When joining a bridge where MST is enabled, we validate that the
proper offloading support is in place, otherwise we fallback to
software bridging.
When then mode is changed on a bridge in which we are members, we
refuse the change if offloading is not supported.
At the moment we only check for configurable learning, but this will
be further restricted as we support more MST related switchdev events.
Signed-off-by: Tobias Waldekranz <tobias@waldekranz.com>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The device_node pointer is returned by of_parse_phandle() with refcount
incremented. We should use of_node_put() on it when done.
Fixes: 6d4e5c570c ("net: dsa: get port type at parse time")
Signed-off-by: Miaoqian Lin <linmq006@gmail.com>
Link: https://lore.kernel.org/r/20220316082602.10785-1-linmq006@gmail.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
If a port joins a bridge that it can't offload, it will fallback to
standalone mode and software bridging. In this case, we never want to
offload any FDB entries to hardware either.
Previously, for host addresses, we would eventually end up in
dsa_port_bridge_host_fdb_add, which would unconditionally dereference
dp->bridge and cause a segfault.
Fixes: c26933639b ("net: dsa: request drivers to perform FDB isolation")
Signed-off-by: Tobias Waldekranz <tobias@waldekranz.com>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20220315233033.1468071-1-tobias@waldekranz.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Similar to the port-based default priority, IEEE 802.1Q-2018 allows the
Application Priority Table to define QoS classes (0 to 7) per IP DSCP
value (0 to 63).
In the absence of an app table entry for a packet with DSCP value X,
QoS classification for that packet falls back to other methods (VLAN PCP
or port-based default). The presence of an app table for DSCP value X
with priority Y makes the hardware classify the packet to QoS class Y.
As opposed to the default-prio where DSA exposes only a "set" in
dsa_switch_ops (because the port-based default is the fallback, it
always exists, either implicitly or explicitly), for DSCP priorities we
expose an "add" and a "del". The addition of a DSCP entry means trusting
that DSCP priority, the deletion means ignoring it.
Drivers that already trust (at least some) DSCP values can describe
their configuration in dsa_switch_ops :: port_get_dscp_prio(), which is
called for each DSCP value from 0 to 63.
Again, there can be more than one dcbnl app table entry for the same
DSCP value, DSA chooses the one with the largest configured priority.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The port-based default QoS class is assigned to packets that lack a
VLAN PCP (or the port is configured to not trust the VLAN PCP),
an IP DSCP (or the port is configured to not trust IP DSCP), and packets
on which no tc-skbedit action has matched.
Similar to other drivers, this can be exposed to user space using the
DCB Application Priority Table. IEEE 802.1Q-2018 specifies in Table
D-8 - Sel field values that when the Selector is 1, the Protocol ID
value of 0 denotes the "Default application priority. For use when
application priority is not otherwise specified."
The way in which the dcbnl integration in DSA has been designed has to
do with its requirements. Andrew Lunn explains that SOHO switches are
expected to come with some sort of pre-configured QoS profile, and that
it is desirable for this to come pre-loaded into the DSA slave interfaces'
DCB application priority table.
In the dcbnl design, this is possible because calls to dcb_ieee_setapp()
can be initiated by anyone including being self-initiated by this device
driver.
However, what makes this challenging to implement in DSA is that the DSA
core manages the net_devices (effectively hiding them from drivers),
while drivers manage the hardware. The DSA core has no knowledge of what
individual drivers' QoS policies are. DSA could export to drivers a
wrapper over dcb_ieee_setapp() and these could call that function to
pre-populate the app priority table, however drivers don't have a good
moment in time to do this. The dsa_switch_ops :: setup() method gets
called before the net_devices are created (dsa_slave_create), and so is
dsa_switch_ops :: port_setup(). What remains is dsa_switch_ops ::
port_enable(), but this gets called upon each ndo_open. If we add app
table entries on every open, we'd need to remove them on close, to avoid
duplicate entry errors. But if we delete app priority entries on close,
what we delete may not be the initial, driver pre-populated entries, but
rather user-added entries.
So it is clear that letting drivers choose the timing of the
dcb_ieee_setapp() call is inappropriate. The alternative which was
chosen is to introduce hardware-specific ops in dsa_switch_ops, and
effectively hide dcbnl details from drivers as well. For pre-populating
the application table, dsa_slave_dcbnl_init() will call
ds->ops->port_get_default_prio() which is supposed to read from
hardware. If the operation succeeds, DSA creates a default-prio app
table entry. The method is called as soon as the slave_dev is
registered, but before we release the rtnl_mutex. This is done such that
user space sees the app table entries as soon as it sees the interface
being registered.
The fact that we populate slave_dev->dcbnl_ops with a non-NULL pointer
changes behavior in dcb_doit() from net/dcb/dcbnl.c, which used to
return -EOPNOTSUPP for any dcbnl operation where netdev->dcbnl_ops is
NULL. Because there are still dcbnl-unaware DSA drivers even if they
have dcbnl_ops populated, the way to restore the behavior is to make all
dcbnl_ops return -EOPNOTSUPP on absence of the hardware-specific
dsa_switch_ops method.
The dcbnl framework absurdly allows there to be more than one app table
entry for the same selector and protocol (in other words, more than one
port-based default priority). In the iproute2 dcb program, there is a
"replace" syntactical sugar command which performs an "add" and a "del"
to hide this away. But we choose the largest configured priority when we
call ds->ops->port_set_default_prio(), using __fls(). When there is no
default-prio app table entry left, the port-default priority is restored
to 0.
Link: https://patchwork.kernel.org/project/netdevbpf/patch/20210113154139.1803705-2-olteanv@gmail.com/
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The Felix driver declares FDB isolation but puts all standalone ports in
VID 0. This is mostly problem-free as discussed with Alvin here:
https://patchwork.kernel.org/project/netdevbpf/cover/20220302191417.1288145-1-vladimir.oltean@nxp.com/#24763870
however there is one catch. DSA still thinks that FDB entries are
installed on the CPU port as many times as there are user ports, and
this is problematic when multiple user ports share the same MAC address.
Consider the default case where all user ports inherit their MAC address
from the DSA master, and then the user runs:
ip link set swp0 address 00:01:02:03:04:05
The above will make dsa_slave_set_mac_address() call
dsa_port_standalone_host_fdb_add() for 00:01:02:03:04:05 in port 0's
standalone database, and dsa_port_standalone_host_fdb_del() for the old
address of swp0, again in swp0's standalone database.
Both the ->port_fdb_add() and ->port_fdb_del() will be propagated down
to the felix driver, which will end up deleting the old MAC address from
the CPU port. But this is still in use by other user ports, so we end up
breaking unicast termination for them.
There isn't a problem in the fact that DSA keeps track of host
standalone addresses in the individual database of each user port: some
drivers like sja1105 need this. There also isn't a problem in the fact
that some drivers choose the same VID/FID for all standalone ports.
It is just that the deletion of these host addresses must be delayed
until they are known to not be in use any longer, and only the driver
has this knowledge. Since DSA keeps these addresses in &cpu_dp->fdbs and
&cpu_db->mdbs, it is just a matter of walking over those lists and see
whether the same MAC address is present on the CPU port in the port db
of another user port.
I have considered reusing the generic dsa_port_walk_fdbs() and
dsa_port_walk_mdbs() schemes for this, but locking makes it difficult.
In the ->port_fdb_add() method and co, &dp->addr_lists_lock is held, but
dsa_port_walk_fdbs() also acquires that lock. Also, even assuming that
we introduce an unlocked variant of the address iterator, we'd still
need some relatively complex data structures, and a void *ctx in the
dsa_fdb_walk_cb_t which we don't currently pass, such that drivers are
able to figure out, after iterating, whether the same MAC address is or
isn't present in the port db of another port.
All the above, plus the fact that I expect other drivers to follow the
same model as felix where all standalone ports use the same FID, made me
conclude that a generic method provided by DSA is necessary:
dsa_fdb_present_in_other_db() and the mdb equivalent. Felix calls this
from the ->port_fdb_del() handler for the CPU port, when the database
was classified to either a port db, or a LAG db.
For symmetry, we also call this from ->port_fdb_add(), because if the
address was installed once, then installing it a second time serves no
purpose: it's already in hardware in VID 0 and it affects all standalone
ports.
This change moves dsa_db_equal() from switch.c to dsa.c, since it now
has one more caller.
Fixes: 54c3198460 ("net: mscc: ocelot: enforce FDB isolation when VLAN-unaware")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since the slave unicast address is synced to hardware and to the DSA
master during dsa_slave_open(), this means that a call to
dsa_slave_set_mac_address() while the slave interface is down will
result to a call to dsa_port_standalone_host_fdb_del() and to
dev_uc_del() for the MAC address while there was no previous
dsa_port_standalone_host_fdb_add() or dev_uc_add().
This is a partial revert of the blamed commit below, which was too
aggressive.
Fixes: 35aae5ab91 ("net: dsa: remove workarounds for changing master promisc/allmulti only while up")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
&cpu_db->fdbs and &cpu_db->mdbs may be uninitialized lists during some
call paths of felix_set_tag_protocol().
There was an attempt to avoid calling dsa_port_walk_fdbs() during setup
by using a "bool change" in the felix driver, but this doesn't work when
the tagging protocol is defined in the device tree, and a change is
triggered by DSA at pseudo-runtime:
dsa_tree_setup_switches
-> dsa_switch_setup
-> dsa_switch_setup_tag_protocol
-> ds->ops->change_tag_protocol
dsa_tree_setup_ports
-> dsa_port_setup
-> &dp->fdbs and &db->mdbs only get initialized here
So it seems like the only way to fix this is to move the initialization
of these lists earlier.
dsa_port_touch() is called from dsa_switch_touch_ports() which is called
from dsa_switch_parse_of(), and this runs completely before
dsa_tree_setup(). Similarly, dsa_switch_release_ports() runs after
dsa_tree_teardown().
Fixes: f9cef64fa2 ("net: dsa: felix: migrate host FDB and MDB entries when changing tag proto")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There has been recent work towards matching each switchdev object
addition with a corresponding deletion.
Therefore, having elements in the fdbs, mdbs, vlans lists at the time of
a shared (DSA, CPU) port's teardown is indicative of a bug somewhere
else, and not something that is to be expected.
We shouldn't try to silently paper over that. Instead, print a warning
and a stack trace.
This change is a prerequisite for moving the initialization/teardown of
these lists. Make it clear that clearing the lists isn't needed.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In this situation (VLAN filtering disabled on br0):
br0.10
/
br0
/ \
swp0 swp1
When a frame is transmitted from the VLAN upper, the bridge will send
it down to one of the switch ports with forward offloading
enabled. This will cause tag_dsa to generate a FORWARD tag. Before
this change, that tag would have it's VID set to 10, even though VID
10 is not loaded in the VTU.
Before the blamed commit, the frame would trigger a VTU miss and be
forwarded according to the PVT configuration. Now that all fabric
ports are in 802.1Q secure mode, the frame is dropped instead.
Therefore, restrict the condition under which we rewrite an 802.1Q tag
to a DSA tag. On standalone port's, reuse is always safe since we will
always generate FROM_CPU tags in that case. For bridged ports though,
we must ensure that VLAN filtering is enabled, which in turn
guarantees that the VID in question is loaded into the VTU.
Fixes: d352b20f41 ("net: dsa: mv88e6xxx: Improve multichip isolation of standalone ports")
Signed-off-by: Tobias Waldekranz <tobias@waldekranz.com>
Tested-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Link: https://lore.kernel.org/r/20220307110548.812455-1-tobias@waldekranz.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Clang static analysis reports this representative issue
dsa.c:486:2: warning: Undefined or garbage value
returned to caller
return err;
^~~~~~~~~~
err is only set in the loop. If the loop is empty,
garbage will be returned. So initialize err to 0
to handle this noop case.
Signed-off-by: Tom Rix <trix@redhat.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
After the blamed commit, dsa_tree_setup_master() may exit without
calling rtnl_unlock(), fix that.
Fixes: c146f9bc19 ("net: dsa: hold rtnl_mutex when calling dsa_master_{setup,teardown}")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Realtek switches supports the same tag both before ethertype or between
payload and the CRC.
Signed-off-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
Reviewed-by: Alvin Šipraga <alsi@bang-olufsen.dk>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The blamed commit said one thing but did another. It explains that we
should restore the "return err" to the original "goto out_unwind_tagger",
but instead it replaced it with "goto out_unlock".
When DSA_NOTIFIER_TAG_PROTO fails after the first switch of a
multi-switch tree, the switches would end up not using the same tagging
protocol.
Fixes: 0b0e2ff103 ("net: dsa: restore error path of dsa_tree_change_tag_proto")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20220303154249.1854436-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The "ocelot" and "ocelot-8021q" tagging protocols make use of different
hardware resources, and host FDB entries have different destination
ports in the switch analyzer module, practically speaking.
So when the user requests a tagging protocol change, the driver must
migrate all host FDB and MDB entries from the NPI port (in fact CPU port
module) towards the same physical port, but this time used as a regular
port.
It is pointless for the felix driver to keep a copy of the host
addresses, when we can create and export DSA helpers for walking through
the addresses that it already needs to keep on the CPU port, for
refcounting purposes.
felix_classify_db() is moved up to avoid a forward declaration.
We pass "bool change" because dp->fdbs and dp->mdbs are uninitialized
lists when felix_setup() first calls felix_set_tag_protocol(), so we
need to avoid calling dsa_port_walk_fdbs() during probe time.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
DSA can treat IFF_PROMISC and IFF_ALLMULTI on standalone user ports as
signifying whether packets with an unknown MAC DA will be received or
not. Since known MAC DAs are handled by FDB/MDB entries, this means that
promiscuity is analogous to including/excluding the CPU port from the
flood domain of those packets.
There are two ways to signal CPU flooding to drivers.
The first (chosen here) is to synthesize a call to
ds->ops->port_bridge_flags() for the CPU port, with a mask of
BR_FLOOD | BR_MCAST_FLOOD. This has the effect of turning on egress
flooding on the CPU port regardless of source.
The alternative would be to create a new ds->ops->port_host_flood()
which is called per user port. Some switches (sja1105) have a flood
domain that is managed per {ingress port, egress port} pair, so it would
make more sense for this kind of switch to not flood the CPU from port A
if just port B requires it. Nonetheless, the sja1105 has other quirks
that prevent it from making use of unicast filtering, and without a
concrete user making use of this feature, I chose not to implement it.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
To be able to safely turn off CPU flooding for standalone ports, we need
to ensure that the dev_addr of each DSA slave interface is installed as
a standalone host FDB entry for compatible switches.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In preparation of disabling flooding towards the CPU in standalone ports
mode, identify the addresses requested by upper interfaces and use the
new API for DSA FDB isolation to request the hardware driver to offload
these as FDB or MDB objects. The objects belong to the user port's
database, and are installed pointing towards the CPU port.
Because dev_uc_add()/dev_mc_add() is VLAN-unaware, we offload to the
port standalone database addresses with VID 0 (also VLAN-unaware).
So this excludes switches with global VLAN filtering from supporting
unicast filtering, because there, it is possible for a port of a switch
to join a VLAN-aware bridge, and this changes the VLAN awareness of
standalone ports, requiring VLAN-aware standalone host FDB entries.
For the same reason, hellcreek, which requires VLAN awareness in
standalone mode, is also exempted from unicast filtering.
We create "standalone" variants of dsa_port_host_fdb_add() and
dsa_port_host_mdb_add() (and the _del coresponding functions).
We also create a separate work item type for handling deferred
standalone host FDB/MDB entries compared to the switchdev one.
This is done for the purpose of clarity - the procedure for offloading a
bridge FDB entry is different than offloading a standalone one, and
the switchdev event work handles only FDBs anyway, not MDBs.
Deferral is needed for standalone entries because ndo_set_rx_mode runs
in atomic context. We could probably optimize things a little by first
queuing up all entries that need to be offloaded, and scheduling the
work item just once, but the data structures that we can pass through
__dev_uc_sync() and __dev_mc_sync() are limiting (there is nothing like
a void *priv), so we'd have to keep the list of queued events somewhere
in struct dsa_switch, and possibly a lock for it. Too complicated for
now.
Adding the address to the master is handled by dev_uc_sync(), adding it
to the hardware is handled by __dev_uc_sync(). So this is the reason why
dsa_port_standalone_host_fdb_add() does not call dev_uc_add(). Not that
it had the rtnl_mutex anyway - ndo_set_rx_mode has it, but is atomic.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We are preparing to add API in port.c that adds FDB and MDB entries that
correspond to the port's standalone database. Rename the existing
methods to make it clear that the FDB and MDB entries offloaded come
from the bridge database.
Since the function names lengthen in dsa_slave_switchdev_event_work(),
we place "addr" and "vid" in temporary variables, to shorten those.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Lennert Buytenhek explains in commit df02c6ff2e ("dsa: fix master
interface allmulti/promisc handling"), dated Nov 2008, that changing the
promiscuity of interfaces that are down (here the master) is broken.
This fact regarding promisc/allmulti has changed since commit
b6c40d68ff ("net: only invoke dev->change_rx_flags when device is UP")
by Vlad Yasevich, dated Nov 2013.
Therefore, DSA now has unnecessary complexity to handle master state
transitions from down to up. In fact, syncing the unicast and multicast
addresses can happen completely asynchronously to the administrative
state changes.
This change reduces that complexity by effectively fully reverting
commit df02c6ff2e ("dsa: fix master interface allmulti/promisc
handling").
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When the DSA_NOTIFIER_TAG_PROTO returns an error, the user space process
which initiated the protocol change exits the kernel processing while
still holding the rtnl_mutex. So any other process attempting to lock
the rtnl_mutex would deadlock after such event.
The error handling of DSA_NOTIFIER_TAG_PROTO was inadvertently changed
by the blamed commit, introducing this regression. We must still call
rtnl_unlock(), and we must still call DSA_NOTIFIER_TAG_PROTO for the old
protocol. The latter is due to the limiting design of notifier chains
for cross-chip operations, which don't have a built-in error recovery
mechanism - we should look into using notifier_call_chain_robust for that.
Fixes: dc452a471d ("net: dsa: introduce tagger-owned storage for private and shared data")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20220228141715.146485-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
As FDB isolation cannot be enforced between VLAN-aware bridges in lack
of hardware assistance like extra FID bits, it seems plausible that many
DSA switches cannot do it. Therefore, they need to reject configurations
with multiple VLAN-aware bridges from the two code paths that can
transition towards that state:
- joining a VLAN-aware bridge
- toggling VLAN awareness on an existing bridge
The .port_vlan_filtering method already propagates the netlink extack to
the driver, let's propagate it from .port_bridge_join too, to make sure
that the driver can use the same function for both.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
For DSA, to encourage drivers to perform FDB isolation simply means to
track which bridge does each FDB and MDB entry belong to. It then
becomes the driver responsibility to use something that makes the FDB
entry from one bridge not match the FDB lookup of ports from other
bridges.
The top-level functions where the bridge is determined are:
- dsa_port_fdb_{add,del}
- dsa_port_host_fdb_{add,del}
- dsa_port_mdb_{add,del}
- dsa_port_host_mdb_{add,del}
aka the pre-crosschip-notifier functions.
Changing the API to pass a reference to a bridge is not superfluous, and
looking at the passed bridge argument is not the same as having the
driver look at dsa_to_port(ds, port)->bridge from the ->port_fdb_add()
method.
DSA installs FDB and MDB entries on shared (CPU and DSA) ports as well,
and those do not have any dp->bridge information to retrieve, because
they are not in any bridge - they are merely the pipes that serve the
user ports that are in one or multiple bridges.
The struct dsa_bridge associated with each FDB/MDB entry is encapsulated
in a larger "struct dsa_db" database. Although only databases associated
to bridges are notified for now, this API will be the starting point for
implementing IFF_UNICAST_FLT in DSA. There, the idea is to install FDB
entries on the CPU port which belong to the corresponding user port's
port database. These are supposed to match only when the port is
standalone.
It is better to introduce the API in its expected final form than to
introduce it for bridges first, then to have to change drivers which may
have made one or more assumptions.
Drivers can use the provided bridge.num, but they can also use a
different numbering scheme that is more convenient.
DSA must perform refcounting on the CPU and DSA ports by also taking
into account the bridge number. So if two bridges request the same local
address, DSA must notify the driver twice, once for each bridge.
In fact, if the driver supports FDB isolation, DSA must perform
refcounting per bridge, but if the driver doesn't, DSA must refcount
host addresses across all bridges, otherwise it would be telling the
driver to delete an FDB entry for a bridge and the driver would delete
it for all bridges. So introduce a bool fdb_isolation in drivers which
would make all bridge databases passed to the cross-chip notifier have
the same number (0). This makes dsa_mac_addr_find() -> dsa_db_equal()
say that all bridge databases are the same database - which is
essentially the legacy behavior.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The dsa_8021q_bridge_tx_fwd_offload_vid is no longer used just for
bridge TX forwarding offload, it is the private VLAN reserved for
VLAN-unaware bridging in a way that is compatible with FDB isolation.
So just rename it dsa_tag_8021q_bridge_vid.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In the old Shared VLAN Learning mode of operation that tag_8021q
previously used for forwarding, we needed to have distinct concepts for
an RX and a TX VLAN.
An RX VLAN could be installed on all ports that were members of a given
bridge, so that autonomous forwarding could still work, while a TX VLAN
was dedicated for precise packet steering, so it just contained the CPU
port and one egress port.
Now that tag_8021q uses Independent VLAN Learning and imprecise RX/TX
all over, those lines have been blurred and we no longer have the need
to do precise TX towards a port that is in a bridge. As for standalone
ports, it is fine to use the same VLAN ID for both RX and TX.
This patch changes the tag_8021q format by shifting the VLAN range it
reserves, and halving it. Previously, our DIR bits were encoding the
VLAN direction (RX/TX) and were set to either 1 or 2. This meant that
tag_8021q reserved 2K VLANs, or 50% of the available range.
Change the DIR bits to a hardcoded value of 3 now, which makes tag_8021q
reserve only 1K VLANs, and a different range now (the last 1K). This is
done so that we leave the old format in place in case we need to return
to it.
In terms of code, the vid_is_dsa_8021q_rxvlan and vid_is_dsa_8021q_txvlan
functions go away. Any vid_is_dsa_8021q is both a TX and an RX VLAN, and
they are no longer distinct. For example, felix which did different
things for different VLAN types, now needs to handle the RX and the TX
logic for the same VLAN.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The sja1105 switch can't populate the PORT field of the tag_8021q header
when sending a frame to the CPU with a non-zero VBID.
Similar to dsa_find_designated_bridge_port_by_vid() which performs
imprecise RX for VLAN-aware bridges, let's introduce a helper in
tag_8021q for performing imprecise RX based on the VLAN that it has
allocated for a VLAN-unaware bridge.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
For VLAN-unaware bridging, tag_8021q uses something perhaps a bit too
tied with the sja1105 switch: each port uses the same pvid which is also
used for standalone operation (a unique one from which the source port
and device ID can be retrieved when packets from that port are forwarded
to the CPU). Since each port has a unique pvid when performing
autonomous forwarding, the switch must be configured for Shared VLAN
Learning (SVL) such that the VLAN ID itself is ignored when performing
FDB lookups. Without SVL, packets would always be flooded, since FDB
lookup in the source port's VLAN would never find any entry.
First of all, to make tag_8021q more palatable to switches which might
not support Shared VLAN Learning, let's just use a common VLAN for all
ports that are under the same bridge.
Secondly, using Shared VLAN Learning means that FDB isolation can never
be enforced. But if all ports under the same VLAN-unaware bridge share
the same VLAN ID, it can.
The disadvantage is that the CPU port can no longer perform precise
source port identification for these packets. But at least we have a
mechanism which has proven to be adequate for that situation: imprecise
RX (dsa_find_designated_bridge_port_by_vid), which is what we use for
termination on VLAN-aware bridges.
The VLAN ID that VLAN-unaware bridges will use with tag_8021q is the
same one as we were previously using for imprecise TX (bridge TX
forwarding offload). It is already allocated, it is just a matter of
using it.
Note that because now all ports under the same bridge share the same
VLAN, the complexity of performing a tag_8021q bridge join decreases
dramatically. We no longer have to install the RX VLAN of a newly
joining port into the port membership of the existing bridge ports.
The newly joining port just becomes a member of the VLAN corresponding
to that bridge, and the other ports are already members of it from when
they joined the bridge themselves. So forwarding works properly.
This means that we can unhook dsa_tag_8021q_bridge_{join,leave} from the
cross-chip notifier level dsa_switch_bridge_{join,leave}. We can put
these calls directly into the sja1105 driver.
With this new mode of operation, a port controlled by tag_8021q can have
two pvids whereas before it could only have one. The pvid for standalone
operation is different from the pvid used for VLAN-unaware bridging.
This is done, again, so that FDB isolation can be enforced.
Let tag_8021q manage this by deleting the standalone pvid when a port
joins a bridge, and restoring it when it leaves it.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This change introduces support for installing static FDB entries towards
a bridge port that is a LAG of multiple DSA switch ports, as well as
support for filtering towards the CPU local FDB entries emitted for LAG
interfaces that are bridge ports.
Conceptually, host addresses on LAG ports are identical to what we do
for plain bridge ports. Whereas FDB entries _towards_ a LAG can't simply
be replicated towards all member ports like we do for multicast, or VLAN.
Instead we need new driver API. Hardware usually considers a LAG to be a
"logical port", and sets the entire LAG as the forwarding destination.
The physical egress port selection within the LAG is made by hashing
policy, as usual.
To represent the logical port corresponding to the LAG, we pass by value
a copy of the dsa_lag structure to all switches in the tree that have at
least one port in that LAG.
To illustrate why a refcounted list of FDB entries is needed in struct
dsa_lag, it is enough to say that:
- a LAG may be a bridge port and may therefore receive FDB events even
while it isn't yet offloaded by any DSA interface
- DSA interfaces may be removed from a LAG while that is a bridge port;
we don't want FDB entries lingering around, but we don't want to
remove entries that are still in use, either
For all the cases below to work, the idea is to always keep an FDB entry
on a LAG with a reference count equal to the DSA member ports. So:
- if a port joins a LAG, it requests the bridge to replay the FDB, and
the FDB entries get created, or their refcount gets bumped by one
- if a port leaves a LAG, the FDB replay deletes or decrements refcount
by one
- if an FDB is installed towards a LAG with ports already present, that
entry is created (if it doesn't exist) and its refcount is bumped by
the amount of ports already present in the LAG
echo "Adding FDB entry to bond with existing ports"
ip link del bond0
ip link add bond0 type bond mode 802.3ad
ip link set swp1 down && ip link set swp1 master bond0 && ip link set swp1 up
ip link set swp2 down && ip link set swp2 master bond0 && ip link set swp2 up
ip link del br0
ip link add br0 type bridge
ip link set bond0 master br0
bridge fdb add dev bond0 00:01:02:03:04:05 master static
ip link del br0
ip link del bond0
echo "Adding FDB entry to empty bond"
ip link del bond0
ip link add bond0 type bond mode 802.3ad
ip link del br0
ip link add br0 type bridge
ip link set bond0 master br0
bridge fdb add dev bond0 00:01:02:03:04:05 master static
ip link set swp1 down && ip link set swp1 master bond0 && ip link set swp1 up
ip link set swp2 down && ip link set swp2 master bond0 && ip link set swp2 up
ip link del br0
ip link del bond0
echo "Adding FDB entry to empty bond, then removing ports one by one"
ip link del bond0
ip link add bond0 type bond mode 802.3ad
ip link del br0
ip link add br0 type bridge
ip link set bond0 master br0
bridge fdb add dev bond0 00:01:02:03:04:05 master static
ip link set swp1 down && ip link set swp1 master bond0 && ip link set swp1 up
ip link set swp2 down && ip link set swp2 master bond0 && ip link set swp2 up
ip link set swp1 nomaster
ip link set swp2 nomaster
ip link del br0
ip link del bond0
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
When switchdev_handle_fdb_event_to_device() replicates a FDB event
emitted for the bridge or for a LAG port and DSA offloads that, we
should notify back to switchdev that the FDB entry on the original
device is what was offloaded, not on the DSA slave devices that the
event is replicated on.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
By construction, the struct net_device *dev passed to
dsa_slave_switchdev_event_work() via struct dsa_switchdev_event_work
is always a DSA slave device.
Therefore, it is redundant to pass struct dsa_switch and int port
information in the deferred work structure. This can be retrieved at all
times from the provided struct net_device via dsa_slave_to_port().
For the same reason, we can drop the dsa_is_user_port() check in
dsa_fdb_offload_notify().
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
When the switchdev_handle_fdb_event_to_device() event replication helper
was created, my original thought was that FDB events on LAG interfaces
should most likely be special-cased, not just replicated towards all
switchdev ports beneath that LAG. So this replication helper currently
does not recurse through switchdev lower interfaces of LAG bridge ports,
but rather calls the lag_mod_cb() if that was provided.
No switchdev driver uses this helper for FDB events on LAG interfaces
yet, so that was an assumption which was yet to be tested. It is
certainly usable for that purpose, as my RFC series shows:
https://patchwork.kernel.org/project/netdevbpf/cover/20220210125201.2859463-1-vladimir.oltean@nxp.com/
however this approach is slightly convoluted because:
- the switchdev driver gets a "dev" that isn't its own net device, but
rather the LAG net device. It must call switchdev_lower_dev_find(dev)
in order to get a handle of any of its own net devices (the ones that
pass check_cb).
- in order for FDB entries on LAG ports to be correctly refcounted per
the number of switchdev ports beneath that LAG, we haven't escaped the
need to iterate through the LAG's lower interfaces. Except that is now
the responsibility of the switchdev driver, because the replication
helper just stopped half-way.
So, even though yes, FDB events on LAG bridge ports must be
special-cased, in the end it's simpler to let switchdev_handle_fdb_*
just iterate through the LAG port's switchdev lowers, and let the
switchdev driver figure out that those physical ports are under a LAG.
The switchdev_handle_fdb_event_to_device() helper takes a
"foreign_dev_check" callback so it can figure out whether @dev can
autonomously forward to @foreign_dev. DSA fills this method properly:
if the LAG is offloaded by another port in the same tree as @dev, then
it isn't foreign. If it is a software LAG, it is foreign - forwarding
happens in software.
Whether an interface is foreign or not decides whether the replication
helper will go through the LAG's switchdev lowers or not. Since the
lan966x doesn't properly fill this out, FDB events on software LAG
uppers will get called. By changing lan966x_foreign_dev_check(), we can
suppress them.
Whereas DSA will now start receiving FDB events for its offloaded LAG
uppers, so we need to return -EOPNOTSUPP, since we currently don't do
the right thing for them.
Cc: Horatiu Vultur <horatiu.vultur@microchip.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The main purpose of this change is to create a data structure for a LAG
as seen by DSA. This is similar to what we have for bridging - we pass a
copy of this structure by value to ->port_lag_join and ->port_lag_leave.
For now we keep the lag_dev, id and a reference count in it. Future
patches will add a list of FDB entries for the LAG (these also need to
be refcounted to work properly).
The LAG structure is created using dsa_port_lag_create() and destroyed
using dsa_port_lag_destroy(), just like we have for bridging.
Because now, the dsa_lag itself is refcounted, we can simplify
dsa_lag_map() and dsa_lag_unmap(). These functions need to keep a LAG in
the dst->lags array only as long as at least one port uses it. The
refcounting logic inside those functions can be removed now - they are
called only when we should perform the operation.
dsa_lag_dev() is renamed to dsa_lag_by_id() and now returns the dsa_lag
structure instead of the lag_dev net_device.
dsa_lag_foreach_port() now takes the dsa_lag structure as argument.
dst->lags holds an array of dsa_lag structures.
dsa_lag_map() now also saves the dsa_lag->id value, so that linear
walking of dst->lags in drivers using dsa_lag_id() is no longer
necessary. They can just look at lag.id.
dsa_port_lag_id_get() is a helper, similar to dsa_port_bridge_num_get(),
which can be used by drivers to get the LAG ID assigned by DSA to a
given port.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The DSA LAG API will be changed to become more similar with the bridge
data structures, where struct dsa_bridge holds an unsigned int num,
which is generated by DSA and is one-based. We have a similar thing
going with the DSA LAG, except that isn't stored anywhere, it is
calculated dynamically by dsa_lag_id() by iterating through dst->lags.
The idea of encoding an invalid (or not requested) LAG ID as zero for
the purpose of simplifying checks in drivers means that the LAG IDs
passed by DSA to drivers need to be one-based too. So back-and-forth
conversion is needed when indexing the dst->lags array, as well as in
drivers which assume a zero-based index.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
In preparation of converting struct net_device *dp->lag_dev into a
struct dsa_lag *dp->lag, we need to rename, for consistency purposes,
all occurrences of the "lag" variable in the DSA core to "lag_dev".
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Ensures that the DSA switch driver gets notified of changes to the
BR_PORT_LOCKED flag as well, for the case when a DSA port joins or
leaves a LAG that is a bridge port.
Signed-off-by: Hans Schultz <schultz.hans+netdev@gmail.com>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
If a bridged port is not offloaded to the hardware - either because the
underlying driver does not implement the port_bridge_{join,leave} ops,
or because the operation failed - then its dp->bridge pointer will be
NULL when dsa_port_bridge_leave() is called. Avoid dereferncing NULL.
This fixes the following splat when removing a port from a bridge:
Unable to handle kernel access to user memory outside uaccess routines at virtual address 0000000000000000
Internal error: Oops: 96000004 [#1] PREEMPT_RT SMP
CPU: 3 PID: 1119 Comm: brctl Tainted: G O 5.17.0-rc4-rt4 #1
Call trace:
dsa_port_bridge_leave+0x8c/0x1e4
dsa_slave_changeupper+0x40/0x170
dsa_slave_netdevice_event+0x494/0x4d4
notifier_call_chain+0x80/0xe0
raw_notifier_call_chain+0x1c/0x24
call_netdevice_notifiers_info+0x5c/0xac
__netdev_upper_dev_unlink+0xa4/0x200
netdev_upper_dev_unlink+0x38/0x60
del_nbp+0x1b0/0x300
br_del_if+0x38/0x114
add_del_if+0x60/0xa0
br_ioctl_stub+0x128/0x2dc
br_ioctl_call+0x68/0xb0
dev_ifsioc+0x390/0x554
dev_ioctl+0x128/0x400
sock_do_ioctl+0xb4/0xf4
sock_ioctl+0x12c/0x4e0
__arm64_sys_ioctl+0xa8/0xf0
invoke_syscall+0x4c/0x110
el0_svc_common.constprop.0+0x48/0xf0
do_el0_svc+0x28/0x84
el0_svc+0x1c/0x50
el0t_64_sync_handler+0xa8/0xb0
el0t_64_sync+0x17c/0x180
Code: f9402f00 f0002261 f9401302 913cc021 (a9401404)
---[ end trace 0000000000000000 ]---
Fixes: d3eed0e57d ("net: dsa: keep the bridge_dev and bridge_num as part of the same structure")
Signed-off-by: Alvin Šipraga <alsi@bang-olufsen.dk>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20220221203539.310690-1-alvin@pqrs.dk
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Vladimir Oltean reports that probing on DSA drivers that aren't yet
populating supported_interfaces now fails. Fix this by allowing
phylink to detect whether DSA actually provides an underlying
mac_select_pcs() implementation.
Reported-by: Vladimir Oltean <olteanv@gmail.com>
Fixes: bde018222c ("net: dsa: add support for phylink mac_select_pcs()")
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Tested-by: Vladimir Oltean <olteanv@gmail.com>
Link: https://lore.kernel.org/r/E1nMCD6-00A0wC-FG@rmk-PC.armlinux.org.uk
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
If the DSA master doesn't support IFF_UNICAST_FLT, then the following
call path is possible:
dsa_slave_switchdev_event_work
-> dsa_port_host_fdb_add
-> dev_uc_add
-> __dev_set_rx_mode
-> __dev_set_promiscuity
Since the blamed commit, dsa_slave_switchdev_event_work() no longer
holds rtnl_lock(), which triggers the ASSERT_RTNL() from
__dev_set_promiscuity().
Taking rtnl_lock() around dev_uc_add() is impossible, because all the
code paths that call dsa_flush_workqueue() do so from contexts where the
rtnl_mutex is already held - so this would lead to an instant deadlock.
dev_uc_add() in itself doesn't require the rtnl_mutex for protection.
There is this comment in __dev_set_rx_mode() which assumes so:
/* Unicast addresses changes may only happen under the rtnl,
* therefore calling __dev_set_promiscuity here is safe.
*/
but it is from commit 4417da668c ("[NET]: dev: secondary unicast
address support") dated June 2007, and in the meantime, commit
f1f28aa351 ("netdev: Add addr_list_lock to struct net_device."), dated
July 2008, has added &dev->addr_list_lock to protect this instead of the
global rtnl_mutex.
Nonetheless, __dev_set_promiscuity() does assume rtnl_mutex protection,
but it is the uncommon path of what we typically expect dev_uc_add()
to do. So since only the uncommon path requires rtnl_lock(), just check
ahead of time whether dev_uc_add() would result into a call to
__dev_set_promiscuity(), and handle that condition separately.
DSA already configures the master interface to be promiscuous if the
tagger requires this. We can extend this to also cover the case where
the master doesn't handle dev_uc_add() (doesn't support IFF_UNICAST_FLT),
and on the premise that we'd end up making it promiscuous during
operation anyway, either if a DSA slave has a non-inherited MAC address,
or if the bridge notifies local FDB entries for its own MAC address, the
address of a station learned on a foreign port, etc.
Fixes: 0faf890fc5 ("net: dsa: drop rtnl_lock from dsa_slave_switchdev_event_work")
Reported-by: Oleksij Rempel <o.rempel@pengutronix.de>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
With drivers converted over to using phylink PCS, there is no need for
the struct dsa_switch member "pcs_poll" to exist anymore - there is a
flag in the struct phylink_pcs which indicates whether this PCS needs
to be polled which supersedes this.
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add DSA support for the phylink mac_select_pcs() method so DSA drivers
can return provide phylink with the appropriate PCS for the PHY
interface mode.
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduced in commit cf96357303 ("net: dsa: Allow providing PHY
statistics from CPU port"), it appears these were never used.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20220216193726.2926320-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Check for a hwaccel VLAN tag on rx and use it if present. Otherwise,
use __skb_vlan_pop() like the other tag parsers do. This fixes the case
where the VLAN tag has already been consumed by the master.
Fixes: a1292595e0 ("net: dsa: add new DSA switch driver for the SMSC-LAN9303")
Signed-off-by: Mans Rullgard <mans@mansr.com>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Link: https://lore.kernel.org/r/20220216124634.23123-1-mans@mansr.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
DSA inherits NETIF_F_CSUM_MASK from master->vlan_features, and the
expectation is that TX checksumming is offloaded and not done in
software.
Normally the DSA master takes care of this, but packets handled by
ocelot_defer_xmit() are a very special exception, because they are
actually injected into the switch through register-based MMIO. So the
DSA master is not involved at all for these packets => no one calculates
the checksum.
This allows PTP over UDP to work using the ocelot-8021q tagging
protocol.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
__skb_vlan_pop() needs skb->data to point at the mac_header, while
skb_vlan_tag_present() and skb_vlan_tag_get() don't, because they don't
look at skb->data at all.
So we can avoid uselessly moving around skb->data for the case where the
VLAN tag was offloaded by the DSA master.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20220215204722.2134816-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
DSA now explicitly handles VLANs installed with the 'self' flag on the
bridge as host VLANs, instead of just replicating every bridge port VLAN
also on the CPU port and never deleting it, which is what it did before.
However, this leaves a corner case uncovered, as explained by
Tobias Waldekranz:
https://patchwork.kernel.org/project/netdevbpf/patch/20220209213044.2353153-6-vladimir.oltean@nxp.com/#24735260
Forwarding towards a bridge port VLAN installed on a bridge port foreign
to DSA (separate NIC, Wi-Fi AP) used to work by virtue of the fact that
DSA itself needed to have at least one port in that VLAN (therefore, it
also had the CPU port in said VLAN). However, now that the CPU port may
not be member of all VLANs that user ports are members of, we need to
ensure this isn't the case if software forwarding to a foreign interface
is required.
The solution is to treat bridge port VLANs on standalone interfaces in
the exact same way as host VLANs. From DSA's perspective, there is no
difference between local termination and software forwarding; packets in
that VLAN must reach the CPU in both cases.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, DSA programs VLANs on shared (DSA and CPU) ports each time it
does so on user ports. This is good for basic functionality but has
several limitations:
- the VLAN group which must reach the CPU may be radically different
from the VLAN group that must be autonomously forwarded by the switch.
In other words, the admin may want to isolate noisy stations and avoid
traffic from them going to the control processor of the switch, where
it would just waste useless cycles. The bridge already supports
independent control of VLAN groups on bridge ports and on the bridge
itself, and when VLAN-aware, it will drop packets in software anyway
if their VID isn't added as a 'self' entry towards the bridge device.
- Replaying host FDB entries may depend, for some drivers like mv88e6xxx,
on replaying the host VLANs as well. The 2 VLAN groups are
approximately the same in most regular cases, but there are corner
cases when timing matters, and DSA's approximation of replicating
VLANs on shared ports simply does not work.
- If a user makes the bridge (implicitly the CPU port) join a VLAN by
accident, there is no way for the CPU port to isolate itself from that
noisy VLAN except by rebooting the system. This is because for each
VLAN added on a user port, DSA will add it on shared ports too, but
for each VLAN deletion on a user port, it will remain installed on
shared ports, since DSA has no good indication of whether the VLAN is
still in use or not.
Now that the bridge driver emits well-balanced SWITCHDEV_OBJ_ID_PORT_VLAN
addition and removal events, DSA has a simple and straightforward task
of separating the bridge port VLANs (these have an orig_dev which is a
DSA slave interface, or a LAG interface) from the host VLANs (these have
an orig_dev which is a bridge interface), and to keep a simple reference
count of each VID on each shared port.
Forwarding VLANs must be installed on the bridge ports and on all DSA
ports interconnecting them. We don't have a good view of the exact
topology, so we simply install forwarding VLANs on all DSA ports, which
is what has been done until now.
Host VLANs must be installed primarily on the dedicated CPU port of each
bridge port. More subtly, they must also be installed on upstream-facing
and downstream-facing DSA ports that are connecting the bridge ports and
the CPU. This ensures that the mv88e6xxx's problem (VID of host FDB
entry may be absent from VTU) is still addressed even if that switch is
in a cross-chip setup, and it has no local CPU port.
Therefore:
- user ports contain only bridge port (forwarding) VLANs, and no
refcounting is necessary
- DSA ports contain both forwarding and host VLANs. Refcounting is
necessary among these 2 types.
- CPU ports contain only host VLANs. Refcounting is also necessary.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
mv88e6xxx is special among DSA drivers in that it requires the VTU to
contain the VID of the FDB entry it modifies in
mv88e6xxx_port_db_load_purge(), otherwise it will return -EOPNOTSUPP.
Sometimes due to races this is not always satisfied even if external
code does everything right (first deletes the FDB entries, then the
VLAN), because DSA commits to hardware FDB entries asynchronously since
commit c9eb3e0f87 ("net: dsa: Add support for learning FDB through
notification").
Therefore, the mv88e6xxx driver must close this race condition by
itself, by asking DSA to flush the switchdev workqueue of any FDB
deletions in progress, prior to exiting a VLAN.
Fixes: c9eb3e0f87 ("net: dsa: Add support for learning FDB through notification")
Reported-by: Rafael Richter <rafael.richter@gin.de>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since commit 2f1e8ea726 ("net: dsa: link interfaces with the DSA
master to get rid of lockdep warnings"), suggested by Cong Wang, the
DSA interfaces and their master have different dev->nested_level, which
makes netif_addr_lock() stop complaining about potentially recursive
locking on the same lock class.
So we no longer need DSA slave interfaces to have their own lockdep
class.
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since commit 2f1e8ea726 ("net: dsa: link interfaces with the DSA
master to get rid of lockdep warnings"), suggested by Cong Wang, the
DSA interfaces and their master have different dev->nested_level, which
makes netif_addr_lock() stop complaining about potentially recursive
locking on the same lock class.
So we no longer need DSA masters to have their own lockdep class.
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There are no legacy ports, DSA registers a devlink instance with ports
unconditionally for all switch drivers. Therefore, delete the old-style
ndo operations used for determining bridge forwarding domains.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Tested-by: Florian Fainelli <f.fainelli@gmail.com>
Reviewed-by: Ido Schimmel <idosch@nvidia.com>
Reviewed-by: Jiri Pirko <jiri@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Rafael reports that on a system with LX2160A and Marvell DSA switches,
if a reboot occurs while the DSA master (dpaa2-eth) is up, the following
panic can be seen:
systemd-shutdown[1]: Rebooting.
Unable to handle kernel paging request at virtual address 00a0000800000041
[00a0000800000041] address between user and kernel address ranges
Internal error: Oops: 96000004 [#1] PREEMPT SMP
CPU: 6 PID: 1 Comm: systemd-shutdow Not tainted 5.16.5-00042-g8f5585009b24 #32
pc : dsa_slave_netdevice_event+0x130/0x3e4
lr : raw_notifier_call_chain+0x50/0x6c
Call trace:
dsa_slave_netdevice_event+0x130/0x3e4
raw_notifier_call_chain+0x50/0x6c
call_netdevice_notifiers_info+0x54/0xa0
__dev_close_many+0x50/0x130
dev_close_many+0x84/0x120
unregister_netdevice_many+0x130/0x710
unregister_netdevice_queue+0x8c/0xd0
unregister_netdev+0x20/0x30
dpaa2_eth_remove+0x68/0x190
fsl_mc_driver_remove+0x20/0x5c
__device_release_driver+0x21c/0x220
device_release_driver_internal+0xac/0xb0
device_links_unbind_consumers+0xd4/0x100
__device_release_driver+0x94/0x220
device_release_driver+0x28/0x40
bus_remove_device+0x118/0x124
device_del+0x174/0x420
fsl_mc_device_remove+0x24/0x40
__fsl_mc_device_remove+0xc/0x20
device_for_each_child+0x58/0xa0
dprc_remove+0x90/0xb0
fsl_mc_driver_remove+0x20/0x5c
__device_release_driver+0x21c/0x220
device_release_driver+0x28/0x40
bus_remove_device+0x118/0x124
device_del+0x174/0x420
fsl_mc_bus_remove+0x80/0x100
fsl_mc_bus_shutdown+0xc/0x1c
platform_shutdown+0x20/0x30
device_shutdown+0x154/0x330
__do_sys_reboot+0x1cc/0x250
__arm64_sys_reboot+0x20/0x30
invoke_syscall.constprop.0+0x4c/0xe0
do_el0_svc+0x4c/0x150
el0_svc+0x24/0xb0
el0t_64_sync_handler+0xa8/0xb0
el0t_64_sync+0x178/0x17c
It can be seen from the stack trace that the problem is that the
deregistration of the master causes a dev_close(), which gets notified
as NETDEV_GOING_DOWN to dsa_slave_netdevice_event().
But dsa_switch_shutdown() has already run, and this has unregistered the
DSA slave interfaces, and yet, the NETDEV_GOING_DOWN handler attempts to
call dev_close_many() on those slave interfaces, leading to the problem.
The previous attempt to avoid the NETDEV_GOING_DOWN on the master after
dsa_switch_shutdown() was called seems improper. Unregistering the slave
interfaces is unnecessary and unhelpful. Instead, after the slaves have
stopped being uppers of the DSA master, we can now reset to NULL the
master->dsa_ptr pointer, which will make DSA start ignoring all future
notifier events on the master.
Fixes: 0650bf52b3 ("net: dsa: be compatible with masters which unregister on shutdown")
Reported-by: Rafael Richter <rafael.richter@gin.de>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add connect/disconnect helper to assign private struct to the DSA switch.
Add support for Ethernet mgmt and MIB if the DSA driver provide an handler
to correctly parse and elaborate the data.
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add struct to correctly parse a mib Ethernet packet.
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add all the required define to prepare support for mgmt read/write in
Ethernet packet. Any packet of this type has to be dropped as the only
use of these special packet is receive ack for an mgmt write request or
receive data for an mgmt read request.
A struct is used that emulates the Ethernet header but is used for a
different purpose.
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Ethernet MDIO packets are non-standard and DSA master expects the first
6 octets to be the MAC DA. To address these kind of packet, enable
promisc_on_master flag for the tagger.
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Move tag_qca define to include dir linux/dsa as the qca8k require access
to the tagger define to support in-band mdio read/write using ethernet
packet.
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Convert driver to FIELD macro to drop redundant define.
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In order for switch driver to be able to make simple and reliable use of
the master tracking operations, they must also be notified of the
initial state of the DSA master, not just of the changes. This is
because they might enable certain features only during the time when
they know that the DSA master is up and running.
Therefore, this change explicitly checks the state of the DSA master
under the same rtnl_mutex as we were holding during the
dsa_master_setup() and dsa_master_teardown() call. The idea being that
if the DSA master became operational in between the moment in which it
became a DSA master (dsa_master_setup set dev->dsa_ptr) and the moment
when we checked for the master being up, there is a chance that we
would emit a ->master_state_change() call with no actual state change.
We need to avoid that by serializing the concurrent netdevice event with
us. If the netdevice event started before, we force it to finish before
we begin, because we take rtnl_lock before making netdev_uses_dsa()
return true. So we also handle that early event and do nothing on it.
Similarly, if the dev_open() attempt is concurrent with us, it will
attempt to take the rtnl_mutex, but we're holding it. We'll see that
the master flag IFF_UP isn't set, then when we release the rtnl_mutex
we'll process the NETDEV_UP notifier.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Certain drivers may need to send management traffic to the switch for
things like register access, FDB dump, etc, to accelerate what their
slow bus (SPI, I2C, MDIO) can already do.
Ethernet is faster (especially in bulk transactions) but is also more
unreliable, since the user may decide to bring the DSA master down (or
not bring it up), therefore severing the link between the host and the
attached switch.
Drivers needing Ethernet-based register access already should have
fallback logic to the slow bus if the Ethernet method fails, but that
fallback may be based on a timeout, and the I/O to the switch may slow
down to a halt if the master is down, because every Ethernet packet will
have to time out. The driver also doesn't have the option to turn off
Ethernet-based I/O momentarily, because it wouldn't know when to turn it
back on.
Which is where this change comes in. By tracking NETDEV_CHANGE,
NETDEV_UP and NETDEV_GOING_DOWN events on the DSA master, we should know
the exact interval of time during which this interface is reliably
available for traffic. Provide this information to switches so they can
use it as they wish.
An helper is added dsa_port_master_is_operational() to check if a master
port is operational.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Changes to VLAN filtering are not applicable to cross-chip
notifications.
On a system like this:
.-----. .-----. .-----.
| sw1 +---+ sw2 +---+ sw3 |
'-1-2-' '-1-2-' '-1-2-'
Before this change, upon sw1p1 leaving a bridge, a call to
dsa_port_vlan_filtering would also be made to sw2p1 and sw3p1.
In this scenario:
.---------. .-----. .-----.
| sw1 +---+ sw2 +---+ sw3 |
'-1-2-3-4-' '-1-2-' '-1-2-'
When sw1p4 would leave a bridge, dsa_port_vlan_filtering would be
called for sw2 and sw3 with a non-existing port - leading to array
out-of-bounds accesses and crashes on mv88e6xxx.
Fixes: d371b7c92d ("net: dsa: Unset vlan_filtering when ports leave the bridge")
Signed-off-by: Tobias Waldekranz <tobias@waldekranz.com>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Most of dsa_switch_bridge_leave was, in fact, dealing with the syncing
of VLAN filtering for switches on which that is a global
setting. Separate the two phases to prepare for the cross-chip related
bugfix in the following commit.
Signed-off-by: Tobias Waldekranz <tobias@waldekranz.com>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
It is said that as soon as a network interface is registered, all its
resources should have already been prepared, so that it is available for
sending and receiving traffic. One of the resources needed by a DSA
slave interface is the master.
dsa_tree_setup
-> dsa_tree_setup_ports
-> dsa_port_setup
-> dsa_slave_create
-> register_netdevice
-> dsa_tree_setup_master
-> dsa_master_setup
-> sets up master->dsa_ptr, which enables reception
Therefore, there is a short period of time after register_netdevice()
during which the master isn't prepared to pass traffic to the DSA layer
(master->dsa_ptr is checked by eth_type_trans). Same thing during
unregistration, there is a time frame in which packets might be missed.
Note that this change opens us to another race: dsa_master_find_slave()
will get invoked potentially earlier than the slave creation, and later
than the slave deletion. Since dp->slave starts off as a NULL pointer,
the earlier calls aren't a problem, but the later calls are. To avoid
use-after-free, we should zeroize dp->slave before calling
dsa_slave_destroy().
In practice I cannot really test real life improvements brought by this
change, since in my systems, netdevice creation races with PHY autoneg
which takes a few seconds to complete, and that masks quite a few races.
Effects might be noticeable in a setup with fixed links all the way to
an external system.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
After commit a57d8c217a ("net: dsa: flush switchdev workqueue before
tearing down CPU/DSA ports"), the port setup and teardown procedure
became asymmetric.
The fact of the matter is that user ports need the shared ports to be up
before they can be used for CPU-initiated termination. And since we
register net devices for the user ports, those won't be functional until
we also call the setup for the shared (CPU, DSA) ports. But we may do
that later, depending on the port numbering scheme of the hardware we
are dealing with.
It just makes sense that all shared ports are brought up before any user
port is. I can't pinpoint any issue due to the current behavior, but
let's change it nonetheless, for consistency's sake.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
DSA needs to simulate master tracking events when a binding is first
with a DSA master established and torn down, in order to give drivers
the simplifying guarantee that ->master_state_change calls are made
only when the master's readiness state to pass traffic changes.
master_state_change() provide a operational bool that DSA driver can use
to understand if DSA master is operational or not.
To avoid races, we need to block the reception of
NETDEV_UP/NETDEV_CHANGE/NETDEV_GOING_DOWN events in the netdev notifier
chain while we are changing the master's dev->dsa_ptr (this changes what
netdev_uses_dsa(dev) reports).
The dsa_master_setup() and dsa_master_teardown() functions optionally
require the rtnl_mutex to be held, if the tagger needs the master to be
promiscuous, these functions call dev_set_promiscuity(). Move the
rtnl_lock() from that function and make it top-level.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
At present there are two paths for changing the MTU of the DSA master.
The first is:
dsa_tree_setup
-> dsa_tree_setup_ports
-> dsa_port_setup
-> dsa_slave_create
-> dsa_slave_change_mtu
-> dev_set_mtu(master)
The second is:
dsa_tree_setup
-> dsa_tree_setup_master
-> dsa_master_setup
-> dev_set_mtu(dev)
So the dev_set_mtu() call from dsa_master_setup() has been effectively
superseded by the dsa_slave_change_mtu(slave_dev, ETH_DATA_LEN) that is
done from dsa_slave_create() for each user port. The later function also
updates the master MTU according to the largest user port MTU from the
tree. Therefore, updating the master MTU through a separate code path
isn't needed.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently dsa_slave_create() has two sequences of rtnl_lock/rtnl_unlock
in a row. Remove the rtnl_unlock() and rtnl_lock() in between, such that
the operation can execute slighly faster.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In dsa_slave_create() there are 2 sections that take rtnl_lock():
MTU change and netdev registration. They are separated by PHY
initialization.
There isn't any strict ordering requirement except for the fact that
netdev registration should be last. Therefore, we can perform the MTU
change a bit later, after the PHY setup. A future change will then be
able to merge the two rtnl_lock sections into one.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The cross-chip notifiers for HSR are bypass operations, meaning that
even though all switches in a tree are notified, only the switch
specified in the info structure is targeted.
We can eliminate the unnecessary complexity by deleting the cross-chip
notifier logic and calling the ds->ops straight from port.c.
Cc: George McCollister <george.mccollister@gmail.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: George McCollister <george.mccollister@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The cross-chip notifiers for MRP are bypass operations, meaning that
even though all switches in a tree are notified, only the switch
specified in the info structure is targeted.
We can eliminate the unnecessary complexity by deleting the cross-chip
notifier logic and calling the ds->ops straight from port.c.
Cc: Horatiu Vultur <horatiu.vultur@microchip.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The cross-chip notifier boilerplate code meant to check the presence of
ds->ops->port_mrp_add_ring_role before calling it, but checked
ds->ops->port_mrp_add instead, before calling
ds->ops->port_mrp_add_ring_role.
Therefore, a driver which implements one operation but not the other
would trigger a NULL pointer dereference.
There isn't any such driver in DSA yet, so there is no reason to
backport the change. Issue found through code inspection.
Cc: Horatiu Vultur <horatiu.vultur@microchip.com>
Fixes: c595c4330d ("net: dsa: add MRP support")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Alexei Starovoitov says:
====================
pull-request: bpf-next 2021-12-30
The following pull-request contains BPF updates for your *net-next* tree.
We've added 72 non-merge commits during the last 20 day(s) which contain
a total of 223 files changed, 3510 insertions(+), 1591 deletions(-).
The main changes are:
1) Automatic setrlimit in libbpf when bpf is memcg's in the kernel, from Andrii.
2) Beautify and de-verbose verifier logs, from Christy.
3) Composable verifier types, from Hao.
4) bpf_strncmp helper, from Hou.
5) bpf.h header dependency cleanup, from Jakub.
6) get_func_[arg|ret|arg_cnt] helpers, from Jiri.
7) Sleepable local storage, from KP.
8) Extend kfunc with PTR_TO_CTX, PTR_TO_MEM argument support, from Kumar.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
sock.h is pretty heavily used (5k objects rebuilt on x86 after
it's touched). We can drop the include of filter.h from it and
add a forward declaration of struct sk_filter instead.
This decreases the number of rebuilt objects when bpf.h
is touched from ~5k to ~1k.
There's a lot of missing includes this was masking. Primarily
in networking tho, this time.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Marc Kleine-Budde <mkl@pengutronix.de>
Acked-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Acked-by: Stefano Garzarella <sgarzare@redhat.com>
Link: https://lore.kernel.org/bpf/20211229004913.513372-1-kuba@kernel.org
For Ocelot switches, the CPU injected frames have an injection header
where it can specify the QoS class of the packet and the DSA tag, now it
uses the SKB priority to set that. If a traffic class to priority
mapping is configured on the netdevice (with mqprio for example ...), it
won't be considered for CPU injected headers. This patch make the QoS
class aligned to the priority to traffic class mapping if it exists.
Fixes: 8dce89aa5f ("net: dsa: ocelot: add tagger for Ocelot/Felix switches")
Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Signed-off-by: Marouen Ghodhbane <marouen.ghodhbane@nxp.com>
Link: https://lore.kernel.org/r/20211223072211.33130-1-xiaoliang.yang_1@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
On the NXP Bluebox 3 board which uses a multi-switch setup with sja1105,
the mechanism through which the tagger connects to the switch tree is
broken, due to improper DSA code design. At the time when tag_ops->connect()
is called in dsa_port_parse_cpu(), DSA hasn't finished "touching" all
the ports, so it doesn't know how large the tree is and how many ports
it has. It has just seen the first CPU port by this time. As a result,
this function will call the tagger's ->connect method too early, and the
tagger will connect only to the first switch from the tree.
This could be perhaps addressed a bit more simply by just moving the
tag_ops->connect(dst) call a bit later (for example in dsa_tree_setup),
but there is already a design inconsistency at present: on the switch
side, the notification is on a per-switch basis, but on the tagger side,
it is on a per-tree basis. Furthermore, the persistent storage itself is
per switch (ds->tagger_data). And the tagger connect and disconnect
procedures (at least the ones that exist currently) could see a fair bit
of simplification if they didn't have to iterate through the switches of
a tree.
To fix the issue, this change transforms tag_ops->connect(dst) into
tag_ops->connect(ds) and moves it somewhere where we already iterate
over all switches of a tree. That is in dsa_switch_setup_tag_protocol(),
which is a good placement because we already have there the connection
call to the switch side of things.
As for the dsa_tree_bind_tag_proto() method (called from the code path
that changes the tag protocol), things are a bit more complicated
because we receive the tree as argument, yet when we unwind on errors,
it would be nice to not call tag_ops->disconnect(ds) where we didn't
previously call tag_ops->connect(ds). We didn't have this problem before
because the tag_ops connection operations passed the entire dst before,
and this is more fine grained now. To solve the error rewind case using
the new API, we have to create yet one more cross-chip notifier for
disconnection, and stay connected with the old tag protocol to all the
switches in the tree until we've succeeded to connect with the new one
as well. So if something fails half way, the whole tree is still
connected to the old tagger. But there may still be leaks if the tagger
fails to connect to the 2nd out of 3 switches in a tree: somebody needs
to tell the tagger to disconnect from the first switch. Nothing comes
for free, and this was previously handled privately by the tagging
protocol driver before, but now we need to emit a disconnect cross-chip
notifier for that, because DSA has to take care of the unwind path. We
assume that the tagging protocol has connected to a switch if it has set
ds->tagger_data to something, otherwise we avoid calling its
disconnection method in the error rewind path.
The rest of the changes are in the tagging protocol drivers, and have to
do with the replacement of dst with ds. The iteration is removed and the
error unwind path is simplified, as mentioned above.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The method was meant to zeroize ds->tagger_data but got the wrong
pointer. Fix this.
Fixes: c79e84866d ("net: dsa: tag_sja1105: convert to tagger-owned data")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The sja1105 driver messes with the tagging protocol's state when PTP RX
timestamping is enabled/disabled. This is fundamentally necessary
because the tagger needs to know what to do when it receives a PTP
packet. If RX timestamping is enabled, then a metadata follow-up frame
is expected, and this holds the (partial) timestamp. So the tagger plays
hide-and-seek with the network stack until it also gets the metadata
frame, and then presents a single packet, the timestamped PTP packet.
But when RX timestamping isn't enabled, there is no metadata frame
expected, so the hide-and-seek game must be turned off and the packet
must be delivered right away to the network stack.
Considering this, we create a pseudo isolation by devising two tagger
methods callable by the switch: one to get the RX timestamping state,
and one to set it. Since we can't export symbols between the tagger and
the switch driver, these methods are exposed through function pointers.
After this change, the public portion of the sja1105_tagger_data
contains only function pointers.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This reverts commit 6d709cadfd.
The above change was done to avoid calling symbols exported by the
switch driver from the tagging protocol driver.
With the tagger-owned storage model, we have a new option on our hands,
and that is for the switch driver to provide a data consumer handler in
the form of a function pointer inside the ->connect_tag_protocol()
method. Having a function pointer avoids the problems of the exported
symbols approach.
By creating a handler for metadata frames holding TX timestamps on
SJA1110, we are able to eliminate an skb queue from the tagger data, and
replace it with a simple, and stateless, function pointer. This skb
queue is now handled exclusively by sja1105_ptp.c, which makes the code
easier to follow, as it used to be before the reverted patch.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, struct sja1105_tagger_data is a part of struct
sja1105_private, and is used by the sja1105 driver to populate dp->priv.
With the movement towards tagger-owned storage, the sja1105 driver
should not be the owner of this memory.
This change implements the connection between the sja1105 switch driver
and its tagging protocol, which means that sja1105_tagger_data no longer
stays in dp->priv but in ds->tagger_data, and that the sja1105 driver
now only populates the sja1105_port_deferred_xmit callback pointer.
The kthread worker is now the responsibility of the tagger.
The sja1105 driver also alters the tagger's state some more, especially
with regard to the PTP RX timestamping state. This will be fixed up a
bit in further changes.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The design of the sja1105 tagger dp->priv is that each port has a
separate struct sja1105_port, and the sp->data pointer points to a
common struct sja1105_tagger_data.
We have removed all per-port members accessible by the tagger, and now
only struct sja1105_tagger_data remains. Make dp->priv point directly to
this.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When the ocelot-8021q driver was converted to deferred xmit as part of
commit 8d5f7954b7 ("net: dsa: felix: break at first CPU port during
init and teardown"), the deferred implementation was deliberately made
subtly different from what sja1105 has.
The implementation differences lied on the following observations:
- There might be a race between these two lines in tag_sja1105.c:
skb_queue_tail(&sp->xmit_queue, skb_get(skb));
kthread_queue_work(sp->xmit_worker, &sp->xmit_work);
and the skb dequeue logic in sja1105_port_deferred_xmit(). For
example, the xmit_work might be already queued, however the work item
has just finished walking through the skb queue. Because we don't
check the return code from kthread_queue_work, we don't do anything if
the work item is already queued.
However, nobody will take that skb and send it, at least until the
next timestampable skb is sent. This creates additional (and
avoidable) TX timestamping latency.
To close that race, what the ocelot-8021q driver does is it doesn't
keep a single work item per port, and a skb timestamping queue, but
rather dynamically allocates a work item per packet.
- It is also unnecessary to have more than one kthread that does the
work. So delete the per-port kthread allocations and replace them with
a single kthread which is global to the switch.
This change brings the two implementations in line by applying those
observations to the sja1105 driver as well.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The felix driver makes very light use of dp->priv, and the tagger is
effectively stateless. dp->priv is practically only needed to set up a
callback to perform deferred xmit of PTP and STP packets using the
ocelot-8021q tagging protocol (the main ocelot tagging protocol makes no
use of dp->priv, although this driver sets up dp->priv irrespective of
actual tagging protocol in use).
struct felix_port (what used to be pointed to by dp->priv) is removed
and replaced with a two-sided structure. The public side of this
structure, visible to the switch driver, is ocelot_8021q_tagger_data.
The private side is ocelot_8021q_tagger_private, and the latter
structure physically encapsulates the former. The public half of the
tagger data structure can be accessed through a helper of the same name
(ocelot_8021q_tagger_data) which also sanity-checks the protocol
currently in use by the switch. The public/private split was requested
by Andrew Lunn.
Suggested-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Ansuel is working on register access over Ethernet for the qca8k switch
family. This requires the qca8k tagging protocol driver to receive
frames which aren't intended for the network stack, but instead for the
qca8k switch driver itself.
The dp->priv is currently the prevailing method for passing data back
and forth between the tagging protocol driver and the switch driver.
However, this method is riddled with caveats.
The DSA design allows in principle for any switch driver to return any
protocol it desires in ->get_tag_protocol(). The dsa_loop driver can be
modified to do just that. But in the current design, the memory behind
dp->priv has to be allocated by the switch driver, so if the tagging
protocol is paired to an unexpected switch driver, we may end up in NULL
pointer dereferences inside the kernel, or worse (a switch driver may
allocate dp->priv according to the expectations of a different tagger).
The latter possibility is even more plausible considering that DSA
switches can dynamically change tagging protocols in certain cases
(dsa <-> edsa, ocelot <-> ocelot-8021q), and the current design lends
itself to mistakes that are all too easy to make.
This patch proposes that the tagging protocol driver should manage its
own memory, instead of relying on the switch driver to do so.
After analyzing the different in-tree needs, it can be observed that the
required tagger storage is per switch, therefore a ds->tagger_data
pointer is introduced. In principle, per-port storage could also be
introduced, although there is no need for it at the moment. Future
changes will replace the current usage of dp->priv with ds->tagger_data.
We define a "binding" event between the DSA switch tree and the tagging
protocol. During this binding event, the tagging protocol's ->connect()
method is called first, and this may allocate some memory for each
switch of the tree. Then a cross-chip notifier is emitted for the
switches within that tree, and they are given the opportunity to fix up
the tagger's memory (for example, they might set up some function
pointers that represent virtual methods for consuming packets).
Because the memory is owned by the tagger, there exists a ->disconnect()
method for the tagger (which is the place to free the resources), but
there doesn't exist a ->disconnect() method for the switch driver.
This is part of the design. The switch driver should make minimal use of
the public part of the tagger data, and only after type-checking it
using the supplied "proto" argument.
In the code there are in fact two binding events, one is the initial
event in dsa_switch_setup_tag_protocol(). At this stage, the cross chip
notifier chains aren't initialized, so we call each switch's connect()
method by hand. Then there is dsa_tree_bind_tag_proto() during
dsa_tree_change_tag_proto(), and here we have an old protocol and a new
one. We first connect to the new one before disconnecting from the old
one, to simplify error handling a bit and to ensure we remain in a valid
state at all times.
Co-developed-by: Ansuel Smith <ansuelsmth@gmail.com>
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The majority of DSA drivers do not make use of the PCS support, and
thus operate in legacy mode. In order to preserve this behaviour in
future, we need to set the legacy_pre_march2020 flag so phylink knows
this may require the legacy calls.
There are some DSA drivers that do make use of PCS support, and these
will continue operating as before - legacy_pre_march2020 will not
prevent split-PCS support enabling the newer phylink behaviour.
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
We don't really need new switch API for these, and with new switches
which intend to add support for this feature, it will become cumbersome
to maintain.
The change consists in restructuring the two drivers that implement this
offload (sja1105 and mv88e6xxx) such that the offload is enabled and
disabled from the ->port_bridge_{join,leave} methods instead of the old
->port_bridge_tx_fwd_{,un}offload.
The only non-trivial change is that mv88e6xxx_map_virtual_bridge_to_pvt()
has been moved to avoid a forward declaration, and the
mv88e6xxx_reg_lock() calls from inside it have been removed, since
locking is now done from mv88e6xxx_port_bridge_{join,leave}.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Alvin Šipraga <alsi@bang-olufsen.dk>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This is a preparation patch for the removal of the DSA switch methods
->port_bridge_tx_fwd_offload() and ->port_bridge_tx_fwd_unoffload().
The plan is for the switch to report whether it offloads TX forwarding
directly as a response to the ->port_bridge_join() method.
This change deals with the noisy portion of converting all existing
function prototypes to take this new boolean pointer argument.
The bool is placed in the cross-chip notifier structure for bridge join,
and a reference to it is provided to drivers. In the next change, DSA
will then actually look at this value instead of calling
->port_bridge_tx_fwd_offload().
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Alvin Šipraga <alsi@bang-olufsen.dk>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The main desire behind this is to provide coherent bridge information to
the fast path without locking.
For example, right now we set dp->bridge_dev and dp->bridge_num from
separate code paths, it is theoretically possible for a packet
transmission to read these two port properties consecutively and find a
bridge number which does not correspond with the bridge device.
Another desire is to start passing more complex bridge information to
dsa_switch_ops functions. For example, with FDB isolation, it is
expected that drivers will need to be passed the bridge which requested
an FDB/MDB entry to be offloaded, and along with that bridge_dev, the
associated bridge_num should be passed too, in case the driver might
want to implement an isolation scheme based on that number.
We already pass the {bridge_dev, bridge_num} pair to the TX forwarding
offload switch API, however we'd like to remove that and squash it into
the basic bridge join/leave API. So that means we need to pass this
pair to the bridge join/leave API.
During dsa_port_bridge_leave, first we unset dp->bridge_dev, then we
call the driver's .port_bridge_leave with what used to be our
dp->bridge_dev, but provided as an argument.
When bridge_dev and bridge_num get folded into a single structure, we
need to preserve this behavior in dsa_port_bridge_leave: we need a copy
of what used to be in dp->bridge.
Switch drivers check bridge membership by comparing dp->bridge_dev with
the provided bridge_dev, but now, if we provide the struct dsa_bridge as
a pointer, they cannot keep comparing dp->bridge to the provided
pointer, since this only points to an on-stack copy. To make this
obvious and prevent driver writers from forgetting and doing stupid
things, in this new API, the struct dsa_bridge is provided as a full
structure (not very large, contains an int and a pointer) instead of a
pointer. An explicit comparison function needs to be used to determine
bridge membership: dsa_port_offloads_bridge().
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Alvin Šipraga <alsi@bang-olufsen.dk>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Move the static inline helpers from net/dsa/dsa_priv.h to
include/net/dsa.h, so that drivers can call functions such as
dsa_port_offloads_bridge_dev(), which will be necessary after the
transition to a more complex bridge structure.
More functions than are needed right now are being moved, but this is
done for uniformity.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Alvin Šipraga <alsi@bang-olufsen.dk>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Currently the majority of dsa_port_bridge_dev_get() calls in drivers is
just to check whether a port is under the bridge device provided as
argument by the DSA API.
We'd like to change that DSA API so that a more complex structure is
provided as argument. To keep things more generic, and considering that
the new complex structure will be provided by value and not by
reference, direct comparisons between dp->bridge and the provided bridge
will be broken. The generic way to do the checking would simply be to
do something like dsa_port_offloads_bridge(dp, &bridge).
But there's a problem, we already have a function named that way, which
actually takes a bridge_dev net_device as argument. Rename it so that we
can use dsa_port_offloads_bridge for something else.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Alvin Šipraga <alsi@bang-olufsen.dk>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The location of the bridge device pointer and number is going to change.
It is not going to be kept individually per port, but in a common
structure allocated dynamically and which will have lockdep validation.
Create helpers to access these elements so that we have a migration path
to the new organization.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The service where DSA assigns a unique bridge number for each forwarding
domain is useful even for drivers which do not implement the TX
forwarding offload feature.
For example, drivers might use the dp->bridge_num for FDB isolation.
So rename ds->num_fwd_offloading_bridges to ds->max_num_bridges, and
calculate a unique bridge_num for all drivers that set this value.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Alvin Šipraga <alsi@bang-olufsen.dk>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
I have seen too many bugs already due to the fact that we must encode an
invalid dp->bridge_num as a negative value, because the natural tendency
is to check that invalid value using (!dp->bridge_num). Latest example
can be seen in commit 1bec0f0506 ("net: dsa: fix bridge_num not
getting cleared after ports leaving the bridge").
Convert the existing users to assume that dp->bridge_num == 0 is the
encoding for invalid, and valid bridge numbers start from 1.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Alvin Šipraga <alsi@bang-olufsen.dk>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Support the use of phylink_generic_validate() when there is no
phylink_validate method given in the DSA switch operations and
mac_capabilities have been set in the phylink_config structure by the
DSA switch driver.
This gives DSA switch drivers the option to use this if they provide
the supported_interfaces and mac_capabilities, while still giving them
an option to override the default implementation if necessary.
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Marek Behún <kabel@kernel.org>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Phylink needs slightly more information than phylink_get_interfaces()
allows us to get from the DSA drivers - we need the MAC capabilities.
Replace the phylink_get_interfaces() method with phylink_get_caps() to
allow DSA drivers to fill in the phylink_config MAC capabilities field
as well.
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Marek Behún <kabel@kernel.org>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The code in port.c and slave.c creating the phylink instance is very
similar - let's consolidate this into a single function.
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Marek Behún <kabel@kernel.org>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The devlink_resources_unregister() used second parameter as an
entry point for the recursive removal of devlink resources. None
of the callers outside of devlink core needed to use this field,
so let's remove it.
As part of this removal, the "struct devlink_resource" was moved
from .h to .c file as it is not possible to use in any place in
the code except devlink.c.
Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Normally it is expected that the dsa_device_ops :: rcv() method finishes
parsing the DSA tag and consumes it, then never looks at it again.
But commit c0bcf53766 ("net: dsa: ocelot: add hardware timestamping
support for Felix") added support for RX timestamping in a very
unconventional way. On this switch, a partial timestamp is available in
the DSA header, but the driver got away with not parsing that timestamp
right away, but instead delayed that parsing for a little longer:
dsa_switch_rcv():
nskb = cpu_dp->rcv(skb, dev); <------------- not here
-> ocelot_rcv()
...
skb = nskb;
skb_push(skb, ETH_HLEN);
skb->pkt_type = PACKET_HOST;
skb->protocol = eth_type_trans(skb, skb->dev);
...
if (dsa_skb_defer_rx_timestamp(p, skb)) <--- but here
-> felix_rxtstamp()
return 0;
When in felix_rxtstamp(), this driver accounted for the fact that
eth_type_trans() happened in the meanwhile, so it got a hold of the
extraction header again by subtracting (ETH_HLEN + OCELOT_TAG_LEN) bytes
from the current skb->data.
This worked for quite some time but was quite fragile from the very
beginning. Not to mention that having DSA tag parsing split in two
different files, under different folders (net/dsa/tag_ocelot.c vs
drivers/net/dsa/ocelot/felix.c) made it quite non-obvious for patches to
come that they might break this.
Finally, the blamed commit does the following: at the end of
ocelot_rcv(), it checks whether the skb payload contains a VLAN header.
If it does, and this port is under a VLAN-aware bridge, that VLAN ID
might not be correct in the sense that the packet might have suffered
VLAN rewriting due to TCAM rules (VCAP IS1). So we consume the VLAN ID
from the skb payload using __skb_vlan_pop(), and take the classified
VLAN ID from the DSA tag, and construct a hwaccel VLAN tag with the
classified VLAN, and the skb payload is VLAN-untagged.
The big problem is that __skb_vlan_pop() does:
memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
__skb_pull(skb, VLAN_HLEN);
aka it moves the Ethernet header 4 bytes to the right, and pulls 4 bytes
from the skb headroom (effectively also moving skb->data, by definition).
So for felix_rxtstamp()'s fragile logic, all bets are off now.
Instead of having the "extraction" pointer point to the DSA header,
it actually points to 4 bytes _inside_ the extraction header.
Corollary, the last 4 bytes of the "extraction" header are in fact 4
stale bytes of the destination MAC address from the Ethernet header,
from prior to the __skb_vlan_pop() movement.
So of course, RX timestamps are completely bogus when the system is
configured in this way.
The fix is actually very simple: just don't structure the code like that.
For better or worse, the DSA PTP timestamping API does not offer a
straightforward way for drivers to present their RX timestamps, but
other drivers (sja1105) have established a simple mechanism to carry
their RX timestamp from dsa_device_ops :: rcv() all the way to
dsa_switch_ops :: port_rxtstamp() and even later. That mechanism is to
simply save the partial timestamp to the skb->cb, and complete it later.
Question: why don't we simply populate the skb's struct
skb_shared_hwtstamps from ocelot_rcv(), and bother with this
complication of propagating the timestamp to felix_rxtstamp()?
Answer: dsa_switch_ops :: port_rxtstamp() answers the question whether
PTP packets need sleepable context to retrieve the full RX timestamp.
Currently felix_rxtstamp() answers "no, thanks" to that question, and
calls ocelot_ptp_gettime64() from softirq atomic context. This is
understandable, since Felix VSC9959 is a PCIe memory-mapped switch, so
hardware access does not require sleeping. But the felix driver is
preparing for the introduction of other switches where hardware access
is over a slow bus like SPI or MDIO:
https://lore.kernel.org/lkml/20210814025003.2449143-1-colin.foster@in-advantage.com/
So I would like to keep this code structure, so the rework needed when
that driver will need PTP support will be minimal (answer "yes, I need
deferred context for this skb's RX timestamp", then the partial
timestamp will still be found in the skb->cb.
Fixes: ea440cd2d9 ("net: dsa: tag_ocelot: use VLAN information from tagging header when available")
Reported-by: Po Liu <po.liu@nxp.com>
Cc: Yangbo Lu <yangbo.lu@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add a new DSA switch operation, phylink_get_interfaces, which should
fill in which PHY_INTERFACE_MODE_* are supported by given port.
Use this before phylink_create() to fill phylinks supported_interfaces
member, allowing phylink to determine which PHY_INTERFACE_MODEs are
supported.
Signed-off-by: Marek Behún <kabel@kernel.org>
[tweaked patch and description to add more complete support -- rmk]
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
To reduce code churn, the same patch makes multiple changes, since they
all touch the same lines:
1. The implementations for these two are identical, just with different
function pointers. Reduce duplications and name the function pointers
"mod_cb" instead of "add_cb" and "del_cb". Pass the event as argument.
2. Drop the "const" attribute from "orig_dev". If the driver needs to
check whether orig_dev belongs to itself and then
call_switchdev_notifiers(orig_dev, SWITCHDEV_FDB_OFFLOADED), it
can't, because call_switchdev_notifiers takes a non-const struct
net_device *.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Ido Schimmel <idosch@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Now that we guarantee that SWITCHDEV_FDB_{ADD,DEL}_TO_DEVICE events have
finished executing by the time we leave our bridge upper interface,
we've established a stronger boundary condition for how long the
dsa_slave_switchdev_event_work() might run.
As such, it is no longer possible for DSA slave interfaces to become
unregistered, since they are still bridge ports.
So delete the unnecessary dev_hold() and dev_put().
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
DSA is preparing to offer switch drivers an API through which they can
associate each FDB entry with a struct net_device *bridge_dev. This can
be used to perform FDB isolation (the FDB lookup performed on the
ingress of a standalone, or bridged port, should not find an FDB entry
that is present in the FDB of another bridge).
In preparation of that work, DSA needs to ensure that by the time we
call the switch .port_fdb_add and .port_fdb_del methods, the
dp->bridge_dev pointer is still valid, i.e. the port is still a bridge
port.
This is not guaranteed because the SWITCHDEV_FDB_{ADD,DEL}_TO_DEVICE API
requires drivers that must have sleepable context to handle those events
to schedule the deferred work themselves. DSA does this through the
dsa_owq.
It can happen that a port leaves a bridge, del_nbp() flushes the FDB on
that port, SWITCHDEV_FDB_DEL_TO_DEVICE is notified in atomic context,
DSA schedules its deferred work, but del_nbp() finishes unlinking the
bridge as a master from the port before DSA's deferred work is run.
Fundamentally, the port must not be unlinked from the bridge until all
FDB deletion deferred work items have been flushed. The bridge must wait
for the completion of these hardware accesses.
An attempt has been made to address this issue centrally in switchdev by
making SWITCHDEV_FDB_DEL_TO_DEVICE deferred (=> blocking) at the switchdev
level, which would offer implicit synchronization with del_nbp:
https://patchwork.kernel.org/project/netdevbpf/cover/20210820115746.3701811-1-vladimir.oltean@nxp.com/
but it seems that any attempt to modify switchdev's behavior and make
the events blocking there would introduce undesirable side effects in
other switchdev consumers.
The most undesirable behavior seems to be that
switchdev_deferred_process_work() takes the rtnl_mutex itself, which
would be worse off than having the rtnl_mutex taken individually from
drivers which is what we have now (except DSA which has removed that
lock since commit 0faf890fc5 ("net: dsa: drop rtnl_lock from
dsa_slave_switchdev_event_work")).
So to offer the needed guarantee to DSA switch drivers, I have come up
with a compromise solution that does not require switchdev rework:
we already have a hook at the last moment in time when the bridge is
still an upper of ours: the NETDEV_PRECHANGEUPPER handler. We can flush
the dsa_owq manually from there, which makes all FDB deletions
synchronous.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
After talking with Ido Schimmel, it became clear that rtnl_lock is not
actually required for anything that is done inside the
SWITCHDEV_FDB_{ADD,DEL}_TO_DEVICE deferred work handlers.
The reason why it was probably added by Arkadi Sharshevsky in commit
c9eb3e0f87 ("net: dsa: Add support for learning FDB through
notification") was to offer the same locking/serialization guarantees as
.ndo_fdb_{add,del} and avoid reworking any drivers.
DSA has implemented .ndo_fdb_add and .ndo_fdb_del until commit
b117e1e8a8 ("net: dsa: delete dsa_legacy_fdb_add and
dsa_legacy_fdb_del") - that is to say, until fairly recently.
But those methods have been deleted, so now we are free to drop the
rtnl_lock as well.
Note that exposing DSA switch drivers to an unlocked method which was
previously serialized by the rtnl_mutex is a potentially dangerous
affair. Driver writers couldn't ensure that their internal locking
scheme does the right thing even if they wanted.
We could err on the side of paranoia and introduce a switch-wide lock
inside the DSA framework, but that seems way overreaching. Instead, we
could check as many drivers for regressions as we can, fix those first,
then let this change go in once it is assumed to be fairly safe.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Now that the rtnl_mutex is going away for dsa_port_{host_,}fdb_{add,del},
no one is serializing access to the address lists that DSA keeps for the
purpose of reference counting on shared ports (CPU and cascade ports).
It can happen for one dsa_switch_do_fdb_del to do list_del on a dp->fdbs
element while another dsa_switch_do_fdb_{add,del} is traversing dp->fdbs.
We need to avoid that.
Currently dp->mdbs is not at risk, because dsa_switch_do_mdb_{add,del}
still runs under the rtnl_mutex. But it would be nice if it would not
depend on that being the case. So let's introduce a mutex per port (the
address lists are per port too) and share it between dp->mdbs and
dp->fdbs.
The place where we put the locking is interesting. It could be tempting
to put a DSA-level lock which still serializes calls to
.port_fdb_{add,del}, but it would still not avoid concurrency with other
driver code paths that are currently under rtnl_mutex (.port_fdb_dump,
.port_fast_age). So it would add a very false sense of security (and
adding a global switch-wide lock in DSA to resynchronize with the
rtnl_lock is also counterproductive and hard).
So the locking is intentionally done only where the dp->fdbs and dp->mdbs
lists are traversed. That means, from a driver perspective, that
.port_fdb_add will be called with the dp->addr_lists_lock mutex held on
the CPU port, but not held on user ports. This is done so that driver
writers are not encouraged to rely on any guarantee offered by
dp->addr_lists_lock.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
At present, when either of ds->ops->port_fdb_del() or ds->ops->port_mdb_del()
return a non-zero error code, we attempt to save the day and keep the
data structure associated with that switchdev object, as the deletion
procedure did not complete.
However, the way in which we do this is suspicious to the checker in
lib/refcount.c, who thinks it is buggy to increment a refcount that
became zero, and that this is indicative of a use-after-free.
Fixes: 161ca59d39 ("net: dsa: reference count the MDB entries at the cross-chip notifier level")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
After talking with Ido Schimmel, it became clear that rtnl_lock is not
actually required for anything that is done inside the
SWITCHDEV_FDB_{ADD,DEL}_TO_DEVICE deferred work handlers.
The reason why it was probably added by Arkadi Sharshevsky in commit
c9eb3e0f87 ("net: dsa: Add support for learning FDB through
notification") was to offer the same locking/serialization guarantees as
.ndo_fdb_{add,del} and avoid reworking any drivers.
DSA has implemented .ndo_fdb_add and .ndo_fdb_del until commit
b117e1e8a8 ("net: dsa: delete dsa_legacy_fdb_add and
dsa_legacy_fdb_del") - that is to say, until fairly recently.
But those methods have been deleted, so now we are free to drop the
rtnl_lock as well.
Note that exposing DSA switch drivers to an unlocked method which was
previously serialized by the rtnl_mutex is a potentially dangerous
affair. Driver writers couldn't ensure that their internal locking
scheme does the right thing even if they wanted.
We could err on the side of paranoia and introduce a switch-wide lock
inside the DSA framework, but that seems way overreaching. Instead, we
could check as many drivers for regressions as we can, fix those first,
then let this change go in once it is assumed to be fairly safe.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Now that the rtnl_mutex is going away for dsa_port_{host_,}fdb_{add,del},
no one is serializing access to the address lists that DSA keeps for the
purpose of reference counting on shared ports (CPU and cascade ports).
It can happen for one dsa_switch_do_fdb_del to do list_del on a dp->fdbs
element while another dsa_switch_do_fdb_{add,del} is traversing dp->fdbs.
We need to avoid that.
Currently dp->mdbs is not at risk, because dsa_switch_do_mdb_{add,del}
still runs under the rtnl_mutex. But it would be nice if it would not
depend on that being the case. So let's introduce a mutex per port (the
address lists are per port too) and share it between dp->mdbs and
dp->fdbs.
The place where we put the locking is interesting. It could be tempting
to put a DSA-level lock which still serializes calls to
.port_fdb_{add,del}, but it would still not avoid concurrency with other
driver code paths that are currently under rtnl_mutex (.port_fdb_dump,
.port_fast_age). So it would add a very false sense of security (and
adding a global switch-wide lock in DSA to resynchronize with the
rtnl_lock is also counterproductive and hard).
So the locking is intentionally done only where the dp->fdbs and dp->mdbs
lists are traversed. That means, from a driver perspective, that
.port_fdb_add will be called with the dp->addr_lists_lock mutex held on
the CPU port, but not held on user ports. This is done so that driver
writers are not encouraged to rely on any guarantee offered by
dp->addr_lists_lock.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pass a single argument to dsa_8021q_rx_vid and dsa_8021q_tx_vid that
contains the necessary information from the two arguments that are
currently provided: the switch and the port number.
Also rename those functions so that they have a dsa_port_* prefix, since
they operate on a struct dsa_port *.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Find the remaining iterators over dst->ports that only filter for the
ports belonging to a certain switch, and replace those with the
dsa_switch_for_each_port helper that we have now.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The majority of cross-chip switch notifiers need to filter in some way
over the type of ports: some install VLANs etc on all cascade ports.
The difference is that the matching function, which filters by port
type, is separate from the function where the iteration happens. So this
patch needs to refactor the matching functions' prototypes as well, to
take the dp as argument.
In a future patch/series, I might convert dsa_towards_port to return a
struct dsa_port *dp too, but at the moment it is a bit entangled with
dsa_routing_port which is also used by mv88e6xxx and they both return an
int port. So keep dsa_towards_port the way it is and convert it into a
dp using dsa_to_port.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Find the occurrences of dsa_is_{user,dsa,cpu}_port where a struct
dsa_port *dp was already available in the function scope, and replace
them with the dsa_port_is_{user,dsa,cpu} equivalent function which uses
that dp directly and does not perform another hidden dsa_to_port().
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Find the remaining iterators over dst->ports that only filter for the
ports belonging to a certain switch, and replace those with the
dsa_switch_for_each_port helper that we have now.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Ever since Vivien's conversion of the ds->ports array into a dst->ports
list, and the introduction of dsa_to_port, iterations through the ports
of a switch became quadratic whenever dsa_to_port was needed.
dsa_to_port can either be called directly, or indirectly through the
dsa_is_{user,cpu,dsa,unused}_port helpers.
Use the newly introduced dsa_switch_for_each_port() iteration macro
that works with the iterator variable being a struct dsa_port *dp
directly, and not an int i. It is an expensive variable to go from i to
dp, but cheap to go from dp to i.
This macro iterates through the entire ds->dst->ports list and filters
by the ports belonging just to the switch provided as argument.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit implements a basic version of the 8 byte tag protocol used
in the Realtek RTL8365MB-VC unmanaged switch, which carries with it a
protocol version of 0x04.
The implementation itself only handles the parsing of the EtherType
value and Realtek protocol version, together with the source or
destination port fields. The rest is left unimplemented for now.
The tag format is described in a confidential document provided to my
company by Realtek Semiconductor Corp. Permission has been granted by
the vendor to publish this driver based on that material, together with
an extract from the document describing the tag format and its fields.
It is hoped that this will help future implementors who do not have
access to the material but who wish to extend the functionality of
drivers for chips which use this protocol.
In addition, two possible values of the REASON field are specified,
based on experiments on my end. Realtek does not specify what value this
field can take.
Signed-off-by: Alvin Šipraga <alsi@bang-olufsen.dk>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Tested-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Move things around a little so that this tag driver is alphabetically
ordered. The Kconfig file is sorted based on the tristate text.
Suggested-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: Alvin Šipraga <alsi@bang-olufsen.dk>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Jakub pointed out that we have a new ethtool API for reporting device
statistics in a standardized way, via .get_eth_{phy,mac,ctrl}_stats.
Add a small amount of plumbing to allow DSA drivers to take advantage of
this when exposing statistics.
Suggested-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Alvin Šipraga <alsi@bang-olufsen.dk>
Signed-off-by: David S. Miller <davem@davemloft.net>
tools/testing/selftests/net/ioam6.sh
7b1700e009 ("selftests: net: modify IOAM tests for undef bits")
bf77b1400a ("selftests: net: Test for the IOAM encapsulation with IPv6")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
To be symmetric with the error unwind path of dsa_switch_setup(), call
dsa_switch_unregister_notifier() after ds->ops->teardown.
The implication is that ds->ops->teardown cannot emit cross-chip
notifiers. For example, currently the dsa_tag_8021q_unregister() call
from sja1105_teardown() does not propagate to the entire tree due to
this reason. However I cannot find an actual issue caused by this,
observed using code inspection.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20211012123735.2545742-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
When setting up a bridge with stp_state 1, topology changes are not
detected and loops are not blocked. This is because the standard way of
transmitting a packet, based on VLAN IDs redirected by VCAP IS2 to the
right egress port, does not override the port STP state (in the case of
Ocelot switches, that's really the PGID_SRC masks).
To force a packet to be injected into a port that's BLOCKING, we must
send it as a control packet, which means in the case of this tagger to
send it using the manual register injection method. We already do this
for PTP frames, extend the logic to apply to any link-local MAC DA.
Fixes: 7c83a7c539 ("net: dsa: add a second tagger for Ocelot switches based on tag_8021q")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Michael reported that when using the "ocelot-8021q" tagging protocol,
the switch driver module must be manually loaded before the tagging
protocol can be loaded/is available.
This appears to be the same problem described here:
https://lore.kernel.org/netdev/20210908220834.d7gmtnwrorhharna@skbuf/
where due to the fact that DSA tagging protocols make use of symbols
exported by the switch drivers, circular dependencies appear and this
breaks module autoloading.
The ocelot_8021q driver needs the ocelot_can_inject() and
ocelot_port_inject_frame() functions from the switch library. Previously
the wrong approach was taken to solve that dependency: shims were
provided for the case where the ocelot switch library was compiled out,
but that turns out to be insufficient, because the dependency when the
switch lib _is_ compiled is problematic too.
We cannot declare ocelot_can_inject() and ocelot_port_inject_frame() as
static inline functions, because these access I/O functions like
__ocelot_write_ix() which is called by ocelot_write_rix(). Making those
static inline basically means exposing the whole guts of the ocelot
switch library, not ideal...
We already have one tagging protocol driver which calls into the switch
driver during xmit but not using any exported symbol: sja1105_defer_xmit.
We can do the same thing here: create a kthread worker and one work item
per skb, and let the switch driver itself do the register accesses to
send the skb, and then consume it.
Fixes: 0a6f17c6ae ("net: dsa: tag_ocelot_8021q: add support for PTP timestamping")
Reported-by: Michael Walle <michael@walle.cc>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
As explained here:
https://lore.kernel.org/netdev/20210908220834.d7gmtnwrorhharna@skbuf/
DSA tagging protocol drivers cannot depend on symbols exported by switch
drivers, because this creates a circular dependency that breaks module
autoloading.
The tag_ocelot.c file depends on the ocelot_ptp_rew_op() function
exported by the common ocelot switch lib. This function looks at
OCELOT_SKB_CB(skb) and computes how to populate the REW_OP field of the
DSA tag, for PTP timestamping (the command: one-step/two-step, and the
TX timestamp identifier).
None of that requires deep insight into the driver, it is quite
stateless, as it only depends upon the skb->cb. So let's make it a
static inline function and put it in include/linux/dsa/ocelot.h, a
file that despite its name is used by the ocelot switch driver for
populating the injection header too - since commit 40d3f295b5 ("net:
mscc: ocelot: use common tag parsing code with DSA").
With that function declared as static inline, its body is expanded
inside each call site, so the dependency is broken and the DSA tagger
can be built without the switch library, upon which the felix driver
depends.
Fixes: 39e5308b32 ("net: mscc: ocelot: support PTP Sync one-step timestamping")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
It's nice to be able to test a tagging protocol with dsa_loop, but not
at the cost of losing the ability of building the tagging protocol and
switch driver as modules, because as things stand, there is a circular
dependency between the two. Tagging protocol drivers cannot depend on
switch drivers, that is a hard fact.
The reasoning behind the blamed patch was that accessing dp->priv should
first make sure that the structure behind that pointer is what we really
think it is.
Currently the "sja1105" and "sja1110" tagging protocols only operate
with the sja1105 switch driver, just like any other tagging protocol and
switch combination. The only way to mix and match them is by modifying
the code, and this applies to dsa_loop as well (by default that uses
DSA_TAG_PROTO_NONE). So while in principle there is an issue, in
practice there isn't one.
Until we extend dsa_loop to allow user space configuration, treat the
problem as a non-issue and just say that DSA ports found by tag_sja1105
are always sja1105 ports, which is in fact true. But keep the
dsa_port_is_sja1105 function so that it's easy to patch it during
testing, and rely on dead code elimination.
Fixes: 994d2cbb08 ("net: dsa: tag_sja1105: be dsa_loop-safe")
Link: https://lore.kernel.org/netdev/20210908220834.d7gmtnwrorhharna@skbuf/
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The problem is that DSA tagging protocols really must not depend on the
switch driver, because this creates a circular dependency at insmod
time, and the switch driver will effectively not load when the tagging
protocol driver is missing.
The code was structured in the way it was for a reason, though. The DSA
driver-facing API for PTP timestamping relies on the assumption that
two-step TX timestamps are provided by the hardware in an out-of-band
manner, typically by raising an interrupt and making that timestamp
available inside some sort of FIFO which is to be accessed over
SPI/MDIO/etc.
So the API puts .port_txtstamp into dsa_switch_ops, because it is
expected that the switch driver needs to save some state (like put the
skb into a queue until its TX timestamp arrives).
On SJA1110, TX timestamps are provided by the switch as Ethernet
packets, so this makes them be received and processed by the tagging
protocol driver. This in itself is great, because the timestamps are
full 64-bit and do not require reconstruction, and since Ethernet is the
fastest I/O method available to/from the switch, PTP timestamps arrive
very quickly, no matter how bottlenecked the SPI connection is, because
SPI interaction is not needed at all.
DSA's code structure and strict isolation between the tagging protocol
driver and the switch driver break the natural code organization.
When the tagging protocol driver receives a packet which is classified
as a metadata packet containing timestamps, it passes those timestamps
one by one to the switch driver, which then proceeds to compare them
based on the recorded timestamp ID that was generated in .port_txtstamp.
The communication between the tagging protocol and the switch driver is
done through a method exported by the switch driver, sja1110_process_meta_tstamp.
To satisfy build requirements, we force a dependency to build the
tagging protocol driver as a module when the switch driver is a module.
However, as explained in the first paragraph, that causes the circular
dependency.
To solve this, move the skb queue from struct sja1105_private :: struct
sja1105_ptp_data to struct sja1105_private :: struct sja1105_tagger_data.
The latter is a data structure for which hacks have already been put
into place to be able to create persistent storage per switch that is
accessible from the tagging protocol driver (see sja1105_setup_ports).
With the skb queue directly accessible from the tagging protocol driver,
we can now move sja1110_process_meta_tstamp into the tagging driver
itself, and avoid exporting a symbol.
Fixes: 566b18c8b7 ("net: dsa: sja1105: implement TX timestamping for SJA1110")
Link: https://lore.kernel.org/netdev/20210908220834.d7gmtnwrorhharna@skbuf/
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Flip the sign of a return value check, thereby suppressing the following
spurious error:
port 2 failed to notify DSA_NOTIFIER_BRIDGE_LEAVE: -EOPNOTSUPP
... which is emitted when removing an unoffloaded DSA switch port from a
bridge.
Fixes: d371b7c92d ("net: dsa: Unset vlan_filtering when ports leave the bridge")
Signed-off-by: Alvin Šipraga <alsi@bang-olufsen.dk>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20211012112730.3429157-1-alvin@pqrs.dk
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
It was a documented fact that ds->ops->change_tag_protocol() offered
rtnetlink mutex protection to the switch driver, since there was an
ASSERT_RTNL right before the call in dsa_switch_change_tag_proto()
(initiated from sysfs).
The blamed commit introduced another call path for
ds->ops->change_tag_protocol() which does not hold the rtnl_mutex.
This is:
dsa_tree_setup
-> dsa_tree_setup_switches
-> dsa_switch_setup
-> dsa_switch_setup_tag_protocol
-> ds->ops->change_tag_protocol()
-> dsa_port_setup
-> dsa_slave_create
-> register_netdevice(slave_dev)
-> dsa_tree_setup_master
-> dsa_master_setup
-> dev->dsa_ptr = cpu_dp
The reason why the rtnl_mutex is held in the sysfs call path is to
ensure that, once the master and all the DSA interfaces are down (which
is required so that no packets flow), they remain down during the
tagging protocol change.
The above calling order illustrates the fact that it should not be risky
to change the initial tagging protocol to the one specified in the
device tree at the given time:
- packets cannot enter the dsa_switch_rcv() packet type handler since
netdev_uses_dsa() for the master will not yet return true, since
dev->dsa_ptr has not yet been populated
- packets cannot enter the dsa_slave_xmit() function because no DSA
interface has yet been registered
So from the DSA core's perspective, holding the rtnl_mutex is indeed not
necessary.
Yet, drivers may need to do things which need rtnl_mutex protection. For
example:
felix_set_tag_protocol
-> felix_setup_tag_8021q
-> dsa_tag_8021q_register
-> dsa_tag_8021q_setup
-> dsa_tag_8021q_port_setup
-> vlan_vid_add
-> ASSERT_RTNL
These drivers do not really have a choice to take the rtnl_mutex
themselves, since in the sysfs case, the rtnl_mutex is already held.
Fixes: deff710703 ("net: dsa: Allow default tag protocol to be overridden from DT")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Similar to commit 6087175b79 ("net: dsa: mt7530: use independent VLAN
learning on VLAN-unaware bridges"), software forwarding between an
unoffloaded LAG port (a bonding interface with an unsupported policy)
and a mv88e6xxx user port directly under a bridge is broken.
We adopt the same strategy, which is to make the standalone ports not
find any ATU entry learned on a bridge port.
Theory: the mv88e6xxx ATU is looked up by FID and MAC address. There are
as many FIDs as VIDs (4096). The FID is derived from the VID when
possible (the VTU maps a VID to a FID), with a fallback to the port
based default FID value when not (802.1Q Mode is disabled on the port,
or the classified VID isn't present in the VTU).
The mv88e6xxx driver makes the following use of FIDs and VIDs:
- the port's DefaultVID (to which untagged & pvid-tagged packets get
classified) is 0 and is absent from the VTU, so this kind of packets is
processed in FID 0, the default FID assigned by mv88e6xxx_setup_port.
- every time a bridge VLAN is created, mv88e6xxx_port_vlan_join() ->
mv88e6xxx_atu_new() associates a FID with that VID which increases
linearly starting from 1. Like this:
bridge vlan add dev lan0 vid 100 # FID 1
bridge vlan add dev lan1 vid 100 # still FID 1
bridge vlan add dev lan2 vid 1024 # FID 2
The FID allocation made by the driver is sub-optimal for the following
reasons:
(a) A standalone port has a DefaultPVID of 0 and a default FID of 0 too.
A VLAN-unaware bridged port has a DefaultPVID of 0 and a default FID
of 0 too. The difference is that the bridged ports may learn ATU
entries, while the standalone port has the requirement that it must
not, and must not find them either. Standalone ports must not use
the same FID as ports belonging to a bridge. All standalone ports
can use the same FID, since the ATU will never have an entry in
that FID.
(b) Multiple VLAN-unaware bridges will all use a DefaultPVID of 0 and a
default FID of 0 on all their ports. The FDBs will not be isolated
between these bridges. Every VLAN-unaware bridge must use the same
FID on all its ports, different from the FID of other bridge ports.
(c) Each bridge VLAN uses a unique FID which is useful for Independent
VLAN Learning, but the same VLAN ID on multiple VLAN-aware bridges
will result in the same FID being used by mv88e6xxx_atu_new().
The correct behavior is for VLAN 1 in br0 to have a different FID
compared to VLAN 1 in br1.
This patch cannot fix all the above. Traditionally the DSA framework did
not care about this, and the reality is that DSA core involvement is
needed for the aforementioned issues to be solved. The only thing we can
solve here is an issue which does not require API changes, and that is
issue (a), aka use a different FID for standalone ports vs ports under
VLAN-unaware bridges.
The first step is deciding what VID and FID to use for standalone ports,
and what VID and FID for bridged ports. The 0/0 pair for standalone
ports is what they used up till now, let's keep using that. For bridged
ports, there are 2 cases:
- VLAN-aware ports will never end up using the port default FID, because
packets will always be classified to a VID in the VTU or dropped
otherwise. The FID is the one associated with the VID in the VTU.
- On VLAN-unaware ports, we _could_ leave their DefaultVID (pvid) at
zero (just as in the case of standalone ports), and just change the
port's default FID from 0 to a different number (say 1).
However, Tobias points out that there is one more requirement to cater to:
cross-chip bridging. The Marvell DSA header does not carry the FID in
it, only the VID. So once a packet crosses a DSA link, if it has a VID
of zero it will get classified to the default FID of that cascade port.
Relying on a port default FID for upstream cascade ports results in
contradictions: a default FID of 0 breaks ATU isolation of bridged ports
on the downstream switch, a default FID of 1 breaks standalone ports on
the downstream switch.
So not only must standalone ports have different FIDs compared to
bridged ports, they must also have different DefaultVID values.
IEEE 802.1Q defines two reserved VID values: 0 and 4095. So we simply
choose 4095 as the DefaultVID of ports belonging to VLAN-unaware
bridges, and VID 4095 maps to FID 1.
For the xmit operation to look up the same ATU database, we need to put
VID 4095 in DSA tags sent to ports belonging to VLAN-unaware bridges
too. All shared ports are configured to map this VID to the bridging
FID, because they are members of that VLAN in the VTU. Shared ports
don't need to have 802.1QMode enabled in any way, they always parse the
VID from the DSA header, they don't need to look at the 802.1Q header.
We install VID 4095 to the VTU in mv88e6xxx_setup_port(), with the
mention that mv88e6xxx_vtu_setup() which was located right below that
call was flushing the VTU so those entries wouldn't be preserved.
So we need to relocate the VTU flushing prior to the port initialization
during ->setup(). Also note that this is why it is safe to assume that
VID 4095 will get associated with FID 1: the user ports haven't been
created, so there is no avenue for the user to create a bridge VLAN
which could otherwise race with the creation of another FID which would
otherwise use up the non-reserved FID value of 1.
[ Currently mv88e6xxx_port_vlan_join() doesn't have the option of
specifying a preferred FID, it always calls mv88e6xxx_atu_new(). ]
mv88e6xxx_port_db_load_purge() is the function to access the ATU for
FDB/MDB entries, and it used to determine the FID to use for
VLAN-unaware FDB entries (VID=0) using mv88e6xxx_port_get_fid().
But the driver only called mv88e6xxx_port_set_fid() once, during probe,
so no surprises, the port FID was always 0, the call to get_fid() was
redundant. As much as I would have wanted to not touch that code, the
logic is broken when we add a new FID which is not the port-based
default. Now the port-based default FID only corresponds to standalone
ports, and FDB/MDB entries belong to the bridging service. So while in
the future, when the DSA API will support FDB isolation, we will have to
figure out the FID based on the bridge number, for now there's a single
bridging FID, so hardcode that.
Lastly, the tagger needs to check, when it is transmitting a VLAN
untagged skb, whether it is sending it towards a bridged or a standalone
port. When we see it is bridged we assume the bridge is VLAN-unaware.
Not because it cannot be VLAN-aware but:
- if we are transmitting from a VLAN-aware bridge we are likely doing so
using TX forwarding offload. That code path guarantees that skbs have
a vlan hwaccel tag in them, so we would not enter the "else" branch
of the "if (skb->protocol == htons(ETH_P_8021Q))" condition.
- if we are transmitting on behalf of a VLAN-aware bridge but with no TX
forwarding offload (no PVT support, out of space in the PVT, whatever),
we would indeed be transmitting with VLAN 4095 instead of the bridge
device's pvid. However we would be injecting a "From CPU" frame, and
the switch won't learn from that - it only learns from "Forward" frames.
So it is inconsequential for address learning. And VLAN 4095 is
absolutely enough for the frame to exit the switch, since we never
remove that VLAN from any port.
Fixes: 57e661aae6 ("net: dsa: mv88e6xxx: Link aggregation support")
Reported-by: Tobias Waldekranz <tobias@waldekranz.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The present code is structured this way due to an incomplete thought
process. In Documentation/networking/switchdev.rst we document that if a
bridge is VLAN-unaware, then the presence or lack of a pvid on a bridge
port (or on the bridge itself, for that matter) should not affect the
ability to receive and transmit tagged or untagged packets.
If the bridge on behalf of which we are sending this packet is
VLAN-aware, then the TX forwarding offload API ensures that the skb will
be VLAN-tagged (if the packet was sent by user space as untagged, it
will get transmitted town to the driver as tagged with the bridge
device's pvid). But if the bridge is VLAN-unaware, it may or may not be
VLAN-tagged. In fact the logic to insert the bridge's PVID came from the
idea that we should emulate what is being done in the VLAN-aware case.
But we shouldn't.
It appears that injecting packets using a VLAN ID of 0 serves the
purpose of forwarding the packets to the egress port with no VLAN tag
added or stripped by the hardware, and no filtering being performed.
So we can simply remove the superfluous logic.
One reason why this logic is broken is that when CONFIG_BRIDGE_VLAN_FILTERING=n,
we call br_vlan_get_pvid_rcu() but that returns an error and we do error
out, dropping all packets on xmit. Not really smart. This is also an
issue when the user deletes the bridge pvid:
$ bridge vlan del dev br0 vid 1 self
As mentioned, in both cases, packets should still flow freely, and they
do just that on any net device where the bridge is not offloaded, but on
mv88e6xxx they don't.
Fixes: d82f8ab0d8 ("net: dsa: tag_dsa: offload the bridge forwarding process")
Reported-by: Andrew Lunn <andrew@lunn.ch>
Link: https://patchwork.kernel.org/project/netdevbpf/patch/20211003155141.2241314-1-andrew@lunn.ch/
Link: https://patchwork.kernel.org/project/netdevbpf/patch/20210928233708.1246774-1-vladimir.oltean@nxp.com/
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The dp->bridge_num is zero-based, with -1 being the encoding for an
invalid value. But dsa_bridge_num_put used to check for an invalid value
by comparing bridge_num with 0, which is of course incorrect.
The result is that the bridge_num will never get cleared by
dsa_bridge_num_put, and further port joins to other bridges will get a
bridge_num larger than the previous one, and once all the available
bridges with TX forwarding offload supported by the hardware get
exhausted, the TX forwarding offload feature is simply disabled.
In the case of sja1105, 7 iterations of the loop below are enough to
exhaust the TX forwarding offload bits, and further bridge joins operate
without that feature.
ip link add br0 type bridge vlan_filtering 1
while :; do
ip link set sw0p2 master br0 && sleep 1
ip link set sw0p2 nomaster && sleep 1
done
This issue is enough of an indication that having the dp->bridge_num
invalid encoding be a negative number is prone to bugs, so this will be
changed to a one-based value, with the dp->bridge_num of zero being the
indication of no bridge. However, that is material for net-next.
Fixes: f5e165e72b ("net: dsa: track unique bridge numbers across all DSA switch trees")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
A packet received on a trunk will have bit 2 set in Forward DSA tagged
frame. Bit 1 can be either 0 or 1 and is otherwise undefined and bit 0
indicates the frame CFI. Masking with 7 thus results in frames as
being identified as being from a trunk when in fact they are not. Fix
the mask to just look at bit 2.
Fixes: 5b60dadb71 ("net: dsa: tag_dsa: Support reception of packets from LAG devices")
Signed-off-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Convert from ether_addr_copy() to eth_hw_addr_set():
@@
expression dev, np;
@@
- ether_addr_copy(dev->dev_addr, np)
+ eth_hw_addr_set(dev, np)
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, all packets injected into Ocelot switches are classified to
VLAN 0, regardless of whether they are VLAN-tagged or not. This is
because the switch only looks at the VLAN TCI from the DSA tag.
VLAN 0 is then stripped on egress due to REW_TAG_CFG_TAG_CFG. There are
2 cases really, below is the explanation for ocelot_port_set_native_vlan:
- Port is VLAN-aware, we set REW_TAG_CFG_TAG_CFG to 1 (egress-tag all
frames except VID 0 and the native VLAN) if a native VLAN exists, or
to 3 otherwise (tag all frames, including VID 0).
- Port is VLAN-unaware, we set REW_TAG_CFG_TAG_CFG to 0 (port tagging
disabled, classified VLAN never appears in the packet).
One can already see an inconsistency: when a native VLAN exists, VID 0
is egress-untagged, but when it doesn't, VID 0 is egress-tagged.
So when we do this:
ip link add br0 type bridge vlan_filtering 1
ip link set swp0 master br0
bridge vlan del dev swp0 vid 1
bridge vlan add dev swp0 vid 1 pvid # but not untagged
and we ping through swp0, packets will look like this:
MAC > 33:33:00:00:00:02, ethertype 802.1Q (0x8100): vlan 0, p 0,
ethertype 802.1Q (0x8100), vlan 1, p 0, ethertype IPv6 (0x86dd),
ICMP6, router solicitation, length 16
So VID 1 frames (sent that way by the Linux bridge) are encapsulated in
a VID 0 header - the classified VLAN of the packets as far as the hw is
concerned. To avoid that, what we really need to do is stop injecting
packets using the classified VLAN of 0.
This patch strips the VLAN header from the skb payload, if that VLAN
exists and if the port is under a VLAN-aware bridge. Then it copies that
VLAN header into the DSA injection frame header.
A positive side effect is that VCAP ES0 VLAN rewriting rules now work
for packets injected from the CPU into a port that's under a VLAN-aware
bridge, and we are able to match those packets by the VLAN ID that was
sent by the network stack, and not by VLAN ID 0.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
tag_ksz.c hasn't use any macro or function declared in linux/slab.h.
Thus, these files can be removed from tag_ksz.c safely without
affecting the compilation of the ./net/dsa module
Signed-off-by: Mianhan Liu <liumh1@shanghaitech.edu.cn>
Signed-off-by: David S. Miller <davem@davemloft.net>
tag_8021q.c hasn't use any macro or function declared in linux/if_bridge.h.
Thus, these files can be removed from tag_8021q.c safely without
affecting the compilation of the ./net/dsa module
Signed-off-by: Mianhan Liu <liumh1@shanghaitech.edu.cn>
Signed-off-by: David S. Miller <davem@davemloft.net>
This change prevents from users to access device before devlink
is fully configured.
Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
net/mptcp/protocol.c
977d293e23 ("mptcp: ensure tx skbs always have the MPTCP ext")
efe686ffce ("mptcp: ensure tx skbs always have the MPTCP ext")
same patch merged in both trees, keep net-next.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
It's nice to be able to test a tagging protocol with dsa_loop, but not
at the cost of losing the ability of building the tagging protocol and
switch driver as modules, because as things stand, there is a circular
dependency between the two. Tagging protocol drivers cannot depend on
switch drivers, that is a hard fact.
The reasoning behind the blamed patch was that accessing dp->priv should
first make sure that the structure behind that pointer is what we really
think it is.
Currently the "sja1105" and "sja1110" tagging protocols only operate
with the sja1105 switch driver, just like any other tagging protocol and
switch combination. The only way to mix and match them is by modifying
the code, and this applies to dsa_loop as well (by default that uses
DSA_TAG_PROTO_NONE). So while in principle there is an issue, in
practice there isn't one.
Until we extend dsa_loop to allow user space configuration, treat the
problem as a non-issue and just say that DSA ports found by tag_sja1105
are always sja1105 ports, which is in fact true. But keep the
dsa_port_is_sja1105 function so that it's easy to patch it during
testing, and rely on dead code elimination.
Fixes: 994d2cbb08 ("net: dsa: tag_sja1105: be dsa_loop-safe")
Link: https://lore.kernel.org/netdev/20210908220834.d7gmtnwrorhharna@skbuf/
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The problem is that DSA tagging protocols really must not depend on the
switch driver, because this creates a circular dependency at insmod
time, and the switch driver will effectively not load when the tagging
protocol driver is missing.
The code was structured in the way it was for a reason, though. The DSA
driver-facing API for PTP timestamping relies on the assumption that
two-step TX timestamps are provided by the hardware in an out-of-band
manner, typically by raising an interrupt and making that timestamp
available inside some sort of FIFO which is to be accessed over
SPI/MDIO/etc.
So the API puts .port_txtstamp into dsa_switch_ops, because it is
expected that the switch driver needs to save some state (like put the
skb into a queue until its TX timestamp arrives).
On SJA1110, TX timestamps are provided by the switch as Ethernet
packets, so this makes them be received and processed by the tagging
protocol driver. This in itself is great, because the timestamps are
full 64-bit and do not require reconstruction, and since Ethernet is the
fastest I/O method available to/from the switch, PTP timestamps arrive
very quickly, no matter how bottlenecked the SPI connection is, because
SPI interaction is not needed at all.
DSA's code structure and strict isolation between the tagging protocol
driver and the switch driver break the natural code organization.
When the tagging protocol driver receives a packet which is classified
as a metadata packet containing timestamps, it passes those timestamps
one by one to the switch driver, which then proceeds to compare them
based on the recorded timestamp ID that was generated in .port_txtstamp.
The communication between the tagging protocol and the switch driver is
done through a method exported by the switch driver, sja1110_process_meta_tstamp.
To satisfy build requirements, we force a dependency to build the
tagging protocol driver as a module when the switch driver is a module.
However, as explained in the first paragraph, that causes the circular
dependency.
To solve this, move the skb queue from struct sja1105_private :: struct
sja1105_ptp_data to struct sja1105_private :: struct sja1105_tagger_data.
The latter is a data structure for which hacks have already been put
into place to be able to create persistent storage per switch that is
accessible from the tagging protocol driver (see sja1105_setup_ports).
With the skb queue directly accessible from the tagging protocol driver,
we can now move sja1110_process_meta_tstamp into the tagging driver
itself, and avoid exporting a symbol.
Fixes: 566b18c8b7 ("net: dsa: sja1105: implement TX timestamping for SJA1110")
Link: https://lore.kernel.org/netdev/20210908220834.d7gmtnwrorhharna@skbuf/
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
devlink_register() can't fail and always returns success, but all drivers
are obligated to check returned status anyway. This adds a lot of boilerplate
code to handle impossible flow.
Make devlink_register() void and simplify the drivers that use that
API call.
Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
Acked-by: Simon Horman <simon.horman@corigine.com>
Acked-by: Vladimir Oltean <olteanv@gmail.com> # dsa
Reviewed-by: Jiri Pirko <jiri@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The Linux device model permits both the ->shutdown and ->remove driver
methods to get called during a shutdown procedure. Example: a DSA switch
which sits on an SPI bus, and the SPI bus driver calls this on its
->shutdown method:
spi_unregister_controller
-> device_for_each_child(&ctlr->dev, NULL, __unregister);
-> spi_unregister_device(to_spi_device(dev));
-> device_del(&spi->dev);
So this is a simple pattern which can theoretically appear on any bus,
although the only other buses on which I've been able to find it are
I2C:
i2c_del_adapter
-> device_for_each_child(&adap->dev, NULL, __unregister_client);
-> i2c_unregister_device(client);
-> device_unregister(&client->dev);
The implication of this pattern is that devices on these buses can be
unregistered after having been shut down. The drivers for these devices
might choose to return early either from ->remove or ->shutdown if the
other callback has already run once, and they might choose that the
->shutdown method should only perform a subset of the teardown done by
->remove (to avoid unnecessary delays when rebooting).
So in other words, the device driver may choose on ->remove to not
do anything (therefore to not unregister an MDIO bus it has registered
on ->probe), because this ->remove is actually triggered by the
device_shutdown path, and its ->shutdown method has already run and done
the minimally required cleanup.
This used to be fine until the blamed commit, but now, the following
BUG_ON triggers:
void mdiobus_free(struct mii_bus *bus)
{
/* For compatibility with error handling in drivers. */
if (bus->state == MDIOBUS_ALLOCATED) {
kfree(bus);
return;
}
BUG_ON(bus->state != MDIOBUS_UNREGISTERED);
bus->state = MDIOBUS_RELEASED;
put_device(&bus->dev);
}
In other words, there is an attempt to free an MDIO bus which was not
unregistered. The attempt to free it comes from the devres release
callbacks of the SPI device, which are executed after the device is
unregistered.
I'm not saying that the fact that MDIO buses allocated using devres
would automatically get unregistered wasn't strange. I'm just saying
that the commit didn't care about auditing existing call paths in the
kernel, and now, the following code sequences are potentially buggy:
(a) devm_mdiobus_alloc followed by plain mdiobus_register, for a device
located on a bus that unregisters its children on shutdown. After
the blamed patch, either both the alloc and the register should use
devres, or none should.
(b) devm_mdiobus_alloc followed by plain mdiobus_register, and then no
mdiobus_unregister at all in the remove path. After the blamed
patch, nobody unregisters the MDIO bus anymore, so this is even more
buggy than the previous case which needs a specific bus
configuration to be seen, this one is an unconditional bug.
In this case, DSA falls into category (a), it tries to be helpful and
registers an MDIO bus on behalf of the switch, which might be on such a
bus. I've no idea why it does it under devres.
It does this on probe:
if (!ds->slave_mii_bus && ds->ops->phy_read)
alloc and register mdio bus
and this on remove:
if (ds->slave_mii_bus && ds->ops->phy_read)
unregister mdio bus
I _could_ imagine using devres because the condition used on remove is
different than the condition used on probe. So strictly speaking, DSA
cannot determine whether the ds->slave_mii_bus it sees on remove is the
ds->slave_mii_bus that _it_ has allocated on probe. Using devres would
have solved that problem. But nonetheless, the existing code already
proceeds to unregister the MDIO bus, even though it might be
unregistering an MDIO bus it has never registered. So I can only guess
that no driver that implements ds->ops->phy_read also allocates and
registers ds->slave_mii_bus itself.
So in that case, if unregistering is fine, freeing must be fine too.
Stop using devres and free the MDIO bus manually. This will make devres
stop attempting to free a still registered MDIO bus on ->shutdown.
Fixes: ac3a68d566 ("net: phy: don't abuse devres in devm_mdiobus_register()")
Reported-by: Lino Sanfilippo <LinoSanfilippo@gmx.de>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Tested-by: Lino Sanfilippo <LinoSanfilippo@gmx.de>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since the blamed commit, dsa_tree_teardown_switches() was split into two
smaller functions, dsa_tree_teardown_switches and dsa_tree_teardown_ports.
However, the error path of dsa_tree_setup stopped calling dsa_tree_teardown_ports.
Fixes: a57d8c217a ("net: dsa: flush switchdev workqueue before tearing down CPU/DSA ports")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit 86f8b1c01a ("net: dsa: Do not make user port errors fatal")
decided it was fine to ignore errors on certain ports that fail to
probe, and go on with the ports that do probe fine.
Commit fb6ec87f72 ("net: dsa: Fix type was not set for devlink port")
noticed that devlink_port_type_eth_set(dlp, dp->slave); does not get
called, and devlink notices after a timeout of 3600 seconds and prints a
WARN_ON. So it went ahead to unregister the devlink port. And because
there exists an UNUSED port flavour, we actually re-register the devlink
port as UNUSED.
Commit 08156ba430 ("net: dsa: Add devlink port regions support to
DSA") added devlink port regions, which are set up by the driver and not
by DSA.
When we trigger the devlink port deregistration and reregistration as
unused, devlink now prints another WARN_ON, from here:
devlink_port_unregister:
WARN_ON(!list_empty(&devlink_port->region_list));
So the port still has regions, which makes sense, because they were set
up by the driver, and the driver doesn't know we're unregistering the
devlink port.
Somebody needs to tear them down, and optionally (actually it would be
nice, to be consistent) set them up again for the new devlink port.
But DSA's layering stays in our way quite badly here.
The options I've considered are:
1. Introduce a function in devlink to just change a port's type and
flavour. No dice, devlink keeps a lot of state, it really wants the
port to not be registered when you set its parameters, so changing
anything can only be done by destroying what we currently have and
recreating it.
2. Make DSA cache the parameters passed to dsa_devlink_port_region_create,
and the region returned, keep those in a list, then when the devlink
port unregister needs to take place, the existing devlink regions are
destroyed by DSA, and we replay the creation of new regions using the
cached parameters. Problem: mv88e6xxx keeps the region pointers in
chip->ports[port].region, and these will remain stale after DSA frees
them. There are many things DSA can do, but updating mv88e6xxx's
private pointers is not one of them.
3. Just let the driver do it (i.e. introduce a very specific method
called ds->ops->port_reinit_as_unused, which unregisters its devlink
port devlink regions, then the old devlink port, then registers the
new one, then the devlink port regions for it). While it does work,
as opposed to the others, it's pretty horrible from an API
perspective and we can do better.
4. Introduce a new pair of methods, ->port_setup and ->port_teardown,
which in the case of mv88e6xxx must register and unregister the
devlink port regions. Call these 2 methods when the port must be
reinitialized as unused.
Naturally, I went for the 4th approach.
Fixes: 08156ba430 ("net: dsa: Add devlink port regions support to DSA")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Lino reports that on his system with bcmgenet as DSA master and KSZ9897
as a switch, rebooting or shutting down never works properly.
What does the bcmgenet driver have special to trigger this, that other
DSA masters do not? It has an implementation of ->shutdown which simply
calls its ->remove implementation. Otherwise said, it unregisters its
network interface on shutdown.
This message can be seen in a loop, and it hangs the reboot process there:
unregister_netdevice: waiting for eth0 to become free. Usage count = 3
So why 3?
A usage count of 1 is normal for a registered network interface, and any
virtual interface which links itself as an upper of that will increment
it via dev_hold. In the case of DSA, this is the call path:
dsa_slave_create
-> netdev_upper_dev_link
-> __netdev_upper_dev_link
-> __netdev_adjacent_dev_insert
-> dev_hold
So a DSA switch with 3 interfaces will result in a usage count elevated
by two, and netdev_wait_allrefs will wait until they have gone away.
Other stacked interfaces, like VLAN, watch NETDEV_UNREGISTER events and
delete themselves, but DSA cannot just vanish and go poof, at most it
can unbind itself from the switch devices, but that must happen strictly
earlier compared to when the DSA master unregisters its net_device, so
reacting on the NETDEV_UNREGISTER event is way too late.
It seems that it is a pretty established pattern to have a driver's
->shutdown hook redirect to its ->remove hook, so the same code is
executed regardless of whether the driver is unbound from the device, or
the system is just shutting down. As Florian puts it, it is quite a big
hammer for bcmgenet to unregister its net_device during shutdown, but
having a common code path with the driver unbind helps ensure it is well
tested.
So DSA, for better or for worse, has to live with that and engage in an
arms race of implementing the ->shutdown hook too, from all individual
drivers, and do something sane when paired with masters that unregister
their net_device there. The only sane thing to do, of course, is to
unlink from the master.
However, complications arise really quickly.
The pattern of redirecting ->shutdown to ->remove is not unique to
bcmgenet or even to net_device drivers. In fact, SPI controllers do it
too (see dspi_shutdown -> dspi_remove), and presumably, I2C controllers
and MDIO controllers do it too (this is something I have not researched
too deeply, but even if this is not the case today, it is certainly
plausible to happen in the future, and must be taken into consideration).
Since DSA switches might be SPI devices, I2C devices, MDIO devices, the
insane implication is that for the exact same DSA switch device, we
might have both ->shutdown and ->remove getting called.
So we need to do something with that insane environment. The pattern
I've come up with is "if this, then not that", so if either ->shutdown
or ->remove gets called, we set the device's drvdata to NULL, and in the
other hook, we check whether the drvdata is NULL and just do nothing.
This is probably not necessary for platform devices, just for devices on
buses, but I would really insist for consistency among drivers, because
when code is copy-pasted, it is not always copy-pasted from the best
sources.
So depending on whether the DSA switch's ->remove or ->shutdown will get
called first, we cannot really guarantee even for the same driver if
rebooting will result in the same code path on all platforms. But
nonetheless, we need to do something minimally reasonable on ->shutdown
too to fix the bug. Of course, the ->remove will do more (a full
teardown of the tree, with all data structures freed, and this is why
the bug was not caught for so long). The new ->shutdown method is kept
separate from dsa_unregister_switch not because we couldn't have
unregistered the switch, but simply in the interest of doing something
quick and to the point.
The big question is: does the DSA switch's ->shutdown get called earlier
than the DSA master's ->shutdown? If not, there is still a risk that we
might still trigger the WARN_ON in unregister_netdevice that says we are
attempting to unregister a net_device which has uppers. That's no good.
Although the reference to the master net_device won't physically go away
even if DSA's ->shutdown comes afterwards, remember we have a dev_hold
on it.
The answer to that question lies in this comment above device_link_add:
* A side effect of the link creation is re-ordering of dpm_list and the
* devices_kset list by moving the consumer device and all devices depending
* on it to the ends of these lists (that does not happen to devices that have
* not been registered when this function is called).
so the fact that DSA uses device_link_add towards its master is not
exactly for nothing. device_shutdown() walks devices_kset from the back,
so this is our guarantee that DSA's shutdown happens before the master's
shutdown.
Fixes: 2f1e8ea726 ("net: dsa: link interfaces with the DSA master to get rid of lockdep warnings")
Link: https://lore.kernel.org/netdev/20210909095324.12978-1-LinoSanfilippo@gmx.de/
Reported-by: Lino Sanfilippo <LinoSanfilippo@gmx.de>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Tested-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
NXP Legal insists that the following are not fine:
- Saying "NXP Semiconductors" instead of "NXP", since the company's
registered name is "NXP"
- Putting a "(c)" sign in the copyright string
- Putting a comma in the copyright string
The only accepted copyright string format is "Copyright <year-range> NXP".
This patch changes the copyright headers in the networking files that
were sent by me, or derived from code sent by me.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Sometimes when unbinding the mv88e6xxx driver on Turris MOX, these error
messages appear:
mv88e6085 d0032004.mdio-mii:12: port 1 failed to delete be:79:b4:9e:9e:96 vid 1 from fdb: -2
mv88e6085 d0032004.mdio-mii:12: port 1 failed to delete be:79:b4:9e:9e:96 vid 0 from fdb: -2
mv88e6085 d0032004.mdio-mii:12: port 1 failed to delete d8:58:d7:00:ca:6d vid 100 from fdb: -2
mv88e6085 d0032004.mdio-mii:12: port 1 failed to delete d8:58:d7:00:ca:6d vid 1 from fdb: -2
mv88e6085 d0032004.mdio-mii:12: port 1 failed to delete d8:58:d7:00:ca:6d vid 0 from fdb: -2
(and similarly for other ports)
What happens is that DSA has a policy "even if there are bugs, let's at
least not leak memory" and dsa_port_teardown() clears the dp->fdbs and
dp->mdbs lists, which are supposed to be empty.
But deleting that cleanup code, the warnings go away.
=> the FDB and MDB lists (used for refcounting on shared ports, aka CPU
and DSA ports) will eventually be empty, but are not empty by the time
we tear down those ports. Aka we are deleting them too soon.
The addresses that DSA complains about are host-trapped addresses: the
local addresses of the ports, and the MAC address of the bridge device.
The problem is that offloading those entries happens from a deferred
work item scheduled by the SWITCHDEV_FDB_DEL_TO_DEVICE handler, and this
races with the teardown of the CPU and DSA ports where the refcounting
is kept.
In fact, not only it races, but fundamentally speaking, if we iterate
through the port list linearly, we might end up tearing down the shared
ports even before we delete a DSA user port which has a bridge upper.
So as it turns out, we need to first tear down the user ports (and the
unused ones, for no better place of doing that), then the shared ports
(the CPU and DSA ports). In between, we need to ensure that all work
items scheduled by our switchdev handlers (which only run for user
ports, hence the reason why we tear them down first) have finished.
Fixes: 161ca59d39 ("net: dsa: reference count the MDB entries at the cross-chip notifier level")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20210914134726.2305133-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
DSA supports connecting to a phy-handle, and has a fallback to a non-OF
based method of connecting to an internal PHY on the switch's own MDIO
bus, if no phy-handle and no fixed-link nodes were present.
The -ENODEV error code from the first attempt (phylink_of_phy_connect)
is what triggers the second attempt (phylink_connect_phy).
However, when the first attempt returns a different error code than
-ENODEV, this results in an unbalance of calls to phylink_create and
phylink_destroy by the time we exit the function. The phylink instance
has leaked.
There are many other error codes that can be returned by
phylink_of_phy_connect. For example, phylink_validate returns -EINVAL.
So this is a practical issue too.
Fixes: aab9c4067d ("net: dsa: Plug in PHYLINK support")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Link: https://lore.kernel.org/r/20210914134331.2303380-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This drops the code setting bit 9 on egress frames on the
Realtek "type A" (RTL8366RB) frames.
This bit was set on ingress frames for unknown reason,
and was set on egress frames as the format of ingress
and egress frames was believed to be the same. As that
assumption turned out to be false, and since this bit
seems to have zero effect on the behaviour of the switch
let's drop this bit entirely.
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20210913143156.1264570-1-linus.walleij@linaro.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
I noticed that only port 0 worked on the RTL8366RB since we
started to use custom tags.
It turns out that the format of egress custom tags is actually
different from ingress custom tags. While the lower bits just
contain the port number in ingress tags, egress tags need to
indicate destination port by setting the bit for the
corresponding port.
It was working on port 0 because port 0 added 0x00 as port
number in the lower bits, and if you do this the packet appears
at all ports, including the intended port. Ooops.
Fix this and all ports work again. Use the define for shifting
the "type A" into place while we're at it.
Tested on the D-Link DIR-685 by sending traffic to each of
the ports in turn. It works.
Fixes: 86dd9868b8 ("net: dsa: tag_rtl4_a: Support also egress tags")
Cc: DENG Qingfang <dqfext@gmail.com>
Cc: Mauri Sandberg <sandberg@mailfence.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduced in commit 38b5beeae7 ("net: dsa: sja1105: prepare tagger
for handling DSA tags and VLAN simultaneously"), the sja1105_xmit_tpid
function solved quite a different problem than our needs are now.
Then, we used best-effort VLAN filtering and we were using the xmit_tpid
to tunnel packets coming from an 8021q upper through the TX VLAN allocated
by tag_8021q to that egress port. The need for a different VLAN protocol
depending on switch revision came from the fact that this in itself was
more of a hack to trick the hardware into accepting tunneled VLANs in
the first place.
Right now, we deny 8021q uppers (see sja1105_prechangeupper). Even if we
supported them again, we would not do that using the same method of
{tunneling the VLAN on egress, retagging the VLAN on ingress} that we
had in the best-effort VLAN filtering mode. It seems rather simpler that
we just allocate a VLAN in the VLAN table that is simply not used by the
bridge at all, or by any other port.
Anyway, I have 2 gripes with the current sja1105_xmit_tpid:
1. When sending packets on behalf of a VLAN-aware bridge (with the new
TX forwarding offload framework) plus untagged (with the tag_8021q
VLAN added by the tagger) packets, we can see that on SJA1105P/Q/R/S
and later (which have a qinq_tpid of ETH_P_8021AD), some packets sent
through the DSA master have a VLAN protocol of 0x8100 and others of
0x88a8. This is strange and there is no reason for it now. If we have
a bridge and are therefore forced to send using that bridge's TPID,
we can as well blend with that bridge's VLAN protocol for all packets.
2. The sja1105_xmit_tpid introduces a dependency on the sja1105 driver,
because it looks inside dp->priv. It is desirable to keep as much
separation between taggers and switch drivers as possible. Now it
doesn't do that anymore.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The sja1105 driver is a bit special in its use of VLAN headers as DSA
tags. This is because in VLAN-aware mode, the VLAN headers use an actual
TPID of 0x8100, which is understood even by the DSA master as an actual
VLAN header.
Furthermore, control packets such as PTP and STP are transmitted with no
VLAN header as a DSA tag, because, depending on switch generation, there
are ways to steer these control packets towards a precise egress port
other than VLAN tags. Transmitting control packets as untagged means
leaving a door open for traffic in general to be transmitted as untagged
from the DSA master, and for it to traverse the switch and exit a random
switch port according to the FDB lookup.
This behavior is a bit out of line with other DSA drivers which have
native support for DSA tagging. There, it is to be expected that the
switch only accepts DSA-tagged packets on its CPU port, dropping
everything that does not match this pattern.
We perhaps rely a bit too much on the switches' hardware dropping on the
CPU port, and place no other restrictions in the kernel data path to
avoid that. For example, sja1105 is also a bit special in that STP/PTP
packets are transmitted using "management routes"
(sja1105_port_deferred_xmit): when sending a link-local packet from the
CPU, we must first write a SPI message to the switch to tell it to
expect a packet towards multicast MAC DA 01-80-c2-00-00-0e, and to route
it towards port 3 when it gets it. This entry expires as soon as it
matches a packet received by the switch, and it needs to be reinstalled
for the next packet etc. All in all quite a ghetto mechanism, but it is
all that the sja1105 switches offer for injecting a control packet.
The driver takes a mutex for serializing control packets and making the
pairs of SPI writes of a management route and its associated skb atomic,
but to be honest, a mutex is only relevant as long as all parties agree
to take it. With the DSA design, it is possible to open an AF_PACKET
socket on the DSA master net device, and blast packets towards
01-80-c2-00-00-0e, and whatever locking the DSA switch driver might use,
it all goes kaput because management routes installed by the driver will
match skbs sent by the DSA master, and not skbs generated by the driver
itself. So they will end up being routed on the wrong port.
So through the lens of that, maybe it would make sense to avoid that
from happening by doing something in the network stack, like: introduce
a new bit in struct sk_buff, like xmit_from_dsa. Then, somewhere around
dev_hard_start_xmit(), introduce the following check:
if (netdev_uses_dsa(dev) && !skb->xmit_from_dsa)
kfree_skb(skb);
Ok, maybe that is a bit drastic, but that would at least prevent a bunch
of problems. For example, right now, even though the majority of DSA
switches drop packets without DSA tags sent by the DSA master (and
therefore the majority of garbage that user space daemons like avahi and
udhcpcd and friends create), it is still conceivable that an aggressive
user space program can open an AF_PACKET socket and inject a spoofed DSA
tag directly on the DSA master. We have no protection against that; the
packet will be understood by the switch and be routed wherever user
space says. Furthermore: there are some DSA switches where we even have
register access over Ethernet, using DSA tags. So even user space
drivers are possible in this way. This is a huge hole.
However, the biggest thing that bothers me is that udhcpcd attempts to
ask for an IP address on all interfaces by default, and with sja1105, it
will attempt to get a valid IP address on both the DSA master as well as
on sja1105 switch ports themselves. So with IP addresses in the same
subnet on multiple interfaces, the routing table will be messed up and
the system will be unusable for traffic until it is configured manually
to not ask for an IP address on the DSA master itself.
It turns out that it is possible to avoid that in the sja1105 driver, at
least very superficially, by requesting the switch to drop VLAN-untagged
packets on the CPU port. With the exception of control packets, all
traffic originated from tag_sja1105.c is already VLAN-tagged, so only
STP and PTP packets need to be converted. For that, we need to uphold
the equivalence between an untagged and a pvid-tagged packet, and to
remember that the CPU port of sja1105 uses a pvid of 4095.
Now that we drop untagged traffic on the CPU port, non-aggressive user
space applications like udhcpcd stop bothering us, and sja1105 effectively
becomes just as vulnerable to the aggressive kind of user space programs
as other DSA switches are (ok, users can also create 8021q uppers on top
of the DSA master in the case of sja1105, but in future patches we can
easily deny that, but it still doesn't change the fact that VLAN-tagged
packets can still be injected over raw sockets).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
As explained in commit e358bef7c3 ("net: dsa: Give drivers the chance
to veto certain upper devices"), the hellcreek driver uses some tricks
to comply with the network stack expectations: it enforces port
separation in standalone mode using VLANs. For untagged traffic,
bridging between ports is prevented by using different PVIDs, and for
VLAN-tagged traffic, it never accepts 8021q uppers with the same VID on
two ports, so packets with one VLAN cannot leak from one port to another.
That is almost fine*, and has worked because hellcreek relied on an
implicit behavior of the DSA core that was changed by the previous
patch: the standalone ports declare the 'rx-vlan-filter' feature as 'on
[fixed]'. Since most of the DSA drivers are actually VLAN-unaware in
standalone mode, that feature was actually incorrectly reflecting the
hardware/driver state, so there was a desire to fix it. This leaves the
hellcreek driver in a situation where it has to explicitly request this
behavior from the DSA framework.
We configure the ports as follows:
- Standalone: 'rx-vlan-filter' is on. An 8021q upper on top of a
standalone hellcreek port will go through dsa_slave_vlan_rx_add_vid
and will add a VLAN to the hardware tables, giving the driver the
opportunity to refuse it through .port_prechangeupper.
- Bridged with vlan_filtering=0: 'rx-vlan-filter' is off. An 8021q upper
on top of a bridged hellcreek port will not go through
dsa_slave_vlan_rx_add_vid, because there will not be any attempt to
offload this VLAN. The driver already disables VLAN awareness, so that
upper should receive the traffic it needs.
- Bridged with vlan_filtering=1: 'rx-vlan-filter' is on. An 8021q upper
on top of a bridged hellcreek port will call dsa_slave_vlan_rx_add_vid,
and can again be vetoed through .port_prechangeupper.
*It is not actually completely fine, because if I follow through
correctly, we can have the following situation:
ip link add br0 type bridge vlan_filtering 0
ip link set lan0 master br0 # lan0 now becomes VLAN-unaware
ip link set lan0 nomaster # lan0 fails to become VLAN-aware again, therefore breaking isolation
This patch fixes that corner case by extending the DSA core logic, based
on this requested attribute, to change the VLAN awareness state of the
switch (port) when it leaves the bridge.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Kurt Kanzenbach <kurt@linutronix.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
There have been multiple independent reports about
dsa_slave_vlan_rx_add_vid being called (and consequently calling the
drivers' .port_vlan_add) when it isn't needed, and sometimes (not
always) causing problems in the process.
Case 1:
mv88e6xxx_port_vlan_prepare is stubborn and only accepts VLANs on
bridged ports. That is understandably so, because standalone mv88e6xxx
ports are VLAN-unaware, and VTU entries are said to be a scarce
resource.
Otherwise said, the following fails lamentably on mv88e6xxx:
ip link add br0 type bridge vlan_filtering 1
ip link set lan3 master br0
ip link add link lan10 name lan10.1 type vlan id 1
[485256.724147] mv88e6085 d0032004.mdio-mii:12: p10: hw VLAN 1 already used by port 3 in br0
RTNETLINK answers: Operation not supported
This has become a worse issue since commit 9b236d2a69 ("net: dsa:
Advertise the VLAN offload netdev ability only if switch supports it").
Up to that point, the driver was returning -EOPNOTSUPP and DSA was
reconverting that error to 0, making the 8021q upper think all is ok
(but obviously the error message was there even prior to this change).
After that change the -EOPNOTSUPP is propagated to vlan_vid_add, and it
is a hard error.
Case 2:
Ports that don't offload the Linux bridge (have a dp->bridge_dev = NULL
because they don't implement .port_bridge_{join,leave}). Understandably,
a standalone port should not offload VLANs either, it should remain VLAN
unaware and any VLAN should be a software VLAN (as long as the hardware
is not quirky, that is).
In fact, dsa_slave_port_obj_add does do the right thing and rejects
switchdev VLAN objects coming from the bridge when that bridge is not
offloaded:
case SWITCHDEV_OBJ_ID_PORT_VLAN:
if (!dsa_port_offloads_bridge_port(dp, obj->orig_dev))
return -EOPNOTSUPP;
err = dsa_slave_vlan_add(dev, obj, extack);
But it seems that the bridge is able to trick us. The __vlan_vid_add
from br_vlan.c has:
/* Try switchdev op first. In case it is not supported, fallback to
* 8021q add.
*/
err = br_switchdev_port_vlan_add(dev, v->vid, flags, extack);
if (err == -EOPNOTSUPP)
return vlan_vid_add(dev, br->vlan_proto, v->vid);
So it says "no, no, you need this VLAN in your life!". And we, naive as
we are, say "oh, this comes from the vlan_vid_add code path, it must be
an 8021q upper, sure, I'll take that". And we end up with that bridge
VLAN installed on our port anyway. But this time, it has the wrong flags:
if the bridge was trying to install VLAN 1 as a pvid/untagged VLAN,
failed via switchdev, retried via vlan_vid_add, we have this comment:
/* This API only allows programming tagged, non-PVID VIDs */
So what we do makes absolutely no sense.
Backtracing a bit, we see the common pattern. We allow the network stack
to think that our standalone ports are VLAN-aware, but they aren't, for
the vast majority of switches. The quirky ones should not dictate the
norm. The dsa_slave_vlan_rx_add_vid and dsa_slave_vlan_rx_kill_vid
methods exist for drivers that need the 'rx-vlan-filter: on' feature in
ethtool -k, which can be due to any of the following reasons:
1. vlan_filtering_is_global = true, and some ports are under a
VLAN-aware bridge while others are standalone, and the standalone
ports would otherwise drop VLAN-tagged traffic. This is described in
commit 061f6a505a ("net: dsa: Add ndo_vlan_rx_{add, kill}_vid
implementation").
2. the ports that are under a VLAN-aware bridge should also set this
feature, for 8021q uppers having a VID not claimed by the bridge.
In this case, the driver will essentially not even know that the VID
is coming from the 8021q layer and not the bridge.
3. Hellcreek. This driver needs it because in standalone mode, it uses
unique VLANs per port to ensure separation. For separation of untagged
traffic, it uses different PVIDs for each port, and for separation of
VLAN-tagged traffic, it never accepts 8021q uppers with the same vid
on two ports.
If a driver does not fall under any of the above 3 categories, there is
no reason why it should advertise the 'rx-vlan-filter' feature, therefore
no reason why it should offload the VLANs added through vlan_vid_add.
This commit fixes the problem by removing the 'rx-vlan-filter' feature
from the slave devices when they operate in standalone mode, and when
they offload a VLAN-unaware bridge.
The way it works is that vlan_vid_add will now stop its processing here:
vlan_add_rx_filter_info:
if (!vlan_hw_filter_capable(dev, proto))
return 0;
So the VLAN will still be saved in the interface's VLAN RX filtering
list, but because it does not declare VLAN filtering in its features,
the 8021q module will return zero without committing that VLAN to
hardware.
This gives the drivers what they want, since it keeps the 8021q VLANs
away from the VLAN table until VLAN awareness is enabled (point at which
the ports are no longer standalone, hence in the mv88e6xxx case, the
check in mv88e6xxx_port_vlan_prepare passes).
Since the issue predates the existence of the hellcreek driver, case 3
will be dealt with in a separate patch.
The main change that this patch makes is to no longer set
NETIF_F_HW_VLAN_CTAG_FILTER unconditionally, but toggle it dynamically
(for most switches, never).
The second part of the patch addresses an issue that the first part
introduces: because the 'rx-vlan-filter' feature is now dynamically
toggled, and our .ndo_vlan_rx_add_vid does not get called when
'rx-vlan-filter' is off, we need to avoid bugs such as the following by
replaying the VLANs from 8021q uppers every time we enable VLAN
filtering:
ip link add link lan0 name lan0.100 type vlan id 100
ip addr add 192.168.100.1/24 dev lan0.100
ping 192.168.100.2 # should work
ip link add br0 type bridge vlan_filtering 0
ip link set lan0 master br0
ping 192.168.100.2 # should still work
ip link set br0 type bridge vlan_filtering 1
ping 192.168.100.2 # should still work but doesn't
As reported by Florian, some drivers look at ds->vlan_filtering in
their .port_vlan_add() implementation. So this patch also makes sure
that ds->vlan_filtering is committed before calling the driver. This is
the reason why it is first committed, then restored on the failure path.
Reported-by: Tobias Waldekranz <tobias@waldekranz.com>
Reported-by: Alvin Šipraga <alsi@bang-olufsen.dk>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Tested-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
If the driver does not implement .port_bridge_{join,leave}, then we must
fall back to standalone operation on that port, and trigger the error
path of dsa_port_bridge_join. This sets dp->bridge_dev = NULL.
In turn, having a non-NULL dp->bridge_dev when there is no offloading
support makes the following things go wrong:
- dsa_default_offload_fwd_mark make the wrong decision in setting
skb->offload_fwd_mark. It should set skb->offload_fwd_mark = 0 for
ports that don't offload the bridge, which should instruct the bridge
to forward in software. But this does not happen, dp->bridge_dev is
incorrectly set to point to the bridge, so the bridge is told that
packets have been forwarded in hardware, which they haven't.
- switchdev objects (MDBs, VLANs) should not be offloaded by ports that
don't offload the bridge. Standalone ports should behave as packet-in,
packet-out and the bridge should not be able to manipulate the pvid of
the port, or tag stripping on egress, or ingress filtering. This
should already work fine because dsa_slave_port_obj_add has:
case SWITCHDEV_OBJ_ID_PORT_VLAN:
if (!dsa_port_offloads_bridge_port(dp, obj->orig_dev))
return -EOPNOTSUPP;
err = dsa_slave_vlan_add(dev, obj, extack);
but since dsa_port_offloads_bridge_port works based on dp->bridge_dev,
this is again sabotaging us.
All the above work in case the port has an unoffloaded LAG interface, so
this is well exercised code, we should apply it for plain unoffloaded
bridge ports too.
Reported-by: Alvin Šipraga <alsi@bang-olufsen.dk>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
For ports that have a NULL dp->bridge_dev, dsa_port_to_bridge_port()
also returns NULL as expected.
Issue #1 is that we are performing a NULL pointer dereference on brport_dev.
Issue #2 is that these are ports on which switchdev_bridge_port_offload
has not been called, so we should not call switchdev_bridge_port_unoffload
on them either.
Both issues are addressed by checking against a NULL brport_dev in
dsa_port_pre_bridge_leave and exiting early.
Fixes: 2f5dc00f7a ("net: bridge: switchdev: let drivers inform which bridge ports are offloaded")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Right now, cross-tree bridging setups work somewhat by mistake.
In the case of cross-tree bridging with sja1105, all switch instances
need to agree upon a common VLAN ID for forwarding a packet that belongs
to a certain bridging domain.
With TX forwarding offload, the VLAN ID is the bridge VLAN for
VLAN-aware bridging, and the tag_8021q TX forwarding offload VID
(a VLAN which has non-zero VBID bits) for VLAN-unaware bridging.
The VBID for VLAN-unaware bridging is derived from the dp->bridge_num
value calculated by DSA independently for each switch tree.
If ports from one tree join one bridge, and ports from another tree join
another bridge, DSA will assign them the same bridge_num, even though
the bridges are different. If cross-tree bridging is supported, this
is an issue.
Modify DSA to calculate the bridge_num globally across all switch trees.
This has the implication for a driver that the dp->bridge_num value that
DSA will assign to its ports might not be contiguous, if there are
boards with multiple DSA drivers instantiated. Additionally, all
bridge_num values eat up towards each switch's
ds->num_fwd_offloading_bridges maximum, which is potentially unfortunate,
and can be seen as a limitation introduced by this patch. However, that
is the lesser evil for now.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add support for tag_sja1105 running on non-sja1105 DSA ports, by making
sure that every time we dereference dp->priv, we check the switch's
dsa_switch_ops (otherwise we access a struct sja1105_port structure that
is in fact something else).
This adds an unconditional build-time dependency between sja1105 being
built as module => tag_sja1105 must also be built as module. This was
there only for PTP before.
Some sane defaults must also take place when not running on sja1105
hardware. These are:
- sja1105_xmit_tpid: the sja1105 driver uses different VLAN protocols
depending on VLAN awareness and switch revision (when an encapsulated
VLAN must be sent). Default to 0x8100.
- sja1105_rcv_meta_state_machine: this aggregates PTP frames with their
metadata timestamp frames. When running on non-sja1105 hardware, don't
do that and accept all frames unmodified.
- sja1105_defer_xmit: calls sja1105_port_deferred_xmit in sja1105_main.c
which writes a management route over SPI. When not running on sja1105
hardware, bypass the SPI write and send the frame as-is.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
During the development of the blamed patch, the "bool broadcast"
argument of dsa_port_tag_8021q_vlan_{add,del} was originally called
"bool local", and the meaning was the exact opposite.
Due to a rookie mistake where the patch was modified at the last minute
without retesting, the instances of dsa_port_tag_8021q_vlan_{add,del}
are called with the wrong values. During setup and teardown, cross-chip
notifiers should not be broadcast to all DSA trees, while during
bridging, they should.
Fixes: 724395f4dc ("net: dsa: tag_8021q: don't broadcast during setup/teardown")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, on my board with multiple sja1105 switches in disjoint trees
described in commit f66a6a69f9 ("net: dsa: permit cross-chip bridging
between all trees in the system"), rebooting the board triggers the
following benign warnings:
[ 12.345566] sja1105 spi2.0: port 0 failed to notify tag_8021q VLAN 1088 deletion: -ENOENT
[ 12.353804] sja1105 spi2.0: port 0 failed to notify tag_8021q VLAN 2112 deletion: -ENOENT
[ 12.362019] sja1105 spi2.0: port 1 failed to notify tag_8021q VLAN 1089 deletion: -ENOENT
[ 12.370246] sja1105 spi2.0: port 1 failed to notify tag_8021q VLAN 2113 deletion: -ENOENT
[ 12.378466] sja1105 spi2.0: port 2 failed to notify tag_8021q VLAN 1090 deletion: -ENOENT
[ 12.386683] sja1105 spi2.0: port 2 failed to notify tag_8021q VLAN 2114 deletion: -ENOENT
Basically switch 1 calls dsa_tag_8021q_unregister, and switch 1's TX and
RX VLANs cannot be found on switch 2's CPU port.
But why would switch 2 even attempt to delete switch 1's TX and RX
tag_8021q VLANs from its CPU port? Well, because we use dsa_broadcast,
and it is supposed that it had added those VLANs in the first place
(because in dsa_port_tag_8021q_vlan_match, all CPU ports match
regardless of their tree index or switch index).
The two trees probe asynchronously, and when switch 1 probed, it called
dsa_broadcast which did not notify the tree of switch 2, because that
didn't probe yet. But during unbind, switch 2's tree _is_ probed, so it
_is_ notified of the deletion.
Before jumping to introduce a synchronization mechanism between the
probing across disjoint switch trees, let's take a step back and see
whether we _need_ to do that in the first place.
The RX and TX VLANs of switch 1 would be needed on switch 2's CPU port
only if switch 1 and 2 were part of a cross-chip bridge. And
dsa_tag_8021q_bridge_join takes care precisely of that (but if probing
was synchronous, the bridge_join would just end up bumping the VLANs'
refcount, because they are already installed by the setup path).
Since by the time the ports are bridged, all DSA trees are already set
up, and we don't need the tag_8021q VLANs of one switch installed on the
other switches during probe time, the answer is that we don't need to
fix the synchronization issue.
So make the setup and teardown code paths call dsa_port_notify, which
notifies only the local tree, and the bridge code paths call
dsa_broadcast, which let the other trees know as well.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently this error message does not say a lot:
[ 32.693498] DSA: failed to notify tag_8021q VLAN deletion: -ENOENT
[ 32.699725] DSA: failed to notify tag_8021q VLAN deletion: -ENOENT
[ 32.705931] DSA: failed to notify tag_8021q VLAN deletion: -ENOENT
[ 32.712139] DSA: failed to notify tag_8021q VLAN deletion: -ENOENT
[ 32.718347] DSA: failed to notify tag_8021q VLAN deletion: -ENOENT
[ 32.724554] DSA: failed to notify tag_8021q VLAN deletion: -ENOENT
but in this form, it is immediately obvious (at least to me) what the
problem is, even without further looking at the code:
[ 12.345566] sja1105 spi2.0: port 0 failed to notify tag_8021q VLAN 1088 deletion: -ENOENT
[ 12.353804] sja1105 spi2.0: port 0 failed to notify tag_8021q VLAN 2112 deletion: -ENOENT
[ 12.362019] sja1105 spi2.0: port 1 failed to notify tag_8021q VLAN 1089 deletion: -ENOENT
[ 12.370246] sja1105 spi2.0: port 1 failed to notify tag_8021q VLAN 2113 deletion: -ENOENT
[ 12.378466] sja1105 spi2.0: port 2 failed to notify tag_8021q VLAN 1090 deletion: -ENOENT
[ 12.386683] sja1105 spi2.0: port 2 failed to notify tag_8021q VLAN 2114 deletion: -ENOENT
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Create a similar helper for locating the offset to the DSA header
relative to skb->data, and make the existing EtherType header taggers to
use it.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
It seems that protocol tagging driver writers are always surprised about
the formula they use to reach their EtherType header on RX, which
becomes apparent from the fact that there are comments in multiple
drivers that mention the same information.
Create a helper that returns a void pointer to skb->data - 2, as well as
centralize the explanation why that is the case.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
Hide away the memmove used by DSA EtherType header taggers to shift the
MAC SA and DA to the left to make room for the header, after they've
called skb_push(). The call to skb_push() is still left explicit in
drivers, to be symmetric with dsa_strip_etype_header, and because not
all callers can be refactored to do it (for example, brcm_tag_xmit_ll
has common code for a pre-Ethernet DSA tag and an EtherType DSA tag).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
All header taggers open-code a memmove that is fairly not all that
obvious, and we can hide the details behind a helper function, since the
only thing specific to the driver is the length of the header tag.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The blamed commit added a new field to struct switchdev_notifier_fdb_info,
but did not make sure that all call paths set it to something valid.
For example, a switchdev driver may emit a SWITCHDEV_FDB_ADD_TO_BRIDGE
notifier, and since the 'is_local' flag is not set, it contains junk
from the stack, so the bridge might interpret those notifications as
being for local FDB entries when that was not intended.
To avoid that now and in the future, zero-initialize all
switchdev_notifier_fdb_info structures created by drivers such that all
newly added fields to not need to touch drivers again.
Fixes: 2c4eca3ef7 ("net: bridge: switchdev: include local flag in FDB notifications")
Reported-by: Ido Schimmel <idosch@idosch.org>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Ido Schimmel <idosch@nvidia.com>
Tested-by: Ido Schimmel <idosch@nvidia.com>
Reviewed-by: Leon Romanovsky <leonro@nvidia.com>
Reviewed-by: Karsten Graul <kgraul@linux.ibm.com>
Link: https://lore.kernel.org/r/20210810115024.1629983-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
All kernel devlink implementations call to devlink_alloc() during
initialization routine for specific device which is used later as
a parent device for devlink_register().
Such late device assignment causes to the situation which requires us to
call to device_register() before setting other parameters, but that call
opens devlink to the world and makes accessible for the netlink users.
Any attempt to move devlink_register() to be the last call generates the
following error due to access to the devlink->dev pointer.
[ 8.758862] devlink_nl_param_fill+0x2e8/0xe50
[ 8.760305] devlink_param_notify+0x6d/0x180
[ 8.760435] __devlink_params_register+0x2f1/0x670
[ 8.760558] devlink_params_register+0x1e/0x20
The simple change of API to set devlink device in the devlink_alloc()
instead of devlink_register() fixes all this above and ensures that
prior to call to devlink_register() everything already set.
Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
Reviewed-by: Jiri Pirko <jiri@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Drivers that support both the toggling of address learning and dynamic
FDB flushing (mv88e6xxx, b53, sja1105) currently need to fast-age a port
twice when it leaves a bridge:
- once, when del_nbp() calls br_stp_disable_port() which puts the port
in the BLOCKING state
- twice, when dsa_port_switchdev_unsync_attrs() calls
dsa_port_clear_brport_flags() which disables address learning
The knee-jerk reaction might be to say "dsa_port_clear_brport_flags does
not need to fast-age the port at all", but the thing is, we still need
both code paths to flush the dynamic FDB entries in different situations.
When a DSA switch port leaves a bonding/team interface that is (still) a
bridge port, no del_nbp() will be called, so we rely on
dsa_port_clear_brport_flags() function to restore proper standalone port
functionality with address learning disabled.
So the solution is just to avoid double the work when both code paths
are called in series. Luckily, DSA already caches the STP port state, so
we can skip flushing the dynamic FDB when we disable address learning
and the STP state is one where no address learning takes place at all.
Under that condition, not flushing the FDB is safe because there is
supposed to not be any dynamic FDB entry at all (they were flushed
during the transition towards that state, and none were learned in the
meanwhile).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit 39f3210154 ("net: dsa: don't fast age standalone ports")
assumed that all standalone ports disable address learning, but if the
switch driver implements .port_fast_age but not .port_bridge_flags (like
ksz9477, ksz8795, lantiq_gswip, lan9303), then that might not actually
be true.
So whereas before, the bridge temporarily walking us through the
BLOCKING STP state meant that the standalone ports had a checkpoint to
flush their baggage and start fresh when they join a bridge, after that
commit they no longer do.
Restore the old behavior for these drivers by checking if the switch can
toggle address learning. If it can't, disregard the "do_fast_age"
argument and unconditionally perform fast ageing on STP state changes.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, when DSA performs fast ageing on a port, 'bridge fdb' shows
us that the 'self' entries (corresponding to the hardware bridge, as
printed by dsa_slave_fdb_dump) are deleted, but the 'master' entries
(corresponding to the software bridge) aren't.
Indeed, searching through the bridge driver, neither the
brport_attr_learning handler nor the IFLA_BRPORT_LEARNING handler call
br_fdb_delete_by_port. However, br_stp_disable_port does, which is one
of the paths which DSA uses to trigger a fast ageing process anyway.
There is, however, one other very promising caller of
br_fdb_delete_by_port, and that is the bridge driver's handler of the
SWITCHDEV_FDB_FLUSH_TO_BRIDGE atomic notifier. Currently the s390/qeth
HiperSockets card driver is the only user of this.
I can't say I understand that driver's architecture or interaction with
the bridge, but it appears to not be a switchdev driver in the traditional
sense of the word. Nonetheless, the mechanism it provides is a useful
way for DSA to express the fact that it performs fast ageing too, in a
way that does not change the existing behavior for other drivers.
Cc: Alexandra Winter <wintera@linux.ibm.com>
Cc: Julian Wiedmann <jwi@linux.ibm.com>
Cc: Roopa Prabhu <roopa@nvidia.com>
Cc: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
On topology changes, stations that were dynamically learned on ports
that are no longer part of the active topology must be flushed - this is
described by clause "17.11 Updating learned station location information"
of IEEE 802.1D-2004.
However, when address learning on the bridge port is turned off in the
first place, there is nothing to flush, so skip a potentially expensive
operation.
We can finally do this now since DSA is aware of the learning state of
its bridged ports.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently DSA leaves it down to device drivers to fast age the FDB on a
port when address learning is disabled on it. There are 2 reasons for
doing that in the first place:
- when address learning is disabled by user space, through
IFLA_BRPORT_LEARNING or the brport_attr_learning sysfs, what user
space typically wants to achieve is to operate in a mode with no
dynamic FDB entry on that port. But if the port is already up, some
addresses might have been already learned on it, and it seems silly to
wait for 5 minutes for them to expire until something useful can be
done.
- when a port leaves a bridge and becomes standalone, DSA turns off
address learning on it. This also has the nice side effect of flushing
the dynamically learned bridge FDB entries on it, which is a good idea
because standalone ports should not have bridge FDB entries on them.
We let drivers manage fast ageing under this condition because if DSA
were to do it, it would need to track each port's learning state, and
act upon the transition, which it currently doesn't.
But there are 2 reasons why doing it is better after all:
- drivers might get it wrong and not do it (see b53_port_set_learning)
- we would like to flush the dynamic entries from the software bridge
too, and letting drivers do that would be another pain point
So track the port learning state and trigger a fast age process
automatically within DSA.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
DSA drives the procedure to flush dynamic FDB entries from a port based
on the change of STP state: whenever we go from a state where address
learning is enabled (LEARNING, FORWARDING) to a state where it isn't
(LISTENING, BLOCKING, DISABLED), we need to flush the existing dynamic
entries.
However, there are cases when this is not needed. Internally, when a
DSA switch interface is not under a bridge, DSA still keeps it in the
"FORWARDING" STP state. And when that interface joins a bridge, the
bridge will meticulously iterate that port through all STP states,
starting with BLOCKING and ending with FORWARDING. Because there is a
state transition from the standalone version of FORWARDING into the
temporary BLOCKING bridge port state, DSA calls the fast age procedure.
Since commit 5e38c15856 ("net: dsa: configure better brport flags when
ports leave the bridge"), DSA asks standalone ports to disable address
learning. Therefore, there can be no dynamic FDB entries on a standalone
port. Therefore, it does not make sense to flush dynamic FDB entries on
one.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit 08cc83cc7f ("net: dsa: add support for BRIDGE_MROUTER
attribute") added an option for users to turn off multicast flooding
towards the CPU if they turn off the IGMP querier on a bridge which
already has enslaved ports (echo 0 > /sys/class/net/br0/bridge/multicast_router).
And commit a8b659e7ff ("net: dsa: act as passthrough for bridge port flags")
simply papered over that issue, because it moved the decision to flood
the CPU with multicast (or not) from the DSA core down to individual drivers,
instead of taking a more radical position then.
The truth is that disabling multicast flooding to the CPU is simply
something we are not prepared to do now, if at all. Some reasons:
- ICMP6 neighbor solicitation messages are unregistered multicast
packets as far as the bridge is concerned. So if we stop flooding
multicast, the outside world cannot ping the bridge device's IPv6
link-local address.
- There might be foreign interfaces bridged with our DSA switch ports
(sending a packet towards the host does not necessarily equal
termination, but maybe software forwarding). So if there is no one
interested in that multicast traffic in the local network stack, that
doesn't mean nobody is.
- PTP over L4 (IPv4, IPv6) is multicast, but is unregistered as far as
the bridge is concerned. This should reach the CPU port.
- The switch driver might not do FDB partitioning. And since we don't
even bother to do more fine-grained flood disabling (such as "disable
flooding _from_port_N_ towards the CPU port" as opposed to "disable
flooding _from_any_port_ towards the CPU port"), this breaks standalone
ports, or even multiple bridges where one has an IGMP querier and one
doesn't.
Reverting the logic makes all of the above work.
Fixes: a8b659e7ff ("net: dsa: act as passthrough for bridge port flags")
Fixes: 08cc83cc7f ("net: dsa: add support for BRIDGE_MROUTER attribute")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Qingfang points out that when a bridge with the default settings is
created and a port joins it:
ip link add br0 type bridge
ip link set swp0 master br0
DSA calls br_multicast_router() on the bridge to see if the br0 device
is a multicast router port, and if it is, it enables multicast flooding
to the CPU port, otherwise it disables it.
If we look through the multicast_router_show() sysfs or at the
IFLA_BR_MCAST_ROUTER netlink attribute, we see that the default mrouter
attribute for the bridge device is "1" (MDB_RTR_TYPE_TEMP_QUERY).
However, br_multicast_router() will return "0" (MDB_RTR_TYPE_DISABLED),
because an mrouter port in the MDB_RTR_TYPE_TEMP_QUERY state may not be
actually _active_ until it receives an actual IGMP query. So, the
br_multicast_router() function should really have been called
br_multicast_router_active() perhaps.
When/if an IGMP query is received, the bridge device will transition via
br_multicast_mark_router() into the active state until the
ip4_mc_router_timer expires after an multicast_querier_interval.
Of course, this does not happen if the bridge is created with an
mcast_router attribute of "2" (MDB_RTR_TYPE_PERM).
The point is that in lack of any IGMP query messages, and in the default
bridge configuration, unregistered multicast packets will not be able to
reach the CPU port through flooding, and this breaks many use cases
(most obviously, IPv6 ND, with its ICMP6 neighbor solicitation multicast
messages).
Leave the multicast flooding setting towards the CPU port down to a driver
level decision.
Fixes: 010e269f91 ("net: dsa: sync up switchdev objects and port attributes when joining the bridge")
Reported-by: DENG Qingfang <dqfext@gmail.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
TX timestamps are sent by SJA1110 as Ethernet packets containing
metadata, so they are received by the tagging driver but must be
processed by the switch driver - the one that is stateful since it
keeps the TX timestamp queue.
This means that there is an sja1110_process_meta_tstamp() symbol
exported by the switch driver which is called by the tagging driver.
There is a shim definition for that function when the switch driver is
not compiled, which does nothing, but that shim is not effective when
the tagging protocol driver is built-in and the switch driver is a
module, because built-in code cannot call symbols exported by modules.
So add an optional dependency between the tagger and the switch driver,
if PTP support is enabled in the switch driver. If PTP is not enabled,
sja1110_process_meta_tstamp() will translate into the shim "do nothing
with these meta frames" function.
Fixes: 566b18c8b7 ("net: dsa: sja1105: implement TX timestamping for SJA1110")
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Be there an "H" switch topology, where there are 2 switches connected as
follows:
eth0 eth1
| |
CPU port CPU port
| DSA link |
sw0p0 sw0p1 sw0p2 sw0p3 sw0p4 -------- sw1p4 sw1p3 sw1p2 sw1p1 sw1p0
| | | | | |
user user user user user user
port port port port port port
basically one where each switch has its own CPU port for termination,
but there is also a DSA link in case packets need to be forwarded in
hardware between one switch and another.
DSA insists to see this as a daisy chain topology, basically registering
all network interfaces as sw0p0@eth0, ... sw1p0@eth0 and disregarding
eth1 as a valid DSA master.
This is only half the story, since when asked using dsa_port_is_cpu(),
DSA will respond that sw1p1 is a CPU port, however one which has no
dp->cpu_dp pointing to it. So sw1p1 is enabled, but not used.
Furthermore, be there a driver for switches which support only one
upstream port. This driver iterates through its ports and checks using
dsa_is_upstream_port() whether the current port is an upstream one.
For switch 1, two ports pass the "is upstream port" checks:
- sw1p4 is an upstream port because it is a routing port towards the
dedicated CPU port assigned using dsa_tree_setup_default_cpu()
- sw1p1 is also an upstream port because it is a CPU port, albeit one
that is disabled. This is because dsa_upstream_port() returns:
if (!cpu_dp)
return port;
which means that if @dp does not have a ->cpu_dp pointer (which is a
characteristic of CPU ports themselves as well as unused ports), then
@dp is its own upstream port.
So the driver for switch 1 rightfully says: I have two upstream ports,
but I don't support multiple upstream ports! So let me error out, I
don't know which one to choose and what to do with the other one.
Generally I am against enforcing any default policy in the kernel in
terms of user to CPU port assignment (like round robin or such) but this
case is different. To solve the conundrum, one would have to:
- Disable sw1p1 in the device tree or mark it as "not a CPU port" in
order to comply with DSA's view of this topology as a daisy chain,
where the termination traffic from switch 1 must pass through switch 0.
This is counter-productive because it wastes 1Gbps of termination
throughput in switch 1.
- Disable the DSA link between sw0p4 and sw1p4 and do software
forwarding between switch 0 and 1, and basically treat the switches as
part of disjoint switch trees. This is counter-productive because it
wastes 1Gbps of autonomous forwarding throughput between switch 0 and 1.
- Treat sw0p4 and sw1p4 as user ports instead of DSA links. This could
work, but it makes cross-chip bridging impossible. In this setup we
would need to have 2 separate bridges, br0 spanning the ports of
switch 0, and br1 spanning the ports of switch 1, and the "DSA links
treated as user ports" sw0p4 (part of br0) and sw1p4 (part of br1) are
the gateway ports between one bridge and another. This is hard to
manage from a user's perspective, who wants to have a unified view of
the switching fabric and the ability to transparently add ports to the
same bridge. VLANs would also need to be explicitly managed by the
user on these gateway ports.
So it seems that the only reasonable thing to do is to make DSA prefer
CPU ports that are local to the switch. Meaning that by default, the
user and DSA ports of switch 0 will get assigned to the CPU port from
switch 0 (sw0p1) and the user and DSA ports of switch 1 will get
assigned to the CPU port from switch 1.
The way this solves the problem is that sw1p4 is no longer an upstream
port as far as switch 1 is concerned (it no longer views sw0p1 as its
dedicated CPU port).
So here we are, the first multi-CPU port that DSA supports is also
perhaps the most uneventful one: the individual switches don't support
multiple CPUs, however the DSA switch tree as a whole does have multiple
CPU ports. No user space assignment of user ports to CPU ports is
desirable, necessary, or possible.
Ports that do not have a local CPU port (say there was an extra switch
hanging off of sw0p0) default to the standard implementation of getting
assigned to the first CPU port of the DSA switch tree. Is that good
enough? Probably not (if the downstream switch was hanging off of switch
1, we would most certainly prefer its CPU port to be sw1p1), but in
order to support that use case too, we would need to traverse the
dst->rtable in search of an optimum dedicated CPU port, one that has the
smallest number of hops between dp->ds and dp->cpu_dp->ds. At the
moment, the DSA routing table structure does not keep the number of hops
between dl->dp and dl->link_dp, and while it is probably deducible,
there is zero justification to write that code now. Let's hope DSA will
never have to support that use case.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There is nothing specific to having a default CPU port to what
dsa_tree_teardown_default_cpu() does. Even with multiple CPU ports,
it would do the same thing: iterate through the ports of this switch
tree and reset the ->cpu_dp pointer to NULL. So rename it accordingly.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Dan Carpenter's smatch tests report that the "vid" variable, populated
by sja1105_vlan_rcv when an skb is received by the tagger that has a
VLAN ID which cannot be decoded by tag_8021q, may be uninitialized when
used here:
if (source_port == -1 || switch_id == -1)
skb->dev = dsa_find_designated_bridge_port_by_vid(netdev, vid);
The sja1105 driver, by construction, sets up the switch in a way that
all data plane packets sent towards the CPU port are VLAN-tagged. So it
is practically impossible, in a functional system, for a packet to be
processed by sja1110_rcv() which is not a control packet and does not
have a VLAN header either.
However, it would be nice if the sja1105 tagging driver could
consistently do something valid, for example fail, even if presented with
packets that do not hold valid sja1105 tags. Currently it is a bit hard
to argue that it does that, given the fact that a data plane packet with
no VLAN tag will trigger a call to dsa_find_designated_bridge_port_by_vid
with a vid argument that is an uninitialized stack variable.
To fix this, we can initialize the u16 vid variable with 0, a value that
can never be a bridge VLAN, so dsa_find_designated_bridge_port_by_vid
will always return a NULL skb->dev.
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20210802195137.303625-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
DSA has gained the recent ability to deal gracefully with upper
interfaces it cannot offload, such as the bridge, bonding or team
drivers. When such uppers exist, the ports are still in standalone mode
as far as the hardware is concerned.
But when we deliver packets to the software bridge in order for that to
do the forwarding, there is an unpleasant surprise in that the bridge
will refuse to forward them. This is because we unconditionally set
skb->offload_fwd_mark = true, meaning that the bridge thinks the frames
were already forwarded in hardware by us.
Since dp->bridge_dev is populated only when there is hardware offload
for it, but not in the software fallback case, let's introduce a new
helper that can be called from the tagger data path which sets the
skb->offload_fwd_mark accordingly to zero when there is no hardware
offload for bridging. This lets the bridge forward packets back to other
interfaces of our switch, if needed.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Tobias Waldekranz <tobias@waldekranz.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
On RX, a control packet with SJA1110 will have:
- an in-band control extension (DSA tag) composed of a header and an
optional trailer (if it is a timestamp frame). We can (and do) deduce
the source port and switch id from this.
- a VLAN header, which can either be the tag_8021q RX VLAN (pvid) or the
bridge VLAN. The sja1105_vlan_rcv() function attempts to deduce the
source port and switch id a second time from this.
The basic idea is that even though we don't need the source port
information from the tag_8021q header if it's a control packet, we do
need to strip that header before we pass it on to the network stack.
The problem is that we call sja1105_vlan_rcv for ports under VLAN-aware
bridges, and that function tells us it couldn't identify a tag_8021q
header, so we need to perform imprecise RX by VID. Well, we don't,
because we already know the source port and switch ID.
This patch drops the return value from sja1105_vlan_rcv and we just look
at the source_port and switch_id values from sja1105_rcv and sja1110_rcv
which were initialized to -1. If they are still -1 it means we need to
perform imprecise RX.
Fixes: 884be12f85 ("net: dsa: sja1105: add support for imprecise RX")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Most users of ndo_do_ioctl are ethernet drivers that implement
the MII commands SIOCGMIIPHY/SIOCGMIIREG/SIOCSMIIREG, or hardware
timestamping with SIOCSHWTSTAMP/SIOCGHWTSTAMP.
Separate these from the few drivers that use ndo_do_ioctl to
implement SIOCBOND, SIOCBR and SIOCWANDEV commands.
This is a purely cosmetic change intended to help readers find
their way through the implementation.
Cc: Doug Ledford <dledford@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jay Vosburgh <j.vosburgh@gmail.com>
Cc: Veaceslav Falico <vfalico@gmail.com>
Cc: Andy Gospodarek <andy@greyhouse.net>
Cc: Andrew Lunn <andrew@lunn.ch>
Cc: Vivien Didelot <vivien.didelot@gmail.com>
Cc: Florian Fainelli <f.fainelli@gmail.com>
Cc: Vladimir Oltean <olteanv@gmail.com>
Cc: Leon Romanovsky <leon@kernel.org>
Cc: linux-rdma@vger.kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This reverts commit cc1939e4b3.
Currently 2 classes of DSA drivers are able to send/receive packets
directly through the DSA master:
- drivers with DSA_TAG_PROTO_NONE
- sja1105
Now that sja1105 has gained the ability to perform traffic termination
even under the tricky case (VLAN-aware bridge), and that is much more
functional (we can perform VLAN-aware bridging with foreign interfaces),
there is no reason to keep this code in the receive path of the network
core. So delete it.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The main desire for having this feature in sja1105 is to support network
stack termination for traffic coming from a VLAN-aware bridge.
For sja1105, offloading the bridge data plane means sending packets
as-is, with the proper VLAN tag, to the chip. The chip will look up its
FDB and forward them to the correct destination port.
But we support bridge data plane offload even for VLAN-unaware bridges,
and the implementation there is different. In fact, VLAN-unaware
bridging is governed by tag_8021q, so it makes sense to have the
.bridge_fwd_offload_add() implementation fully within tag_8021q.
The key difference is that we only support 1 VLAN-aware bridge, but we
support multiple VLAN-unaware bridges. So we need to make sure that the
forwarding domain is not crossed by packets injected from the stack.
For this, we introduce the concept of a tag_8021q TX VLAN for bridge
forwarding offload. As opposed to the regular TX VLANs which contain
only 2 ports (the user port and the CPU port), a bridge data plane TX
VLAN is "multicast" (or "imprecise"): it contains all the ports that are
part of a certain bridge, and the hardware will select where the packet
goes within this "imprecise" forwarding domain.
Each VLAN-unaware bridge has its own "imprecise" TX VLAN, so we make use
of the unique "bridge_num" provided by DSA for the data plane offload.
We use the same 3 bits from the tag_8021q VLAN ID format to encode this
bridge number.
Note that these 3 bit positions have been used before for sub-VLANs in
best-effort VLAN filtering mode. The difference is that for best-effort,
the sub-VLANs were only valid on RX (and it was documented that the
sub-VLAN field needed to be transmitted as zero). Whereas for the bridge
data plane offload, these 3 bits are only valid on TX.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is already common knowledge by now, but the sja1105 does not have
hardware support for DSA tagging for data plane packets, and tag_8021q
sets up a unique pvid per port, transmitted as VLAN-tagged towards the
CPU, for the source port to be decoded nonetheless.
When the port is part of a VLAN-aware bridge, the pvid committed to
hardware is taken from the bridge and not from tag_8021q, so we need to
work with that the best we can.
Configure the switches to send all packets to the CPU as VLAN-tagged
(even ones that were originally untagged on the wire) and make use of
dsa_untag_bridge_pvid() to get rid of it before we send those packets up
the network stack.
With the classified VLAN used by hardware known to the tagger, we first
peek at the VID in an attempt to figure out if the packet was received
from a VLAN-unaware port (standalone or under a VLAN-unaware bridge),
case in which we can continue to call dsa_8021q_rcv(). If that is not
the case, the packet probably came from a VLAN-aware bridge. So we call
the DSA helper that finds for us a "designated bridge port" - one that
is a member of the VLAN ID from the packet, and is in the proper STP
state - basically these are all checks performed by br_handle_frame() in
the software RX data path.
The bridge will accept the packet as valid even if the source port was
maybe wrong. So it will maybe learn the MAC SA of the packet on the
wrong port, and its software FDB will be out of sync with the hardware
FDB. So replies towards this same MAC DA will not work, because the
bridge will send towards a different netdev.
This is where the bridge data plane offload ("imprecise TX") added by
the next patch comes in handy. The software FDB is wrong, true, but the
hardware FDB isn't, and by offloading the bridge forwarding plane we
have a chance to right a wrong, and have the hardware look up the FDB
for us for the reply packet. So it all cancels out.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Allow the DSA tagger to generate FORWARD frames for offloaded skbs
sent from a bridge that we offload, allowing the switch to handle any
frame replication that may be required. This also means that source
address learning takes place on packets sent from the CPU, meaning
that return traffic no longer needs to be flooded as unknown unicast.
Signed-off-by: Tobias Waldekranz <tobias@waldekranz.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
For a DSA switch, to offload the forwarding process of a bridge device
means to send the packets coming from the software bridge as data plane
packets. This is contrary to everything that DSA has done so far,
because the current taggers only know to send control packets (ones that
target a specific destination port), whereas data plane packets are
supposed to be forwarded according to the FDB lookup, much like packets
ingressing on any regular ingress port. If the FDB lookup process
returns multiple destination ports (flooding, multicast), then
replication is also handled by the switch hardware - the bridge only
sends a single packet and avoids the skb_clone().
DSA keeps for each bridge port a zero-based index (the number of the
bridge). Multiple ports performing TX forwarding offload to the same
bridge have the same dp->bridge_num value, and ports not offloading the
TX data plane of a bridge have dp->bridge_num = -1.
The tagger can check if the packet that is being transmitted on has
skb->offload_fwd_mark = true or not. If it does, it can be sure that the
packet belongs to the data plane of a bridge, further information about
which can be obtained based on dp->bridge_dev and dp->bridge_num.
It can then compose a DSA tag for injecting a data plane packet into
that bridge number.
For the switch driver side, we offer two new dsa_switch_ops methods,
called .port_bridge_fwd_offload_{add,del}, which are modeled after
.port_bridge_{join,leave}.
These methods are provided in case the driver needs to configure the
hardware to treat packets coming from that bridge software interface as
data plane packets. The switchdev <-> bridge interaction happens during
the netdev_master_upper_dev_link() call, so to switch drivers, the
effect is that the .port_bridge_fwd_offload_add() method is called
immediately after .port_bridge_join().
If the bridge number exceeds the number of bridges for which the switch
driver can offload the TX data plane (and this includes the case where
the driver can offload none), DSA falls back to simply returning
tx_fwd_offload = false in the switchdev_bridge_port_offload() call.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In preparation of supporting data plane forwarding on behalf of a
software bridge, some drivers might need to view bridges as virtual
switches behind the CPU port in a cross-chip topology.
Give them some help and let them know how many physical switches there
are in the tree, so that they can count the virtual switches starting
from that number on.
Note that the first dsa_switch_ops method where this information is
reliably available is .setup(). This is because of how DSA works:
in a tree with 3 switches, each calling dsa_register_switch(), the first
2 will advance until dsa_tree_setup() -> dsa_tree_setup_routing_table()
and exit with error code 0 because the topology is not complete. Since
probing is parallel at this point, one switch does not know about the
existence of the other. Then the third switch comes, and for it,
dsa_tree_setup_routing_table() returns complete = true. This switch goes
ahead and calls dsa_tree_setup_switches() for everybody else, calling
their .setup() methods too. This acts as the synchronization point.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Allow switchdevs to forward frames from the CPU in accordance with the
bridge configuration in the same way as is done between bridge
ports. This means that the bridge will only send a single skb towards
one of the ports under the switchdev's control, and expects the driver
to deliver the packet to all eligible ports in its domain.
Primarily this improves the performance of multicast flows with
multiple subscribers, as it allows the hardware to perform the frame
replication.
The basic flow between the driver and the bridge is as follows:
- When joining a bridge port, the switchdev driver calls
switchdev_bridge_port_offload() with tx_fwd_offload = true.
- The bridge sends offloadable skbs to one of the ports under the
switchdev's control using skb->offload_fwd_mark = true.
- The switchdev driver checks the skb->offload_fwd_mark field and lets
its FDB lookup select the destination port mask for this packet.
v1->v2:
- convert br_input_skb_cb::fwd_hwdoms to a plain unsigned long
- introduce a static key "br_switchdev_fwd_offload_used" to minimize the
impact of the newly introduced feature on all the setups which don't
have hardware that can make use of it
- introduce a check for nbp->flags & BR_FWD_OFFLOAD to optimize cache
line access
- reorder nbp_switchdev_frame_mark_accel() and br_handle_vlan() in
__br_forward()
- do not strip VLAN on egress if forwarding offload on VLAN-aware bridge
is being used
- propagate errors from .ndo_dfwd_add_station() if not EOPNOTSUPP
v2->v3:
- replace the solution based on .ndo_dfwd_add_station with a solution
based on switchdev_bridge_port_offload
- rename BR_FWD_OFFLOAD to BR_TX_FWD_OFFLOAD
v3->v4: rebase
v4->v5:
- make sure the static key is decremented on bridge port unoffload
- more function and variable renaming and comments for them:
br_switchdev_fwd_offload_used to br_switchdev_tx_fwd_offload
br_switchdev_accels_skb to br_switchdev_frame_uses_tx_fwd_offload
nbp_switchdev_frame_mark_tx_fwd to nbp_switchdev_frame_mark_tx_fwd_to_hwdom
nbp_switchdev_frame_mark_accel to nbp_switchdev_frame_mark_tx_fwd_offload
fwd_accel to tx_fwd_offload
Signed-off-by: Tobias Waldekranz <tobias@waldekranz.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Starting with commit 4f2673b3a2 ("net: bridge: add helper to replay
port and host-joined mdb entries"), DSA has introduced some bridge
helpers that replay switchdev events (FDB/MDB/VLAN additions and
deletions) that can be lost by the switchdev drivers in a variety of
circumstances:
- an IP multicast group was host-joined on the bridge itself before any
switchdev port joined the bridge, leading to the host MDB entries
missing in the hardware database.
- during the bridge creation process, the MAC address of the bridge was
added to the FDB as an entry pointing towards the bridge device
itself, but with no switchdev ports being part of the bridge yet, this
local FDB entry would remain unknown to the switchdev hardware
database.
- a VLAN/FDB/MDB was added to a bridge port that is a LAG interface,
before any switchdev port joined that LAG, leading to the hardware
database missing those entries.
- a switchdev port left a LAG that is a bridge port, while the LAG
remained part of the bridge, and all FDB/MDB/VLAN entries remained
installed in the hardware database of the switchdev port.
Also, since commit 0d2cfbd41c ("net: bridge: ignore switchdev events
for LAG ports which didn't request replay"), DSA introduced a method,
based on a const void *ctx, to ensure that two switchdev ports under the
same LAG that is a bridge port do not see the same MDB/VLAN entry being
replayed twice by the bridge, once for every bridge port that joins the
LAG.
With so many ordering corner cases being possible, it seems unreasonable
to expect a switchdev driver writer to get it right from the first try.
Therefore, now that DSA has experimented with the bridge replay helpers
for a little bit, we can move the code to the bridge driver where it is
more readily available to all switchdev drivers.
To convert the switchdev object replay helpers from "pull mode" (where
the driver asks for them) to a "push mode" (where the bridge offers them
automatically), the biggest problem is that the bridge needs to be aware
when a switchdev port joins and leaves, even when the switchdev is only
indirectly a bridge port (for example when the bridge port is a LAG
upper of the switchdev).
Luckily, we already have a hook for that, in the form of the newly
introduced switchdev_bridge_port_offload() and
switchdev_bridge_port_unoffload() calls. These offer a natural place for
hooking the object addition and deletion replays.
Extend the above 2 functions with:
- pointers to the switchdev atomic notifier (for FDB replays) and the
blocking notifier (for MDB and VLAN replays).
- the "const void *ctx" argument required for drivers to be able to
disambiguate between which port is targeted, when multiple ports are
lowers of the same LAG that is a bridge port. Most of the drivers pass
NULL to this argument, except the ones that support LAG offload and have
the proper context check already in place in the switchdev blocking
notifier handler.
Also unexport the replay helpers, since nobody except the bridge calls
them directly now.
Note that:
(a) we abuse the terminology slightly, because FDB entries are not
"switchdev objects", but we count them as objects nonetheless.
With no direct way to prove it, I think they are not modeled as
switchdev objects because those can only be installed by the bridge
to the hardware (as opposed to FDB entries which can be propagated
in the other direction too). This is merely an abuse of terms, FDB
entries are replayed too, despite not being objects.
(b) the bridge does not attempt to sync port attributes to newly joined
ports, just the countable stuff (the objects). The reason for this
is simple: no universal and symmetric way to sync and unsync them is
known. For example, VLAN filtering: what to do on unsync, disable or
leave it enabled? Similarly, STP state, ageing timer, etc etc. What
a switchdev port does when it becomes standalone again is not really
up to the bridge's competence, and the driver should deal with it.
On the other hand, replaying deletions of switchdev objects can be
seen a matter of cleanup and therefore be treated by the bridge,
hence this patch.
We make the replay helpers opt-in for drivers, because they might not
bring immediate benefits for them:
- nbp_vlan_init() is called _after_ netdev_master_upper_dev_link(),
so br_vlan_replay() should not do anything for the new drivers on
which we call it. The existing drivers where there was even a slight
possibility for there to exist a VLAN on a bridge port before they
join it are already guarded against this: mlxsw and prestera deny
joining LAG interfaces that are members of a bridge.
- br_fdb_replay() should now notify of local FDB entries, but I patched
all drivers except DSA to ignore these new entries in commit
2c4eca3ef7 ("net: bridge: switchdev: include local flag in FDB
notifications"). Driver authors can lift this restriction as they
wish, and when they do, they can also opt into the FDB replay
functionality.
- br_mdb_replay() should fix a real issue which is described in commit
4f2673b3a2 ("net: bridge: add helper to replay port and host-joined
mdb entries"). However most drivers do not offload the
SWITCHDEV_OBJ_ID_HOST_MDB to see this issue: only cpsw and am65_cpsw
offload this switchdev object, and I don't completely understand the
way in which they offload this switchdev object anyway. So I'll leave
it up to these drivers' respective maintainers to opt into
br_mdb_replay().
So most of the drivers pass NULL notifier blocks for the replay helpers,
except:
- dpaa2-switch which was already acked/regression-tested with the
helpers enabled (and there isn't much of a downside in having them)
- ocelot which already had replay logic in "pull" mode
- DSA which already had replay logic in "pull" mode
An important observation is that the drivers which don't currently
request bridge event replays don't even have the
switchdev_bridge_port_{offload,unoffload} calls placed in proper places
right now. This was done to avoid unnecessary rework for drivers which
might never even add support for this. For driver writers who wish to
add replay support, this can be used as a tentative placement guide:
https://patchwork.kernel.org/project/netdevbpf/patch/20210720134655.892334-11-vladimir.oltean@nxp.com/
Cc: Vadym Kochan <vkochan@marvell.com>
Cc: Taras Chornyi <tchornyi@marvell.com>
Cc: Ioana Ciornei <ioana.ciornei@nxp.com>
Cc: Lars Povlsen <lars.povlsen@microchip.com>
Cc: Steen Hegelund <Steen.Hegelund@microchip.com>
Cc: UNGLinuxDriver@microchip.com
Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch
Signed-off-by: David S. Miller <davem@davemloft.net>
On reception of an skb, the bridge checks if it was marked as 'already
forwarded in hardware' (checks if skb->offload_fwd_mark == 1), and if it
is, it assigns the source hardware domain of that skb based on the
hardware domain of the ingress port. Then during forwarding, it enforces
that the egress port must have a different hardware domain than the
ingress one (this is done in nbp_switchdev_allowed_egress).
Non-switchdev drivers don't report any physical switch id (neither
through devlink nor .ndo_get_port_parent_id), therefore the bridge
assigns them a hardware domain of 0, and packets coming from them will
always have skb->offload_fwd_mark = 0. So there aren't any restrictions.
Problems appear due to the fact that DSA would like to perform software
fallback for bonding and team interfaces that the physical switch cannot
offload.
+-- br0 ---+
/ / | \
/ / | \
/ | | bond0
/ | | / \
swp0 swp1 swp2 swp3 swp4
There, it is desirable that the presence of swp3 and swp4 under a
non-offloaded LAG does not preclude us from doing hardware bridging
beteen swp0, swp1 and swp2. The bandwidth of the CPU is often times high
enough that software bridging between {swp0,swp1,swp2} and bond0 is not
impractical.
But this creates an impossible paradox given the current way in which
port hardware domains are assigned. When the driver receives a packet
from swp0 (say, due to flooding), it must set skb->offload_fwd_mark to
something.
- If we set it to 0, then the bridge will forward it towards swp1, swp2
and bond0. But the switch has already forwarded it towards swp1 and
swp2 (not to bond0, remember, that isn't offloaded, so as far as the
switch is concerned, ports swp3 and swp4 are not looking up the FDB,
and the entire bond0 is a destination that is strictly behind the
CPU). But we don't want duplicated traffic towards swp1 and swp2, so
it's not ok to set skb->offload_fwd_mark = 0.
- If we set it to 1, then the bridge will not forward the skb towards
the ports with the same switchdev mark, i.e. not to swp1, swp2 and
bond0. Towards swp1 and swp2 that's ok, but towards bond0? It should
have forwarded the skb there.
So the real issue is that bond0 will be assigned the same hardware
domain as {swp0,swp1,swp2}, because the function that assigns hardware
domains to bridge ports, nbp_switchdev_add(), recurses through bond0's
lower interfaces until it finds something that implements devlink (calls
dev_get_port_parent_id with bool recurse = true). This is a problem
because the fact that bond0 can be offloaded by swp3 and swp4 in our
example is merely an assumption.
A solution is to give the bridge explicit hints as to what hardware
domain it should use for each port.
Currently, the bridging offload is very 'silent': a driver registers a
netdevice notifier, which is put on the netns's notifier chain, and
which sniffs around for NETDEV_CHANGEUPPER events where the upper is a
bridge, and the lower is an interface it knows about (one registered by
this driver, normally). Then, from within that notifier, it does a bunch
of stuff behind the bridge's back, without the bridge necessarily
knowing that there's somebody offloading that port. It looks like this:
ip link set swp0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v
call_netdevice_notifiers
|
v
dsa_slave_netdevice_event
|
v
oh, hey! it's for me!
|
v
.port_bridge_join
What we do to solve the conundrum is to be less silent, and change the
switchdev drivers to present themselves to the bridge. Something like this:
ip link set swp0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge: Aye! I'll use this
call_netdevice_notifiers ^ ppid as the
| | hardware domain for
v | this port, and zero
dsa_slave_netdevice_event | if I got nothing.
| |
v |
oh, hey! it's for me! |
| |
v |
.port_bridge_join |
| |
+------------------------+
switchdev_bridge_port_offload(swp0, swp0)
Then stacked interfaces (like bond0 on top of swp3/swp4) would be
treated differently in DSA, depending on whether we can or cannot
offload them.
The offload case:
ip link set bond0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge: Aye! I'll use this
call_netdevice_notifiers ^ ppid as the
| | switchdev mark for
v | bond0.
dsa_slave_netdevice_event | Coincidentally (or not),
| | bond0 and swp0, swp1, swp2
v | all have the same switchdev
hmm, it's not quite for me, | mark now, since the ASIC
but my driver has already | is able to forward towards
called .port_lag_join | all these ports in hw.
for it, because I have |
a port with dp->lag_dev == bond0. |
| |
v |
.port_bridge_join |
for swp3 and swp4 |
| |
+------------------------+
switchdev_bridge_port_offload(bond0, swp3)
switchdev_bridge_port_offload(bond0, swp4)
And the non-offload case:
ip link set bond0 master br0
|
v
br_add_if() calls netdev_master_upper_dev_link()
|
v bridge waiting:
call_netdevice_notifiers ^ huh, switchdev_bridge_port_offload
| | wasn't called, okay, I'll use a
v | hwdom of zero for this one.
dsa_slave_netdevice_event : Then packets received on swp0 will
| : not be software-forwarded towards
v : swp1, but they will towards bond0.
it's not for me, but
bond0 is an upper of swp3
and swp4, but their dp->lag_dev
is NULL because they couldn't
offload it.
Basically we can draw the conclusion that the lowers of a bridge port
can come and go, so depending on the configuration of lowers for a
bridge port, it can dynamically toggle between offloaded and unoffloaded.
Therefore, we need an equivalent switchdev_bridge_port_unoffload too.
This patch changes the way any switchdev driver interacts with the
bridge. From now on, everybody needs to call switchdev_bridge_port_offload
and switchdev_bridge_port_unoffload, otherwise the bridge will treat the
port as non-offloaded and allow software flooding to other ports from
the same ASIC.
Note that these functions lay the ground for a more complex handshake
between switchdev drivers and the bridge in the future.
For drivers that will request a replay of the switchdev objects when
they offload and unoffload a bridge port (DSA, dpaa2-switch, ocelot), we
place the call to switchdev_bridge_port_unoffload() strategically inside
the NETDEV_PRECHANGEUPPER notifier's code path, and not inside
NETDEV_CHANGEUPPER. This is because the switchdev object replay helpers
need the netdev adjacency lists to be valid, and that is only true in
NETDEV_PRECHANGEUPPER.
Cc: Vadym Kochan <vkochan@marvell.com>
Cc: Taras Chornyi <tchornyi@marvell.com>
Cc: Ioana Ciornei <ioana.ciornei@nxp.com>
Cc: Lars Povlsen <lars.povlsen@microchip.com>
Cc: Steen Hegelund <Steen.Hegelund@microchip.com>
Cc: UNGLinuxDriver@microchip.com
Cc: Claudiu Manoil <claudiu.manoil@nxp.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Tested-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch: regression
Acked-by: Ioana Ciornei <ioana.ciornei@nxp.com> # dpaa2-switch
Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> # ocelot-switch
Signed-off-by: David S. Miller <davem@davemloft.net>
If the checksum calculation is offloaded to the network device (e.g due to
NETIF_F_HW_CSUM inherited from the DSA master device), the calculated
layer 4 checksum is incorrect. This is since the DSA tag which is placed
after the layer 4 data is considered as being part of the daa and thus
errorneously included into the checksum calculation.
To avoid this, always calculate the layer 4 checksum in software.
Signed-off-by: Lino Sanfilippo <LinoSanfilippo@gmx.de>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The function skb_put() that is used by tail taggers to make room for the
DSA tag must only be called for linearized SKBS. However in case that the
slave device inherited features like NETIF_F_HW_SG or NETIF_F_FRAGLIST the
SKB passed to the slaves transmit function may not be linearized.
Avoid those SKBs by clearing the NETIF_F_HW_SG and NETIF_F_FRAGLIST flags
for tail taggers.
Furthermore since the tagging protocol can be changed at runtime move the
code for setting up the slaves features into dsa_slave_setup_tagger().
Suggested-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: Lino Sanfilippo <LinoSanfilippo@gmx.de>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Using the new fan-out helper for FDB entries installed on the software
bridge, we can install host addresses with the proper refcount on the
CPU port, such that this case:
ip link set swp0 master br0
ip link set swp1 master br0
ip link set swp2 master br0
ip link set swp3 master br0
ip link set br0 address 00:01:02:03:04:05
ip link set swp3 nomaster
works properly and the br0 address remains installed as a host entry
with refcount 3 instead of getting deleted.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
It is a bit difficult to understand what DSA checks when it tries to
avoid installing dynamically learned addresses on foreign interfaces as
local host addresses, so create a generic switchdev helper that can be
reused and is generally more readable.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The big problem which mandates cross-chip notifiers for tag_8021q is
this:
|
sw0p0 sw0p1 sw0p2 sw0p3 sw0p4
[ user ] [ user ] [ user ] [ dsa ] [ cpu ]
|
+---------+
|
sw1p0 sw1p1 sw1p2 sw1p3 sw1p4
[ user ] [ user ] [ user ] [ dsa ] [ dsa ]
|
+---------+
|
sw2p0 sw2p1 sw2p2 sw2p3 sw2p4
[ user ] [ user ] [ user ] [ dsa ] [ dsa ]
When the user runs:
ip link add br0 type bridge
ip link set sw0p0 master br0
ip link set sw2p0 master br0
It doesn't work.
This is because dsa_8021q_crosschip_bridge_join() assumes that "ds" and
"other_ds" are at most 1 hop away from each other, so it is sufficient
to add the RX VLAN of {ds, port} into {other_ds, other_port} and vice
versa and presto, the cross-chip link works. When there is another
switch in the middle, such as in this case switch 1 with its DSA links
sw1p3 and sw1p4, somebody needs to tell it about these VLANs too.
Which is exactly why the problem is quadratic: when a port joins a
bridge, for each port in the tree that's already in that same bridge we
notify a tag_8021q VLAN addition of that port's RX VLAN to the entire
tree. It is a very complicated web of VLANs.
It must be mentioned that currently we install tag_8021q VLANs on too
many ports (DSA links - to be precise, on all of them). For example,
when sw2p0 joins br0, and assuming sw1p0 was part of br0 too, we add the
RX VLAN of sw2p0 on the DSA links of switch 0 too, even though there
isn't any port of switch 0 that is a member of br0 (at least yet).
In theory we could notify only the switches which sit in between the
port joining the bridge and the port reacting to that bridge_join event.
But in practice that is impossible, because of the way 'link' properties
are described in the device tree. The DSA bindings require DT writers to
list out not only the real/physical DSA links, but in fact the entire
routing table, like for example switch 0 above will have:
sw0p3: port@3 {
link = <&sw1p4 &sw2p4>;
};
This was done because:
/* TODO: ideally DSA ports would have a single dp->link_dp member,
* and no dst->rtable nor this struct dsa_link would be needed,
* but this would require some more complex tree walking,
* so keep it stupid at the moment and list them all.
*/
but it is a perfect example of a situation where too much information is
actively detrimential, because we are now in the position where we
cannot distinguish a real DSA link from one that is put there to avoid
the 'complex tree walking'. And because DT is ABI, there is not much we
can change.
And because we do not know which DSA links are real and which ones
aren't, we can't really know if DSA switch A is in the data path between
switches B and C, in the general case.
So this is why tag_8021q RX VLANs are added on all DSA links, and
probably why it will never change.
On the other hand, at least the number of additions/deletions is well
balanced, and this means that once we implement reference counting at
the cross-chip notifier level a la fdb/mdb, there is absolutely zero
need for a struct dsa_8021q_crosschip_link, it's all self-managing.
In fact, with the tag_8021q notifiers emitted from the bridge join
notifiers, it becomes so generic that sja1105 does not need to do
anything anymore, we can just delete its implementation of the
.crosschip_bridge_{join,leave} methods.
Among other things we can simply delete is the home-grown implementation
of sja1105_notify_crosschip_switches(). The reason why that is wrong is
because it is not quadratic - it only covers remote switches to which we
have a cross-chip bridging link and that does not cover in-between
switches. This deletion is part of the same patch because sja1105 used
to poke deep inside the guts of the tag_8021q context in order to do
that. Because the cross-chip links went away, so needs the sja1105 code.
Last but not least, dsa_8021q_setup_port() is simplified (and also
renamed). Because our TAG_8021Q_VLAN_ADD notifier is designed to react
on the CPU port too, the four dsa_8021q_vid_apply() calls:
- 1 for RX VLAN on user port
- 1 for the user port's RX VLAN on the CPU port
- 1 for TX VLAN on user port
- 1 for the user port's TX VLAN on the CPU port
now get squashed into only 2 notifier calls via
dsa_port_tag_8021q_vlan_add.
And because the notifiers to add and to delete a tag_8021q VLAN are
distinct, now we finally break up the port setup and teardown into
separate functions instead of relying on a "bool enabled" flag which
tells us what to do. Arguably it should have been this way from the
get go.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There has been at least one wasted opportunity for tag_8021q to be used
by a driver:
https://patchwork.ozlabs.org/project/netdev/patch/20200710113611.3398-3-kurt@linutronix.de/#2484272
because of a design decision: the declared purpose of tag_8021q is to
offer source port/switch identification for a tagging driver for packets
coming from a switch with no hardware DSA tagging support. It is not
intended to provide VLAN-based port isolation, because its first user,
sja1105, had another mechanism for bridging domain isolation, the L2
Forwarding Table. So even if 2 ports are in the same VLAN but they are
separated via the L2 Forwarding Table, they will not communicate with
one another. The L2 Forwarding Table is managed by the
sja1105_bridge_join() and sja1105_bridge_leave() methods.
As a consequence, today tag_8021q does not bother too much with hooking
into .port_bridge_join() and .port_bridge_leave() because that would
introduce yet another degree of freedom, it just iterates statically
through all ports of a switch and adds the RX VLAN of one port to all
the others. In this way, whenever .port_bridge_join() is called,
bridging will magically work because the RX VLANs are already installed
everywhere they need to be.
This is not to say that the reason for the change in this patch is to
satisfy the hellcreek and similar use cases, that is merely a nice side
effect. Instead it is to make sja1105 cross-chip links work properly
over a DSA link.
For context, sja1105 today supports a degenerate form of cross-chip
bridging, where the switches are interconnected through their CPU ports
("disjoint trees" topology). There is some code which has been
generalized into dsa_8021q_crosschip_link_{add,del}, but it is not
enough, and frankly it is impossible to build upon that.
Real multi-switch DSA trees, like daisy chains or H trees, which have
actual DSA links, do not work.
The problem is that sja1105 is unlike mv88e6xxx, and does not have a PVT
for cross-chip bridging, which is a table by which the local switch can
select the forwarding domain for packets from a certain ingress switch
ID and source port. The sja1105 switches cannot parse their own DSA
tags, because, well, they don't really have support for DSA tags, it's
all VLANs.
So to make something like cross-chip bridging between sw0p0 and sw1p0 to
work over the sw0p3/sw1p3 DSA link to work with sja1105 in the topology
below:
| |
sw0p0 sw0p1 sw0p2 sw0p3 sw1p3 sw1p2 sw1p1 sw1p0
[ user ] [ user ] [ cpu ] [ dsa ] ---- [ dsa ] [ cpu ] [ user ] [ user ]
we need to ask ourselves 2 questions:
(1) how should the L2 Forwarding Table be managed?
(2) how should the VLAN Lookup Table be managed?
i.e. what should prevent packets from going to unwanted ports?
Since as mentioned, there is no PVT, the L2 Forwarding Table only
contains forwarding rules for local ports. So we can say "all user ports
are allowed to forward to all CPU ports and all DSA links".
If we allow forwarding to DSA links unconditionally, this means we must
prevent forwarding using the VLAN Lookup Table. This is in fact
asymmetric with what we do for tag_8021q on ports local to the same
switch, and it matters because now that we are making tag_8021q a core
DSA feature, we need to hook into .crosschip_bridge_join() to add/remove
the tag_8021q VLANs. So for symmetry it makes sense to manage the VLANs
for local forwarding in the same way as cross-chip forwarding.
Note that there is a very precise reason why tag_8021q hooks into
dsa_switch_bridge_join() which acts at the cross-chip notifier level,
and not at a higher level such as dsa_port_bridge_join(). We need to
install the RX VLAN of the newly joining port into the VLAN table of all
the existing ports across the tree that are part of the same bridge, and
the notifier already does the iteration through the switches for us.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Right now, setting up tag_8021q is a 2-step operation for a driver,
first the context structure needs to be created, then the VLANs need to
be installed on the ports. A similar thing is true for teardown.
Merge the 2 steps into the register/unregister methods, to be as
transparent as possible for the driver as to what tag_8021q does behind
the scenes. This also gets rid of the funny "bool setup == true means
setup, == false means teardown" API that tag_8021q used to expose.
Note that dsa_tag_8021q_register() must be called at least in the
.setup() driver method and never earlier (like in the driver probe
function). This is because the DSA switch tree is not initialized at
probe time, and the cross-chip notifiers will not work.
For symmetry with .setup(), the unregister method should be put in
.teardown().
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Make tag_8021q a more central element of DSA and move the 2 driver
specific operations outside of struct dsa_8021q_context (which is
supposed to hold dynamic data and not really constant function
pointers).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The basic problem description is as follows:
Be there 3 switches in a daisy chain topology:
|
sw0p0 sw0p1 sw0p2 sw0p3 sw0p4
[ user ] [ user ] [ user ] [ dsa ] [ cpu ]
|
+---------+
|
sw1p0 sw1p1 sw1p2 sw1p3 sw1p4
[ user ] [ user ] [ user ] [ dsa ] [ dsa ]
|
+---------+
|
sw2p0 sw2p1 sw2p2 sw2p3 sw2p4
[ user ] [ user ] [ user ] [ user ] [ dsa ]
The CPU will not be able to ping through the user ports of the
bottom-most switch (like for example sw2p0), simply because tag_8021q
was not coded up for this scenario - it has always assumed DSA switch
trees with a single switch.
To add support for the topology above, we must admit that the RX VLAN of
sw2p0 must be added on some ports of switches 0 and 1 as well. This is
in fact a textbook example of thing that can use the cross-chip notifier
framework that DSA has set up in switch.c.
There is only one problem: core DSA (switch.c) is not able right now to
make the connection between a struct dsa_switch *ds and a struct
dsa_8021q_context *ctx. Right now, it is drivers who call into
tag_8021q.c and always provide a struct dsa_8021q_context *ctx pointer,
and tag_8021q.c calls them back with the .tag_8021q_vlan_{add,del}
methods.
But with cross-chip notifiers, it is possible for tag_8021q to call
drivers without drivers having ever asked for anything. A good example
is right above: when sw2p0 wants to set itself up for tag_8021q,
the .tag_8021q_vlan_add method needs to be called for switches 1 and 0,
so that they transport sw2p0's VLANs towards the CPU without dropping
them.
So instead of letting drivers manage the tag_8021q context, add a
tag_8021q_ctx pointer inside of struct dsa_switch, which will be
populated when dsa_tag_8021q_register() returns success.
The patch is fairly long-winded because we are partly reverting commit
5899ee367a ("net: dsa: tag_8021q: add a context structure") which made
the driver-facing tag_8021q API use "ctx" instead of "ds". Now that we
can access "ctx" directly from "ds", this is no longer needed.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Upcoming patches will add tag_8021q related logic to switch.c and
port.c, in order to allow it to make use of cross-chip notifiers.
In addition, a struct dsa_8021q_context *ctx pointer will be added to
struct dsa_switch.
It seems fairly low-reward to #ifdef the *ctx from struct dsa_switch and
to provide shim implementations of the entire tag_8021q.c calling
surface (not even clear what to do about the tag_8021q cross-chip
notifiers to avoid compiling them). The runtime overhead for switches
which don't use tag_8021q is fairly small because all helpers will check
for ds->tag_8021q_ctx being a NULL pointer and stop there.
So let's make it part of dsa_core.o.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In preparation of moving tag_8021q to core DSA, move all initialization
and teardown related to tag_8021q which is currently done by drivers in
2 functions called "register" and "unregister". These will gather more
functionality in future patches, which will better justify the chosen
naming scheme.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use %pe to give the user a string holding the error code instead of just
a number.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Some of the tag_8021q code has been taken out of sja1105, which uses
"rc" for its return code variables, whereas the DSA core uses "err".
Change tag_8021q for consistency.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Simply put, the best-effort VLAN filtering mode relied on VLAN retagging
from a bridge VLAN towards a tag_8021q sub-VLAN in order to be able to
decode the source port in the tagger, but the VLAN retagging
implementation inside the sja1105 chips is not the best and we were
relying on marginal operating conditions.
The most notable limitation of the best-effort VLAN filtering mode is
its incapacity to treat this case properly:
ip link add br0 type bridge vlan_filtering 1
ip link set swp2 master br0
ip link set swp4 master br0
bridge vlan del dev swp4 vid 1
bridge vlan add dev swp4 vid 1 pvid
When sending an untagged packet through swp2, the expectation is for it
to be forwarded to swp4 as egress-tagged (so it will contain VLAN ID 1
on egress). But the switch will send it as egress-untagged.
There was an attempt to fix this here:
https://patchwork.kernel.org/project/netdevbpf/patch/20210407201452.1703261-2-olteanv@gmail.com/
but it failed miserably because it broke PTP RX timestamping, in a way
that cannot be corrected due to hardware issues related to VLAN
retagging.
So with either PTP broken or pushing VLAN headers on egress for untagged
packets being broken, the sad reality is that the best-effort VLAN
filtering code is broken. Delete it.
Note that this means there will be a temporary loss of functionality in
this driver until it is replaced with something better (network stack
RX/TX capability for "mode 2" as described in
Documentation/networking/dsa/sja1105.rst, the "port under VLAN-aware
bridge" case). We simply cannot keep this code until that driver rework
is done, it is super bloated and tangled with tag_8021q.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This was not caught because there is no switch driver which implements
the .port_bridge_join but not .port_bridge_leave method, but it should
nonetheless be fixed, as in certain conditions (driver development) it
might lead to NULL pointer dereference.
Fixes: f66a6a69f9 ("net: dsa: permit cross-chip bridging between all trees in the system")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The DSA core has a layered structure, and even though we end up
returning 0 (success) to user space when setting a bonding/team upper
that can't be offloaded, some parts of the framework actually need to
know that we couldn't offload that.
For example, if dsa_switch_lag_join returns 0 as it currently does,
dsa_port_lag_join has no way to tell a successful offload from a
software fallback, and it will call dsa_port_bridge_join afterwards.
Then we'll think we're offloading the bridge master of the LAG, when in
fact we're not even offloading the LAG. In turn, this will make us set
skb->offload_fwd_mark = true, which is incorrect and the bridge doesn't
like it.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When we join a bridge that already has some local addresses pointing to
itself, we do not get those notifications. Similarly, when we leave that
bridge, we do not get notifications for the deletion of those entries.
The only switchdev notifications we get are those of entries added while
the DSA port is enslaved to the bridge.
This makes use cases such as the following work properly (with the
number of additions and removals properly balanced):
ip link add br0 type bridge
ip link add br1 type bridge
ip link set br0 address 00:01:02:03:04:05
ip link set br1 address 00:01:02:03:04:05
ip link set swp0 up
ip link set swp1 up
ip link set swp0 master br0
ip link set swp1 master br1
ip link set br0 up
ip link set br1 up
ip link del br1 # 00:01:02:03:04:05 still installed on the CPU port
ip link del br0 # 00:01:02:03:04:05 finally removed from the CPU port
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When
(a) "dev" is a bridge port which the DSA switch tree offloads, but is
otherwise not a dsa slave (such as a LAG netdev), or
(b) "dev" is the bridge net device itself
then strange things happen to the dev_hold/dev_put pair:
dsa_schedule_work() will still be called with a DSA port that offloads
that netdev, but dev_hold() will be called on the non-DSA netdev.
Then the "if" condition in dsa_slave_switchdev_event_work() does not
pass, because "dev" is not a DSA netdev, so dev_put() is not called.
This results in the simple fact that we have a reference counting
mismatch on the "dev" net device.
This can be seen when we add support for host addresses installed on the
bridge net device.
ip link add br1 type bridge
ip link set br1 address 00:01:02:03:04:05
ip link set swp0 master br1
ip link del br1
[ 968.512278] unregister_netdevice: waiting for br1 to become free. Usage count = 5
It seems foolish to do penny pinching and not add the net_device pointer
in the dsa_switchdev_event_work structure, so let's finally do that.
As an added bonus, when we start offloading local entries pointing
towards the bridge, these will now properly appear as 'offloaded' in
'bridge fdb' (this was not possible before, because 'dev' was assumed to
only be a DSA net device):
00:01:02:03:04:05 dev br0 vlan 1 offload master br0 permanent
00:01:02:03:04:05 dev br0 offload master br0 permanent
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The bridge supports a legacy way of adding local (non-forwarded) FDB
entries, which works on an individual port basis:
bridge fdb add dev swp0 00:01:02:03:04:05 master local
As well as a new way, added by Roopa Prabhu in commit 3741873b4f
("bridge: allow adding of fdb entries pointing to the bridge device"):
bridge fdb add dev br0 00:01:02:03:04:05 self local
The two commands are functionally equivalent, except that the first one
produces an entry with fdb->dst == swp0, and the other an entry with
fdb->dst == NULL. The confusing part, though, is that even if fdb->dst
is swp0 for the 'local on port' entry, that destination is not used.
Nonetheless, the idea is that the bridge has reference counting for
local entries, and local entries pointing towards the bridge are still
'as local' as local entries for a port.
The bridge adds the MAC addresses of the interfaces automatically as
FDB entries with is_local=1. For the MAC address of the ports, fdb->dst
will be equal to the port, and for the MAC address of the bridge,
fdb->dst will point towards the bridge (i.e. be NULL). Therefore, if the
MAC address of the bridge is not inherited from either of the physical
ports, then we must explicitly catch local FDB entries emitted towards
the br0, otherwise we'll miss the MAC address of the bridge (and, of
course, any entry with 'bridge add dev br0 ... self local').
Co-developed-by: Tobias Waldekranz <tobias@waldekranz.com>
Signed-off-by: Tobias Waldekranz <tobias@waldekranz.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The bridge automatically creates local (not forwarded) fdb entries
pointing towards physical ports with their interface MAC addresses.
For switchdev, the significance of these fdb entries is the exact
opposite of that of non-local entries: instead of sending these frame
outwards, we must send them inwards (towards the host).
NOTE: The bridge's own MAC address is also "local". If that address is
not shared with any port, the bridge's MAC is not be added by this
functionality - but the following commit takes care of that case.
NOTE 2: We mark these addresses as host-filtered regardless of the value
of ds->assisted_learning_on_cpu_port. This is because, as opposed to the
speculative logic done for dynamic address learning on foreign
interfaces, the local FDB entries are rather fixed, so there isn't any
risk of them migrating from one bridge port to another.
Signed-off-by: Tobias Waldekranz <tobias@waldekranz.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
DSA is able to install FDB entries towards the CPU port for addresses
which were dynamically learnt by the software bridge on foreign
interfaces that are in the same bridge with a DSA switch interface.
Since this behavior is opportunistic, it is guarded by the
"assisted_learning_on_cpu_port" property which can be enabled by drivers
and is not done automatically (since certain switches may support
address learning of packets coming from the CPU port).
But if those FDB entries added on the foreign interfaces are static
(added by the user) instead of dynamically learnt, currently DSA does
not do anything (and arguably it should).
Because static FDB entries are not supposed to move on their own, there
is no downside in reusing the "assisted_learning_on_cpu_port" logic to
sync static FDB entries to the DSA CPU port unconditionally, even if
assisted_learning_on_cpu_port is not requested by the driver.
For example, this situation:
br0
/ \
swp0 dummy0
$ bridge fdb add 02:00:de:ad:00:01 dev dummy0 vlan 1 master static
Results in DSA adding an entry in the hardware FDB, pointing this
address towards the CPU port.
The same is true for entries added to the bridge itself, e.g:
$ bridge fdb add 02:00:de:ad:00:01 dev br0 vlan 1 self local
(except that right now, DSA still ignores 'local' FDB entries, this will
be changed in a later patch)
Signed-off-by: Tobias Waldekranz <tobias@waldekranz.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
If the DSA master implements strict address filtering, then the unicast
and multicast addresses kept by the DSA CPU ports should be synchronized
with the address lists of the DSA master.
Note that we want the synchronization of the master's address lists even
if the DSA switch doesn't support unicast/multicast database operations,
on the premises that the packets will be flooded to the CPU in that
case, and we should still instruct the master to receive them. This is
why we do the dev_uc_add() etc first, even if dsa_port_notify() returns
-EOPNOTSUPP. In turn, dev_uc_add() and friends return error only if
memory allocation fails, so it is probably ok to check and propagate
that error code and not just ignore it.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The same concerns expressed for host MDB entries are valid for host FDBs
just as well:
- in the case of multiple bridges spanning the same switch chip, deleting
a host FDB entry that belongs to one bridge will result in breakage to
the other bridge
- not deleting FDB entries across DSA links means that the switch's
hardware tables will eventually run out, given enough wear&tear
So do the same thing and introduce reference counting for CPU ports and
DSA links using the same data structures as we have for MDB entries.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
DSA treats some bridge FDB entries by trapping them to the CPU port.
Currently, the only class of such entries are FDB addresses learnt by
the software bridge on a foreign interface. However there are many more
to be added:
- FDB entries with the is_local flag (for termination) added by the
bridge on the user ports (typically containing the MAC address of the
bridge port)
- FDB entries pointing towards the bridge net device (for termination).
Typically these contain the MAC address of the bridge net device.
- Static FDB entries installed on a foreign interface that is in the
same bridge with a DSA user port.
The reason why a separate cross-chip notifier for host FDBs is justified
compared to normal FDBs is the same as in the case of host MDBs: the
cross-chip notifier matching function in switch.c should avoid
installing these entries on routing ports that route towards the
targeted switch, but not towards the CPU. This is required in order to
have proper support for H-like multi-chip topologies.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Ever since the cross-chip notifiers were introduced, the design was
meant to be simplistic and just get the job done without worrying too
much about dangling resources left behind.
For example, somebody installs an MDB entry on sw0p0 in this daisy chain
topology. It gets installed using ds->ops->port_mdb_add() on sw0p0,
sw1p4 and sw2p4.
|
sw0p0 sw0p1 sw0p2 sw0p3 sw0p4
[ user ] [ user ] [ user ] [ dsa ] [ cpu ]
[ x ] [ ] [ ] [ ] [ ]
|
+---------+
|
sw1p0 sw1p1 sw1p2 sw1p3 sw1p4
[ user ] [ user ] [ user ] [ dsa ] [ dsa ]
[ ] [ ] [ ] [ ] [ x ]
|
+---------+
|
sw2p0 sw2p1 sw2p2 sw2p3 sw2p4
[ user ] [ user ] [ user ] [ user ] [ dsa ]
[ ] [ ] [ ] [ ] [ x ]
Then the same person deletes that MDB entry. The cross-chip notifier for
deletion only matches sw0p0:
|
sw0p0 sw0p1 sw0p2 sw0p3 sw0p4
[ user ] [ user ] [ user ] [ dsa ] [ cpu ]
[ x ] [ ] [ ] [ ] [ ]
|
+---------+
|
sw1p0 sw1p1 sw1p2 sw1p3 sw1p4
[ user ] [ user ] [ user ] [ dsa ] [ dsa ]
[ ] [ ] [ ] [ ] [ ]
|
+---------+
|
sw2p0 sw2p1 sw2p2 sw2p3 sw2p4
[ user ] [ user ] [ user ] [ user ] [ dsa ]
[ ] [ ] [ ] [ ] [ ]
Why?
Because the DSA links are 'trunk' ports, if we just go ahead and delete
the MDB from sw1p4 and sw2p4 directly, we might delete those multicast
entries when they are still needed. Just consider the fact that somebody
does:
- add a multicast MAC address towards sw0p0 [ via the cross-chip
notifiers it gets installed on the DSA links too ]
- add the same multicast MAC address towards sw0p1 (another port of that
same switch)
- delete the same multicast MAC address from sw0p0.
At this point, if we deleted the MAC address from the DSA links, it
would be flooded, even though there is still an entry on switch 0 which
needs it not to.
So that is why deletions only match the targeted source port and nothing
on DSA links. Of course, dangling resources means that the hardware
tables will eventually run out given enough additions/removals, but hey,
at least it's simple.
But there is a bigger concern which needs to be addressed, and that is
our support for SWITCHDEV_OBJ_ID_HOST_MDB. DSA simply translates such an
object into a dsa_port_host_mdb_add() which ends up as ds->ops->port_mdb_add()
on the upstream port, and a similar thing happens on deletion:
dsa_port_host_mdb_del() will trigger ds->ops->port_mdb_del() on the
upstream port.
When there are 2 VLAN-unaware bridges spanning the same switch (which is
a use case DSA proudly supports), each bridge will install its own
SWITCHDEV_OBJ_ID_HOST_MDB entries. But upon deletion, DSA goes ahead and
emits a DSA_NOTIFIER_MDB_DEL for dp->cpu_dp, which is shared between the
user ports enslaved to br0 and the user ports enslaved to br1. Not good.
The host-trapped multicast addresses installed by br1 will be deleted
when any state changes in br0 (IGMP timers expire, or ports leave, etc).
To avoid this, we could of course go the route of the zero-sum game and
delete the DSA_NOTIFIER_MDB_DEL call for dp->cpu_dp. But the better
design is to just admit that on shared ports like DSA links and CPU
ports, we should be reference counting calls, even if this consumes some
dynamic memory which DSA has traditionally avoided. On the flip side,
the hardware tables of switches are limited in size, so it would be good
if the OS managed them properly instead of having them eventually
overflow.
To address the memory usage concern, we only apply the refcounting of
MDB entries on ports that are really shared (CPU ports and DSA links)
and not on user ports. In a typical single-switch setup, this means only
the CPU port (and the host MDB entries are not that many, really).
The name of the newly introduced data structures (dsa_mac_addr) is
chosen in such a way that will be reusable for host FDB entries (next
patch).
With this change, we can finally have the same matching logic for the
MDB additions and deletions, as well as for their host-trapped variants.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit abd49535c3 ("net: dsa: execute dsa_switch_mdb_add only for
routing port in cross-chip topologies") does a surprisingly good job
even for the SWITCHDEV_OBJ_ID_HOST_MDB use case, where DSA simply
translates a switchdev object received on dp into a cross-chip notifier
for dp->cpu_dp.
To visualize how that works, imagine the daisy chain topology below and
consider a SWITCHDEV_OBJ_ID_HOST_MDB object emitted on sw2p0. How does
the cross-chip notifier know to match on all the right ports (sw0p4, the
dedicated CPU port, sw1p4, an upstream DSA link, and sw2p4, another
upstream DSA link)?
|
sw0p0 sw0p1 sw0p2 sw0p3 sw0p4
[ user ] [ user ] [ user ] [ dsa ] [ cpu ]
[ ] [ ] [ ] [ ] [ x ]
|
+---------+
|
sw1p0 sw1p1 sw1p2 sw1p3 sw1p4
[ user ] [ user ] [ user ] [ dsa ] [ dsa ]
[ ] [ ] [ ] [ ] [ x ]
|
+---------+
|
sw2p0 sw2p1 sw2p2 sw2p3 sw2p4
[ user ] [ user ] [ user ] [ user ] [ dsa ]
[ ] [ ] [ ] [ ] [ x ]
The answer is simple: the dedicated CPU port of sw2p0 is sw0p4, and
dsa_routing_port returns the upstream port for all switches.
That is fine, but there are other topologies where this does not work as
well. There are trees with "H" topologies in the wild, where there are 2
or more switches with DSA links between them, but every switch has its
dedicated CPU port. For these topologies, it seems stupid for the neighbor
switches to install an MDB entry on the routing port, since these
multicast addresses are fundamentally different than the usual ones we
support (and that is the justification for this patch, to introduce the
concept of a termination plane multicast MAC address, as opposed to a
forwarding plane multicast MAC address).
For example, when a SWITCHDEV_OBJ_ID_HOST_MDB would get added to sw0p0,
without this patch, it would get treated as a regular port MDB on sw0p2
and it would match on the ports below (including the sw1p3 routing port).
| |
sw0p0 sw0p1 sw0p2 sw0p3 sw1p3 sw1p2 sw1p1 sw1p0
[ user ] [ user ] [ cpu ] [ dsa ] [ dsa ] [ cpu ] [ user ] [ user ]
[ ] [ ] [ x ] [ ] ---- [ x ] [ ] [ ] [ ]
With the patch, the host MDB notifier on sw0p0 matches only on the local
switch, which is what we want for a termination plane address.
| |
sw0p0 sw0p1 sw0p2 sw0p3 sw1p3 sw1p2 sw1p1 sw1p0
[ user ] [ user ] [ cpu ] [ dsa ] [ dsa ] [ cpu ] [ user ] [ user ]
[ ] [ ] [ x ] [ ] ---- [ ] [ ] [ ] [ ]
Name this new matching function "dsa_switch_host_address_match" since we
will be reusing it soon for host FDB entries as well.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We want to add reference counting for FDB entries in cross-chip
topologies, and in order for that to have any chance of working and not
be unbalanced (leading to entries which are never deleted), we need to
ensure that higher layers are sane, because if they aren't, it's garbage
in, garbage out.
For example, if we add a bridge FDB entry twice, the bridge properly
errors out:
$ bridge fdb add dev swp0 00:01:02:03:04:07 master static
$ bridge fdb add dev swp0 00:01:02:03:04:07 master static
RTNETLINK answers: File exists
However, the same thing cannot be said about the bridge bypass
operations:
$ bridge fdb add dev swp0 00:01:02:03:04:07
$ bridge fdb add dev swp0 00:01:02:03:04:07
$ bridge fdb add dev swp0 00:01:02:03:04:07
$ bridge fdb add dev swp0 00:01:02:03:04:07
$ echo $?
0
But one 'bridge fdb del' is enough to remove the entry, no matter how
many times it was added.
The bridge bypass operations are impossible to maintain in these
circumstances and lack of support for reference counting the cross-chip
notifiers is holding us back from making further progress, so just drop
support for them. The only way left for users to install static bridge
FDB entries is the proper one, using the "master static" flags.
With this change, rtnl_fdb_add() falls back to calling
ndo_dflt_fdb_add() which uses the duplicate-exclusive variant of
dev_uc_add(): dev_uc_add_excl(). Because DSA does not (yet) declare
IFF_UNICAST_FLT, this results in us going to promiscuous mode:
$ bridge fdb add dev swp0 00:01:02:03:04:05
[ 28.206743] device swp0 entered promiscuous mode
$ bridge fdb add dev swp0 00:01:02:03:04:05
RTNETLINK answers: File exists
So even if it does not completely fail, there is at least some indication
that it is behaving differently from before, and closer to user space
expectations, I would argue (the lack of a "local|static" specifier
defaults to "local", or "host-only", so dev_uc_add() is a reasonable
default implementation). If the generic implementation of .ndo_fdb_add
provided by Vlad Yasevich is a proof of anything, it only proves that
the implementation provided by DSA was always wrong, by not looking at
"ndm->ndm_state & NUD_NOARP" (the "static" flag which means that the FDB
entry points outwards) and "ndm->ndm_state & NUD_PERMANENT" (the "local"
flag which means that the FDB entry points towards the host). It all
used to mean the same thing to DSA.
Update the documentation so that the users are not confused about what's
going on.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When a DSA switch port leaves a bonding interface that is under a
bridge, there might be dangling switchdev objects on that port left
behind, because the bridge is not aware that its lower interface (the
bond) changed state in any way.
Call the bridge replay helpers with adding=false before changing
dp->bridge_dev to NULL, because we need to simulate to
dsa_slave_port_obj_del() that these notifications were emitted by the
bridge.
We add this hook to the NETDEV_PRECHANGEUPPER event handler, because
we are calling into switchdev (and the __switchdev_handle_port_obj_del
fanout helpers expect the upper/lower adjacency lists to still be valid)
and PRECHANGEUPPER is the last moment in time when they still are.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We need to add more logic to the DSA NETDEV_PRECHANGEUPPER event
handler, more exactly we need to request an unsync of switchdev objects.
In order to fit more code, refactor the existing logic into a helper.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When a switchdev port leaves a LAG that is a bridge port, the switchdev
objects and port attributes offloaded to that port are not removed:
ip link add br0 type bridge
ip link add bond0 type bond mode 802.3ad
ip link set swp0 master bond0
ip link set bond0 master br0
bridge vlan add dev bond0 vid 100
ip link set swp0 nomaster
VLAN 100 will remain installed on swp0 despite it going into standalone
mode, because as far as the bridge is concerned, nothing ever happened
to its bridge port.
Let's extend the bridge vlan, fdb and mdb replay functions to take a
'bool adding' argument, and make DSA and ocelot call the replay
functions with 'adding' as false from the switchdev unsync path, for the
switch port that leaves the bridge.
Note that this patch in itself does not salvage anything, because in the
current pull mode of operation, DSA still needs to call the replay
helpers with adding=false. This will be done in another patch.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There is a slight inconvenience in the switchdev replay helpers added
recently, and this is when:
ip link add br0 type bridge
ip link add bond0 type bond
ip link set bond0 master br0
bridge vlan add dev bond0 vid 100
ip link set swp0 master bond0
ip link set swp1 master bond0
Since the underlying driver (currently only DSA) asks for a replay of
VLANs when swp0 and swp1 join the LAG because it is bridged, what will
happen is that DSA will try to react twice on the VLAN event for swp0.
This is not really a huge problem right now, because most drivers accept
duplicates since the bridge itself does, but it will become a problem
when we add support for replaying switchdev object deletions.
Let's fix this by adding a blank void *ctx in the replay helpers, which
will be passed on by the bridge in the switchdev notifications. If the
context is NULL, everything is the same as before. But if the context is
populated with a valid pointer, the underlying switchdev driver
(currently DSA) can use the pointer to 'see through' the bridge port
(which in the example above is bond0) and 'know' that the event is only
for a particular physical port offloading that bridge port, and not for
all of them.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In the case where the driver asks for a replay of a certain type of
event (port object or attribute) for a bridge port that is a LAG, it may
do so because this port has just joined the LAG.
But there might already be other switchdev ports in that LAG, and it is
preferable that those preexisting switchdev ports do not act upon the
replayed event.
The solution is to add a context to switchdev events, which is NULL most
of the time (when the bridge layer initiates the call) but which can be
set to a value controlled by the switchdev driver when a replay is
requested. The driver can then check the context to figure out if all
ports within the LAG should act upon the switchdev event, or just the
ones that match the context.
We have to modify all switchdev_handle_* helper functions as well as the
prototypes in the drivers that use these helpers too, because these
helpers hide the underlying struct switchdev_notifier_info from us and
there is no way to retrieve the context otherwise.
The context structure will be populated and used in later patches.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
With MRP hardware assist being supported only by the ocelot switch
family, which by design does not support cross-chip bridging, the
current match functions are at best a guess and have not been confirmed
in any way to do anything relevant in a multi-switch topology.
Drop the code and make the notifiers match only on the targeted switch
port.
Cc: Horatiu Vultur <horatiu.vultur@microchip.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
dsa_slave_change_mtu() calls dsa_port_mtu_change() twice:
- it sends a cross-chip notifier with the MTU of the CPU port which is
used to update the DSA links.
- it sends one targeted MTU notifier which is supposed to only match the
user port on which we are changing the MTU. The "propagate_upstream"
variable is used here to bypass the cross-chip notifier system from
switch.c
But due to a mistake, the second, targeted notifier matches not only on
the user port, but also on the DSA link which is a member of the same
switch, if that exists.
And because the DSA links of the entire dst were programmed in a
previous round to the largest_mtu via a "propagate_upstream == true"
notification, then the dsa_port_mtu_change(propagate_upstream == false)
call that is immediately upcoming will break the MTU on the one DSA link
which is chip-wise local to the dp whose MTU is changing right now.
Example given this daisy chain topology:
sw0p0 sw0p1 sw0p2 sw0p3 sw0p4
[ cpu ] [ user ] [ user ] [ dsa ] [ user ]
[ x ] [ ] [ ] [ x ] [ ]
|
+---------+
|
sw1p0 sw1p1 sw1p2 sw1p3 sw1p4
[ user ] [ user ] [ user ] [ dsa ] [ dsa ]
[ ] [ ] [ ] [ ] [ x ]
ip link set sw0p1 mtu 9000
ip link set sw1p1 mtu 9000 # at this stage, sw0p1 and sw1p1 can talk
# to one another using jumbo frames
ip link set sw0p2 mtu 1500 # this programs the sw0p3 DSA link first to
# the largest_mtu of 9000, then reprograms it to
# 1500 with the "propagate_upstream == false"
# notifier, breaking communication between
# sw0p1 and sw1p1
To escape from this situation, make the targeted match really match on a
single port - the user port, and rename the "propagate_upstream"
variable to "targeted_match" to clarify the intention and avoid future
issues.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
If we have a cross-chip topology like this:
sw0p0 sw0p1 sw0p2 sw0p3 sw0p4
[ cpu ] [ user ] [ user ] [ dsa ] [ user ]
|
+---------+
|
sw1p0 sw1p1 sw1p2 sw1p3 sw1p4
[ user ] [ user ] [ user ] [ dsa ] [ dsa ]
and we issue the following commands:
1. ip link set sw0p1 mtu 1700
2. ip link set sw1p1 mtu 1600
we notice the following happening:
Command 1. emits a non-targeted MTU notifier for the CPU port (sw0p0)
with the largest_mtu calculated across switch 0, of 1700. This matches
sw0p0, sw0p3 and sw1p4 (all CPU ports and DSA links).
Then, it emits a targeted MTU notifier for the user port (sw0p1), again
with MTU 1700 (this doesn't matter).
Command 2. emits a non-targeted MTU notifier for the CPU port (sw0p0)
with the largest_mtu calculated across switch 1, of 1600. This matches
the same group of ports as above, and decreases the MTU for the CPU port
and the DSA links from 1700 to 1600.
As a result, the sw0p1 user port can no longer communicate with its CPU
port at MTU 1700.
To address this, we should calculate the largest_mtu across all switches
that may share a CPU port, and only emit MTU notifiers with that value.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, the notifier for adding a multicast MAC address matches on
the targeted port and on all DSA links in the system, be they upstream
or downstream links.
This leads to a considerable amount of useless traffic.
Consider this daisy chain topology, and a MDB add notifier emitted on
sw0p0. It matches on sw0p0, sw0p3, sw1p3 and sw2p4.
sw0p0 sw0p1 sw0p2 sw0p3 sw0p4
[ user ] [ user ] [ user ] [ dsa ] [ cpu ]
[ x ] [ ] [ ] [ x ] [ ]
|
+---------+
|
sw1p0 sw1p1 sw1p2 sw1p3 sw1p4
[ user ] [ user ] [ user ] [ dsa ] [ dsa ]
[ ] [ ] [ ] [ x ] [ x ]
|
+---------+
|
sw2p0 sw2p1 sw2p2 sw2p3 sw2p4
[ user ] [ user ] [ user ] [ user ] [ dsa ]
[ ] [ ] [ ] [ ] [ x ]
But switch 0 has no reason to send the multicast traffic for that MAC
address on sw0p3, which is how it reaches switches 1 and 2. Those
switches don't expect, according to the user configuration, to receive
this multicast address from switch 1, and they will drop it anyway,
because the only valid destination is the port they received it on.
They only need to configure themselves to deliver that multicast address
_towards_ switch 1, where the MDB entry is installed.
Similarly, switch 1 should not send this multicast traffic towards
sw1p3, because that is how it reaches switch 2.
With this change, the heat map for this MDB notifier changes as follows:
sw0p0 sw0p1 sw0p2 sw0p3 sw0p4
[ user ] [ user ] [ user ] [ dsa ] [ cpu ]
[ x ] [ ] [ ] [ ] [ ]
|
+---------+
|
sw1p0 sw1p1 sw1p2 sw1p3 sw1p4
[ user ] [ user ] [ user ] [ dsa ] [ dsa ]
[ ] [ ] [ ] [ ] [ x ]
|
+---------+
|
sw2p0 sw2p1 sw2p2 sw2p3 sw2p4
[ user ] [ user ] [ user ] [ user ] [ dsa ]
[ ] [ ] [ ] [ ] [ x ]
Now the mdb notifier behaves the same as the fdb notifier.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The difference between dsa_is_user_port and dsa_port_is_user is that the
former needs to look up the list of ports of the DSA switch tree in
order to find the struct dsa_port, while the latter directly receives it
as an argument.
dsa_is_user_port is already in widespread use and has its place, so
there isn't any chance of converting all callers to a single form.
But being able to do:
dsa_port_is_user(dp)
instead of
dsa_is_user_port(dp->ds, dp->index)
is much more efficient too, especially when the "dp" comes from an
iterator over the DSA switch tree - this reduces the complexity from
quadratic to linear.
Move these helpers from dsa2.c to include/net/dsa.h so that others can
use them too.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
The cross-chip notifiers work by comparing each ds->index against the
info->sw_index value from the notifier. The ds->index is retrieved from
the device tree dsa,member property.
If a single tree cross-chip topology does not declare unique switch IDs,
this will result in hard-to-debug issues/voodoo effects such as the
cross-chip notifier for one switch port also matching the port with the
same number from another switch.
Check in dsa_switch_parse_member_of() whether the DSA switch tree
contains a DSA switch with the index we're preparing to add, before
actually adding it.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current get_phy_flags() is only processed when we connect to a PHY
via a designed phy-handle property via phylink_of_phy_connect(), but if
we fallback on the internal MDIO bus created by a switch and take the
dsa_slave_phy_connect() path then we would not be processing that flag
and using it at PHY connection time.
Suggested-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Oleksij Rempel <o.rempel@pengutronix.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
The TX timestamping procedure for SJA1105 is a bit unconventional
because the transmit procedure itself is unconventional.
Control packets (and therefore PTP as well) are transmitted to a
specific port in SJA1105 using "management routes" which must be written
over SPI to the switch. These are one-shot rules that match by
destination MAC address on traffic coming from the CPU port, and select
the precise destination port for that packet. So to transmit a packet
from NET_TX softirq context, we actually need to defer to a process
context so that we can perform that SPI write before we send the packet.
The DSA master dev_queue_xmit() runs in process context, and we poll
until the switch confirms it took the TX timestamp, then we annotate the
skb clone with that TX timestamp. This is why the sja1105 driver does
not need an skb queue for TX timestamping.
But the SJA1110 is a bit (not much!) more conventional, and you can
request 2-step TX timestamping through the DSA header, as well as give
the switch a cookie (timestamp ID) which it will give back to you when
it has the timestamp. So now we do need a queue for keeping the skb
clones until their TX timestamps become available.
The interesting part is that the metadata frames from SJA1105 haven't
disappeared completely. On SJA1105 they were used as follow-ups which
contained RX timestamps, but on SJA1110 they are actually TX completion
packets, which contain a variable (up to 32) array of timestamps.
Why an array? Because:
- not only is the TX timestamp on the egress port being communicated,
but also the RX timestamp on the CPU port. Nice, but we don't care
about that, so we ignore it.
- because a packet could be multicast to multiple egress ports, each
port takes its own timestamp, and the TX completion packet contains
the individual timestamps on each port.
This is unconventional because switches typically have a timestamping
FIFO and raise an interrupt, but this one doesn't. So the tagger needs
to detect and parse meta frames, and call into the main switch driver,
which pairs the timestamps with the skbs in the TX timestamping queue
which are waiting for one.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The SJA1110 has improved a few things compared to SJA1105:
- To send a control packet from the host port with SJA1105, one needed
to program a one-shot "management route" over SPI. This is no longer
true with SJA1110, you can actually send "in-band control extensions"
in the packets sent by DSA, these are in fact DSA tags which contain
the destination port and switch ID.
- When receiving a control packet from the switch with SJA1105, the
source port and switch ID were written in bytes 3 and 4 of the
destination MAC address of the frame (which was a very poor shot at a
DSA header). If the control packet also had an RX timestamp, that
timestamp was sent in an actual follow-up packet, so there were
reordering concerns on multi-core/multi-queue DSA masters, where the
metadata frame with the RX timestamp might get processed before the
actual packet to which that timestamp belonged (there is no way to
pair a packet to its timestamp other than the order in which they were
received). On SJA1110, this is no longer true, control packets have
the source port, switch ID and timestamp all in the DSA tags.
- Timestamps from the switch were partial: to get a 64-bit timestamp as
required by PTP stacks, one would need to take the partial 24-bit or
32-bit timestamp from the packet, then read the current PTP time very
quickly, and then patch in the high bits of the current PTP time into
the captured partial timestamp, to reconstruct what the full 64-bit
timestamp must have been. That is awful because packet processing is
done in NAPI context, but reading the current PTP time is done over
SPI and therefore needs sleepable context.
But it also aggravated a few things:
- Not only is there a DSA header in SJA1110, but there is a DSA trailer
in fact, too. So DSA needs to be extended to support taggers which
have both a header and a trailer. Very unconventional - my understanding
is that the trailer exists because the timestamps couldn't be prepared
in time for putting them in the header area.
- Like SJA1105, not all packets sent to the CPU have the DSA tag added
to them, only control packets do:
* the ones which match the destination MAC filters/traps in
MAC_FLTRES1 and MAC_FLTRES0
* the ones which match FDB entries which have TRAP or TAKETS bits set
So we could in theory hack something up to request the switch to take
timestamps for all packets that reach the CPU, and those would be
DSA-tagged and contain the source port / switch ID by virtue of the
fact that there needs to be a timestamp trailer provided. BUT:
- The SJA1110 does not parse its own DSA tags in a way that is useful
for routing in cross-chip topologies, a la Marvell. And the sja1105
driver already supports cross-chip bridging from the SJA1105 days.
It does that by automatically setting up the DSA links as VLAN trunks
which contain all the necessary tag_8021q RX VLANs that must be
communicated between the switches that span the same bridge. So when
using tag_8021q on sja1105, it is possible to have 2 switches with
ports sw0p0, sw0p1, sw1p0, sw1p1, and 2 VLAN-unaware bridges br0 and
br1, and br0 can take sw0p0 and sw1p0, and br1 can take sw0p1 and
sw1p1, and forwarding will happen according to the expected rules of
the Linux bridge.
We like that, and we don't want that to go away, so as a matter of
fact, the SJA1110 tagger still needs to support tag_8021q.
So the sja1110 tagger is a hybrid between tag_8021q for data packets,
and the native hardware support for control packets.
On RX, packets have a 13-byte trailer if they contain an RX timestamp.
That trailer is padded in such a way that its byte 8 (the start of the
"residence time" field - not parsed by Linux because we don't care) is
aligned on a 16 byte boundary. So the padding has a variable length
between 0 and 15 bytes. The DSA header contains the offset of the
beginning of the padding relative to the beginning of the frame (and the
end of the padding is obviously the end of the packet minus 13 bytes,
the length of the trailer). So we discard it.
Packets which don't have a trailer contain the source port and switch ID
information in the header (they are "trap-to-host" packets). Packets
which have a trailer contain the source port and switch ID in the trailer.
On TX, the destination port mask and switch ID is always in the trailer,
so we always need to say in the header that a trailer is present.
The header needs a custom EtherType and this was chosen as 0xdadc, after
0xdada which is for Marvell and 0xdadb which is for VLANs in
VLAN-unaware mode on SJA1105 (and SJA1110 in fact too).
Because we use tag_8021q in concert with the native tagging protocol,
control packets will have 2 DSA tags.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In SJA1105, RX timestamps for packets sent to the CPU are transmitted in
separate follow-up packets (metadata frames). These contain partial
timestamps (24 or 32 bits) which are kept in SJA1105_SKB_CB(skb)->meta_tstamp.
Thankfully, SJA1110 improved that, and the RX timestamps are now
transmitted in-band with the actual packet, in the timestamp trailer.
The RX timestamps are now full-width 64 bits.
Because we process the RX DSA tags in the rcv() method in the tagger,
but we would like to preserve the DSA code structure in that we populate
the skb timestamp in the port_rxtstamp() call which only happens later,
the implication is that we must somehow pass the 64-bit timestamp from
the rcv() method all the way to port_rxtstamp(). We can use the skb->cb
for that.
Rename the meta_tstamp from struct sja1105_skb_cb from "meta_tstamp" to
"tstamp", and increase its size to 64 bits.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The added value of this function is that it can deal with both the case
where the VLAN header is in the skb head, as well as in the offload field.
This is something I was not able to do using other functions in the
network stack.
Since both ocelot-8021q and sja1105 need to do the same stuff, let's
make it a common service provided by tag_8021q.
This is done as refactoring for the new SJA1110 tagger, which partly
uses tag_8021q as well (just like SJA1105), and will be the third caller.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This makes no sense and is not needed, it is probably a debugging
leftover.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Some really really weird switches just couldn't decide whether to use a
normal or a tail tagger, so they just did both.
This creates problems for DSA, because we only have the concept of an
'overhead' which can be applied to the headroom or to the tailroom of
the skb (like for example during the central TX reallocation procedure),
depending on the value of bool tail_tag, but not to both.
We need to generalize DSA to cater for these odd switches by
transforming the 'overhead / tail_tag' pair into 'needed_headroom /
needed_tailroom'.
The DSA master's MTU is increased to account for both.
The flow dissector code is modified such that it only calls the DSA
adjustment callback if the tagger has a non-zero header length.
Taggers are trivially modified to declare either needed_headroom or
needed_tailroom, based on the tail_tag value that they currently
declare.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When using sub-VLANs in the range of 1-7, the resulting value from:
rx_vid = dsa_8021q_rx_vid_subvlan(ds, port, subvlan);
is wrong according to the description from tag_8021q.c:
| 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
+-----------+-----+-----------------+-----------+-----------------------+
| DIR | SVL | SWITCH_ID | SUBVLAN | PORT |
+-----------+-----+-----------------+-----------+-----------------------+
For example, when ds->index == 0, port == 3 and subvlan == 1,
dsa_8021q_rx_vid_subvlan() returns 1027, same as it returns for
subvlan == 0, but it should have returned 1043.
This is because the low portion of the subvlan bits are not masked
properly when writing into the 12-bit VLAN value. They are masked into
bits 4:3, but they should be masked into bits 5:4.
Fixes: 3eaae1d05f ("net: dsa: tag_8021q: support up to 8 VLANs per port using sub-VLANs")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
DSA implements a bunch of 'standardized' ethtool statistics counters,
namely tx_packets, tx_bytes, rx_packets, rx_bytes. So whatever the
hardware driver returns in .get_sset_count(), we need to add 4 to that.
That is ok, except that .get_sset_count() can return a negative error
code, for example:
b53_get_sset_count
-> phy_ethtool_get_sset_count
-> return -EIO
-EIO is -5, and with 4 added to it, it becomes -1, aka -EPERM. One can
imagine that certain error codes may even become positive, although
based on code inspection I did not see instances of that.
Check the error code first, if it is negative return it as-is.
Based on a similar patch for dsa_master_get_strings from Dan Carpenter:
https://patchwork.kernel.org/project/netdevbpf/patch/YJaSe3RPgn7gKxZv@mwanda/
Fixes: 91da11f870 ("net: Distributed Switch Architecture protocol support")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>