Fixes gcc '-Wunused-but-set-variable' warning:
drivers/scsi/lpfc/lpfc_init.c: In function 'lpfc_cpu_affinity_check':
drivers/scsi/lpfc/lpfc_init.c:10599:19: warning:
variable 'phys_id' set but not used [-Wunused-but-set-variable]
It never used since introduction in commit 6a828b0f61 ("scsi: lpfc:
Support non-uniform allocation of MSIX vectors to hardware queues")
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Acked-by: James Smart <james.smart@broadcom.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
There are a handful of statements that are indented incorrectly. Fix these.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Acked-by: James Smart <james.smart@broadcom.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
This should return -ENOMEM if kcalloc() fails, but it accidentally
returns success instead.
Fixes: 6a828b0f61 ("scsi: lpfc: Support non-uniform allocation of MSIX vectors to hardware queues")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Ewan D. Milne <emilne@redhat.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Update lpfc version to 12.2.0.0
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
For files modified as part of 12.2.0.0 patches, update copyright to 2019
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Various null pointer dereference and general protection fault panics occur
when there is a link bounce under load. There are a large number of "error"
message 6413 indicating "bad release".
The issues resolve to list corruptions due to missing or inconsistent lock
protection. Lockups are due to nested locks in the unsolicited abort
path. The unsolicited abort path calls the wrong abort processing
routine. There was also duplicate context release while aborts were still
active in the hardware.
Removed duplicate locks and added lock protection around list item
removal. Commonized lock handling around the abort processing routines.
Prevent context release while still in ABTS list.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
When the transport calls into the lpfc target to release an IO job
structure, which corresponds to an exchange, and if the driver was waiting
for an exchange in order to post a previously received command to the
transport, the driver immediately takes the IO job and reuses the context
for the prior command and calls nvmet_fc_rcv_fcp_req() to tell the
transport about a newly received command.
Problem is, the execution of the IO job release may be in the context of
the back end driver and its bio completion handlers, thus it may be in a
irq context and protection code kicks in in the bio and request layers that
are subsequently called.
Rework lpfc so that instead of immediately upcalling, queue it to a
deferred work thread and have the thread make the upcall.
Took advantage of this change to remove duplicated code with the normal
command receive path that preps the IO job and upcalls nvmet_fc. Created a
common routine both paths use.
Also corrected some errors that were found during review of the context
freeing and reuse - basically unlocked operations and a somewhat disjoint
set of calls to release associated job elements. Cleaned up this path and
added locks for coherency.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
The conversion to enable SCSI and NVME fc4 support ran into an issue with
NPIV support. With NVME, NPIV is not currently supported, but with SCSI it
was. The driver reverted to its lowest setting meaning NPIV with SCSI was
not allowed.
Convert the NPIV checks and implementation so that SCSI can continue to
allow NPIV support.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
A scsi host lock is taken on every io completion to check whether the abort
handler is waiting on the io completion. This is an expensive lock to take
on all completion when rarely in an abort condition.
Replace scsi host lock with command-specific lock. Synchronize completion
and abort paths by new cmd lock. Ensure all flag changing and nulling of
context pointers taken under lock. When adding lock to task management
abort, realized it was missing other synchronization locks. Added that
synchronization to match normal paths.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Now that performance mods don't split resources by protocol and enable both
protocols by default, there's no reason not to enable concurrent SCSI and
NVME fc4 support.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
The work done to date utilized the number of present cpus when sizing
per-cpu structures. Structures should have been sized based on the max
possible cpu count.
Convert the driver over to possible cpu count for sizing allocation.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Current driver uses the older IRQ API for MSIX allocation
Change driver to utilize pci_alloc_irq_vectors when allocating IRQ vectors.
Make lpfc_cpu_affinity_check use pci_irq_get_affinity to determine how the
kernel mapped all the IRQs.
Remove msix_entries from SLI4 structure, replaced with pci_irq_vector()
usage.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
When driving high iop counts, auto_imax coalescing kicks in and drives the
performance to extremely small iops levels.
There are two issues:
1) auto_imax is enabled by default. The auto algorithm, when iops gets
high, divides the iops by the hdwq count and uses that value to
calculate EQ_Delay. The EQ_Delay is set uniformly on all EQs whether
they have load or not. The EQ_delay is only manipulated every 5s (a
long time). Thus there were large 5s swings of no interrupt delay
followed by large/maximum delay, before repeating.
2) When processing a CQ, the driver got mixed up on the rate of when
to ring the doorbell to keep the chip appraised of the eqe or cqe
consumption as well as how how long to sit in the thread and
process queue entries. Currently, the driver capped its work at
64 entries (very small) and exited/rearmed the CQ. Thus, on heavy
loads, additional overheads were taken to exit and re-enter the
interrupt handler. Worse, if in the large/maximum coalescing
windows,k it could be a while before getting back to servicing.
The issues are corrected by the following:
- A change in defaults. Auto_imax is turned OFF and fcp_imax is set
to 0. Thus all interrupts are immediate.
- Cleanup of field names and their meanings. Existing names were
non-intuitive or used for duplicate things.
- Added max_proc_limit field, to control the length of time the
handlers would service completions.
- Reworked EQ handling:
Added common routine that walks eq, applying notify interval and max
processing limits. Use queue_claimed to claim ownership of the queue
while processing. Always rearm the queue whenever the common routine
is called.
Rework queue element processing, namely to eliminate hba_index vs
host_index. Only one index is necessary. The queue entry can be
marked invalid and the host_index updated immediately after eqe
processing.
After rework, xx_release routines are now DB write functions. Renamed
the routines as such.
Moved lpfc_sli4_eq_flush(), which does similar action, to same area.
Replaced the 2 individual loops that walk an eq with a call to the
common routine.
Slightly revised lpfc_sli4_hba_handle_eqe() calling syntax.
Added per-cpu counters to detect interrupt rates and scale
interrupt coalescing values.
- Reworked CQ handling:
Added common routine that walks cq, applying notify interval and max
processing limits. Use queue_claimed to claim ownership of the queue
while processing. Always rearm the queue whenever the common routine
is called.
Rework queue element processing, namely to eliminate hba_index vs
host_index. Only one index is necessary. The queue entry can be
marked invalid and the host_index updated immediately after cqe
processing.
After rework, xx_release routines are now DB write functions. Renamed
the routines as such.
Replaced the 3 individual loops that walk a cq with a call to the
common routine.
Redefined lpfc_sli4_sp_handle_mcqe() to commong handler definition with
queue reference. Add increment for mbox completion to handler.
- Added a new module/sysfs attribute: lpfc_cq_max_proc_limit To allow
dynamic changing of the CQ max_proc_limit value being used.
Although this leaves an EQ as an immediate interrupt, that interrupt will
only occur if a CQ bound to it is in an armed state and has cqe's to
process. By staying in the cq processing routine longer, high loads will
avoid generating more interrupts as they will only rearm as the processing
thread exits. The immediately interrupt is also beneficial to idle or
lower-processing CQ's as they get serviced immediately without being
penalized by sharing an EQ with a more loaded CQ.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Review of the eq coalescing logic showed the code was a bit fragmented.
Sometimes it would save/set via an interrupt max value, while in others it
would do so via a usdelay. There were also two places changing eq delay,
one place that issued mailbox commands, and another that changed via
register writes if supported.
Clean this up by:
- Standardizing the operation of lpfc_modify_hba_eq_delay() routine so
that it is always told of a us delay to impose. The routine then chooses
the best way to set that - via register or via mbx.
- Rather than two value types stored in eq->q_mode (usdelay if change via
register, imax if change via mbox) - q_mode always contains usdelay.
Before any value change, old vs new value is compared and only if
different is a change done.
- Revised the dmult calculation. dmult is not set based on overall imax
divided by hardware queues - instead imax applies to a single cpu and
the value will be replicated to all cpus.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
So far MSIX vector allocation assumed it would be 1:1 with hardware
queues. However, there are several reasons why fewer MSIX vectors may be
allocated than hardware queues such as the platform being out of vectors or
adapter limits being less than cpu count.
This patch reworks the MSIX/EQ relationships with the per-cpu hardware
queues so they can function independently. MSIX vectors will be equitably
split been cpu sockets/cores and then the per-cpu hardware queues will be
mapped to the vectors most efficient for them.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
The desired affinity for the hardware queue behavior is for hdwq 0 to be
affinitized with cpu 0, hdwq 1 to cpu 1, and so on. The implementation so
far does not do this if the number of cpus is greater than the number of
hardware queues (e.g. hardware queue allocation was administratively
reduced or hardware queue resources could not scale to the cpu count).
Correct the queue affinitization logic when queue count is less than
cpu count.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Default behavior is to use the information from the upper IO stacks to
select the hardware queue to use for IO submission. Which typically has
good cpu affinity.
However, the driver, when used on some variants of the upstream kernel, has
found queuing information to be suboptimal for FCP or IO completion locked
on particular cpus.
For command submission situations, the lpfc_fcp_io_sched module parameter
can be set to specify a hardware queue selection policy that overrides the
os stack information.
For IO completion situations, rather than queing cq processing based on the
cpu servicing the interrupting event, schedule the cq processing on the cpu
associated with the hardware queue's cq.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
The XRI get/put lists were partitioned per hardware queue. However, the
adapter rarely had sufficient resources to give a large number of resources
per queue. As such, it became common for a cpu to encounter a lack of XRI
resource and request the upper io stack to retry after returning a BUSY
condition. This occurred even though other cpus were idle and not using
their resources.
Create as efficient a scheme as possible to move resources to the cpus that
need them. Each cpu maintains a small private pool which it allocates from
for io. There is a watermark that the cpu attempts to keep in the private
pool. The private pool, when empty, pulls from a global pool from the
cpu. When the cpu's global pool is empty it will pull from other cpu's
global pool. As there many cpu global pools (1 per cpu or hardware queue
count) and as each cpu selects what cpu to pull from at different rates and
at different times, it creates a radomizing effect that minimizes the
number of cpu's that will contend with each other when the steal XRI's from
another cpu's global pool.
On io completion, a cpu will push the XRI back on to its private pool. A
watermark level is maintained for the private pool such that when it is
exceeded it will move XRI's to the CPU global pool so that other cpu's may
allocate them.
On NVME, as heartbeat commands are critical to get placed on the wire, a
single expedite pool is maintained. When a heartbeat is to be sent, it will
allocate an XRI from the expedite pool rather than the normal cpu
private/global pools. On any io completion, if a reduction in the expedite
pools is seen, it will be replenished before the XRI is placed on the cpu
private pool.
Statistics are added to aid understanding the XRI levels on each cpu and
their behaviors.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Now that the lower half has much better per-cpu parallelization using the
hardware queues, the SCSI MQ support needs to be tied into it.
The involves the following mods:
- Use the hardware queue info from the midlayer to help select the
hardware queue to utilize. This required change to the get_scsi-buf_xxx
routines.
- Remove lpfc_sli4_scmd_to_wqidx_distr() routine. No longer needed.
- Includes fix for SLI-3 that does not have multi queue parallelization.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
SLI4 nvme functions are passing the SLI3 ring number when posting wqe to
hardware. This should be indicating the hardware queue to use, not the ring
number.
Replace ring number with the hardware queue that should be used.
Note: SCSI avoided this issue as it utilized an older lfpc_issue_iocb
routine that properly adapts.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Many io statistics were being sampled and saved using adapter-based data
structures. This was creating a lot of contention and cache thrashing in
the I/O path.
Move the statistics to the hardware queue data structures. Given the
per-queue data structures, use of atomic types is lessened.
Add new sysfs and debugfs stat routines to collate the per hardware queue
values and report at an adapter level.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Similar to the io execution path that reports cpu context information, the
debugfs routines for cpu information needs to be aligned with new hardware
queue implementation.
Convert debugfs cnd nvme cpucheck statistics to report information per
Hardware Queue.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Both NVME and SCSI aborts are now processed off the CQ workqueue and do not
generate events for the slowpath any more.
Remove the unused event code.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Once the IO buff allocations were made shared, there was a single XRI
buffer list shared by all hardware queues. A single list isn't great for
performance when shared across the per-cpu hardware queues.
Create a separate XRI IO buffer get/put list for each Hardware Queue. As
SGLs and associated IO buffers get allocated/posted to the firmware; round
robin their assignment across all available hardware Queues so that there
is an equitable assignment.
Modify SCSI and NVME IO submit code paths to use the Hardware Queue logic
for XRI allocation.
Add a debugfs interface to display hardware queue statistics
Added new empty_io_bufs counter to track if a cpu runs out of XRIs.
Replace common_ variables/names with io_ to make meanings clearer.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Currently, both nvme and fcp each have their own concept of an io_channel,
which is a combination wq/cq and associated msix. Different cpus would
share an io_channel.
The driver is now moving to per-cpu wq/cq pairs and msix vectors. The
driver will still use separate wq/cq pairs per protocol on each cpu, but
the protocols will share the msix vector.
Given the elimination of the nvme and fcp io channels, the module
parameters will be removed. A new parameter, lpfc_hdw_queue is added which
allows the wq/cq pair allocation per cpu to be overridden and allocated to
lesser value. If lpfc_hdw_queue is zero, the number of pairs allocated will
be based on the number of cpus. If non-zero, the parameter specifies the
number of queues to allocate. At this time, the maximum non-zero value is
64.
To manage this new paradigm, a new hardware queue structure is created to
track queue activity and relationships.
As MSIX vector allocation must be known before setting up the
relationships, msix allocation now occurs before queue datastructures are
allocated. If the number of vectors allocated is less than the desired
hardware queues, the hardware queue counts will be reduced to the number of
vectors
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
There is a extra queue and msix vector for expresslane. Now that the driver
will be doing queues per cpu, this oddball queue is no longer needed.
Expresslane will utilize the normal per-cpu queues.
Updated debugfs sli4 queue output to go along with the change
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Currently, both NVME and SCSI get their IO buffers from separate
pools. XRI's are associated 1:1 with IO buffers, so XRI's are also split
between protocols.
Eliminate the independent pools and use a single pool. Each buffer
structure now has a common section and a protocol section. Per protocol
routines for SGL initialization are removed and replaced by common
routines. Initialization of the buffers is only done on the common area.
All other fields, which are protocol specific, are initialized when the
buffer is allocated for use in the per-protocol allocation routine.
In the past, the SCSI side allocated IO buffers as part of slave_alloc
calls until the maximum XRIs for SCSI was reached. As all XRIs are now
common and may be used for either protocol, allocation for everything is
done as part of adapter initialization and the scsi side has no action in
slave alloc.
As XRI's are no longer split, the lpfc_xri_split module parameter is
removed.
Adapters based on SLI3 will continue to use the older scsi_buf_list_get/put
routines. All SLI4 adapters utilize the new IO buffer scheme
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
lpfc_nvme_prep_io_cmd() checks for null pnode, but caller
lpfc_nvme_fcp_io_submit() has already ensured it's non-null.
Remove the pnode null check.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
An hba-wide lock is taken in the nvme io completion routine. The lock
covers null'ing of the nrport pointer in the cmd structure.
The nrport member isn't necessary. After extracting the pointer from the
command, the pointer was dereferenced to get the fc discovery node
pointer. But the fc discovery node pointer is alrady in the command
structure so the dereferrence was unnecessary.
Eliminated the nrport structure member and its use, which also eliminates
the port-wide lock.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
When calling debugfs functions, there is no need to ever check the return
value. The function can work or not, but the code logic should never do
something different based on this.
Cc: James Smart <james.smart@broadcom.com>
Cc: Dick Kennedy <dick.kennedy@broadcom.com>
Cc: "James E.J. Bottomley" <jejb@linux.ibm.com>
Cc: "Martin K. Petersen" <martin.petersen@oracle.com>
Cc: linux-scsi@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
This is mostly update of the usual drivers: smarpqi, lpfc, qedi,
megaraid_sas, libsas, zfcp, mpt3sas, hisi_sas. Additionally, we have
a pile of annotation, unused variable and minor updates. The big API
change is the updates for Christoph's DMA rework which include
removing the DISABLE_CLUSTERING flag. And finally there are a couple
of target tree updates.
Signed-off-by: James E.J. Bottomley <jejb@linux.ibm.com>
-----BEGIN PGP SIGNATURE-----
iJwEABMIAEQWIQTnYEDbdso9F2cI+arnQslM7pishQUCXCEUNiYcamFtZXMuYm90
dG9tbGV5QGhhbnNlbnBhcnRuZXJzaGlwLmNvbQAKCRDnQslM7pishdjKAP9vrTTv
qFaYmAoRSbPq9ZiixaXLMy0K/6o76Uay0gnBqgD/fgn3jg/KQ6alNaCjmfeV3wAj
u1j3H7tha9j1it+4pUw=
=GDa+
-----END PGP SIGNATURE-----
Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
Pull SCSI updates from James Bottomley:
"This is mostly update of the usual drivers: smarpqi, lpfc, qedi,
megaraid_sas, libsas, zfcp, mpt3sas, hisi_sas.
Additionally, we have a pile of annotation, unused variable and minor
updates.
The big API change is the updates for Christoph's DMA rework which
include removing the DISABLE_CLUSTERING flag.
And finally there are a couple of target tree updates"
* tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: (259 commits)
scsi: isci: request: mark expected switch fall-through
scsi: isci: remote_node_context: mark expected switch fall-throughs
scsi: isci: remote_device: Mark expected switch fall-throughs
scsi: isci: phy: Mark expected switch fall-through
scsi: iscsi: Capture iscsi debug messages using tracepoints
scsi: myrb: Mark expected switch fall-throughs
scsi: megaraid: fix out-of-bound array accesses
scsi: mpt3sas: mpt3sas_scsih: Mark expected switch fall-through
scsi: fcoe: remove set but not used variable 'port'
scsi: smartpqi: call pqi_free_interrupts() in pqi_shutdown()
scsi: smartpqi: fix build warnings
scsi: smartpqi: update driver version
scsi: smartpqi: add ofa support
scsi: smartpqi: increase fw status register read timeout
scsi: smartpqi: bump driver version
scsi: smartpqi: add smp_utils support
scsi: smartpqi: correct lun reset issues
scsi: smartpqi: correct volume status
scsi: smartpqi: do not offline disks for transient did no connect conditions
scsi: smartpqi: allow for larger raid maps
...
Update lpfc version to 12.0.0.10
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
This patch adds a "pci_bus_reset" option to the board_mode sysfs attribute.
This option uses the pci_reset_bus() api to reset the PCIe link the adapter
is on, which will reset the chip/adapter. Prior to issuing this option,
all functions on the same chip must be placed in the offline state by the
admin. After the reset, all of the instances may be brought online again.
The primary purpose of this functionality is to support cases where
firmware update required a chip reset but the admin did not want to reboot
the machine in order to instantiate the firmware update.
Sanity checks take place prior to the reset to ensure the adapter is the
sole entity on the PCIe bus and that all functions are in the offline
state.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Current messages report generic actions (like send GID_FT), but misses
reporting for what protocol type the action is taken.
Revise the messages to reflect the FC4 protocol type being worked on.
[mkp: typo]
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
When a target's link dropped, an RSCN was received to communicate the
change. The driver detected the loss of the target and issued and UNREG_RPI
mailbox command. While that was being processed, another RSCN was received
to communicate the port coming back. The driver deferred the PLOGI to the
port until the mailbox command finishes. When the mailbox command completed
it saw the pending port and called the routines to issue the
PLOGI. However, it forgot to clear the UNREG_INP state flag, so the PLOGI
xmt routine nooped the PLOGI request assuming it needed to wait for the
mailbox command. At this point, login would never be re-attempted.
Clear UNREG_INP before issuing the deferred PLOGI.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Currently, when a trunk link goes down due to some fault, the driver
snapshots the fault code. If the link then comes back up, meaning there is
no fault, the driver is not clearing the fault code so the sysfs link_state
entry reports old/stale data.
Revise the logic so that on successful link up the fault code is cleared.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
The existing MDS loopback diagnostics support processing received frames in
the slowpath work thread. It caps the number of frames it will process at
64, before waiting for another event to indicate additional frame
reception. The net-net is this results in very slow frame processing during
loopback tests and sometimes orphans an io, causing the loopback test to
report failure by the switch.
Move MDS loopback frame processing out of the slow path worker thread and
into the normal RQ processing routines.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
If the adapter is taken offline, the trunk link port attributes continue to
report trunk links as up even though all links are down as the adapter is
offline.
Clear the trunk links state as part of taking the adapter offline.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Certain older adapters such as the OneConnect OCe10100 may not have a valid
wqpcnt value. In this case, do not set queue->page_count to 0 in
lpfc_sli4_queue_alloc() as this will prevent the driver from initializing.
Fixes: 895427bd01 ("scsi: lpfc: NVME Initiator: Base modifications")
Cc: stable@vger.kernel.org # 4.11+
Signed-off-by: Ewan D. Milne <emilne@redhat.com>
Reviewed-by: Laurence Oberman <loberman@redhat.com>
Tested-by: Laurence Oberman <loberman@redhat.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Most SCSI drivers want to enable "clustering", that is merging of
segments so that they might span more than a single page. Remove the
ENABLE_CLUSTERING define, and require drivers to explicitly set
DISABLE_CLUSTERING to disable this feature.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Addition of support for if_type=6 missed several checks for interface type,
resulting in the failure of several key management features such as
firmware dump and loopback testing.
Correct the checks on the if_type so that both SLI4 IF_TYPE's 2 and 6 are
supported.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Reviewed-by: Ewan D. Milne <emilne@redhat.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
This reverts commit 287aba2592.
We killed the bad firmware and this mod is no longer necessary.
Signed-off-by: James Smart <james.smart@broadcom.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAlwNpb0eHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGwGwH/00UHnXfxww3ixxz
zwTVDzptA6SPm6s84yJOWatM5fXhPiAltZaHSYF9lzRzNU71NCq7Frhq3fQUIXKM
OxqDn9nfSTWcjWTk2q5n2keyRV/KIn67YX7UgqFc1bO/mqtVjEgNWaMyblhI+e9E
giu1ZXayHr43jK1cDOmGExZubXUq7Vsc9TOlrd+d2SwIqeEP7TCMrPhnHDwCNvX2
UU5dtANpVzGtHaBcr37wJj+L8kODCc0f+PQ3g2ar5jTHst5SLlHp2u0AMRnUmgdi
VkGx+mu/uk8mtwUqMIMqhplklVoqK6LTeLqsY5Xt32SKruw9UqyJGdphLjW2QP/g
MkmA1lI=
=7kaD
-----END PGP SIGNATURE-----
Merge tag 'v4.20-rc6' into for-4.21/block
Pull in v4.20-rc6 to resolve the conflict in NVMe, but also to get the
two corruption fixes. We're going to be overhauling the direct dispatch
path, and we need to do that on top of the changes we made for that
in mainline.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Update the driver version to 12.0.0.9
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
When dif and first burst is used in a write command wqe, the driver was not
properly setting fields in the io command request. This resulted in no dif
bytes being sent and invalid xfer_rdy's, resulting in the io being aborted
by the hardware.
Correct the wqe initializaton when both dif and first burst are used.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
On driver termination, after the driver stops fw logging by writing a
register on the chip, the driver immediately unmaps and frees the logging
buffer, without confirming in any way that the chip has received the write
and terminated the logging. As termination on the chip is not immediate,
the chip may issue a dma request to the now unmapped dma buffer, resulting
in a iommu fault.
Change the driver to receive a confirmation that logging ahs been
terminated. As the driver always issues an SLI reset with the device as
part of shutdown, and as part of that is receiving confirmation that the
reset is complete - the driver was modified to perform the write to disable
fw logging prior to the SLI reset and only free the fw log buffer after the
SLI reset is complete. That guarantees use of the fw log buffer is fully
terminated when it is unmapped.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Driver missed classifying the chip type for G7 when reporting supported
topologies. This resulted in loop being shown as supported on FC links that
are not supported per the standard.
Add the chip classifications to the topology checks in the driver.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Driver is setting bits in word 10 of the SLI4 ABORT WQE (the wqid). The
field was a carry over from a prior SLI revision. The field does not exist
in SLI4, and the action may result in an overlap with future definition of
the WQE.
Remove the setting of WQID in the ABORT WQE.
Also cleaned up WQE field settings - initialize to zero, don't bother to
set fields to zero.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
The current discovery state machine the driver treated FLOGI oddly. When
point to point, an FLOGI is to be exchanged by the two ports, with the port
with the most significant WWN then proceeding with PLOGI. The
implementation in the driver was keyed to closely with "what have I sent",
not with what has happened between the two endpoints. Thus, it blatantly
would ACC an FLOGI, but reject PLOGI's until it had its FLOGI ACC'd. The
problem is - the sending of FLOGI may be delayed for some reason, or the
response to FLOGI held off by the other side. In the failing situation the
other side sent an FLOGI, which was ACC'd, then sent PLOGIs which were then
rjt'd until the retry count for the PLOGIs were exceeded and the port gave
up. The FLOGI may have been very late in transmit, or the response held off
until the PLOGIs failed. Given the other port had the higher WWN, no PLOGIs
would occur and communication stopped.
Correct the situation by changing the FLOGI handling. Defer any response to
an FLOGI until the driver has sent its FLOGI as well. Then, upon either
completion of the sent FLOGI, or upon sending an ACC to a received FLOGI
(which may be received before or just after FLOGI was sent). the driver
will act on who has the higher WWN. if the other port does, the driver will
noop any handling of an FLOGI response (if outstanding) and wait for PLOGI.
If the local port does, the driver will transition to sending PLOGI and
will noop any action on responding to an FLOGI (if not yet received).
Fortunately, to implement this, it only took another state flag and
deferring any FLOGI response if the FLOGI has yet to be transmit. All
subsequent actions were already in place.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
In some link initialization sequences, the fw generates an erroneous FLOGI
payload to the driver without an intervening link bounce. The driver, when
it sees a 2nd FLOGI without an intervening link bounce, automatically
performs a link bounce. In this, the link bounce causes the situate to
repeat and in a nasty loop of link bounces.
Resolve the issue by validating the FLOGI payload. The erroneous FLOGI will
contain VVL signatures that are not normal. When the driver sees these, it
will simply reject the flogi rather than bouncing the link. The reject is
consumed within the firmware.
Signed-off-by: Dick Kennedy <dick.kennedy@broadcom.com>
Signed-off-by: James Smart <jsmart2021@gmail.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>