In preparation to enabling -Wimplicit-fallthrough, mark switch cases
where we are expecting to fall through.
This patch fixes the following warnings:
net/bluetooth/rfcomm/core.c:479:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
net/bluetooth/l2cap_core.c:4223:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
Warning level 3 was used: -Wimplicit-fallthrough=3
This patch is part of the ongoing efforts to enabling
-Wimplicit-fallthrough.
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
The function l2cap_get_conf_opt will return L2CAP_CONF_OPT_SIZE + opt->len
as length value. The opt->len however is in control over the remote user
and can be used by an attacker to gain access beyond the bounds of the
actual packet.
To prevent any potential leak of heap memory, it is enough to check that
the resulting len calculation after calling l2cap_get_conf_opt is not
below zero. A well formed packet will always return >= 0 here and will
end with the length value being zero after the last option has been
parsed. In case of malformed packets messing with the opt->len field the
length value will become negative. If that is the case, then just abort
and ignore the option.
In case an attacker uses a too short opt->len value, then garbage will
be parsed, but that is protected by the unknown option handling and also
the option parameter size checks.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
When doing option parsing for standard type values of 1, 2 or 4 octets,
the value is converted directly into a variable instead of a pointer. To
avoid being tricked into being a pointer, check that for these option
types that sizes actually match. In L2CAP every option is fixed size and
thus it is prudent anyway to ensure that the remote side sends us the
right option size along with option paramters.
If the option size is not matching the option type, then that option is
silently ignored. It is a protocol violation and instead of trying to
give the remote attacker any further hints just pretend that option is
not present and proceed with the default values. Implementation
following the specification and its qualification procedures will always
use the correct size and thus not being impacted here.
To keep the code readable and consistent accross all options, a few
cosmetic changes were also required.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
Use DEFINE_SHOW_ATTRIBUTE macro to simplify the code.
Signed-off-by: Yangtao Li <tiny.windzz@gmail.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Add the result values specific to L2CAP LE credit based connections
and change the old result values wherever they were used.
Signed-off-by: Mallikarjun Phulari <mallikarjun.phulari@intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
If the remote is not able to fully utilize the MPS choosen recalculate
the credits based on the actual amount it is sending that way it can
still send packets of MTU size without credits dropping to 0.
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Give enough rx credits for a full packet instead of using an arbitrary
number which may not be enough depending on the MTU and MPS which can
cause interruptions while waiting for more credits, also remove
debugfs entry for l2cap_le_max_credits.
With these changes the credits are restored after each SDU is received
instead of using fixed threshold, this way it is garanteed that there
will always be enough credits to send a packet without waiting more
credits to arrive.
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
This ensures the MPS can fit in a single HCI fragment so each
segment don't have to be reassembled at HCI level, in addition to
that also remove the debugfs entry to configure the MPS.
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
In the function l2cap_parse_conf_rsp and in the function
l2cap_parse_conf_req the following variable is declared without
initialization:
struct l2cap_conf_efs efs;
In addition, when parsing input configuration parameters in both of
these functions, the switch case for handling EFS elements may skip the
memcpy call that will write to the efs variable:
...
case L2CAP_CONF_EFS:
if (olen == sizeof(efs))
memcpy(&efs, (void *)val, olen);
...
The olen in the above if is attacker controlled, and regardless of that
if, in both of these functions the efs variable would eventually be
added to the outgoing configuration request that is being built:
l2cap_add_conf_opt(&ptr, L2CAP_CONF_EFS, sizeof(efs), (unsigned long) &efs);
So by sending a configuration request, or response, that contains an
L2CAP_CONF_EFS element, but with an element length that is not
sizeof(efs) - the memcpy to the uninitialized efs variable can be
avoided, and the uninitialized variable would be returned to the
attacker (16 bytes).
This issue has been assigned CVE-2017-1000410
Cc: Marcel Holtmann <marcel@holtmann.org>
Cc: Gustavo Padovan <gustavo@padovan.org>
Cc: Johan Hedberg <johan.hedberg@gmail.com>
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Ben Seri <ben@armis.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Validate the output buffer length for L2CAP config requests and responses
to avoid overflowing the stack buffer used for building the option blocks.
Cc: stable@vger.kernel.org
Signed-off-by: Ben Seri <ben@armis.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It seems like a historic accident that these return unsigned char *,
and in many places that means casts are required, more often than not.
Make these functions (skb_put, __skb_put and pskb_put) return void *
and remove all the casts across the tree, adding a (u8 *) cast only
where the unsigned char pointer was used directly, all done with the
following spatch:
@@
expression SKB, LEN;
typedef u8;
identifier fn = { skb_put, __skb_put };
@@
- *(fn(SKB, LEN))
+ *(u8 *)fn(SKB, LEN)
@@
expression E, SKB, LEN;
identifier fn = { skb_put, __skb_put };
type T;
@@
- E = ((T *)(fn(SKB, LEN)))
+ E = fn(SKB, LEN)
which actually doesn't cover pskb_put since there are only three
users overall.
A handful of stragglers were converted manually, notably a macro in
drivers/isdn/i4l/isdn_bsdcomp.c and, oddly enough, one of the many
instances in net/bluetooth/hci_sock.c. In the former file, I also
had to fix one whitespace problem spatch introduced.
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
A common pattern with skb_put() is to just want to memcpy()
some data into the new space, introduce skb_put_data() for
this.
An spatch similar to the one for skb_put_zero() converts many
of the places using it:
@@
identifier p, p2;
expression len, skb, data;
type t, t2;
@@
(
-p = skb_put(skb, len);
+p = skb_put_data(skb, data, len);
|
-p = (t)skb_put(skb, len);
+p = skb_put_data(skb, data, len);
)
(
p2 = (t2)p;
-memcpy(p2, data, len);
|
-memcpy(p, data, len);
)
@@
type t, t2;
identifier p, p2;
expression skb, data;
@@
t *p;
...
(
-p = skb_put(skb, sizeof(t));
+p = skb_put_data(skb, data, sizeof(t));
|
-p = (t *)skb_put(skb, sizeof(t));
+p = skb_put_data(skb, data, sizeof(t));
)
(
p2 = (t2)p;
-memcpy(p2, data, sizeof(*p));
|
-memcpy(p, data, sizeof(*p));
)
@@
expression skb, len, data;
@@
-memcpy(skb_put(skb, len), data, len);
+skb_put_data(skb, data, len);
(again, manually post-processed to retain some comments)
Reviewed-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Consolidate code sending data to LE CoC channels and adds proper
accounting of packets sent, the remaining credits and how many packets
are queued.
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
Acked-by: Jukka Rissanen <jukka.rissanen@linux.intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Just keep queueing them into TX queue since the caller might just have
to do the same and there is no impact in adding another packet to the
TX queue even if there aren't any credits to transmit them.
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
Acked-by: Jukka Rissanen <jukka.rissanen@linux.intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Since we need to change the implementation, stop exposing internals.
Provide kref_read() to read the current reference count; typically
used for debug messages.
Kills two anti-patterns:
atomic_read(&kref->refcount)
kref->refcount.counter
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
copy_from_iter_full(), copy_from_iter_full_nocache() and
csum_and_copy_from_iter_full() - counterparts of copy_from_iter()
et.al., advancing iterator only in case of successful full copy
and returning whether it had been successful or not.
Convert some obvious users. *NOTE* - do not blindly assume that
something is a good candidate for those unless you are sure that
not advancing iov_iter in failure case is the right thing in
this case. Anything that does short read/short write kind of
stuff (or is in a loop, etc.) is unlikely to be a good one.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The hci_get_route() API is used to look up local HCI devices, however
so far it has been incapable of dealing with anything else than the
public address of HCI devices. This completely breaks with LE-only HCI
devices that do not come with a public address, but use a static
random address instead.
This patch exteds the hci_get_route() API with a src_type parameter
that's used for comparing with the right address of each HCI device.
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
During an audit for sk_filter(), we found that rx_busy_skb handling
in l2cap_sock_recv_cb() and l2cap_sock_recvmsg() looks not quite as
intended.
The assumption from commit e328140fda ("Bluetooth: Use event-driven
approach for handling ERTM receive buffer") is that errors returned
from sock_queue_rcv_skb() are due to receive buffer shortage. However,
nothing should prevent doing a setsockopt() with SO_ATTACH_FILTER on
the socket, that could drop some of the incoming skbs when handled in
sock_queue_rcv_skb().
In that case sock_queue_rcv_skb() will return with -EPERM, propagated
from sk_filter() and if in L2CAP_MODE_ERTM mode, wrong assumption was
that we failed due to receive buffer being full. From that point onwards,
due to the to-be-dropped skb being held in rx_busy_skb, we cannot make
any forward progress as rx_busy_skb is never cleared from l2cap_sock_recvmsg(),
due to the filter drop verdict over and over coming from sk_filter().
Meanwhile, in l2cap_sock_recv_cb() all new incoming skbs are being
dropped due to rx_busy_skb being occupied.
Instead, just use __sock_queue_rcv_skb() where an error really tells that
there's a receive buffer issue. Split the sk_filter() and enable it for
non-segmented modes at queuing time since at this point in time the skb has
already been through the ERTM state machine and it has been acked, so dropping
is not allowed. Instead, for ERTM and streaming mode, call sk_filter() in
l2cap_data_rcv() so the packet can be dropped before the state machine sees it.
Fixes: e328140fda ("Bluetooth: Use event-driven approach for handling ERTM receive buffer")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Acked-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
The HCI_BREDR naming is confusing since it actually stands for Primary
Bluetooth Controller. Which is a term that has been used in the latest
standard. However from a legacy point of view there only really have
been Basic Rate (BR) and Enhanced Data Rate (EDR). Recent versions of
Bluetooth introduced Low Energy (LE) and made this terminology a little
bit confused since Dual Mode Controllers include BR/EDR and LE. To
simplify this the name HCI_PRIMARY stands for the Primary Controller
which can be a single mode or dual mode controller.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
The LE dynamic PSM range is different from BR/EDR (0x0080 - 0x00ff)
and doesn't have requirements relating to parity, so separate checks
are needed.
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Remove unneeded variable used to store return value.
Error reported by coccicheck.
Signed-off-by: Prasanna Karthik <mkarthi3@visteon.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
The hci_connect_le_scan() is (as the name implies) a master/central
role API, so it makes no sense in passing a role parameter to it. At
the same time this patch also fixes the direct advertising support for
LE L2CAP sockets where we now call the more appropriate hci_le_connect()
API if slave/peripheral role is desired.
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
When receiving a connect response we should make sure that the DCID is
within the valid range and that we don't already have another channel
allocated for the same DCID.
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
The 'dyn_end' value is also a valid CID so it should be included in
the range of values checked.
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
The core spec defines specific response codes for situations when the
received CID is incorrect. Add the defines for these and return them
as appropriate from the LE Connect Request handler function.
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Currently, when trying to connect to already paired device that just
rotated its RPA MAC address, old address would be used and connection
would fail. In order to fix that, kernel must scan and receive
advertisement with fresh RPA before connecting.
This patch enables new connection establishment procedure. Instead of just
sending HCI_OP_LE_CREATE_CONN to controller, "connect" will add device to
kernel whitelist and start scan. If advertisement is received, it'll be
compared against whitelist and then trigger connection if it matches.
That fixes mentioned reconnect issue for already paired devices. It also
make whole connection procedure more robust. We can try to connect to
multiple devices at same time now, even though controller allow only one.
Signed-off-by: Jakub Pawlowski <jpawlowski@google.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
If the user->list is deleted with list_del(), it doesn't initialize the
entry which can cause the issue with list_empty(). According to the
comment from the list.h, list_empty() returns false even if the list is
empty and put the entry in an undefined state.
/**
* list_del - deletes entry from list.
* @entry: the element to delete from the list.
* Note: list_empty() on entry does not return true after this, the entry is
* in an undefined state.
*/
Because of this behavior, list_empty() returns false even if list is empty
when the device is reconnected.
So, user->list needs to be re-initialized after list_del(). list.h already
have a macro list_del_init() which deletes the entry and initailze it again.
Signed-off-by: Tedd Ho-Jeong An <tedd.an@intel.com>
Tested-by: Jörg Otte <jrg.otte@gmail.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
list_del() poisons pointers with special values, no need to overwrite them.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
The return value of l2cap_recv_acldata() and sco_recv_scodata()
are not used, then change it to return void
Signed-off-by: Arron Wang <arron.wang@intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
We're getting very close to the maximum possible size of bt_skb_cb. To
prepare to shrink the struct with the help of a union this patch moves
all L2CAP related variables into the l2cap_ctrl struct. To later add
other 'ctrl' structs the L2CAP one is renamed simple 'l2cap' instead
of 'control'.
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
With the extension of hdev->dev_flags utilizing a bitmap now, the space
is no longer restricted. Merge the hdev->dbg_flags into hdev->dev_flags
to save space on 64-bit architectures. On 32-bit architectures no size
reduction happens.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
Instead of manually coding test_bit on hdev->dev_flags all the time,
use hci_dev_test_flag helper macro.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
This patch moves all the disconn_cfm callbacks to be based on the hci_cb
list. This means making l2cap_disconn_cfm private to l2cap_core.c and
sco_conn_cb private to sco.c respectively. Since the hci_conn type
filtering isn't done any more on the wrapper level the callbacks
themselves need to check that they were passed a relevant type of
connection.
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
This patch moves all the connect_cfm callbacks to be based on the hci_cb
list. This means making l2cap_connect_cfm private to l2cap_core.c and
sco_connect_cb private to sco.c respectively. Since the hci_conn type
filtering isn't done any more on the wrapper level the callbacks
themselves need to check that they were passed a relevant type of
connection.
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
There's no reason to have the custom hci_proto_auth/encrypt_cfm helpers
when the hci_cb list works equally well. This patch adds L2CAP to the
hci_cb list and makes l2cap_security_cfm a private function of
l2cap_core.c.
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
On BR/EDR the L2CAP channel instances for fixed channels have so far
been marked as ready only once the L2CAP information req/rsp procedure
is complete and we have the fixed channel mask. This could however lead
to data being dropped if we receive it on the channel before knowing the
remote mask.
Since it is valid for a remote to send data this early, simply assume
that the channel is supported when we receive data on it. So far this
hasn't been noticed much because of limited use of fixed channels on
BR/EDR, but e.g. with SMP over BR/EDR this is already now visible with
automated tests failing randomly.
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
The comparing of chan->src should always be done against the local
identity address, represented by hcon->src and hcon->src_type. This
patch modifies l2cap_global_fixed_chan() to take the full hci_conn so
that we can easily compare against hcon->src and hcon->src_type.
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
The current bdaddr_type() usage in l2cap_core.c is a bit funny in that
it's always passed a hci_conn + a hci_conn member. Because of this only
the hci_conn is really needed. Since the second parameter is always
either hcon->src_type or hcon->dst type this patch adds two helper
functions for each purpose: bdaddr_src_type() and bdaddr_dst_type().
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
The devices address types are BR/EDR Public, LE Public and LE Random and
any of these three is valid for L2CAP connections. So show the correct
type in the debugfs list.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
Testing cross-transport pairing that starts on BR/EDR is only valid when
using a controller with BR/EDR Secure Connections. Devices will indicate
this by providing BR/EDR SMP fixed channel over L2CAP. To allow testing
of this feature on Bluetooth 4.0 controller or controllers without the
BR/EDR Secure Connections features, introduce a force_bredr_smp debugfs
option that allows faking the required AES connection.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
Just use copy_from_iter(). That's what this method is trying to do
in all cases, in a very convoluted fashion.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
it'll die soon enough - now that kvec-backed iov_iter works regardless
of set_fs(), both instances will become copy_from_iter() as soon as
we introduce ->msg_iter...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The SMP over BR/EDR support for cross-transport pairing should also be
enabled when the debugfs setting force_lesc_support has been enabled.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
When doing SMP over BR/EDR some of the routines can be shared with the
LE functionality whereas others needs to be split into their own BR/EDR
specific branches. This patch implements the split of BR/EDR specific
SMP code from the LE-only code, making sure SMP over BR/EDR works as
specified.
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
To pave the way for future fixed channels to be added easily we should
track both the local and remote mask on a per-L2CAP connection (struct
l2cap_conn) basis. So far the code has used a global variable in a racy
way which anyway needs fixing.
This patch renames the existing conn->fixed_chan_mask that tracked
the remote mask to conn->remote_fixed_chan and adds a new variable
conn->local_fixed_chan to track the local mask. Since the HS support
info is now available in the local mask we can remove the
conn->hs_enabled variable.
Signed-off-by: Johan Hedberg <johan.hedberg@intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>