpmask to load_balance_mask
sched: Move up affinity check to mitigate useless redoing overhead
sched: Don't consider other cpus in our group in case of NEWLY_IDLE
sched: Explicitly cpu_idle_type checking in rebalance_domains()
sched: Change position of resched_cpu() in load_balance()
sched: Fix wrong rq's runnable_avg update with rt tasks
sched: Document task_struct::personality field
sched/cpuacct/UML: Fix header file dependency bug on the UML build
cgroup: Kill subsys.active flag
sched/cpuacct: No need to check subsys active state
sched/cpuacct: Initialize cpuacct subsystem earlier
sched/cpuacct: Initialize root cpuacct earlier
sched/cpuacct: Allocate per_cpu cpuusage for root cpuacct statically
sched/cpuacct: Clean up cpuacct.h
sched/cpuacct: Remove redundant NULL checks in cpuacct_acount_field()
sched/cpuacct: Remove redundant NULL checks in cpuacct_charge()
sched/cpuacct: Add cpuacct_acount_field()
sched/cpuacct: Add cpuacct_init()
...
Use preferable function name which implies using a pseudo-random
number generator.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pageattr-test calls srandom32() once every test iteration. But calling
srandom32() after late_initcalls is not meaningfull. Because the random
states for random32() is mixed by good random numbers in late_initcall
prandom_reseed().
So this removes the call to srandom32().
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory hotplug can happen on a machine under load, memory shortness
and fragmentation, so huge page allocations for the vmemmap are not
guaranteed to succeed.
Try to fall back to regular pages before failing the hotplug event
completely.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We already have generic code to allocate vmemmap with regular pages, use
it.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: David Miller <davem@davemloft.net>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No need to maintain addr_end and p_end when they are never actually read
anywhere on !pse setups. Remove the dead code.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The sparse code, when asking the architecture to populate the vmemmap,
specifies the section range as a starting page and a number of pages.
This is an awkward interface, because none of the arch-specific code
actually thinks of the range in terms of 'struct page' units and always
translates it to bytes first.
In addition, later patches mix huge page and regular page backing for
the vmemmap. For this, they need to call vmemmap_populate_basepages()
on sub-section ranges with PAGE_SIZE and PMD_SIZE in mind. But these
are not necessarily multiples of the 'struct page' size and so this unit
is too coarse.
Just translate the section range into bytes once in the generic sparse
code, then pass byte ranges down the stack.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: David S. Miller <davem@davemloft.net>
Tested-by: David S. Miller <davem@davemloft.net>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patchset removes vm_struct list management after initializing
vmalloc. Adding and removing an entry to vmlist is linear time
complexity, so it is inefficient. If we maintain this list, overall
time complexity of adding and removing area to vmalloc space is O(N),
although we use rbtree for finding vacant place and it's time complexity
is just O(logN).
And vmlist and vmlist_lock is used many places of outside of vmalloc.c.
It is preferable that we hide this raw data structure and provide
well-defined function for supporting them, because it makes that they
cannot mistake when manipulating theses structure and it makes us easily
maintain vmalloc layer.
For kexec and makedumpfile, I export vmap_area_list, instead of vmlist.
This comes from Atsushi's recommendation. For more information, please
refer below link. https://lkml.org/lkml/2012/12/6/184
This patch:
The purpose of iterating a vmlist is finding vm area with specific virtual
address. find_vm_area() is provided for this purpose and more efficient,
because it uses a rbtree. So change it.
Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn>
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Atsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp>
Cc: Dave Anderson <anderson@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use helper function free_highmem_page() to free highmem pages into
the buddy system.
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Cong Wang <amwang@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Attilio Rao <attilio.rao@citrix.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use common help functions to free reserved pages.
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 fixes from Ingo Molnar:
"Misc fixes"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Flush lazy MMU when DEBUG_PAGEALLOC is set
x86/mm/cpa/selftest: Fix false positive in CPA self test
x86/mm/cpa: Convert noop to functional fix
x86, mm: Patch out arch_flush_lazy_mmu_mode() when running on bare metal
x86, mm, paravirt: Fix vmalloc_fault oops during lazy MMU updates
This patch attempts to fix:
https://bugzilla.kernel.org/show_bug.cgi?id=56461
The symptom is a crash and messages like this:
chrome: Corrupted page table at address 34a03000
*pdpt = 0000000000000000 *pde = 0000000000000000
Bad pagetable: 000f [#1] PREEMPT SMP
Ingo guesses this got introduced by commit 611ae8e3f5 ("x86/tlb:
enable tlb flush range support for x86") since that code started to free
unused pagetables.
On x86-32 PAE kernels, that new code has the potential to free an entire
PMD page and will clear one of the four page-directory-pointer-table
(aka pgd_t entries).
The hardware aggressively "caches" these top-level entries and invlpg
does not actually affect the CPU's copy. If we clear one we *HAVE* to
do a full TLB flush, otherwise we might continue using a freed pmd page.
(note, we do this properly on the population side in pud_populate()).
This patch tracks whenever we clear one of these entries in the 'struct
mmu_gather', and ensures that we follow up with a full tlb flush.
BTW, I disassembled and checked that:
if (tlb->fullmm == 0)
and
if (!tlb->fullmm && !tlb->need_flush_all)
generate essentially the same code, so there should be zero impact there
to the !PAE case.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Artem S Tashkinov <t.artem@mailcity.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When CONFIG_DEBUG_PAGEALLOC is set page table updates made by
kernel_map_pages() are not made visible (via TLB flush)
immediately if lazy MMU is on. In environments that support lazy
MMU (e.g. Xen) this may lead to fatal page faults, for example,
when zap_pte_range() needs to allocate pages in
__tlb_remove_page() -> tlb_next_batch().
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: konrad.wilk@oracle.com
Link: http://lkml.kernel.org/r/1365703192-2089-1-git-send-email-boris.ostrovsky@oracle.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If the pmd is not present, _PAGE_PSE will not be set anymore.
Fix the false positive.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Stefan Bader <stefan.bader@canonical.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/1365687369-30802-1-git-send-email-aarcange@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
a8aed3e075 ("x86/mm/pageattr: Prevent PSE and GLOABL leftovers to confuse pmd/pte_present and pmd_huge")
introduced a valid fix but one location that didn't trigger the bug that
lead to finding those (small) problems, wasn't updated using the
right variable.
The wrong variable was also initialized for no good reason, that
may have been the source of the confusion. Remove the noop
initialization accordingly.
Commit a8aed3e075 also erroneously removed one canon_pgprot pass meant
to clear pmd bitflags not supported in hardware by older CPUs, that
automatically gets corrected by this patch too by applying it to the right
variable in the new location.
Reported-by: Stefan Bader <stefan.bader@canonical.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Mel Gorman <mgorman@suse.de>
Link: http://lkml.kernel.org/r/1365600505-19314-1-git-send-email-aarcange@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In paravirtualized x86_64 kernels, vmalloc_fault may cause an oops
when lazy MMU updates are enabled, because set_pgd effects are being
deferred.
One instance of this problem is during process mm cleanup with memory
cgroups enabled. The chain of events is as follows:
- zap_pte_range enables lazy MMU updates
- zap_pte_range eventually calls mem_cgroup_charge_statistics,
which accesses the vmalloc'd mem_cgroup per-cpu stat area
- vmalloc_fault is triggered which tries to sync the corresponding
PGD entry with set_pgd, but the update is deferred
- vmalloc_fault oopses due to a mismatch in the PUD entries
The OOPs usually looks as so:
------------[ cut here ]------------
kernel BUG at arch/x86/mm/fault.c:396!
invalid opcode: 0000 [#1] SMP
.. snip ..
CPU 1
Pid: 10866, comm: httpd Not tainted 3.6.10-4.fc18.x86_64 #1
RIP: e030:[<ffffffff816271bf>] [<ffffffff816271bf>] vmalloc_fault+0x11f/0x208
.. snip ..
Call Trace:
[<ffffffff81627759>] do_page_fault+0x399/0x4b0
[<ffffffff81004f4c>] ? xen_mc_extend_args+0xec/0x110
[<ffffffff81624065>] page_fault+0x25/0x30
[<ffffffff81184d03>] ? mem_cgroup_charge_statistics.isra.13+0x13/0x50
[<ffffffff81186f78>] __mem_cgroup_uncharge_common+0xd8/0x350
[<ffffffff8118aac7>] mem_cgroup_uncharge_page+0x57/0x60
[<ffffffff8115fbc0>] page_remove_rmap+0xe0/0x150
[<ffffffff8115311a>] ? vm_normal_page+0x1a/0x80
[<ffffffff81153e61>] unmap_single_vma+0x531/0x870
[<ffffffff81154962>] unmap_vmas+0x52/0xa0
[<ffffffff81007442>] ? pte_mfn_to_pfn+0x72/0x100
[<ffffffff8115c8f8>] exit_mmap+0x98/0x170
[<ffffffff810050d9>] ? __raw_callee_save_xen_pmd_val+0x11/0x1e
[<ffffffff81059ce3>] mmput+0x83/0xf0
[<ffffffff810624c4>] exit_mm+0x104/0x130
[<ffffffff8106264a>] do_exit+0x15a/0x8c0
[<ffffffff810630ff>] do_group_exit+0x3f/0xa0
[<ffffffff81063177>] sys_exit_group+0x17/0x20
[<ffffffff8162bae9>] system_call_fastpath+0x16/0x1b
Calling arch_flush_lazy_mmu_mode immediately after set_pgd makes the
changes visible to the consistency checks.
Cc: <stable@vger.kernel.org>
RedHat-Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=914737
Tested-by: Josh Boyer <jwboyer@redhat.com>
Reported-and-Tested-by: Krishna Raman <kraman@redhat.com>
Signed-off-by: Samu Kallio <samu.kallio@aberdeencloud.com>
Link: http://lkml.kernel.org/r/1364045796-10720-1-git-send-email-konrad.wilk@oracle.com
Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
So basically we're generating the pte_t * from a struct page and
we're handing it down to the __split_large_page() internal version
which then goes and gets back struct page * from it because it
needs it.
Change the caller to hand down struct page * directly and the
callee can compute the pte_t itself.
Net save is one virt_to_page() call and simpler code. While at
it, make __split_large_page() static.
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1363886217-24703-1-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
kernel_map_sync_memtype() is called from a variety of contexts. The
pat.c code that calls it seems to ensure that it is not called for
non-ram areas by checking via pat_pagerange_is_ram(). It is important
that it only be called on the actual identity map because there *IS*
no map to sync for highmem pages, or for memory holes.
The ioremap.c uses are not as careful as those from pat.c, and call
kernel_map_sync_memtype() on PCI space which is in the middle of the
kernel identity map _range_, but is not actually mapped.
This patch adds a check to kernel_map_sync_memtype() which probably
duplicates some of the checks already in pat.c. But, it is necessary
for the ioremap.c uses and shouldn't hurt other callers.
I have reproduced this bug and this patch fixes it for me and the
original bug reporter:
https://lkml.org/lkml/2013/2/5/396
Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/20130307163151.D9B58C4E@kernel.stglabs.ibm.com
Signed-off-by: Dave Hansen <dave@sr71.net>
Tested-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
On exception exit, we restore the previous context tracking state based on
the regs of the interrupted frame. Iff that frame is in user mode as
stated by user_mode() helper, we restore the context tracking user mode.
However there is a tiny chunck of low level arch code after we pass through
user_enter() and until the CPU eventually resumes userspace.
If an exception happens in this tiny area, exception_enter() correctly
exits the context tracking user mode but exception_exit() won't restore
it because of the value returned by user_mode(regs).
As a result we may return to userspace with the wrong context tracking
state.
To fix this, change exception_enter() to return the context tracking state
prior to its call and pass this saved state to exception_exit(). This restores
the real context tracking state of the interrupted frame.
(May be this patch was suggested to me, I don't recall exactly. If so,
sorry for the missing credit).
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Mats Liljegren <mats.liljegren@enea.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Exceptions handling on context tracking should share common
treatment: on entry we exit user mode if the exception triggered
in that context. Then on exception exit we return to that previous
context.
Generalize this to avoid duplication across archs.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Mats Liljegren <mats.liljegren@enea.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Henrik reported that his MacAir 3.1 would not boot with
| commit 8d57470d8f
| Date: Fri Nov 16 19:38:58 2012 -0800
|
| x86, mm: setup page table in top-down
It turns out that we do not calculate the real_end properly:
We try to get 2M size with 4K alignment, and later will round down
to 2M, so we will get less then 2M for first mapping, in extreme
case could be only 4K only. In Henrik's system it has (1M-32K) as
last usable rage is [mem 0x7f9db000-0x7fef8fff].
The problem is exposed when EFI booting have several holes and it
will force mapping to use PTE instead as we only map usable areas.
To fix it, just make it be 2M aligned, so we can be guaranteed to be
able to use large pages to map it.
Reported-by: Henrik Rydberg <rydberg@euromail.se>
Bisected-by: Henrik Rydberg <rydberg@euromail.se>
Tested-by: Henrik Rydberg <rydberg@euromail.se>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/CAE9FiQX4nQ7_1kg5RL_vh56rmcSHXUi1ExrZX7CwED4NGMnHfg@mail.gmail.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Tim found:
WARNING: at arch/x86/kernel/smpboot.c:324 topology_sane.isra.2+0x6f/0x80()
Hardware name: S2600CP
sched: CPU #1's llc-sibling CPU #0 is not on the same node! [node: 1 != 0]. Ignoring dependency.
smpboot: Booting Node 1, Processors #1
Modules linked in:
Pid: 0, comm: swapper/1 Not tainted 3.9.0-0-generic #1
Call Trace:
set_cpu_sibling_map+0x279/0x449
start_secondary+0x11d/0x1e5
Don Morris reproduced on a HP z620 workstation, and bisected it to
commit e8d1955258 ("acpi, memory-hotplug: parse SRAT before memblock
is ready")
It turns out movable_map has some problems, and it breaks several things
1. numa_init is called several times, NOT just for srat. so those
nodes_clear(numa_nodes_parsed)
memset(&numa_meminfo, 0, sizeof(numa_meminfo))
can not be just removed. Need to consider sequence is: numaq, srat, amd, dummy.
and make fall back path working.
2. simply split acpi_numa_init to early_parse_srat.
a. that early_parse_srat is NOT called for ia64, so you break ia64.
b. for (i = 0; i < MAX_LOCAL_APIC; i++)
set_apicid_to_node(i, NUMA_NO_NODE)
still left in numa_init. So it will just clear result from early_parse_srat.
it should be moved before that....
c. it breaks ACPI_TABLE_OVERIDE...as the acpi table scan is moved
early before override from INITRD is settled.
3. that patch TITLE is total misleading, there is NO x86 in the title,
but it changes critical x86 code. It caused x86 guys did not
pay attention to find the problem early. Those patches really should
be routed via tip/x86/mm.
4. after that commit, following range can not use movable ram:
a. real_mode code.... well..funny, legacy Node0 [0,1M) could be hot-removed?
b. initrd... it will be freed after booting, so it could be on movable...
c. crashkernel for kdump...: looks like we can not put kdump kernel above 4G
anymore.
d. init_mem_mapping: can not put page table high anymore.
e. initmem_init: vmemmap can not be high local node anymore. That is
not good.
If node is hotplugable, the mem related range like page table and
vmemmap could be on the that node without problem and should be on that
node.
We have workaround patch that could fix some problems, but some can not
be fixed.
So just remove that offending commit and related ones including:
f7210e6c4a ("mm/memblock.c: use CONFIG_HAVE_MEMBLOCK_NODE_MAP to
protect movablecore_map in memblock_overlaps_region().")
01a178a94e ("acpi, memory-hotplug: support getting hotplug info from
SRAT")
27168d38fa ("acpi, memory-hotplug: extend movablemem_map ranges to
the end of node")
e8d1955258 ("acpi, memory-hotplug: parse SRAT before memblock is
ready")
fb06bc8e5f ("page_alloc: bootmem limit with movablecore_map")
42f47e27e7 ("page_alloc: make movablemem_map have higher priority")
6981ec3114 ("page_alloc: introduce zone_movable_limit[] to keep
movable limit for nodes")
34b71f1e04 ("page_alloc: add movable_memmap kernel parameter")
4d59a75125 ("x86: get pg_data_t's memory from other node")
Later we should have patches that will make sure kernel put page table
and vmemmap on local node ram instead of push them down to node0. Also
need to find way to put other kernel used ram to local node ram.
Reported-by: Tim Gardner <tim.gardner@canonical.com>
Reported-by: Don Morris <don.morris@hp.com>
Bisected-by: Don Morris <don.morris@hp.com>
Tested-by: Don Morris <don.morris@hp.com>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 fixes from Ingo Molnar.
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm/pageattr: Prevent PSE and GLOABL leftovers to confuse pmd/pte_present and pmd_huge
Revert "x86, mm: Make spurious_fault check explicitly check explicitly check the PRESENT bit"
x86/mm/numa: Don't check if node is NUMA_NO_NODE
x86, efi: Make "noefi" really disable EFI runtime serivces
x86/apic: Fix parsing of the 'lapic' cmdline option
Without this patch any kernel code that reads kernel memory in
non present kernel pte/pmds (as set by pageattr.c) will crash.
With this kernel code:
static struct page *crash_page;
static unsigned long *crash_address;
[..]
crash_page = alloc_pages(GFP_KERNEL, 9);
crash_address = page_address(crash_page);
if (set_memory_np((unsigned long)crash_address, 1))
printk("set_memory_np failure\n");
[..]
The kernel will crash if inside the "crash tool" one would try
to read the memory at the not present address.
crash> p crash_address
crash_address = $8 = (long unsigned int *) 0xffff88023c000000
crash> rd 0xffff88023c000000
[ *lockup* ]
The lockup happens because _PAGE_GLOBAL and _PAGE_PROTNONE
shares the same bit, and pageattr leaves _PAGE_GLOBAL set on a
kernel pte which is then mistaken as _PAGE_PROTNONE (so
pte_present returns true by mistake and the kernel fault then
gets confused and loops).
With THP the same can happen after we taught pmd_present to
check _PAGE_PROTNONE and _PAGE_PSE in commit
027ef6c878 ("mm: thp: fix pmd_present for
split_huge_page and PROT_NONE with THP"). THP has the same
problem with _PAGE_GLOBAL as the 4k pages, but it also has a
problem with _PAGE_PSE, which must be cleared too.
After the patch is applied copy_user correctly returns -EFAULT
and doesn't lockup anymore.
crash> p crash_address
crash_address = $9 = (long unsigned int *) 0xffff88023c000000
crash> rd 0xffff88023c000000
rd: read error: kernel virtual address: ffff88023c000000 type:
"64-bit KVADDR"
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: "H. Peter Anvin" <hpa@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>