Fix a missing prototype warning by adding a forward declaration
for the PE/COFF entrypoint, and while at it, align the function
name between the x86 and ARM versions of the stub.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
- fix EFI framebuffer earlycon for wide fonts
- avoid filling screen_info with garbage if the EFI framebuffer is not
available
- fix a potential host tool build error due to a symbol clash on x86
- work around a EFI firmware bug regarding the binary format of the TPM
final events table
- fix a missing memory free by reworking the E820 table sizing routine to
not do the allocation in the first place
- add CPER parsing for firmware errors
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEnNKg2mrY9zMBdeK7wjcgfpV0+n0FAl7H3HIACgkQwjcgfpV0
+n1pEAgAjJfwDJmBcYhJzjX8WLnXPJiUmUH9d9tF1t3TlhF6c1G8auXU+Fyia4uI
ejRNw/N4+SXzM9yL+Z19PKBpQsPzQXgm2r9WTPVN5jTelUUI+jFZCH+pKC+TKRp1
/Tx/XIMifCw18gNXsjj6WJEeAyLoh4tb+6bwn7DlPO5cPrxX49LvPuQNMXybk2yi
KimdNKUry1wYpo/WpHqEdFq5//CLAWNkrL9UXlkANvQ6BJNIMI0kRIUC0MVsTMnE
BoCkBO93PdvqxOcnV3WTRvSFetb7qA59Jay62jLc26Myqc4t4pgVWojVm6RHLfZg
17btYACxICgF2mNTZYlKemEEqKPpzQ==
=mY5f
-----END PGP SIGNATURE-----
Merge tag 'efi-fixes-for-v5.7-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into efi/urgent
Pull EFI fixes from Ard Biesheuvel:
"- fix EFI framebuffer earlycon for wide fonts
- avoid filling screen_info with garbage if the EFI framebuffer is not
available
- fix a potential host tool build error due to a symbol clash on x86
- work around a EFI firmware bug regarding the binary format of the TPM
final events table
- fix a missing memory free by reworking the E820 table sizing routine to
not do the allocation in the first place
- add CPER parsing for firmware errors"
The documentation provided by kobject_init_and_add() clearly spells out
the need to call kobject_put() on the kobject if an error is returned.
Add this missing call to the error path.
Cc: <stable@vger.kernel.org>
Reported-by: 亿一 <teroincn@gmail.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Now that we removed the memory limit for the allocation of the
command line, there is no longer a need to use the page based
allocator so switch to a pool allocation instead.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Check if the command line passed in is larger than COMMAND_LINE_SIZE,
and truncate it to the last full argument if so.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200521002921.69650-1-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Now we can use snprintf to do the UTF-16 to UTF-8 translation for the
command line.
Drop the special "zero" trick to handle an empty command line. This was
unnecessary even before this since with options_chars == 0,
efi_utf16_to_utf8 would not have accessed options at all. snprintf won't
access it either with a precision of 0.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200518190716.751506-25-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
efi_convert_cmdline currently overestimates the length of the equivalent
UTF-8 encoding.
snprintf can now be used to do the conversion to UTF-8, however, it does
not have a way to specify the size of the UTF-16 string, only the size
of the resulting UTF-8 string. So in order to use it, we need to
precalculate the exact UTF-8 size.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200518190716.751506-24-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
efi_printk can now handle the UTF-16 filename, so print it using efi_err
instead of a separate efi_char16_puts call.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200518190716.751506-23-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
In order to be able to use the UTF-16 support added to vsprintf in the
previous commit, enhance efi_puts to decode UTF-8 into UTF-16. Invalid
UTF-8 encodings are passed through unchanged.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200518190716.751506-22-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Add the required typedefs etc for using con_in's simple text input
protocol, and for using the boottime event services.
Also add the prototype for the "stall" boot service.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200518190716.751506-19-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Use the efi_printk function in efi_info/efi_err, and add efi_debug. This
allows formatted output at different log levels.
Add the notion of a loglevel instead of just quiet/not-quiet, and
parse the efi=debug kernel parameter in addition to quiet.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200520170223.GA3333632@rani.riverdale.lan/
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The decompressor can load from anywhere in memory, and the only reason
the EFI stub code relocates it is to ensure it appears within the first
128 MiB of memory, so that the uncompressed kernel ends up at the right
offset in memory.
We can short circuit this, and simply jump into the decompressor startup
code at the point where it knows where the base of memory lives. This
also means there is no need to disable the MMU and caches, create new
page tables and re-enable them.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Nicolas Pitre <nico@fluxnic.net>
If we get an invalid conversion specifier, bail out instead of trying to
fix it up. The format string likely has a typo or assumed we support
something that we don't, in either case the remaining arguments won't
match up with the remaining format string.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200518190716.751506-16-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Consolidate the actual output of the formatted text into one place.
Fix a couple of edge cases:
1. If 0 is printed with a precision of 0, the printf specification says
that nothing should be output, with one exception (2b).
2. The specification for octal alternate format (%#o) adds the leading
zero not as a prefix as the 0x for hexadecimal is, but by increasing
the precision if necessary to add the zero. This means that
a. %#.2o turns 8 into "010", but 1 into "01" rather than "001".
b. %#.o prints 0 as "0" rather than "", unlike the situation for
decimal, hexadecimal and regular octal format, which all output an
empty string.
Reduce the space allocated for printing a number to the maximum actually
required (22 bytes for a 64-bit number in octal), instead of the 66
bytes previously allocated.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200518190716.751506-15-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
A negative precision should be ignored completely, and the presence of a
valid precision should turn off the 0 flag.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200518190716.751506-10-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Move flags parsing code out into a helper function.
The '%%' case can be handled up front: it is not allowed to have flags,
width etc.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200518190716.751506-9-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Support 'll' qualifier for long long by copying the decimal printing
code from lib/vsprintf.c. For simplicity, the 32-bit code is used on
64-bit architectures as well.
Support 'hh' qualifier for signed/unsigned char type integers.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200518190716.751506-8-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reclaim the bloat from the addition of printf by optimizing the stub for
size. With gcc 9, the text size of the stub is:
ARCH before +printf -Os
arm 35197 37889 34638
arm64 34883 38159 34479
i386 18571 21657 17025
x86_64 25677 29328 22144
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200518190716.751506-6-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Copy vsprintf from arch/x86/boot/printf.c to get a simple printf
implementation.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200518190716.751506-5-nivedita@alum.mit.edu
[ardb: add some missing braces in if...else clauses]
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Use a buffer to convert the string to UTF-16. This will reduce the
number of firmware calls required to print the string from one per
character to one per string in most cases.
Cast the input char to unsigned char before converting to efi_char16_t
to avoid sign-extension in case there are any non-ASCII characters in
the input.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200518190716.751506-4-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
These functions do not support formatting, unlike printk. Rename them to
puts to make that clear.
Move the implementations of these two functions next to each other.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200518190716.751506-3-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Add #include directives for include files that efistub.h depends on,
instead of relying on them having been included by the C source files
prior to efistub.h.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200518190716.751506-2-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
This fixes the boot issues since 5.3 on several Dell models when the TPM
is enabled. Depending on the exact grub binary, booting the kernel would
freeze early, or just report an error parsing the final events log.
We get an event log in the SHA-1 format, which doesn't have a
tcg_efi_specid_event_head in the first event, and there is a final events
table which doesn't match the crypto agile format.
__calc_tpm2_event_size reads bad "count" and "efispecid->num_algs", and
either fails, or loops long enough for the machine to be appear frozen.
So we now only parse the final events table, which is per the spec always
supposed to be in the crypto agile format, when we got a event log in this
format.
Fixes: c46f340569 ("tpm: Reserve the TPM final events table")
Fixes: 166a2809d6 ("tpm: Don't duplicate events from the final event log in the TCG2 log")
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1779611
Signed-off-by: Loïc Yhuel <loic.yhuel@gmail.com>
Link: https://lore.kernel.org/r/20200512040113.277768-1-loic.yhuel@gmail.com
Reviewed-by: Javier Martinez Canillas <javierm@redhat.com>
Reviewed-by: Jerry Snitselaar <jsnitsel@redhat.com>
Reviewed-by: Matthew Garrett <mjg59@google.com>
[ardb: warn when final events table is missing or in the wrong format]
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Pull up arch-specific prototype efi_systab_show_arch() in order to
fix a -Wmissing-prototypes warning:
arch/x86/platform/efi/efi.c:957:7: warning: no previous prototype for
‘efi_systab_show_arch’ [-Wmissing-prototypes]
char *efi_systab_show_arch(char *str)
Signed-off-by: Benjamin Thiel <b.thiel@posteo.de>
Link: https://lore.kernel.org/r/20200516132647.14568-1-b.thiel@posteo.de
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Shadow stacks are not available in the EFI stub, filter out SCS flags.
Suggested-by: James Morse <james.morse@arm.com>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
While debugging a boot failure, the following unknown error record was
seen in the boot logs.
<...>
BERT: Error records from previous boot:
[Hardware Error]: event severity: fatal
[Hardware Error]: Error 0, type: fatal
[Hardware Error]: section type: unknown, 81212a96-09ed-4996-9471-8d729c8e69ed
[Hardware Error]: section length: 0x290
[Hardware Error]: 00000000: 00000001 00000000 00000000 00020002 ................
[Hardware Error]: 00000010: 00020002 0000001f 00000320 00000000 ........ .......
[Hardware Error]: 00000020: 00000000 00000000 00000000 00000000 ................
[Hardware Error]: 00000030: 00000000 00000000 00000000 00000000 ................
<...>
On further investigation, it was found that the error record with
UUID (81212a96-09ed-4996-9471-8d729c8e69ed) has been defined in the
UEFI Specification at least since v2.4 and has recently had additional
fields defined in v2.7 Section N.2.10 Firmware Error Record Reference.
Add support for parsing and printing the defined fields to give users
a chance to figure out what went wrong.
Signed-off-by: Punit Agrawal <punit1.agrawal@toshiba.co.jp>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: linux-acpi@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Link: https://lore.kernel.org/r/20200512045502.3810339-1-punit1.agrawal@toshiba.co.jp
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
In allocate_e820(), call the EFI get_memory_map() service directly
instead of indirectly via efi_get_memory_map(). This avoids allocation
of a buffer and return of the full EFI memory map, which is not needed
here and would otherwise need to be freed.
Routine allocate_e820() only needs to know how many EFI memory
descriptors there are in the map to allocate an adequately sized
e820ext buffer, if it's needed. Note that since efi_get_memory_map()
returns a memory map buffer sized with extra headroom, allocate_e820()
now needs to explicitly factor that into the e820ext size calculation.
Signed-off-by: Lenny Szubowicz <lszubowi@redhat.com>
Suggested-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
When I play with terminus fonts I noticed the efi early printk does
not work because the earlycon code assumes font width is 8.
Here add the code to adapt with larger fonts. Tested with all kinds
of kernel built-in fonts on my laptop. Also tested with a local draft
patch for 14x28 !bold terminus font.
Signed-off-by: Dave Young <dyoung@redhat.com>
Link: https://lore.kernel.org/r/20200412024927.GA6884@dhcp-128-65.nay.redhat.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
It seems that for whatever reason, gcc-10 ends up not inlining a couple
of functions that used to be inlined before. Even if they only have one
single callsite - it looks like gcc may have decided that the code was
unlikely, and not worth inlining.
The code generation difference is harmless, but caused a few new section
mismatch errors, since the (now no longer inlined) function wasn't in
the __init section, but called other init functions:
Section mismatch in reference from the function kexec_free_initrd() to the function .init.text:free_initrd_mem()
Section mismatch in reference from the function tpm2_calc_event_log_size() to the function .init.text:early_memremap()
Section mismatch in reference from the function tpm2_calc_event_log_size() to the function .init.text:early_memunmap()
So add the appropriate __init annotation to make modpost not complain.
In both cases there were trivially just a single callsite from another
__init function.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To help the compiler figure out that efi_printk() will not modify
the string it is given, make the input argument type const char*.
While at it, simplify the implementation as well.
Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
When building the x86 EFI stub with Clang, the libstub Makefile rules
that manipulate the ELF object files may throw an error like:
STUBCPY drivers/firmware/efi/libstub/efi-stub-helper.stub.o
strip: drivers/firmware/efi/libstub/efi-stub-helper.stub.o: Failed to find link section for section 10
objcopy: drivers/firmware/efi/libstub/efi-stub-helper.stub.o: Failed to find link section for section 10
This is the result of a LLVM feature [0] where symbol references are
stored in a LLVM specific .llvm_addrsig section in a non-transparent way,
causing generic ELF tools such as strip or objcopy to choke on them.
So force the compiler not to emit these sections, by passing the
appropriate command line option.
[0] https://sourceware.org/bugzilla/show_bug.cgi?id=23817
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Reported-by: Arnd Bergmann <arnd@arndb.de>
Suggested-by: Fangrui Song <maskray@google.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Commit
22090f84bc ("efi/libstub: unify EFI call wrappers for non-x86")
refactored the macros that are used to provide wrappers for mixed-mode
calls on x86, allowing us to boot a 64-bit kernel on 32-bit firmware.
Unfortunately, this broke mixed mode boot due to the fact that
efi_is_native() is not a macro on x86.
All of these macros should go together, so rather than testing each one
to see if it is defined, condition the generic macro definitions on a
new ARCH_HAS_EFISTUB_WRAPPERS, and remove the wrapper definitions on x86
as well if CONFIG_EFI_MIXED is not enabled.
Fixes: 22090f84bc ("efi/libstub: unify EFI call wrappers for non-x86")
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200504150248.62482-1-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
efi_parse_options can fail if it is unable to allocate space for a copy
of the command line. Check the return value to make sure it succeeded.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200430182843.2510180-12-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Factor out the initrd loading into a common function that can be called
both from the generic efi-stub.c and the x86-specific x86-stub.c.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200430182843.2510180-10-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Rename pr_efi to efi_info and pr_efi_err to efi_err to make it more
obvious that they are part of the EFI stub and not generic printk infra.
Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200430182843.2510180-4-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
In several places 64-bit values need to be split up into two 32-bit
fields, in order to be backward-compatible with the old 32-bit ABIs.
Instead of open-coding this, add a helper function to set a 64-bit value
as two 32-bit fields.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200430182843.2510180-3-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
struct boot_params is only 4096 bytes, not 16384. Fix this by using
sizeof(struct boot_params) instead of hardcoding the incorrect value.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200430182843.2510180-2-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Currently, setup_graphics() ignores the return value of efi_setup_gop(). As
AllocatePool() does not zero out memory, the screen information table will
contain uninitialized data in this case.
We should free the screen information table if efi_setup_gop() returns an
error code.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Link: https://lore.kernel.org/r/20200426194946.112768-1-xypron.glpk@gmx.de
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Commit:
cf6b836648 ("efi/libstub: Make initrd file loader configurable")
inadvertently disabled support on x86 for loading an initrd passed via
the initrd= option on the kernel command line.
Add X86 to the newly introduced Kconfig option's title and depends
declarations, so it gets enabled by default, as before.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-efi@vger.kernel.org
Instead of making match_config_table() test its table_types pointer for
NULL-ness, omit the call entirely if no arch_tables pointer was provided
to efi_config_parse_tables().
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Increase legibility by adding whitespace to the efi_config_table_type_t
arrays that describe which EFI config tables we look for when going over
the firmware provided list. While at it, replace the 'name' char pointer
with a char array, which is more space efficient on relocatable 64-bit
kernels, as it avoids a 8 byte pointer and the associated relocation
data (24 bytes when using RELA format)
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
We no longer need to take special care when using global variables
in the EFI stub, so switch to a simple symbol reference for efi_is64.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The practice of using __pure getter functions to access global
variables in the EFI stub dates back to the time when we had to
carefully prevent GOT entries from being emitted, because we
could not rely on the toolchain to do this for us.
Today, we use the hidden visibility pragma for all EFI stub source
files, which now all live in the same subdirectory, and we apply a
sanity check on the objects, so we can get rid of these getter
functions and simply refer to global data objects directly.
So switch over the remaining boolean variables carrying options set
on the kernel command line.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The practice of using __pure getter functions to access global
variables in the EFI stub dates back to the time when we had to
carefully prevent GOT entries from being emitted, because we
could not rely on the toolchain to do this for us.
Today, we use the hidden visibility pragma for all EFI stub source
files, which now all live in the same subdirectory, and we apply a
sanity check on the objects, so we can get rid of these getter
functions and simply refer to global data objects directly.
Start with efi_system_table(), and convert it into a global variable.
While at it, make it a pointer-to-const, because we can.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Now that both arm and x86 are using the linker script to place the EFI
stub's global variables in the correct section, remove __efistub_global.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20200416151227.3360778-4-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Instead of using __efistub_global to force variables into the .data
section, leave them in the .bss but pull the EFI stub's .bss section
into .data in the linker script for the compressed kernel.
Add relocation checking for x86 as well to catch non-PC-relative
relocations that require runtime processing, since the EFI stub does not
do any runtime relocation processing.
This will catch, for example, data relocations created by static
initializers of pointers.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200416151227.3360778-3-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Instead of using __efistub_global to force variables into the .data
section, leave them in the .bss but pull the EFI stub's .bss section
into .data in the linker script for the compressed kernel.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20200416151227.3360778-2-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Move efi_relocate_kernel() into a separate source file, so that it
only gets pulled into builds for architectures that use it. Since
efi_relocate_kernel() is the only user of efi_low_alloc(), let's
move that over as well.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
It is no longer necessary to locate the kernel as low as possible in
physical memory, and so we can switch from efi_low_alloc() [which is
a rather nasty concoction on top of GetMemoryMap()] to a new helper
called efi_allocate_pages_aligned(), which simply rounds up the size
to account for the alignment, and frees the misaligned pages again.
So considering that the kernel can live anywhere in the physical
address space, as long as its alignment requirements are met, let's
switch to efi_allocate_pages_aligned() to allocate the pages.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Break out the code to create an aligned page allocation from mem.c
and move it into a function efi_allocate_pages_aligned() in alignedmem.c.
Update efi_allocate_pages() to invoke it unless the minimum alignment
equals the EFI page size (4 KB), in which case the ordinary page
allocator is sufficient. This way, efi_allocate_pages_aligned() will
only be pulled into the build if it is actually being used (which will
be on arm64 only in the immediate future)
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The KASLR code path in the arm64 version of the EFI stub incorporates
some overly complicated logic to randomly allocate a region of the right
alignment: there is no need to randomize the placement of the kernel
modulo 2 MiB separately from the placement of the 2 MiB aligned allocation
itself - we can simply follow the same logic used by the non-randomized
placement, which is to allocate at the correct alignment, and only take
TEXT_OFFSET into account if it is not a round multiple of the alignment.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The notion of a 'preferred' load offset for the kernel dates back to the
times when the kernel's primary mapping overlapped with the linear region,
and memory below it could not be used at all.
Today, the arm64 kernel does not really care where it is loaded in physical
memory, as long as the alignment requirements are met, and so there is no
point in unconditionally moving the kernel to a new location in memory at
boot. Instead, we can
- check for a KASLR seed, and randomly reallocate the kernel if one is
provided
- otherwise, check whether the alignment requirements are met for the
current placement of the kernel, and just run it in place if they are
- finally, do an ordinary page allocation and reallocate the kernel to a
suitably aligned buffer anywhere in memory.
By the same reasoning, there is no need to take TEXT_OFFSET into account
if it is a round multiple of the minimum alignment, which is the usual
case for relocatable kernels with TEXT_OFFSET randomization disabled.
Otherwise, it suffices to use the relative misaligment of TEXT_OFFSET
when reallocating the kernel.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The implementation of efi_random_alloc() arbitrarily truncates the
provided random seed to 16 bits, which limits the granularity of the
randomly chosen allocation offset in memory. This is currently only
an issue if the size of physical memory exceeds 128 GB, but going
forward, we will reduce the allocation alignment to 64 KB, and this
means we need to increase the granularity to ensure that the random
memory allocations are distributed evenly.
We will need to switch to 64-bit arithmetic for the multiplication,
but this does not result in 64-bit integer intrinsic calls on ARM or
on i386.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The EFI stub uses a per-architecture #define for the minimum base
and size alignment of page allocations, which is set to 4 KB for
all architecures except arm64, which uses 64 KB, to ensure that
allocations can always be (un)mapped efficiently, regardless of
the page size used by the kernel proper, which could be a kexec'ee
The API wrappers around page based allocations assume that this
alignment is always taken into account, and so efi_free() will
also round up its size argument to EFI_ALLOC_ALIGN.
Currently, efi_random_alloc() does not honour this alignment for
the allocated size, and so freeing such an allocation may result
in unrelated memory to be freed, potentially leading to issues
after boot. So let's round up size in efi_random_alloc() as well.
Fixes: 2ddbfc81ea ("efi: stub: add implementation of efi_random_alloc()")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Add the ability to automatically pick the highest resolution video mode
(defined as the product of vertical and horizontal resolution) by using
a command-line argument of the form
video=efifb:auto
If there are multiple modes with the highest resolution, pick one with
the highest color depth.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200328160601.378299-2-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Extend the video mode argument to handle an optional color depth
specification of the form
video=efifb:<xres>x<yres>[-(rgb|bgr|<bpp>)]
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200320020028.1936003-14-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Add the ability to choose a video mode for the selected gop by using a
command-line argument of the form
video=efifb:mode=<n>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200320020028.1936003-12-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
pixel_format must be one of
PIXEL_RGB_RESERVED_8BIT_PER_COLOR
PIXEL_BGR_RESERVED_8BIT_PER_COLOR
PIXEL_BIT_MASK
since we skip PIXEL_BLT_ONLY when finding a gop.
Remove the redundant code and add another check in find_gop to skip any
pixel formats that we don't know about, in case a later version of the
UEFI spec adds one.
Reformat the code a little.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200320020028.1936003-10-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Use the __ffs/__fls macros to calculate the position and size of the
mask.
Correct type of mask to u32 instead of unsigned long.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200320020028.1936003-9-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Move extraction of the mode information parameters outside the loop to
find the gop, and eliminate some redundant variables.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200320020028.1936003-4-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Fix the following sparse warning:
drivers/firmware/efi/libstub/arm-stub.c:68:6: warning:
symbol 'install_memreserve_table' was not declared. Should it be static?
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Zou Wei <zou_wei@huawei.com>
Link: https://lore.kernel.org/r/1587643713-28169-1-git-send-email-zou_wei@huawei.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
We have wrappers around EFI calls so that x86 can define special
versions for mixed mode, while all other architectures can use the
same simple definition that just issues the call directly.
In preparation for the arrival of yet another architecture that doesn't
need anything special here (RISC-V), let's move the default definition
into a shared header.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Loading an initrd passed via the kernel command line is deprecated: it
is limited to files that reside in the same volume as the one the kernel
itself was loaded from, and we have more flexible ways to achieve the
same. So make it configurable so new architectures can decide not to
enable it.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Most of the arm-stub code is written in an architecture independent manner.
As a result, RISC-V can reuse most of the arm-stub code.
Rename the arm-stub.c to efi-stub.c so that ARM, ARM64 and RISC-V can use it.
This patch doesn't introduce any functional changes.
Signed-off-by: Atish Patra <atish.patra@wdc.com>
Reviewed-by: Palmer Dabbelt <palmerdabbelt@google.com>
Link: https://lore.kernel.org/r/20200415195422.19866-2-atish.patra@wdc.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Arnd reports that commit
9302c1bb8e ("efi/libstub: Rewrite file I/O routine")
reworks the file I/O routines in a way that triggers the following
warning:
drivers/firmware/efi/libstub/file.c:240:1: warning: the frame size
of 1200 bytes is larger than 1024 bytes [-Wframe-larger-than=]
We can work around this issue dropping an instance of efi_char16_t[256]
from the stack frame, and reusing the 'filename' field of the file info
struct that we use to obtain file information from EFI (which contains
the file name even though we already know it since we used it to open
the file in the first place)
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200409130434.6736-8-ardb@kernel.org
Commit
d5cdf4cfea ("efi/x86: Don't relocate the kernel unless necessary")
tries to avoid relocating the kernel in the EFI stub as far as possible.
However, when systemd-boot is used to boot a unified kernel image [1],
the image is constructed by embedding the bzImage as a .linux section in
a PE executable that contains a small stub loader from systemd that will
call the EFI stub handover entry, together with additional sections and
potentially an initrd. When this image is constructed, by for example
dracut, the initrd is placed after the bzImage without ensuring that at
least init_size bytes are available for the bzImage. If the kernel is
not relocated by the EFI stub, this could result in the compressed
kernel's startup code in head_{32,64}.S overwriting the initrd.
To prevent this, unconditionally relocate the kernel if the EFI stub was
entered via the handover entry point.
[1] https://systemd.io/BOOT_LOADER_SPECIFICATION/#type-2-efi-unified-kernel-images
Fixes: d5cdf4cfea ("efi/x86: Don't relocate the kernel unless necessary")
Reported-by: Sergey Shatunov <me@prok.pw>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200406180614.429454-2-nivedita@alum.mit.edu
Link: https://lore.kernel.org/r/20200409130434.6736-5-ardb@kernel.org
Commit
3ee372ccce ("x86/boot/compressed/64: Remove .bss/.pgtable from bzImage")
removed the .bss section from the bzImage.
However, while a PE loader is required to zero-initialize the .bss
section before calling the PE entry point, the EFI handover protocol
does not currently document any requirement that .bss be initialized by
the bootloader prior to calling the handover entry.
When systemd-boot is used to boot a unified kernel image [1], the image
is constructed by embedding the bzImage as a .linux section in a PE
executable that contains a small stub loader from systemd together with
additional sections and potentially an initrd. As the .bss section
within the bzImage is no longer explicitly present as part of the file,
it is not initialized before calling the EFI handover entry.
Furthermore, as the size of the embedded .linux section is only the size
of the bzImage file itself, the .bss section's memory may not even have
been allocated.
In particular, this can result in efi_disable_pci_dma being true even
when it was not specified via the command line or configuration option,
which in turn causes crashes while booting on some systems.
To avoid issues, place all EFI stub global variables into the .data
section instead of .bss. As of this writing, only boolean flags for a
few command line arguments and the sys_table pointer were in .bss and
will now move into the .data section.
[1] https://systemd.io/BOOT_LOADER_SPECIFICATION/#type-2-efi-unified-kernel-images
Fixes: 3ee372ccce ("x86/boot/compressed/64: Remove .bss/.pgtable from bzImage")
Reported-by: Sergey Shatunov <me@prok.pw>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200406180614.429454-1-nivedita@alum.mit.edu
Link: https://lore.kernel.org/r/20200409130434.6736-4-ardb@kernel.org
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAl6TbaUeHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGhgkH/iWpiKvosA20HJjC
rBqYeJPxQsgZTuBieWJ+MeVxbpcF7RlM4c+glyvg3QJhHwIEG58dl6LBrQbAyBAR
aFHNojr1iAYOruVCGnU3pA008YZiwUIDv/ZQ4DF8fmIU2vI2mJ6qHBv3XDl4G2uR
Nwz8Eu9AgIwZM5coomVOSmoWyFy7Vxmb7W+3t5VmKsvOWx4ib9kyQtOIkvQDEl7j
XCbWfI0xDQr6LFOm4jnCi5R/LhJ2LIqqIvHHrunbpszM8IwK797jCXz4im+dmd5Y
+km46N7a8pDqri36xXz1gdBAU3eG7Pt1NyvfjwRVTdX4GquQ2MT0GoojxbLxUP3y
3pEsQuE=
=whbL
-----END PGP SIGNATURE-----
Merge tag 'v5.7-rc1' into locking/kcsan, to resolve conflicts and refresh
Resolve these conflicts:
arch/x86/Kconfig
arch/x86/kernel/Makefile
Do a minor "evil merge" to move the KCSAN entry up a bit by a few lines
in the Kconfig to reduce the probability of future conflicts.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- Ensure that the compiler and linker versions are aligned so that ld
doesn't complain about not understanding a .note.gnu.property section
(emitted when pointer authentication is enabled).
- Force -mbranch-protection=none when the feature is not enabled, in
case a compiler may choose a different default value.
- Remove CONFIG_DEBUG_ALIGN_RODATA. It was never in defconfig and rarely
enabled.
- Fix checking 16-bit Thumb-2 instructions checking mask in the
emulation of the SETEND instruction (it could match the bottom half of
a 32-bit Thumb-2 instruction).
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAl6PUYAACgkQa9axLQDI
XvH83g/7B5v0RFqjqVW4/cQKoN1rii7qSA8pBfNgGiCMJKtoGvliAlp3xWEtlW0h
nYJ4gCvey946r5kvZrjdBXC/Ulo2CcGYtX0n8d+8IB6wXAnGcQ0DUBUFZ4+fAU9Z
F7+R7its24dma9R1wIFHFmQUdlO+EgQTfQFvhQKYMSNVaFQF73Sp/vk3oKhJ2E0x
QevgDBQSmmcX3DFxhUW7BdcdboBgtTDUGdhcImdorgp7QmI1r40espJKX4VMKvmb
pfzwg+i7KM6N1RDhRfA2oFMegXwI3rvM3XesqYaua8+xWD5vJuIQfq+ysEq9F9x/
Hnu+W9nbcN8RKQ9JToiqkE7ifuOBTvaIJaqsgIXYSqtYjatuPAh85MkrorHi9Ji2
9i7fc0GMTgtgYDo/93++l8SmmRJMX+h+9KtGtxx39+UqGjToJMCnPGjwBSwe4wdK
lKOAgj488HHsNwTlrRUnq1hXjNjd1w+ON7JM2L3IyRNX/eWN60VxwzwHkZMByCOj
jlcY4ISWquigW4w9Sp4nxEhLF9dWT1+OrE33Xh3CUxPU94jSEvgcDHcxuGeGOlrA
QjN1B2APZFox8XbOsLgeG2kKe5C3Fui90SEn0GyA0ncVLsXDI78VnVJR9uz5+6Pd
ALVQKkJxswhSDPQFlH+7CmQAcr8jWyLEEvyXXaZsoJmewzCpEPM=
=pHRG
-----END PGP SIGNATURE-----
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Catalin Marinas:
- Ensure that the compiler and linker versions are aligned so that ld
doesn't complain about not understanding a .note.gnu.property section
(emitted when pointer authentication is enabled).
- Force -mbranch-protection=none when the feature is not enabled, in
case a compiler may choose a different default value.
- Remove CONFIG_DEBUG_ALIGN_RODATA. It was never in defconfig and
rarely enabled.
- Fix checking 16-bit Thumb-2 instructions checking mask in the
emulation of the SETEND instruction (it could match the bottom half
of a 32-bit Thumb-2 instruction).
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: armv8_deprecated: Fix undef_hook mask for thumb setend
arm64: remove CONFIG_DEBUG_ALIGN_RODATA feature
arm64: Always force a branch protection mode when the compiler has one
arm64: Kconfig: ptrauth: Add binutils version check to fix mismatch
init/kconfig: Add LD_VERSION Kconfig
When CONFIG_DEBUG_ALIGN_RODATA is enabled, kernel segments mapped with
different permissions (r-x for .text, r-- for .rodata, rw- for .data,
etc) are rounded up to 2 MiB so they can be mapped more efficiently.
In particular, it permits the segments to be mapped using level 2
block entries when using 4k pages, which is expected to result in less
TLB pressure.
However, the mappings for the bulk of the kernel will use level 2
entries anyway, and the misaligned fringes are organized such that they
can take advantage of the contiguous bit, and use far fewer level 3
entries than would be needed otherwise.
This makes the value of this feature dubious at best, and since it is not
enabled in defconfig or in the distro configs, it does not appear to be
in wide use either. So let's just remove it.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Laura Abbott <labbott@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Pull x86 boot updates from Ingo Molnar:
"Misc cleanups and small enhancements all around the map"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot/compressed: Fix debug_puthex() parameter type
x86/setup: Fix static memory detection
x86/vmlinux: Drop unneeded linker script discard of .eh_frame
x86/*/Makefile: Use -fno-asynchronous-unwind-tables to suppress .eh_frame sections
x86/boot/compressed: Remove .eh_frame section from bzImage
x86/boot/compressed/64: Remove .bss/.pgtable from bzImage
x86/boot/compressed/64: Use 32-bit (zero-extended) MOV for z_output_len
x86/boot/compressed/64: Use LEA to initialize boot stack pointer
Pull EFI updates from Ingo Molnar:
"The EFI changes in this cycle are much larger than usual, for two
(positive) reasons:
- The GRUB project is showing signs of life again, resulting in the
introduction of the generic Linux/UEFI boot protocol, instead of
x86 specific hacks which are increasingly difficult to maintain.
There's hope that all future extensions will now go through that
boot protocol.
- Preparatory work for RISC-V EFI support.
The main changes are:
- Boot time GDT handling changes
- Simplify handling of EFI properties table on arm64
- Generic EFI stub cleanups, to improve command line handling, file
I/O, memory allocation, etc.
- Introduce a generic initrd loading method based on calling back
into the firmware, instead of relying on the x86 EFI handover
protocol or device tree.
- Introduce a mixed mode boot method that does not rely on the x86
EFI handover protocol either, and could potentially be adopted by
other architectures (if another one ever surfaces where one
execution mode is a superset of another)
- Clean up the contents of 'struct efi', and move out everything that
doesn't need to be stored there.
- Incorporate support for UEFI spec v2.8A changes that permit
firmware implementations to return EFI_UNSUPPORTED from UEFI
runtime services at OS runtime, and expose a mask of which ones are
supported or unsupported via a configuration table.
- Partial fix for the lack of by-VA cache maintenance in the
decompressor on 32-bit ARM.
- Changes to load device firmware from EFI boot service memory
regions
- Various documentation updates and minor code cleanups and fixes"
* 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (114 commits)
efi/libstub/arm: Fix spurious message that an initrd was loaded
efi/libstub/arm64: Avoid image_base value from efi_loaded_image
partitions/efi: Fix partition name parsing in GUID partition entry
efi/x86: Fix cast of image argument
efi/libstub/x86: Use ULONG_MAX as upper bound for all allocations
efi: Fix a mistype in comments mentioning efivar_entry_iter_begin()
efi/libstub: Avoid linking libstub/lib-ksyms.o into vmlinux
efi/x86: Preserve %ebx correctly in efi_set_virtual_address_map()
efi/x86: Ignore the memory attributes table on i386
efi/x86: Don't relocate the kernel unless necessary
efi/x86: Remove extra headroom for setup block
efi/x86: Add kernel preferred address to PE header
efi/x86: Decompress at start of PE image load address
x86/boot/compressed/32: Save the output address instead of recalculating it
efi/libstub/x86: Deal with exit() boot service returning
x86/boot: Use unsigned comparison for addresses
efi/x86: Avoid using code32_start
efi/x86: Make efi32_pe_entry() more readable
efi/x86: Respect 32-bit ABI in efi32_pe_entry()
efi/x86: Annotate the LOADED_IMAGE_PROTOCOL_GUID with SYM_DATA
...
Here is the "big" set of driver core changes for 5.7-rc1.
Nothing huge in here, just lots of little firmware core changes and use
of new apis, a libfs fix, a debugfs api change, and some driver core
deferred probe rework.
All of these have been in linux-next for a while with no reported
issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCXoHLIg8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+yle2ACgjJJzRJl9Ckae3ms+9CS4OSFFZPsAoKSrXmFc
Z7goYQdZo1zz8c0RYDrJ
=Y91m
-----END PGP SIGNATURE-----
Merge tag 'driver-core-5.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here is the "big" set of driver core changes for 5.7-rc1.
Nothing huge in here, just lots of little firmware core changes and
use of new apis, a libfs fix, a debugfs api change, and some driver
core deferred probe rework.
All of these have been in linux-next for a while with no reported
issues"
* tag 'driver-core-5.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (44 commits)
Revert "driver core: Set fw_devlink to "permissive" behavior by default"
driver core: Set fw_devlink to "permissive" behavior by default
driver core: Replace open-coded list_last_entry()
driver core: Read atomic counter once in driver_probe_done()
libfs: fix infoleak in simple_attr_read()
driver core: Add device links from fwnode only for the primary device
platform/x86: touchscreen_dmi: Add info for the Chuwi Vi8 Plus tablet
platform/x86: touchscreen_dmi: Add EFI embedded firmware info support
Input: icn8505 - Switch to firmware_request_platform for retreiving the fw
Input: silead - Switch to firmware_request_platform for retreiving the fw
selftests: firmware: Add firmware_request_platform tests
test_firmware: add support for firmware_request_platform
firmware: Add new platform fallback mechanism and firmware_request_platform()
Revert "drivers: base: power: wakeup.c: Use built-in RCU list checking"
drivers: base: power: wakeup.c: Use built-in RCU list checking
component: allow missing unbind callback
debugfs: remove return value of debugfs_create_file_size()
debugfs: Check module state before warning in {full/open}_proxy_open()
firmware: fix a double abort case with fw_load_sysfs_fallback
arch_topology: Fix putting invalid cpu clk
...
Commit:
ec93fc371f ("efi/libstub: Add support for loading the initrd from a device path")
added a diagnostic print to the ARM version of the EFI stub that
reports whether an initrd has been loaded that was passed
via the command line using initrd=.
However, it failed to take into account that, for historical reasons,
the file loading routines return EFI_SUCCESS when no file was found,
and the only way to decide whether a file was loaded is to inspect
the 'size' argument that is passed by reference. So let's inspect
this returned size, to prevent the print from being emitted even if
no initrd was loaded at all.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-efi@vger.kernel.org
Commit:
9f9223778e ("efi/libstub/arm: Make efi_entry() an ordinary PE/COFF entrypoint")
did some code refactoring to get rid of the EFI entry point assembler
code, and in the process, it got rid of the assignment of image_addr
to the value of _text. Instead, it switched to using the image_base
field of the efi_loaded_image struct provided by UEFI, which should
contain the same value.
However, Michael reports that this is not the case: older GRUB builds
corrupt this value in some way, and since we can easily switch back to
referring to _text to discover this value, let's simply do that.
While at it, fix another issue in commit 9f9223778e, which may result
in the unassigned image_addr to be misidentified as the preferred load
offset of the kernel, which is unlikely but will cause a boot crash if
it does occur.
Finally, let's add a warning if the _text vs. image_base discrepancy is
detected, so we can tell more easily how widespread this issue actually
is.
Reported-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-efi@vger.kernel.org
Sofar we have been unable to get permission from the vendors to put the
firmware for touchscreens listed in touchscreen_dmi in linux-firmware.
Some of the tablets with such a touchscreen have a touchscreen driver, and
thus a copy of the firmware, as part of their EFI code.
This commit adds the necessary info for the new EFI embedded-firmware code
to extract these firmwares, making the touchscreen work OOTB without the
user needing to manually add the firmware.
Acked-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Link: https://lore.kernel.org/r/20200115163554.101315-10-hdegoede@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Stable shared branch to ease the integration of Hans's series to support
device firmware loaded from EFI boot service memory regions.
[PATCH v12 00/10] efi/firmware/platform-x86: Add EFI embedded fw support
https://lore.kernel.org/linux-efi/20200115163554.101315-1-hdegoede@redhat.com/
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEnNKg2mrY9zMBdeK7wjcgfpV0+n0FAl5eJNoACgkQwjcgfpV0
+n16Fwf/fXCS+xefhIeXZuUQsQexDsofHYrWlt9oS74KF6iqxVDdfSRZHZvAT/Hr
r1pYpMFSKhRy/u8hhTz1RxwoJXiwQg+yPKwLAMvt+xx2BaNJzLFPvWX8euHYDubM
mWfrjStgandAcNzBDBIYYdG/fSYjlzq/xWF+rlYnnhMNa6lcYhecwgxmt0iYtMnB
S31473zE7DZE0PyV9vEEMyaEbQJYprKrIGoaVpbQ80Y2f2MDNaft+7/EGXx5Hxex
pHZrBdkCL1v7ej7pg8bcxqid682fle5tnogzxf5jo0xMMSXnT5xVPg4OL3rY7kwD
Ba4cLaJD4Q1fFZ1GwPfa59PrDnUIfA==
=sj1e
-----END PGP SIGNATURE-----
Merge tag 'stable-shared-branch-for-driver-tree' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into driver-core-next
Ard writes:
Stable shared branch between EFI and driver tree
Stable shared branch to ease the integration of Hans's series to support
device firmware loaded from EFI boot service memory regions.
[PATCH v12 00/10] efi/firmware/platform-x86: Add EFI embedded fw support
https://lore.kernel.org/linux-efi/20200115163554.101315-1-hdegoede@redhat.com/
* tag 'stable-shared-branch-for-driver-tree' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi:
efi: Add embedded peripheral firmware support
efi: Export boot-services code and data as debugfs-blobs
The header flag XLF_CAN_BE_LOADED_ABOVE_4G will inform us whether
allocations above 4 GiB for kernel, command line, etc are permitted,
so we take it into account when calling efi_allocate_pages() etc.
However, CONFIG_EFI_STUB implies CONFIG_RELOCATABLE, and so the flag
is guaranteed to be set on x86_64 builds, whereas i386 builds are
guaranteed to run under firmware that will not allocate above 4 GB
in the first place.
So drop the check, and just pass ULONG_MAX as the upper bound for
all allocations.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200303225054.28741-1-ardb@kernel.org
Link: https://lore.kernel.org/r/20200308080859.21568-27-ardb@kernel.org
drivers/firmware/efi/libstub/Makefile builds a static library, which
is not linked into the main vmlinux target in the ordinary way [arm64],
or at all [ARM, x86].
Since commit:
7f2084fa55 ("[kbuild] handle exports in lib-y objects reliably")
any Makefile using lib-y generates lib-ksyms.o which is linked into vmlinux.
In this case, the following garbage object is linked into vmlinux.
drivers/firmware/efi/libstub/lib-ksyms.o
We do not want to follow the default linking rules for static libraries
built under libstub/ so using subdir-y instead of obj-y is the correct
way to descend into this directory.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
[ardb: update commit log to clarify that arm64 deviates in this respect]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200305055047.6097-1-masahiroy@kernel.org
Link: https://lore.kernel.org/r/20200308080859.21568-23-ardb@kernel.org
Commit:
3a6b6c6fb2 ("efi: Make EFI_MEMORY_ATTRIBUTES_TABLE initialization common across all architectures")
moved the call to efi_memattr_init() from ARM specific to the generic
EFI init code, in order to be able to apply the restricted permissions
described in that table on x86 as well.
We never enabled this feature fully on i386, and so mapping and
reserving this table is pointless. However, due to the early call to
memblock_reserve(), the memory bookkeeping gets confused to the point
where it produces the splat below when we try to map the memory later
on:
------------[ cut here ]------------
ioremap on RAM at 0x3f251000 - 0x3fa1afff
WARNING: CPU: 0 PID: 0 at arch/x86/mm/ioremap.c:166 __ioremap_caller ...
Modules linked in:
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.20.0 #48
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015
EIP: __ioremap_caller.constprop.0+0x249/0x260
Code: 90 0f b7 05 4e 38 40 de 09 45 e0 e9 09 ff ff ff 90 8d 45 ec c6 05 ...
EAX: 00000029 EBX: 00000000 ECX: de59c228 EDX: 00000001
ESI: 3f250fff EDI: 00000000 EBP: de3edf20 ESP: de3edee0
DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068 EFLAGS: 00200296
CR0: 80050033 CR2: ffd17000 CR3: 1e58c000 CR4: 00040690
Call Trace:
ioremap_cache+0xd/0x10
? old_map_region+0x72/0x9d
old_map_region+0x72/0x9d
efi_map_region+0x8/0xa
efi_enter_virtual_mode+0x260/0x43b
start_kernel+0x329/0x3aa
i386_start_kernel+0xa7/0xab
startup_32_smp+0x164/0x168
---[ end trace e15ccf6b9f356833 ]---
Let's work around this by disregarding the memory attributes table
altogether on i386, which does not result in a loss of functionality
or protection, given that we never consumed the contents.
Fixes: 3a6b6c6fb2 ("efi: Make EFI_MEMORY_ATTRIBUTES_TABLE ... ")
Tested-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200304165917.5893-1-ardb@kernel.org
Link: https://lore.kernel.org/r/20200308080859.21568-21-ardb@kernel.org
Add alignment slack to the PE image size, so that we can realign the
decompression buffer within the space allocated for the image.
Only relocate the kernel if it has been loaded at an unsuitable address:
- Below LOAD_PHYSICAL_ADDR, or
- Above 64T for 64-bit and 512MiB for 32-bit
For 32-bit, the upper limit is conservative, but the exact limit can be
difficult to calculate.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200303221205.4048668-6-nivedita@alum.mit.edu
Link: https://lore.kernel.org/r/20200308080859.21568-20-ardb@kernel.org
Even though it is uncommon, there are cases where the Exit() EFI boot
service might return, e.g., when we were booted via the EFI handover
protocol from OVMF and the kernel image was specified on the command
line, in which case Exit() attempts to terminate the boot manager,
which is not an EFI application itself.
So let's drop into an infinite loop instead of randomly executing code
that isn't expecting it.
Tested-by: Nathan Chancellor <natechancellor@gmail.com> # build
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
[ardb: put 'hlt' in deadloop]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200303080648.21427-1-ardb@kernel.org
Link: https://lore.kernel.org/r/20200308080859.21568-15-ardb@kernel.org
code32_start is meant for 16-bit real-mode bootloaders to inform the
kernel where the 32-bit protected mode code starts. Nothing in the
protected mode kernel except the EFI stub uses it.
efi_main() currently returns boot_params, with code32_start set inside it
to tell efi_stub_entry() where startup_32 is located. Since it was invoked
by efi_stub_entry() in the first place, boot_params is already known.
Return the address of startup_32 instead.
This will allow a 64-bit kernel to live above 4Gb, for example, and it's
cleaner as well.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200301230436.2246909-5-nivedita@alum.mit.edu
Link: https://lore.kernel.org/r/20200308080859.21568-13-ardb@kernel.org
There is a race and a buffer overflow corrupting a kernel memory while
reading an EFI variable with a size more than 1024 bytes via the older
sysfs method. This happens because accessing struct efi_variable in
efivar_{attr,size,data}_read() and friends is not protected from
a concurrent access leading to a kernel memory corruption and, at best,
to a crash. The race scenario is the following:
CPU0: CPU1:
efivar_attr_read()
var->DataSize = 1024;
efivar_entry_get(... &var->DataSize)
down_interruptible(&efivars_lock)
efivar_attr_read() // same EFI var
var->DataSize = 1024;
efivar_entry_get(... &var->DataSize)
down_interruptible(&efivars_lock)
virt_efi_get_variable()
// returns EFI_BUFFER_TOO_SMALL but
// var->DataSize is set to a real
// var size more than 1024 bytes
up(&efivars_lock)
virt_efi_get_variable()
// called with var->DataSize set
// to a real var size, returns
// successfully and overwrites
// a 1024-bytes kernel buffer
up(&efivars_lock)
This can be reproduced by concurrent reading of an EFI variable which size
is more than 1024 bytes:
ts# for cpu in $(seq 0 $(nproc --ignore=1)); do ( taskset -c $cpu \
cat /sys/firmware/efi/vars/KEKDefault*/size & ) ; done
Fix this by using a local variable for a var's data buffer size so it
does not get overwritten.
Fixes: e14ab23dde ("efivars: efivar_entry API")
Reported-by: Bob Sanders <bob.sanders@hpe.com> and the LTP testsuite
Signed-off-by: Vladis Dronov <vdronov@redhat.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20200305084041.24053-2-vdronov@redhat.com
Link: https://lore.kernel.org/r/20200308080859.21568-24-ardb@kernel.org
More EFI updates for v5.7
- Incorporate a stable branch with the EFI pieces of Hans's work on
loading device firmware from EFI boot service memory regions
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The fw_devlink_get_flags() provides the right flags to use when creating
mandatory device links derived from information provided by the
firmware. So, use that.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Saravana Kannan <saravanak@google.com>
Link: https://lore.kernel.org/r/20200222014038.180923-4-saravanak@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Just like with PCI options ROMs, which we save in the setup_efi_pci*
functions from arch/x86/boot/compressed/eboot.c, the EFI code / ROM itself
sometimes may contain data which is useful/necessary for peripheral drivers
to have access to.
Specifically the EFI code may contain an embedded copy of firmware which
needs to be (re)loaded into the peripheral. Normally such firmware would be
part of linux-firmware, but in some cases this is not feasible, for 2
reasons:
1) The firmware is customized for a specific use-case of the chipset / use
with a specific hardware model, so we cannot have a single firmware file
for the chipset. E.g. touchscreen controller firmwares are compiled
specifically for the hardware model they are used with, as they are
calibrated for a specific model digitizer.
2) Despite repeated attempts we have failed to get permission to
redistribute the firmware. This is especially a problem with customized
firmwares, these get created by the chip vendor for a specific ODM and the
copyright may partially belong with the ODM, so the chip vendor cannot
give a blanket permission to distribute these.
This commit adds support for finding peripheral firmware embedded in the
EFI code and makes the found firmware available through the new
efi_get_embedded_fw() function.
Support for loading these firmwares through the standard firmware loading
mechanism is added in a follow-up commit in this patch-series.
Note we check the EFI_BOOT_SERVICES_CODE for embedded firmware near the end
of start_kernel(), just before calling rest_init(), this is on purpose
because the typical EFI_BOOT_SERVICES_CODE memory-segment is too large for
early_memremap(), so the check must be done after mm_init(). This relies
on EFI_BOOT_SERVICES_CODE not being free-ed until efi_free_boot_services()
is called, which means that this will only work on x86 for now.
Reported-by: Dave Olsthoorn <dave@bewaar.me>
Suggested-by: Peter Jones <pjones@redhat.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Link: https://lore.kernel.org/r/20200115163554.101315-3-hdegoede@redhat.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Sometimes it is useful to be able to dump the efi boot-services code and
data. This commit adds these as debugfs-blobs to /sys/kernel/debug/efi,
but only if efi=debug is passed on the kernel-commandline as this requires
not freeing those memory-regions, which costs 20+ MB of RAM.
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Link: https://lore.kernel.org/r/20200115163554.101315-2-hdegoede@redhat.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Recent changes to the way we deal with EFI runtime services that
are marked as unsupported by the firmware resulted in a regression
for non-EFI boot. The problem is that all EFI runtime services are
marked as available by default, and any non-NULL checks on the EFI
service function pointers (which will be non-NULL even for runtime
services that are unsupported on an EFI boot) were replaced with
checks against the mask stored in efi.runtime_supported_mask.
When doing a non-EFI boot, this check against the mask will return
a false positive, given the fact that all runtime services are
marked as enabled by default. Since we dropped the non-NULL check
of the runtime service function pointer in favor of the mask check,
we will now unconditionally dereference the function pointer, even
if it is NULL, and go boom.
So let's ensure that the mask reflects reality on a non-EFI boot,
which is that all EFI runtime services are unsupported.
Reported-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20200228121408.9075-7-ardb@kernel.org
This function is consistent with using size instead of seed->size
(except for one place that this patch fixes), but it reads seed->size
without using READ_ONCE, which means the compiler might still do
something unwanted. So, this commit simply adds the READ_ONCE
wrapper.
Fixes: 636259880a ("efi: Add support for seeding the RNG from a UEFI ...")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20200217123354.21140-1-Jason@zx2c4.com
Link: https://lore.kernel.org/r/20200221084849.26878-5-ardb@kernel.org
While discussing a patch to discard .eh_frame from the compressed
vmlinux using the linker script, Fangrui Song pointed out [1] that these
sections shouldn't exist in the first place because arch/x86/Makefile
uses -fno-asynchronous-unwind-tables.
It turns out this is because the Makefiles used to build the compressed
kernel redefine KBUILD_CFLAGS, dropping this flag.
Add the flag to the Makefile for the compressed kernel, as well as the
EFI stub Makefile to fix this.
Also add the flag to boot/Makefile and realmode/rm/Makefile so that the
kernel's boot code (boot/setup.elf) and realmode trampoline
(realmode/rm/realmode.elf) won't be compiled with .eh_frame sections,
since their linker scripts also just discard them.
[1] https://lore.kernel.org/lkml/20200222185806.ywnqhfqmy67akfsa@google.com/
Suggested-by: Fangrui Song <maskray@google.com>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Link: https://lkml.kernel.org/r/20200224232129.597160-2-nivedita@alum.mit.edu
Do not attempt to call EFI ResetSystem if the runtime supported mask tells
us it is no longer functional at OS runtime.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Drop the separate driver that registers the EFI rtc on all EFI
systems that have runtime services available, and instead, move
the registration into the core EFI code, and make it conditional
on whether the actual time related services are available.
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The UEFI spec rev 2.8 permits firmware implementations to support only
a subset of EFI runtime services at OS runtime (i.e., after the call to
ExitBootServices()), so let's take this into account in the drivers that
rely specifically on the availability of the EFI variable services.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Take the newly introduced EFI_RT_PROPERTIES_TABLE configuration table
into account, which carries a mask of which EFI runtime services are
still functional after ExitBootServices() has been called by the OS.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Revision 2.8 of the UEFI spec introduces provisions for firmware to
advertise lack of support for certain runtime services at OS runtime.
Let's store this mask in struct efi for easy access.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The efi_get_fdt_params() routine uses the early OF device tree
traversal helpers, that iterate over each node in the DT and invoke
a caller provided callback that can inspect the node's contents and
look for the required data. This requires a special param struct to
be passed around, with pointers into param enumeration structs that
contain (and duplicate) property names and offsets into yet another
struct that carries the collected data.
Since we know the data we look for is either under /hypervisor/uefi
or under /chosen, it is much simpler to use the libfdt routines, and
just try to grab a reference to either node directly, and read each
property in sequence.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Push the FDT params specific types and definition into fdtparams.c,
and instead, pass a reference to the memory map data structure and
populate it directly, and return the system table address as the
return value.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
On ARM systems, we discover the UEFI system table address and memory
map address from the /chosen node in the device tree, or in the Xen
case, from a similar node under /hypervisor.
Before making some functional changes to that code, move it into its
own file that only gets built if CONFIG_EFI_PARAMS_FROM_FDT=y.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Add support for booting 64-bit x86 kernels from 32-bit firmware running
on 64-bit capable CPUs without requiring the bootloader to implement
the EFI handover protocol or allocate the setup block, etc etc, all of
which can be done by the stub itself, using code that already exists.
Instead, create an ordinary EFI application entrypoint but implemented
in 32-bit code [so that it can be invoked by 32-bit firmware], and stash
the address of this 32-bit entrypoint in the .compat section where the
bootloader can find it.
Note that we use the setup block embedded in the binary to go through
startup_32(), but it gets reallocated and copied in efi_pe_entry(),
using the same code that runs when the x86 kernel is booted in EFI
mode from native firmware. This requires the loaded image protocol to
be installed on the kernel image's EFI handle, and point to the kernel
image itself and not to its loader. This, in turn, requires the
bootloader to use the LoadImage() boot service to load the 64-bit
image from 32-bit firmware, which is in fact supported by firmware
based on EDK2. (Only StartImage() will fail, and instead, the newly
added entrypoint needs to be invoked)
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Currently, we either return with an error [from efi_pe_entry()] or
enter a deadloop [in efi_main()] if any fatal errors occur during
execution of the EFI stub. Let's switch to calling the Exit() EFI boot
service instead in both cases, so that we
a) can get rid of the deadloop, and simply return to the boot manager
if any errors occur during execution of the stub, including during
the call to ExitBootServices(),
b) can also return cleanly from efi_pe_entry() or efi_main() in mixed
mode, once we introduce support for LoadImage/StartImage based mixed
mode in the next patch.
Note that on systems running downstream GRUBs [which do not use LoadImage
or StartImage to boot the kernel, and instead, pass their own image
handle as the loaded image handle], calling Exit() will exit from GRUB
rather than from the kernel, but this is a tolerable side effect.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Add the definitions and use the special wrapper so that the loaded_image
UEFI protocol can be safely used from mixed mode.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Instead of populating efi.systab very early during efi_init() with
a mapping that is released again before the function exits, use a
local variable here. Now that we use efi.runtime to access the runtime
services table, this removes the only reference efi.systab, so there is
no need to populate it anymore, or discover its virtually remapped
address. So drop the references entirely.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Instead of going through the EFI system table each time, just copy the
runtime services table pointer into struct efi directly. This is the
last use of the system table pointer in struct efi, allowing us to
drop it in a future patch, along with a fair amount of quirky handling
of the translated address.
Note that usually, the runtime services pointer changes value during
the call to SetVirtualAddressMap(), so grab the updated value as soon
as that call returns. (Mixed mode uses a 1:1 mapping, and kexec boot
enters with the updated address in the system table, so in those cases,
we don't need to do anything here)
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
There is some code that exposes physical addresses of certain parts of
the EFI firmware implementation via sysfs nodes. These nodes are only
used on x86, and are of dubious value to begin with, so let's move
their handling into the x86 arch code.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
config_parse_tables() is a jumble of pointer arithmetic, due to the
fact that on x86, we may be dealing with firmware whose native word
size differs from the kernel's.
This is not a concern on other architectures, and doesn't quite
justify the state of the code, so let's clean it up by adding a
non-x86 code path, constifying statically allocated tables and
replacing preprocessor conditionals with IS_ENABLED() checks.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The efi_config_init() routine is no longer shared with ia64 so let's
move it into the x86 arch code before making further x86 specific
changes to it.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
We have three different versions of the code that checks the EFI system
table revision and copies the firmware vendor string, and they are
mostly equivalent, with the exception of the use of early_memremap_ro
vs. __va() and the lowest major revision to warn about. Let's move this
into common code and factor out the commonalities.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
There is no need for struct efi to carry the address of the memreserve
table and share it with the world. So move it out and make it
__initdata as well.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The memory attributes table is only used at init time by the core EFI
code, so there is no need to carry its address in struct efi that is
shared with the world. So move it out, and make it __ro_after_init as
well, considering that the value is set during early boot.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Move the rng_seed table address from struct efi into a static global
variable in efi.c, which is the only place we ever refer to it anyway.
This reduces the footprint of struct efi, which is a r/w data structure
that is shared with the world.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The UGA table is x86 specific (its handling was introduced when the
EFI support code was modified to accommodate IA32), so there is no
need to handle it in generic code.
The EFI properties table is not strictly x86 specific, but it was
deprecated almost immediately after having been introduced, due to
implementation difficulties. Only x86 takes it into account today,
and this is not going to change, so make this table x86 only as well.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The HCDP and MPS tables are Itanium specific EFI config tables, so
move their handling to ia64 arch code.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Some plumbing exists to handle a UEFI configuration table of type
BOOT_INFO but since we never match it to a GUID anywhere, we never
actually register such a table, or access it, for that matter. So
simply drop all mentions of it.
Tested-by: Tony Luck <tony.luck@intel.com> # arch/ia64
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
One of the advantages of using what basically amounts to a callback
interface into the bootloader for loading the initrd is that it provides
a natural place for the bootloader or firmware to measure the initrd
contents while they are being passed to the kernel.
Unfortunately, this is not a guarantee that the initrd will in fact be
loaded and its /init invoked by the kernel, since the command line may
contain the 'noinitrd' option, in which case the initrd is ignored, but
this will not be reflected in the PCR that covers the initrd measurement.
This could be addressed by measuring the command line as well, and
including that PCR in the attestation policy, but this locks down the
command line completely, which may be too restrictive.
So let's take the noinitrd argument into account in the stub, too. This
forces any PCR that covers the initrd to assume a different value when
noinitrd is passed, allowing an attestation policy to disregard the
command line if there is no need to take its measurement into account
for other reasons.
As Peter points out, this would still require the agent that takes the
measurements to measure a separator event into the PCR in question at
ExitBootServices() time, to prevent replay attacks using the known
measurement from the TPM log.
Cc: Peter Jones <pjones@redhat.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>