Commit Graph

269 Commits

Author SHA1 Message Date
Christoph Hellwig
3d745ea5b0 block: simplify queue allocation
Current make_request based drivers use either blk_alloc_queue_node or
blk_alloc_queue to allocate a queue, and then set up the make_request_fn
function pointer and a few parameters using the blk_queue_make_request
helper.  Simplify this by passing the make_request pointer to
blk_alloc_queue, and while at it merge the _node variant into the main
helper by always passing a node_id, and remove the superfluous gfp_mask
parameter.  A lower-level __blk_alloc_queue is kept for the blk-mq case.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-03-27 10:23:43 -06:00
Christoph Hellwig
ff27668ce8 bcache: pass the make_request methods to blk_queue_make_request
bcache is the only driver not actually passing its make_request
methods to blk_queue_make_request, but instead just sets them up
manually a little later.  Make bcache follow the common way of
setting up make_request based queues.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-03-27 10:23:43 -06:00
Coly Li
309cc719a2 bcache: Revert "bcache: shrink btree node cache after bch_btree_check()"
This reverts commit 1df3877ff6.

In my testing, sometimes even all the cached btree nodes are freed,
creating gc and allocator kernel threads may still fail. Finally it
turns out that kthread_run() may fail if there is pending signal for
current task. And the pending signal is sent from OOM killer which
is triggered by memory consuption in bch_btree_check().

Therefore explicitly shrinking bcache btree node here does not help,
and after the shrinker callback is improved, as well as pending signals
are ignored before creating kernel threads, now such operation is
unncessary anymore.

This patch reverts the commit 1df3877ff6 ("bcache: shrink btree node
cache after bch_btree_check()") because we have better improvement now.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-02-13 08:53:49 -07:00
Coly Li
49d08d596e bcache: check return value of prio_read()
Now if prio_read() failed during starting a cache set, we can print
out error message in run_cache_set() and handle the failure properly.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-02-01 07:55:39 -07:00
Christoph Hellwig
6321bef028 bcache: use read_cache_page_gfp to read the superblock
Avoid a pointless dependency on buffer heads in bcache by simply open
coding reading a single page.  Also add a SB_OFFSET define for the
byte offset of the superblock instead of using magic numbers.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-01-23 11:40:01 -07:00
Christoph Hellwig
475389ae5c bcache: store a pointer to the on-disk sb in the cache and cached_dev structures
This allows to properly build the superblock bio including the offset in
the page using the normal bio helpers.  This fixes writing the superblock
for page sizes larger than 4k where the sb write bio would need an offset
in the bio_vec.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-01-23 11:40:01 -07:00
Christoph Hellwig
cfa0c56db9 bcache: return a pointer to the on-disk sb from read_super
Returning the properly typed actual data structure insteaf of the
containing struct page will save the callers some work going
forward.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-01-23 11:40:01 -07:00
Christoph Hellwig
fc8f19cc5d bcache: transfer the sb_page reference to register_{bdev,cache}
Avoid an extra reference count roundtrip by transferring the sb_page
ownership to the lower level register helpers.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-01-23 11:40:01 -07:00
Coly Li
ae3cd29991 bcache: fix use-after-free in register_bcache()
The patch "bcache: rework error unwinding in register_bcache" introduces
a use-after-free regression in register_bcache(). Here are current code,
	2510 out_free_path:
	2511         kfree(path);
	2512 out_module_put:
	2513         module_put(THIS_MODULE);
	2514 out:
	2515         pr_info("error %s: %s", path, err);
	2516         return ret;
If some error happens and the above code path is executed, at line 2511
path is released, but referenced at line 2515. Then KASAN reports a use-
after-free error message.

This patch changes line 2515 in the following way to fix the problem,
	2515         pr_info("error %s: %s", path?path:"", err);

Signed-off-by: Coly Li <colyli@suse.de>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-01-23 11:40:01 -07:00
Coly Li
29cda393bc bcache: properly initialize 'path' and 'err' in register_bcache()
Patch "bcache: rework error unwinding in register_bcache" from
Christoph Hellwig changes the local variables 'path' and 'err'
in undefined initial state. If the code in register_bcache() jumps
to label 'out:' or 'out_module_put:' by goto, these two variables
might be reference with undefined value by the following line,

	out_module_put:
	        module_put(THIS_MODULE);
	out:
	        pr_info("error %s: %s", path, err);
	        return ret;

Therefore this patch initializes these two local variables properly
in register_bcache() to avoid such issue.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-01-23 11:40:01 -07:00
Christoph Hellwig
50246693f8 bcache: rework error unwinding in register_bcache
Split the successful and error return path, and use one goto label for each
resource to unwind.  This also fixes some small errors like leaking the
module reference count in the reboot case (which seems entirely harmless)
or printing the wrong warning messages for early failures.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-01-23 11:40:01 -07:00
Christoph Hellwig
a702a692cd bcache: use a separate data structure for the on-disk super block
Split out an on-disk version struct cache_sb with the proper endianness
annotations.  This fixes a fair chunk of sparse warnings, but there are
some left due to the way the checksum is defined.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-01-23 11:40:00 -07:00
Liang Chen
e8547d4209 bcache: cached_dev_free needs to put the sb page
Same as cache device, the buffer page needs to be put while
freeing cached_dev.  Otherwise a page would be leaked every
time a cached_dev is stopped.

Signed-off-by: Liang Chen <liangchen.linux@gmail.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-01-23 11:40:00 -07:00
Coly Li
c5fcdedcee bcache: add idle_max_writeback_rate sysfs interface
For writeback mode, if there is no regular I/O request for a while,
the writeback rate will be set to the maximum value (1TB/s for now).
This is good for most of the storage workload, but there are still
people don't what the maximum writeback rate in I/O idle time.

This patch adds a sysfs interface file idle_max_writeback_rate to
permit people to disable maximum writeback rate. Then the minimum
writeback rate can be advised by writeback_rate_minimum in the
bcache device's sysfs interface.

Reported-by: Christian Balzer <chibi@gol.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-11-13 15:42:50 -07:00
Andrea Righi
84c529aea1 bcache: fix deadlock in bcache_allocator
bcache_allocator can call the following:

 bch_allocator_thread()
  -> bch_prio_write()
     -> bch_bucket_alloc()
        -> wait on &ca->set->bucket_wait

But the wake up event on bucket_wait is supposed to come from
bch_allocator_thread() itself => deadlock:

[ 1158.490744] INFO: task bcache_allocato:15861 blocked for more than 10 seconds.
[ 1158.495929]       Not tainted 5.3.0-050300rc3-generic #201908042232
[ 1158.500653] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1158.504413] bcache_allocato D    0 15861      2 0x80004000
[ 1158.504419] Call Trace:
[ 1158.504429]  __schedule+0x2a8/0x670
[ 1158.504432]  schedule+0x2d/0x90
[ 1158.504448]  bch_bucket_alloc+0xe5/0x370 [bcache]
[ 1158.504453]  ? wait_woken+0x80/0x80
[ 1158.504466]  bch_prio_write+0x1dc/0x390 [bcache]
[ 1158.504476]  bch_allocator_thread+0x233/0x490 [bcache]
[ 1158.504491]  kthread+0x121/0x140
[ 1158.504503]  ? invalidate_buckets+0x890/0x890 [bcache]
[ 1158.504506]  ? kthread_park+0xb0/0xb0
[ 1158.504510]  ret_from_fork+0x35/0x40

Fix by making the call to bch_prio_write() non-blocking, so that
bch_allocator_thread() never waits on itself.

Moreover, make sure to wake up the garbage collector thread when
bch_prio_write() is failing to allocate buckets.

BugLink: https://bugs.launchpad.net/bugs/1784665
BugLink: https://bugs.launchpad.net/bugs/1796292
Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-11-13 15:42:50 -07:00
Coly Li
aaf8dbeab5 bcache: add more accurate error messages in read_super()
Previous code only returns "Not a bcache superblock" for both bcache
super block offset and magic error. This patch addss more accurate error
messages,
- for super block unmatched offset:
  "Not a bcache superblock (bad offset)"
- for super block unmatched magic number:
  "Not a bcache superblock (bad magic)"

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-11-13 15:42:50 -07:00
Coly Li
2d8869518a bcache: fix static checker warning in bcache_device_free()
Commit cafe563591 ("bcache: A block layer cache") leads to the
following static checker warning:

    ./drivers/md/bcache/super.c:770 bcache_device_free()
    warn: variable dereferenced before check 'd->disk' (see line 766)

drivers/md/bcache/super.c
   762  static void bcache_device_free(struct bcache_device *d)
   763  {
   764          lockdep_assert_held(&bch_register_lock);
   765
   766          pr_info("%s stopped", d->disk->disk_name);
                                      ^^^^^^^^^
Unchecked dereference.

   767
   768          if (d->c)
   769                  bcache_device_detach(d);
   770          if (d->disk && d->disk->flags & GENHD_FL_UP)
                    ^^^^^^^
Check too late.

   771                  del_gendisk(d->disk);
   772          if (d->disk && d->disk->queue)
   773                  blk_cleanup_queue(d->disk->queue);
   774          if (d->disk) {
   775                  ida_simple_remove(&bcache_device_idx,
   776                                    first_minor_to_idx(d->disk->first_minor));
   777                  put_disk(d->disk);
   778          }
   779

It is not 100% sure that the gendisk struct of bcache device will always
be there, the warning makes sense when there is problem in block core.

This patch tries to remove the static checking warning by checking
d->disk to avoid NULL pointer deferences.

Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-11-13 15:42:50 -07:00
Guoju Fang
34cf78bf34 bcache: fix a lost wake-up problem caused by mca_cannibalize_lock
This patch fix a lost wake-up problem caused by the race between
mca_cannibalize_lock and bch_cannibalize_unlock.

Consider two processes, A and B. Process A is executing
mca_cannibalize_lock, while process B takes c->btree_cache_alloc_lock
and is executing bch_cannibalize_unlock. The problem happens that after
process A executes cmpxchg and will execute prepare_to_wait. In this
timeslice process B executes wake_up, but after that process A executes
prepare_to_wait and set the state to TASK_INTERRUPTIBLE. Then process A
goes to sleep but no one will wake up it. This problem may cause bcache
device to dead.

Signed-off-by: Guoju Fang <fangguoju@gmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-11-13 15:42:50 -07:00
Wei Yongjun
5d9e06d60e bcache: fix possible memory leak in bch_cached_dev_run()
memory malloced in bch_cached_dev_run() and should be freed before
leaving from the error handling cases, otherwise it will cause
memory leak.

Fixes: 0b13efecf5 ("bcache: add return value check to bch_cached_dev_run()")
Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-07-22 08:15:17 -06:00
Coly Li
1df3877ff6 bcache: shrink btree node cache after bch_btree_check()
When cache set starts, bch_btree_check() will check all bkeys on cache
device by calculating the checksum. This operation will consume a huge
number of system memory if there are a lot of data cached. Since bcache
uses its own mca cache to maintain all its read-in btree nodes, and only
releases the cache space when system memory manage code starts to shrink
caches. Then before memory manager code to call the mca cache shrinker
callback, bcache mca cache will compete memory resource with user space
application, which may have nagive effect to performance of user space
workloads (e.g. data base, or I/O service of distributed storage node).

This patch tries to call bcache mca shrinker routine to proactively
release mca cache memory, to decrease the memory pressure of system and
avoid negative effort of the overall system I/O performance.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:17 -06:00
Coly Li
7e865eba00 bcache: fix potential deadlock in cached_def_free()
When enable lockdep and reboot system with a writeback mode bcache
device, the following potential deadlock warning is reported by lockdep
engine.

[  101.536569][  T401] kworker/2:2/401 is trying to acquire lock:
[  101.538575][  T401] 00000000bbf6e6c7 ((wq_completion)bcache_writeback_wq){+.+.}, at: flush_workqueue+0x87/0x4c0
[  101.542054][  T401]
[  101.542054][  T401] but task is already holding lock:
[  101.544587][  T401] 00000000f5f305b3 ((work_completion)(&cl->work)#2){+.+.}, at: process_one_work+0x21e/0x640
[  101.548386][  T401]
[  101.548386][  T401] which lock already depends on the new lock.
[  101.548386][  T401]
[  101.551874][  T401]
[  101.551874][  T401] the existing dependency chain (in reverse order) is:
[  101.555000][  T401]
[  101.555000][  T401] -> #1 ((work_completion)(&cl->work)#2){+.+.}:
[  101.557860][  T401]        process_one_work+0x277/0x640
[  101.559661][  T401]        worker_thread+0x39/0x3f0
[  101.561340][  T401]        kthread+0x125/0x140
[  101.562963][  T401]        ret_from_fork+0x3a/0x50
[  101.564718][  T401]
[  101.564718][  T401] -> #0 ((wq_completion)bcache_writeback_wq){+.+.}:
[  101.567701][  T401]        lock_acquire+0xb4/0x1c0
[  101.569651][  T401]        flush_workqueue+0xae/0x4c0
[  101.571494][  T401]        drain_workqueue+0xa9/0x180
[  101.573234][  T401]        destroy_workqueue+0x17/0x250
[  101.575109][  T401]        cached_dev_free+0x44/0x120 [bcache]
[  101.577304][  T401]        process_one_work+0x2a4/0x640
[  101.579357][  T401]        worker_thread+0x39/0x3f0
[  101.581055][  T401]        kthread+0x125/0x140
[  101.582709][  T401]        ret_from_fork+0x3a/0x50
[  101.584592][  T401]
[  101.584592][  T401] other info that might help us debug this:
[  101.584592][  T401]
[  101.588355][  T401]  Possible unsafe locking scenario:
[  101.588355][  T401]
[  101.590974][  T401]        CPU0                    CPU1
[  101.592889][  T401]        ----                    ----
[  101.594743][  T401]   lock((work_completion)(&cl->work)#2);
[  101.596785][  T401]                                lock((wq_completion)bcache_writeback_wq);
[  101.600072][  T401]                                lock((work_completion)(&cl->work)#2);
[  101.602971][  T401]   lock((wq_completion)bcache_writeback_wq);
[  101.605255][  T401]
[  101.605255][  T401]  *** DEADLOCK ***
[  101.605255][  T401]
[  101.608310][  T401] 2 locks held by kworker/2:2/401:
[  101.610208][  T401]  #0: 00000000cf2c7d17 ((wq_completion)events){+.+.}, at: process_one_work+0x21e/0x640
[  101.613709][  T401]  #1: 00000000f5f305b3 ((work_completion)(&cl->work)#2){+.+.}, at: process_one_work+0x21e/0x640
[  101.617480][  T401]
[  101.617480][  T401] stack backtrace:
[  101.619539][  T401] CPU: 2 PID: 401 Comm: kworker/2:2 Tainted: G        W         5.2.0-rc4-lp151.20-default+ #1
[  101.623225][  T401] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/13/2018
[  101.627210][  T401] Workqueue: events cached_dev_free [bcache]
[  101.629239][  T401] Call Trace:
[  101.630360][  T401]  dump_stack+0x85/0xcb
[  101.631777][  T401]  print_circular_bug+0x19a/0x1f0
[  101.633485][  T401]  __lock_acquire+0x16cd/0x1850
[  101.635184][  T401]  ? __lock_acquire+0x6a8/0x1850
[  101.636863][  T401]  ? lock_acquire+0xb4/0x1c0
[  101.638421][  T401]  ? find_held_lock+0x34/0xa0
[  101.640015][  T401]  lock_acquire+0xb4/0x1c0
[  101.641513][  T401]  ? flush_workqueue+0x87/0x4c0
[  101.643248][  T401]  flush_workqueue+0xae/0x4c0
[  101.644832][  T401]  ? flush_workqueue+0x87/0x4c0
[  101.646476][  T401]  ? drain_workqueue+0xa9/0x180
[  101.648303][  T401]  drain_workqueue+0xa9/0x180
[  101.649867][  T401]  destroy_workqueue+0x17/0x250
[  101.651503][  T401]  cached_dev_free+0x44/0x120 [bcache]
[  101.653328][  T401]  process_one_work+0x2a4/0x640
[  101.655029][  T401]  worker_thread+0x39/0x3f0
[  101.656693][  T401]  ? process_one_work+0x640/0x640
[  101.658501][  T401]  kthread+0x125/0x140
[  101.660012][  T401]  ? kthread_create_worker_on_cpu+0x70/0x70
[  101.661985][  T401]  ret_from_fork+0x3a/0x50
[  101.691318][  T401] bcache: bcache_device_free() bcache0 stopped

Here is how the above potential deadlock may happen in reboot/shutdown
code path,
1) bcache_reboot() is called firstly in the reboot/shutdown code path,
   then in bcache_reboot(), bcache_device_stop() is called.
2) bcache_device_stop() sets BCACHE_DEV_CLOSING on d->falgs, then call
   closure_queue(&d->cl) to invoke cached_dev_flush(). And in turn
   cached_dev_flush() calls cached_dev_free() via closure_at()
3) In cached_dev_free(), after stopped writebach kthread
   dc->writeback_thread, the kwork dc->writeback_write_wq is stopping by
   destroy_workqueue().
4) Inside destroy_workqueue(), drain_workqueue() is called. Inside
   drain_workqueue(), flush_workqueue() is called. Then wq->lockdep_map
   is acquired by lock_map_acquire() in flush_workqueue(). After the
   lock acquired the rest part of flush_workqueue() just wait for the
   workqueue to complete.
5) Now we look back at writeback thread routine bch_writeback_thread(),
   in the main while-loop, write_dirty() is called via continue_at() in
   read_dirty_submit(), which is called via continue_at() in while-loop
   level called function read_dirty(). Inside write_dirty() it may be
   re-called on workqueeu dc->writeback_write_wq via continue_at().
   It means when the writeback kthread is stopped in cached_dev_free()
   there might be still one kworker queued on dc->writeback_write_wq
   to execute write_dirty() again.
6) Now this kworker is scheduled on dc->writeback_write_wq to run by
   process_one_work() (which is called by worker_thread()). Before
   calling the kwork routine, wq->lockdep_map is acquired.
7) But wq->lockdep_map is acquired already in step 4), so a A-A lock
   (lockdep terminology) scenario happens.

Indeed on multiple cores syatem, the above deadlock is very rare to
happen, just as the code comments in process_one_work() says,
2263     * AFAICT there is no possible deadlock scenario between the
2264     * flush_work() and complete() primitives (except for
	   single-threaded
2265     * workqueues), so hiding them isn't a problem.

But it is still good to fix such lockdep warning, even no one running
bcache on single core system.

The fix is simple. This patch solves the above potential deadlock by,
- Do not destroy workqueue dc->writeback_write_wq in cached_dev_free().
- Flush and destroy dc->writeback_write_wq in writebach kthread routine
  bch_writeback_thread(), where after quit the thread main while-loop
  and before cached_dev_put() is called.

By this fix, dc->writeback_write_wq will be stopped and destroy before
the writeback kthread stopped, so the chance for a A-A locking on
wq->lockdep_map is disappeared, such A-A deadlock won't happen
any more.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:16 -06:00
Coly Li
80265d8dfd bcache: acquire bch_register_lock later in cached_dev_free()
When enable lockdep engine, a lockdep warning can be observed when
reboot or shutdown system,

[ 3142.764557][    T1] bcache: bcache_reboot() Stopping all devices:
[ 3142.776265][ T2649]
[ 3142.777159][ T2649] ======================================================
[ 3142.780039][ T2649] WARNING: possible circular locking dependency detected
[ 3142.782869][ T2649] 5.2.0-rc4-lp151.20-default+ #1 Tainted: G        W
[ 3142.785684][ T2649] ------------------------------------------------------
[ 3142.788479][ T2649] kworker/3:67/2649 is trying to acquire lock:
[ 3142.790738][ T2649] 00000000aaf02291 ((wq_completion)bcache_writeback_wq){+.+.}, at: flush_workqueue+0x87/0x4c0
[ 3142.794678][ T2649]
[ 3142.794678][ T2649] but task is already holding lock:
[ 3142.797402][ T2649] 000000004fcf89c5 (&bch_register_lock){+.+.}, at: cached_dev_free+0x17/0x120 [bcache]
[ 3142.801462][ T2649]
[ 3142.801462][ T2649] which lock already depends on the new lock.
[ 3142.801462][ T2649]
[ 3142.805277][ T2649]
[ 3142.805277][ T2649] the existing dependency chain (in reverse order) is:
[ 3142.808902][ T2649]
[ 3142.808902][ T2649] -> #2 (&bch_register_lock){+.+.}:
[ 3142.812396][ T2649]        __mutex_lock+0x7a/0x9d0
[ 3142.814184][ T2649]        cached_dev_free+0x17/0x120 [bcache]
[ 3142.816415][ T2649]        process_one_work+0x2a4/0x640
[ 3142.818413][ T2649]        worker_thread+0x39/0x3f0
[ 3142.820276][ T2649]        kthread+0x125/0x140
[ 3142.822061][ T2649]        ret_from_fork+0x3a/0x50
[ 3142.823965][ T2649]
[ 3142.823965][ T2649] -> #1 ((work_completion)(&cl->work)#2){+.+.}:
[ 3142.827244][ T2649]        process_one_work+0x277/0x640
[ 3142.829160][ T2649]        worker_thread+0x39/0x3f0
[ 3142.830958][ T2649]        kthread+0x125/0x140
[ 3142.832674][ T2649]        ret_from_fork+0x3a/0x50
[ 3142.834915][ T2649]
[ 3142.834915][ T2649] -> #0 ((wq_completion)bcache_writeback_wq){+.+.}:
[ 3142.838121][ T2649]        lock_acquire+0xb4/0x1c0
[ 3142.840025][ T2649]        flush_workqueue+0xae/0x4c0
[ 3142.842035][ T2649]        drain_workqueue+0xa9/0x180
[ 3142.844042][ T2649]        destroy_workqueue+0x17/0x250
[ 3142.846142][ T2649]        cached_dev_free+0x52/0x120 [bcache]
[ 3142.848530][ T2649]        process_one_work+0x2a4/0x640
[ 3142.850663][ T2649]        worker_thread+0x39/0x3f0
[ 3142.852464][ T2649]        kthread+0x125/0x140
[ 3142.854106][ T2649]        ret_from_fork+0x3a/0x50
[ 3142.855880][ T2649]
[ 3142.855880][ T2649] other info that might help us debug this:
[ 3142.855880][ T2649]
[ 3142.859663][ T2649] Chain exists of:
[ 3142.859663][ T2649]   (wq_completion)bcache_writeback_wq --> (work_completion)(&cl->work)#2 --> &bch_register_lock
[ 3142.859663][ T2649]
[ 3142.865424][ T2649]  Possible unsafe locking scenario:
[ 3142.865424][ T2649]
[ 3142.868022][ T2649]        CPU0                    CPU1
[ 3142.869885][ T2649]        ----                    ----
[ 3142.871751][ T2649]   lock(&bch_register_lock);
[ 3142.873379][ T2649]                                lock((work_completion)(&cl->work)#2);
[ 3142.876399][ T2649]                                lock(&bch_register_lock);
[ 3142.879727][ T2649]   lock((wq_completion)bcache_writeback_wq);
[ 3142.882064][ T2649]
[ 3142.882064][ T2649]  *** DEADLOCK ***
[ 3142.882064][ T2649]
[ 3142.885060][ T2649] 3 locks held by kworker/3:67/2649:
[ 3142.887245][ T2649]  #0: 00000000e774cdd0 ((wq_completion)events){+.+.}, at: process_one_work+0x21e/0x640
[ 3142.890815][ T2649]  #1: 00000000f7df89da ((work_completion)(&cl->work)#2){+.+.}, at: process_one_work+0x21e/0x640
[ 3142.894884][ T2649]  #2: 000000004fcf89c5 (&bch_register_lock){+.+.}, at: cached_dev_free+0x17/0x120 [bcache]
[ 3142.898797][ T2649]
[ 3142.898797][ T2649] stack backtrace:
[ 3142.900961][ T2649] CPU: 3 PID: 2649 Comm: kworker/3:67 Tainted: G        W         5.2.0-rc4-lp151.20-default+ #1
[ 3142.904789][ T2649] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/13/2018
[ 3142.909168][ T2649] Workqueue: events cached_dev_free [bcache]
[ 3142.911422][ T2649] Call Trace:
[ 3142.912656][ T2649]  dump_stack+0x85/0xcb
[ 3142.914181][ T2649]  print_circular_bug+0x19a/0x1f0
[ 3142.916193][ T2649]  __lock_acquire+0x16cd/0x1850
[ 3142.917936][ T2649]  ? __lock_acquire+0x6a8/0x1850
[ 3142.919704][ T2649]  ? lock_acquire+0xb4/0x1c0
[ 3142.921335][ T2649]  ? find_held_lock+0x34/0xa0
[ 3142.923052][ T2649]  lock_acquire+0xb4/0x1c0
[ 3142.924635][ T2649]  ? flush_workqueue+0x87/0x4c0
[ 3142.926375][ T2649]  flush_workqueue+0xae/0x4c0
[ 3142.928047][ T2649]  ? flush_workqueue+0x87/0x4c0
[ 3142.929824][ T2649]  ? drain_workqueue+0xa9/0x180
[ 3142.931686][ T2649]  drain_workqueue+0xa9/0x180
[ 3142.933534][ T2649]  destroy_workqueue+0x17/0x250
[ 3142.935787][ T2649]  cached_dev_free+0x52/0x120 [bcache]
[ 3142.937795][ T2649]  process_one_work+0x2a4/0x640
[ 3142.939803][ T2649]  worker_thread+0x39/0x3f0
[ 3142.941487][ T2649]  ? process_one_work+0x640/0x640
[ 3142.943389][ T2649]  kthread+0x125/0x140
[ 3142.944894][ T2649]  ? kthread_create_worker_on_cpu+0x70/0x70
[ 3142.947744][ T2649]  ret_from_fork+0x3a/0x50
[ 3142.970358][ T2649] bcache: bcache_device_free() bcache0 stopped

Here is how the deadlock happens.
1) bcache_reboot() calls bcache_device_stop(), then inside
   bcache_device_stop() BCACHE_DEV_CLOSING bit is set on d->flags.
   Then closure_queue(&d->cl) is called to invoke cached_dev_flush().
2) In cached_dev_flush(), cached_dev_free() is called by continu_at().
3) In cached_dev_free(), when stopping the writeback kthread of the
   cached device by kthread_stop(), dc->writeback_thread will be waken
   up to quite the kthread while-loop, then cached_dev_put() is called
   in bch_writeback_thread().
4) Calling cached_dev_put() in writeback kthread may drop dc->count to
   0, then dc->detach kworker is scheduled, which is initialized as
   cached_dev_detach_finish().
5) Inside cached_dev_detach_finish(), the last line of code is to call
   closure_put(&dc->disk.cl), which drops the last reference counter of
   closrure dc->disk.cl, then the callback cached_dev_flush() gets
   called.
Now cached_dev_flush() is called for second time in the code path, the
first time is in step 2). And again bch_register_lock will be acquired
again, and a A-A lock (lockdep terminology) is happening.

The root cause of the above A-A lock is in cached_dev_free(), mutex
bch_register_lock is held before stopping writeback kthread and other
kworkers. Fortunately now we have variable 'bcache_is_reboot', which may
prevent device registration or unregistration during reboot/shutdown
time, so it is unncessary to hold bch_register_lock such early now.

This is how this patch fixes the reboot/shutdown time A-A lock issue:
After moving mutex_lock(&bch_register_lock) to a later location where
before atomic_read(&dc->running) in cached_dev_free(), such A-A lock
problem can be solved without any reboot time registration race.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:16 -06:00
Coly Li
97ba3b816e bcache: acquire bch_register_lock later in cached_dev_detach_finish()
Now there is variable bcache_is_reboot to prevent device register or
unregister during reboot, it is unncessary to still hold mutex lock
bch_register_lock before stopping writeback_rate_update kworker and
writeback kthread. And if the stopping kworker or kthread holding
bch_register_lock inside their routine (we used to have such problem
in writeback thread, thanks to Junhui Wang fixed it), it is very easy
to introduce deadlock during reboot/shutdown procedure.

Therefore in this patch, the location to acquire bch_register_lock is
moved to the location before calling calc_cached_dev_sectors(). Which
is later then original location in cached_dev_detach_finish().

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:16 -06:00
Coly Li
a59ff6ccc2 bcache: avoid a deadlock in bcache_reboot()
It is quite frequently to observe deadlock in bcache_reboot() happens
and hang the system reboot process. The reason is, in bcache_reboot()
when calling bch_cache_set_stop() and bcache_device_stop() the mutex
bch_register_lock is held. But in the process to stop cache set and
bcache device, bch_register_lock will be acquired again. If this mutex
is held here, deadlock will happen inside the stopping process. The
aftermath of the deadlock is, whole system reboot gets hung.

The fix is to avoid holding bch_register_lock for the following loops
in bcache_reboot(),
       list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
                bch_cache_set_stop(c);

        list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
                bcache_device_stop(&dc->disk);

A module range variable 'bcache_is_reboot' is added, it sets to true
in bcache_reboot(). In register_bcache(), if bcache_is_reboot is checked
to be true, reject the registration by returning -EBUSY immediately.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:16 -06:00
Coly Li
5c2a634cbf bcache: stop writeback kthread and kworker when bch_cached_dev_run() failed
In bch_cached_dev_attach() after bch_cached_dev_writeback_start()
called, the wrireback kthread and writeback rate update kworker of the
cached device are created, if the following bch_cached_dev_run()
failed, bch_cached_dev_attach() will return with -ENOMEM without
stopping the writeback related kthread and kworker.

This patch stops writeback kthread and writeback rate update kworker
before returning -ENOMEM if bch_cached_dev_run() returns error.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:16 -06:00
Coly Li
0c277e211a bcache: add pendings_cleanup to stop pending bcache device
If a bcache device is in dirty state and its cache set is not
registered, this bcache device will not appear in /dev/bcache<N>,
and there is no way to stop it or remove the bcache kernel module.

This is an as-designed behavior, but sometimes people has to reboot
whole system to release or stop the pending backing device.

This sysfs interface may remove such pending bcache devices when
write anything into the sysfs file manually.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:16 -06:00
Coly Li
68a53c95a0 bcache: remove "XXX:" comment line from run_cache_set()
In previous bcache patches for Linux v5.2, the failure code path of
run_cache_set() is tested and fixed. So now the following comment
line can be removed from run_cache_set(),
	/* XXX: test this, it's broken */

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:15 -06:00
Coly Li
e0faa3d7f7 bcache: improve error message in bch_cached_dev_run()
This patch adds more error message in bch_cached_dev_run() to indicate
the exact reason why an error value is returned. Please notice when
printing out the "is running already" message, pr_info() is used here,
because in this case also -EBUSY is returned, the bcache device can
continue to attach to the cache devince and run, so it won't be an
error level message in kernel message.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:15 -06:00
Coly Li
633bb2ce60 bcache: add more error message in bch_cached_dev_attach()
This patch adds more error message for attaching cached device, this is
helpful to debug code failure during bache device start up.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:15 -06:00
Coly Li
4b6efb4bdb bcache: more detailed error message to bcache_device_link()
This patch adds more accurate error message for specific
ssyfs_create_link() call, to help debugging failure during
bcache device start tup.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:15 -06:00
Coly Li
0b13efecf5 bcache: add return value check to bch_cached_dev_run()
This patch adds return value check to bch_cached_dev_run(), now if there
is error happens inside bch_cached_dev_run(), it can be catched.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:14 -06:00
Coly Li
08ec1e6282 bcache: add io error counting in write_bdev_super_endio()
When backing device super block is written by bch_write_bdev_super(),
the bio complete callback write_bdev_super_endio() simply ignores I/O
status. Indeed such write request also contribute to backing device
health status if the request failed.

This patch checkes bio->bi_status in write_bdev_super_endio(), if there
is error, bch_count_backing_io_errors() will be called to count an I/O
error to dc->io_errors.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:14 -06:00
Coly Li
e6dcbd3e6c bcache: avoid flushing btree node in cache_set_flush() if io disabled
When cache_set_flush() is called for too many I/O errors detected on
cache device and the cache set is retiring, inside the function it
doesn't make sense to flushing cached btree nodes from c->btree_cache
because CACHE_SET_IO_DISABLE is set on c->flags already and all I/Os
onto cache device will be rejected.

This patch checks in cache_set_flush() that whether CACHE_SET_IO_DISABLE
is set. If yes, then avoids to flush the cached btree nodes to reduce
more time and make cache set retiring more faster.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:14 -06:00
Coly Li
695277f16b Revert "bcache: set CACHE_SET_IO_DISABLE in bch_cached_dev_error()"
This reverts commit 6147305c73.

Although this patch helps the failed bcache device to stop faster when
too many I/O errors detected on corresponding cached device, setting
CACHE_SET_IO_DISABLE bit to cache set c->flags was not a good idea. This
operation will disable all I/Os on cache set, which means other attached
bcache devices won't work neither.

Without this patch, the failed bcache device can also be stopped
eventually if internal I/O accomplished (e.g. writeback). Therefore here
I revert it.

Fixes: 6147305c73 ("bcache: set CACHE_SET_IO_DISABLE in bch_cached_dev_error()")
Reported-by: Yong Li <mr.liyong@qq.com>
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:14 -06:00
Coly Li
b387e9b586 bcache: check c->gc_thread by IS_ERR_OR_NULL in cache_set_flush()
When system memory is in heavy pressure, bch_gc_thread_start() from
run_cache_set() may fail due to out of memory. In such condition,
c->gc_thread is assigned to -ENOMEM, not NULL pointer. Then in following
failure code path bch_cache_set_error(), when cache_set_flush() gets
called, the code piece to stop c->gc_thread is broken,
         if (!IS_ERR_OR_NULL(c->gc_thread))
                 kthread_stop(c->gc_thread);

And KASAN catches such NULL pointer deference problem, with the warning
information:

[  561.207881] ==================================================================
[  561.207900] BUG: KASAN: null-ptr-deref in kthread_stop+0x3b/0x440
[  561.207904] Write of size 4 at addr 000000000000001c by task kworker/15:1/313

[  561.207913] CPU: 15 PID: 313 Comm: kworker/15:1 Tainted: G        W         5.0.0-vanilla+ #3
[  561.207916] Hardware name: Lenovo ThinkSystem SR650 -[7X05CTO1WW]-/-[7X05CTO1WW]-, BIOS -[IVE136T-2.10]- 03/22/2019
[  561.207935] Workqueue: events cache_set_flush [bcache]
[  561.207940] Call Trace:
[  561.207948]  dump_stack+0x9a/0xeb
[  561.207955]  ? kthread_stop+0x3b/0x440
[  561.207960]  ? kthread_stop+0x3b/0x440
[  561.207965]  kasan_report+0x176/0x192
[  561.207973]  ? kthread_stop+0x3b/0x440
[  561.207981]  kthread_stop+0x3b/0x440
[  561.207995]  cache_set_flush+0xd4/0x6d0 [bcache]
[  561.208008]  process_one_work+0x856/0x1620
[  561.208015]  ? find_held_lock+0x39/0x1d0
[  561.208028]  ? drain_workqueue+0x380/0x380
[  561.208048]  worker_thread+0x87/0xb80
[  561.208058]  ? __kthread_parkme+0xb6/0x180
[  561.208067]  ? process_one_work+0x1620/0x1620
[  561.208072]  kthread+0x326/0x3e0
[  561.208079]  ? kthread_create_worker_on_cpu+0xc0/0xc0
[  561.208090]  ret_from_fork+0x3a/0x50
[  561.208110] ==================================================================
[  561.208113] Disabling lock debugging due to kernel taint
[  561.208115] irq event stamp: 11800231
[  561.208126] hardirqs last  enabled at (11800231): [<ffffffff83008538>] do_syscall_64+0x18/0x410
[  561.208127] BUG: unable to handle kernel NULL pointer dereference at 000000000000001c
[  561.208129] #PF error: [WRITE]
[  561.312253] hardirqs last disabled at (11800230): [<ffffffff830052ff>] trace_hardirqs_off_thunk+0x1a/0x1c
[  561.312259] softirqs last  enabled at (11799832): [<ffffffff850005c7>] __do_softirq+0x5c7/0x8c3
[  561.405975] PGD 0 P4D 0
[  561.442494] softirqs last disabled at (11799821): [<ffffffff831add2c>] irq_exit+0x1ac/0x1e0
[  561.791359] Oops: 0002 [#1] SMP KASAN NOPTI
[  561.791362] CPU: 15 PID: 313 Comm: kworker/15:1 Tainted: G    B   W         5.0.0-vanilla+ #3
[  561.791363] Hardware name: Lenovo ThinkSystem SR650 -[7X05CTO1WW]-/-[7X05CTO1WW]-, BIOS -[IVE136T-2.10]- 03/22/2019
[  561.791371] Workqueue: events cache_set_flush [bcache]
[  561.791374] RIP: 0010:kthread_stop+0x3b/0x440
[  561.791376] Code: 00 00 65 8b 05 26 d5 e0 7c 89 c0 48 0f a3 05 ec aa df 02 0f 82 dc 02 00 00 4c 8d 63 20 be 04 00 00 00 4c 89 e7 e8 65 c5 53 00 <f0> ff 43 20 48 8d 7b 24 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48
[  561.791377] RSP: 0018:ffff88872fc8fd10 EFLAGS: 00010286
[  561.838895] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  561.838916] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  561.838934] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  561.838948] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  561.838966] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  561.838979] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  561.838996] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  563.067028] RAX: 0000000000000000 RBX: fffffffffffffffc RCX: ffffffff832dd314
[  563.067030] RDX: 0000000000000000 RSI: 0000000000000004 RDI: 0000000000000297
[  563.067032] RBP: ffff88872fc8fe88 R08: fffffbfff0b8213d R09: fffffbfff0b8213d
[  563.067034] R10: 0000000000000001 R11: fffffbfff0b8213c R12: 000000000000001c
[  563.408618] R13: ffff88dc61cc0f68 R14: ffff888102b94900 R15: ffff88dc61cc0f68
[  563.408620] FS:  0000000000000000(0000) GS:ffff888f7dc00000(0000) knlGS:0000000000000000
[  563.408622] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  563.408623] CR2: 000000000000001c CR3: 0000000f48a1a004 CR4: 00000000007606e0
[  563.408625] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[  563.408627] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[  563.904795] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  563.915796] PKRU: 55555554
[  563.915797] Call Trace:
[  563.915807]  cache_set_flush+0xd4/0x6d0 [bcache]
[  563.915812]  process_one_work+0x856/0x1620
[  564.001226] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  564.033563]  ? find_held_lock+0x39/0x1d0
[  564.033567]  ? drain_workqueue+0x380/0x380
[  564.033574]  worker_thread+0x87/0xb80
[  564.062823] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  564.118042]  ? __kthread_parkme+0xb6/0x180
[  564.118046]  ? process_one_work+0x1620/0x1620
[  564.118048]  kthread+0x326/0x3e0
[  564.118050]  ? kthread_create_worker_on_cpu+0xc0/0xc0
[  564.167066] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  564.252441]  ret_from_fork+0x3a/0x50
[  564.252447] Modules linked in: msr rpcrdma sunrpc rdma_ucm ib_iser ib_umad rdma_cm ib_ipoib i40iw configfs iw_cm ib_cm libiscsi scsi_transport_iscsi mlx4_ib ib_uverbs mlx4_en ib_core nls_iso8859_1 nls_cp437 vfat fat intel_rapl skx_edac x86_pkg_temp_thermal coretemp iTCO_wdt iTCO_vendor_support crct10dif_pclmul crc32_pclmul crc32c_intel ghash_clmulni_intel ses raid0 aesni_intel cdc_ether enclosure usbnet ipmi_ssif joydev aes_x86_64 i40e scsi_transport_sas mii bcache md_mod crypto_simd mei_me ioatdma crc64 ptp cryptd pcspkr i2c_i801 mlx4_core glue_helper pps_core mei lpc_ich dca wmi ipmi_si ipmi_devintf nd_pmem dax_pmem nd_btt ipmi_msghandler device_dax pcc_cpufreq button hid_generic usbhid mgag200 i2c_algo_bit drm_kms_helper syscopyarea sysfillrect xhci_pci sysimgblt fb_sys_fops xhci_hcd ttm megaraid_sas drm usbcore nfit libnvdimm sg dm_multipath dm_mod scsi_dh_rdac scsi_dh_emc scsi_dh_alua efivarfs
[  564.299390] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[  564.348360] CR2: 000000000000001c
[  564.348362] ---[ end trace b7f0e5cc7b2103b0 ]---

Therefore, it is not enough to only check whether c->gc_thread is NULL,
we should use IS_ERR_OR_NULL() to check both NULL pointer and error
value.

This patch changes the above buggy code piece in this way,
         if (!IS_ERR_OR_NULL(c->gc_thread))
                 kthread_stop(c->gc_thread);

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28 07:39:13 -06:00
Coly Li
cdca22bcbc bcache: remove redundant LIST_HEAD(journal) from run_cache_set()
Commit 95f18c9d13 ("bcache: avoid potential memleak of list of
journal_replay(s) in the CACHE_SYNC branch of run_cache_set") forgets
to remove the original define of LIST_HEAD(journal), which makes
the change no take effect. This patch removes redundant variable
LIST_HEAD(journal) from run_cache_set(), to make Shenghui's fix
working.

Fixes: 95f18c9d13 ("bcache: avoid potential memleak of list of journal_replay(s) in the CACHE_SYNC branch of run_cache_set")
Reported-by: Juha Aatrokoski <juha.aatrokoski@aalto.fi>
Cc: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-30 08:20:46 -06:00
Shenghui Wang
95f18c9d13 bcache: avoid potential memleak of list of journal_replay(s) in the CACHE_SYNC branch of run_cache_set
In the CACHE_SYNC branch of run_cache_set(), LIST_HEAD(journal) is used
to collect journal_replay(s) and filled by bch_journal_read().

If all goes well, bch_journal_replay() will release the list of
jounal_replay(s) at the end of the branch.

If something goes wrong, code flow will jump to the label "err:" and leave
the list unreleased.

This patch will release the list of journal_replay(s) in the case of
error detected.

v1 -> v2:
* Move the release code to the location after label 'err:' to
  simply the change.

Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-24 10:56:29 -06:00
Coly Li
eb8cbb6df3 bcache: improve bcache_reboot()
This patch tries to release mutex bch_register_lock early, to give
chance to stop cache set and bcache device early.

This patch also expends time out of stopping all bcache device from
2 seconds to 10 seconds, because stopping writeback rate update worker
may delay for 5 seconds, 2 seconds is not enough.

After this patch applied, stopping bcache devices during system reboot
or shutdown is very hard to be observed any more.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-24 10:56:28 -06:00
Coly Li
63d63b51d7 bcache: add comments for closure_fn to be called in closure_queue()
Add code comments to explain which call back function might be called
for the closure_queue(). This is an effort to make code to be more
understandable for readers.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-24 10:56:28 -06:00
Coly Li
bb6d355c2a bcache: Add comments for blkdev_put() in registration code path
Add comments to explain why in register_bcache() blkdev_put() won't
be called in two location. Add comments to explain why blkdev_put()
must be called in register_cache() when cache_alloc() failed.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-24 10:56:28 -06:00
Coly Li
88c12d42d2 bcache: add error check for calling register_bdev()
This patch adds return value to register_bdev(). Then if failure happens
inside register_bdev(), its caller register_bcache() may detect and
handle the failure more properly.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-24 10:56:28 -06:00
Coly Li
2d17456eb1 bcache: add comments for kobj release callback routine
Bcache has several routines to release resources in implicit way, they
are called when the associated kobj released. This patch adds code
comments to notice when and which release callback will be called,
- When dc->disk.kobj released:
  void bch_cached_dev_release(struct kobject *kobj)
- When d->kobj released:
  void bch_flash_dev_release(struct kobject *kobj)
- When c->kobj released:
  void bch_cache_set_release(struct kobject *kobj)
- When ca->kobj released
  void bch_cache_release(struct kobject *kobj)

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-24 10:56:28 -06:00
Coly Li
ce3e4cfb59 bcache: add failure check to run_cache_set() for journal replay
Currently run_cache_set() has no return value, if there is failure in
bch_journal_replay(), the caller of run_cache_set() has no idea about
such failure and just continue to execute following code after
run_cache_set().  The internal failure is triggered inside
bch_journal_replay() and being handled in async way. This behavior is
inefficient, while failure handling inside bch_journal_replay(), cache
register code is still running to start the cache set. Registering and
unregistering code running as same time may introduce some rare race
condition, and make the code to be more hard to be understood.

This patch adds return value to run_cache_set(), and returns -EIO if
bch_journal_rreplay() fails. Then caller of run_cache_set() may detect
such failure and stop registering code flow immedidately inside
register_cache_set().

If journal replay fails, run_cache_set() can report error immediately
to register_cache_set(). This patch makes the failure handling for
bch_journal_replay() be in synchronized way, easier to understand and
debug, and avoid poetential race condition for register-and-unregister
in same time.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-24 10:56:28 -06:00
Liang Chen
a4b732a248 bcache: fix a race between cache register and cacheset unregister
There is a race between cache device register and cache set unregister.
For an already registered cache device, register_bcache will call
bch_is_open to iterate through all cachesets and check every cache
there. The race occurs if cache_set_free executes at the same time and
clears the caches right before ca is dereferenced in bch_is_open_cache.
To close the race, let's make sure the clean up work is protected by
the bch_register_lock as well.

This issue can be reproduced as follows,
while true; do echo /dev/XXX> /sys/fs/bcache/register ; done&
while true; do echo 1> /sys/block/XXX/bcache/set/unregister ; done &

and results in the following oops,

[  +0.000053] BUG: unable to handle kernel NULL pointer dereference at 0000000000000998
[  +0.000457] #PF error: [normal kernel read fault]
[  +0.000464] PGD 800000003ca9d067 P4D 800000003ca9d067 PUD 3ca9c067 PMD 0
[  +0.000388] Oops: 0000 [#1] SMP PTI
[  +0.000269] CPU: 1 PID: 3266 Comm: bash Not tainted 5.0.0+ #6
[  +0.000346] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.fc28 04/01/2014
[  +0.000472] RIP: 0010:register_bcache+0x1829/0x1990 [bcache]
[  +0.000344] Code: b0 48 83 e8 50 48 81 fa e0 e1 10 c0 0f 84 a9 00 00 00 48 89 c6 48 89 ca 0f b7 ba 54 04 00 00 4c 8b 82 60 0c 00 00 85 ff 74 2f <49> 3b a8 98 09 00 00 74 4e 44 8d 47 ff 31 ff 49 c1 e0 03 eb 0d
[  +0.000839] RSP: 0018:ffff92ee804cbd88 EFLAGS: 00010202
[  +0.000328] RAX: ffffffffc010e190 RBX: ffff918b5c6b5000 RCX: ffff918b7d8e0000
[  +0.000399] RDX: ffff918b7d8e0000 RSI: ffffffffc010e190 RDI: 0000000000000001
[  +0.000398] RBP: ffff918b7d318340 R08: 0000000000000000 R09: ffffffffb9bd2d7a
[  +0.000385] R10: ffff918b7eb253c0 R11: ffffb95980f51200 R12: ffffffffc010e1a0
[  +0.000411] R13: fffffffffffffff2 R14: 000000000000000b R15: ffff918b7e232620
[  +0.000384] FS:  00007f955bec2740(0000) GS:ffff918b7eb00000(0000) knlGS:0000000000000000
[  +0.000420] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  +0.000801] CR2: 0000000000000998 CR3: 000000003cad6000 CR4: 00000000001406e0
[  +0.000837] Call Trace:
[  +0.000682]  ? _cond_resched+0x10/0x20
[  +0.000691]  ? __kmalloc+0x131/0x1b0
[  +0.000710]  kernfs_fop_write+0xfa/0x170
[  +0.000733]  __vfs_write+0x2e/0x190
[  +0.000688]  ? inode_security+0x10/0x30
[  +0.000698]  ? selinux_file_permission+0xd2/0x120
[  +0.000752]  ? security_file_permission+0x2b/0x100
[  +0.000753]  vfs_write+0xa8/0x1a0
[  +0.000676]  ksys_write+0x4d/0xb0
[  +0.000699]  do_syscall_64+0x3a/0xf0
[  +0.000692]  entry_SYSCALL_64_after_hwframe+0x44/0xa9

Signed-off-by: Liang Chen <liangchen.linux@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-24 10:56:27 -06:00
Geliang Tang
792732d985 bcache: use kmemdup_nul for CACHED_LABEL buffer
This patch uses kmemdup_nul to create a NUL-terminated string from
dc->sb.label. This is better than open coding it.

With this, we can move env[2] initialization into env[] array to make
code more elegant.

Signed-off-by: Geliang Tang <geliangtang@gmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-24 10:56:27 -06:00
Colin Ian King
e8cf978dff bcache: fix indentation issue, remove tabs on a hunk of code
There is a hunk of code that is indented one level too deep, fix this
by removing the extra tabs.

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-02-09 07:18:31 -07:00
Coly Li
9aaf516546 bcache: make cutoff_writeback and cutoff_writeback_sync tunable
Currently the cutoff writeback and cutoff writeback sync thresholds are
defined by CUTOFF_WRITEBACK (40) and CUTOFF_WRITEBACK_SYNC (70) as
static values. Most of time these they work fine, but when people want
to do research on bcache writeback mode performance tuning, there is no
chance to modify the soft and hard cutoff writeback values.

This patch introduces two module parameters bch_cutoff_writeback_sync
and bch_cutoff_writeback which permit people to tune the values when
loading bcache.ko. If they are not specified by module loading, current
values CUTOFF_WRITEBACK_SYNC and CUTOFF_WRITEBACK will be used as
default and nothing changes.

When people want to tune this two values,
- cutoff_writeback can be set in range [1, 70]
- cutoff_writeback_sync can be set in range [1, 90]
- cutoff_writeback always <= cutoff_writeback_sync

The default values are strongly recommended to most of users for most of
workloads. Anyway, if people wants to take their own risk to do research
on new writeback cutoff tuning for their own workload, now they can make
it.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-13 08:15:54 -07:00
Coly Li
009673d02f bcache: add MODULE_DESCRIPTION information
This patch moves MODULE_AUTHOR and MODULE_LICENSE to end of super.c, and
add MODULE_DESCRIPTION("Bcache: a Linux block layer cache").

This is preparation for adding module parameters.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-13 08:15:54 -07:00
Shenghui Wang
ae17102316 bcache: do not check if debug dentry is ERR or NULL explicitly on remove
debugfs_remove and debugfs_remove_recursive will check if the dentry
pointer is NULL or ERR, and will do nothing in that case.

Remove the check in cache_set_free and bch_debug_init.

Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-13 08:15:54 -07:00
Dongbo Cao
3a646fd776 bcache: panic fix for making cache device
when the nbuckets of cache device is smaller than 1024, making cache
device will trigger BUG_ON in kernel, add a condition to avoid this.

Reported-by: nitroxis <n@nxs.re>
Signed-off-by: Dongbo Cao <cdbdyx@163.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-08 08:19:59 -06:00
Dongbo Cao
f6027bca9e bcache: split combined if-condition code into separate ones
Split the combined '||' statements in if() check, to make the code easier
for debug.

Signed-off-by: Dongbo Cao <cdbdyx@163.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-08 08:19:57 -06:00
Dongbo Cao
91bafdf081 bcache: remove useless parameter of bch_debug_init()
Parameter "struct kobject *kobj" in bch_debug_init() is useless,
remove it in this patch.

Signed-off-by: Dongbo Cao <cdbdyx@163.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-08 08:19:53 -06:00
Shenghui Wang
46010141da bcache: recal cached_dev_sectors on detach
Recal cached_dev_sectors on cached_dev detached, as recal done on
cached_dev attached.

Update the cached_dev_sectors before bcache_device_detach called
as bcache_device_detach will set bcache_device->c to NULL.

Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-08 08:19:50 -06:00
Tang Junhui
2e17a262a2 bcache: correct dirty data statistics
When bcache device is clean, dirty keys may still exist after
journal replay, so we need to count these dirty keys even
device in clean status, otherwise after writeback, the amount
of dirty data would be incorrect.

Signed-off-by: Tang Junhui <tang.junhui.linux@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-08 08:19:45 -06:00
Tang Junhui
dd0c91793b bcache: fix ioctl in flash device
When doing ioctl in flash device, it will call ioctl_dev() in super.c,
then we should not to get cached device since flash only device has
no backend device. This patch just move the jugement dc->io_disable
to cached_dev_ioctl() to make ioctl in flash device correctly.

Fixes: 0f0709e6bf ("bcache: stop bcache device when backing device is offline")
Signed-off-by: Tang Junhui <tang.junhui.linux@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-08 08:19:42 -06:00
Shenghui Wang
7a55948d38 bcache: account size of buckets used in uuid write to ca->meta_sectors_written
UUIDs are considered as metadata. __uuid_write should add the number
of buckets (in sectors) written to disk to ca->meta_sectors_written.
Currently only 1 bucket is used in uuid write.

Steps to test:
1) create a fresh backing device and a fresh cache device separately.
   The backing device didn't attach to any cache set.
2) cd /sys/block/<cache device>/bcache
   cat metadata_written      // record the output value
   cat bucket_size
3) attach the backing device to cache set
4) cat metadata_written
   The output value is almost the same as the value in step 2
   before the change.
   After the change, the value is bigger about 1 bucket size.

Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Reviewed-by: Tang Junhui <tang.junhui.linux@gmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-08 08:19:37 -06:00
Guoju Fang
0f843e65d9 bcache: add separate workqueue for journal_write to avoid deadlock
After write SSD completed, bcache schedules journal_write work to
system_wq, which is a public workqueue in system, without WQ_MEM_RECLAIM
flag. system_wq is also a bound wq, and there may be no idle kworker on
current processor. Creating a new kworker may unfortunately need to
reclaim memory first, by shrinking cache and slab used by vfs, which
depends on bcache device. That's a deadlock.

This patch create a new workqueue for journal_write with WQ_MEM_RECLAIM
flag. It's rescuer thread will work to avoid the deadlock.

Signed-off-by: Guoju Fang <fangguoju@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-09-27 09:47:01 -06:00
Coly Li
eb2b3d0345 bcache: add the missing comments for smp_mb()/smp_wmb()
Checkpatch.pl warns there are 2 locations of smp_mb() and smp_wmb()
without code comment. This patch adds the missing code comments for
these memory barrier calls.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-08-11 15:46:42 -06:00
Coly Li
87418ef9f0 bcache: add missing SPDX header
The SPDX header is missing fro closure.c, super.c and util.c, this
patch adds SPDX header for GPL-2.0 into these files.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-08-11 15:46:42 -06:00
Coly Li
b3cf37bfa1 bcache: move open brace at end of function definitions to next line
This is not a preferred style to place open brace '{' at the end of
function definition, checkpatch.pl reports error for such coding
style. This patch moves them into the start of the next new line.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-08-11 15:46:42 -06:00
Coly Li
3be11dbab6 bcache: fix code comments style
This patch fixes 3 style issues warned by checkpatch.pl,
- Comment lines are not aligned
- Comments use "/*" on subsequent lines
- Comment lines use a trailing "*/"

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-08-11 15:46:42 -06:00
Coly Li
6ae63e3501 bcache: replace printk() by pr_*() routines
There are still many places in bcache use printk to display kernel
message, which are suggested to be preplaced by pr_*() routines like
pr_err(), pr_info(), or pr_notice().

This patch replaces all printk() with a proper pr_*() routine for
bcache code.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-08-11 15:46:41 -06:00
Coly Li
b0d30981c0 bcache: style fixes for lines over 80 characters
This patch fixes the lines over 80 characters into more lines, to minimize
warnings by checkpatch.pl. There are still some lines exceed 80 characters,
but it is better to be a single line and I don't change them.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-08-11 15:46:41 -06:00
Coly Li
fc2d5988b5 bcache: add identifier names to arguments of function definitions
There are many function definitions do not have identifier argument names,
scripts/checkpatch.pl complains warnings like this,

 WARNING: function definition argument 'struct bcache_device *' should
  also have an identifier name
  #16735: FILE: writeback.h:120:
  +void bch_sectors_dirty_init(struct bcache_device *);

This patch adds identifier argument names to all bcache function
definitions to fix such warnings.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-08-11 15:46:41 -06:00
Coly Li
1fae7cf052 bcache: style fix to add a blank line after declarations
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-08-11 15:46:41 -06:00
Coly Li
6f10f7d1b0 bcache: style fix to replace 'unsigned' by 'unsigned int'
This patch fixes warning reported by checkpatch.pl by replacing 'unsigned'
with 'unsigned int'.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-08-11 15:46:41 -06:00
Coly Li
ea8c5356d3 bcache: set max writeback rate when I/O request is idle
Commit b1092c9af9 ("bcache: allow quick writeback when backing idle")
allows the writeback rate to be faster if there is no I/O request on a
bcache device. It works well if there is only one bcache device attached
to the cache set. If there are many bcache devices attached to a cache
set, it may introduce performance regression because multiple faster
writeback threads of the idle bcache devices will compete the btree level
locks with the bcache device who have I/O requests coming.

This patch fixes the above issue by only permitting fast writebac when
all bcache devices attached on the cache set are idle. And if one of the
bcache devices has new I/O request coming, minimized all writeback
throughput immediately and let PI controller __update_writeback_rate()
to decide the upcoming writeback rate for each bcache device.

Also when all bcache devices are idle, limited wrieback rate to a small
number is wast of thoughput, especially when backing devices are slower
non-rotation devices (e.g. SATA SSD). This patch sets a max writeback
rate for each backing device if the whole cache set is idle. A faster
writeback rate in idle time means new I/Os may have more available space
for dirty data, and people may observe a better write performance then.

Please note bcache may change its cache mode in run time, and this patch
still works if the cache mode is switched from writeback mode and there
is still dirty data on cache.

Fixes: Commit b1092c9af9 ("bcache: allow quick writeback when backing idle")
Cc: stable@vger.kernel.org #4.16+
Signed-off-by: Coly Li <colyli@suse.de>
Tested-by: Kai Krakow <kai@kaishome.de>
Tested-by: Stefan Priebe <s.priebe@profihost.ag>
Cc: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-08-09 08:21:15 -06:00
Coly Li
e57fd74684 bcache: add a comment in super.c
This patch adds a line of code comment in super.c:register_bdev(), to
make code to be more comprehensible.

Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-08-09 08:21:07 -06:00
Coly Li
78ac210717 bcache: do not check return value of debugfs_create_dir()
Greg KH suggests that normal code should not care about debugfs. Therefore
no matter successful or failed of debugfs_create_dir() execution, it is
unncessary to check its return value.

There are two functions called debugfs_create_dir() and check the return
value, which are bch_debug_init() and closure_debug_init(). This patch
changes these two functions from int to void type, and ignore return values
of debugfs_create_dir().

This patch does not fix exact bug, just makes things work as they should.

Signed-off-by: Coly Li <colyli@suse.de>
Suggested-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: stable@vger.kernel.org
Cc: Kai Krakow <kai@kaishome.de>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-08-09 08:21:01 -06:00
Arnd Bergmann
75cbb3f1d8 bcache: stop using the deprecated get_seconds()
The get_seconds function is deprecated now since it returns a 32-bit
value that will eventually overflow, and we are replacing it throughout
the kernel with ktime_get_seconds() or ktime_get_real_seconds() that
return a time64_t.

bcache uses get_seconds() to read the current system time and store it in
the superblock as well as in uuid_entry structures that are user visible.

Unfortunately, the two structures in are still limited to 32 bits, so this
won't fix any real problems but will still overflow in year 2106. Let's
at least document that properly, in case we get an updated format in the
future it can be fixed. We still have a long time before the overflow
and checking the tools at https://github.com/koverstreet/bcache-tools
reveals no access to any of them.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-07-27 09:15:47 -06:00
Florian Schmaus
9b4e9f5abb bcache: do not assign in if condition in bcache_device_init()
Fixes an error condition reported by checkpatch.pl which is caused by
assigning a variable in an if condition.

Signed-off-by: Florian Schmaus <flo@geekplace.eu>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-07-27 09:15:46 -06:00
Florian Schmaus
16c1fdf4cf bcache: do not assign in if condition in bcache_init()
Fixes an error condition reported by checkpatch.pl which is caused by
assigning a variable in an if condition.

Signed-off-by: Florian Schmaus <flo@geekplace.eu>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-07-27 09:15:46 -06:00
Florian Schmaus
a56489d4b3 bcache: do not assign in if condition register_bcache()
Fixes an error condition reported by checkpatch.pl which is caused by
assigning a variable in an if condition.

Signed-off-by: Florian Schmaus <flo@geekplace.eu>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-07-27 09:15:46 -06:00
Tang Junhui
99a27d59bd bcache: simplify the calculation of the total amount of flash dirty data
Currently we calculate the total amount of flash only devices dirty data
by adding the dirty data of each flash only device under registering
locker. It is very inefficient.

In this patch, we add a member flash_dev_dirty_sectors in struct cache_set
to record the total amount of flash only devices dirty data in real time,
so we didn't need to calculate the total amount of dirty data any more.

Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-07-27 09:15:46 -06:00
Kees Cook
fad953ce0b treewide: Use array_size() in vzalloc()
The vzalloc() function has no 2-factor argument form, so multiplication
factors need to be wrapped in array_size(). This patch replaces cases of:

        vzalloc(a * b)

with:
        vzalloc(array_size(a, b))

as well as handling cases of:

        vzalloc(a * b * c)

with:

        vzalloc(array3_size(a, b, c))

This does, however, attempt to ignore constant size factors like:

        vzalloc(4 * 1024)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  vzalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  vzalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  vzalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  vzalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  vzalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  vzalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  vzalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  vzalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  vzalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  vzalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
  vzalloc(
-	sizeof(TYPE) * (COUNT_ID)
+	array_size(COUNT_ID, sizeof(TYPE))
  , ...)
|
  vzalloc(
-	sizeof(TYPE) * COUNT_ID
+	array_size(COUNT_ID, sizeof(TYPE))
  , ...)
|
  vzalloc(
-	sizeof(TYPE) * (COUNT_CONST)
+	array_size(COUNT_CONST, sizeof(TYPE))
  , ...)
|
  vzalloc(
-	sizeof(TYPE) * COUNT_CONST
+	array_size(COUNT_CONST, sizeof(TYPE))
  , ...)
|
  vzalloc(
-	sizeof(THING) * (COUNT_ID)
+	array_size(COUNT_ID, sizeof(THING))
  , ...)
|
  vzalloc(
-	sizeof(THING) * COUNT_ID
+	array_size(COUNT_ID, sizeof(THING))
  , ...)
|
  vzalloc(
-	sizeof(THING) * (COUNT_CONST)
+	array_size(COUNT_CONST, sizeof(THING))
  , ...)
|
  vzalloc(
-	sizeof(THING) * COUNT_CONST
+	array_size(COUNT_CONST, sizeof(THING))
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

  vzalloc(
-	SIZE * COUNT
+	array_size(COUNT, SIZE)
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  vzalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vzalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vzalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vzalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vzalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vzalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vzalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vzalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  vzalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  vzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  vzalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  vzalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  vzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  vzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  vzalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vzalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vzalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vzalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vzalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vzalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vzalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vzalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  vzalloc(C1 * C2 * C3, ...)
|
  vzalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants.
@@
expression E1, E2;
constant C1, C2;
@@

(
  vzalloc(C1 * C2, ...)
|
  vzalloc(
-	E1 * E2
+	array_size(E1, E2)
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00
Kees Cook
6396bb2215 treewide: kzalloc() -> kcalloc()
The kzalloc() function has a 2-factor argument form, kcalloc(). This
patch replaces cases of:

        kzalloc(a * b, gfp)

with:
        kcalloc(a * b, gfp)

as well as handling cases of:

        kzalloc(a * b * c, gfp)

with:

        kzalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

        kzalloc_array(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

        kzalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  kzalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kzalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  kzalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kzalloc
+ kcalloc
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  kzalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kzalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kzalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kzalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  kzalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kzalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kzalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  kzalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  kzalloc(C1 * C2 * C3, ...)
|
  kzalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kzalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kzalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kzalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
  kzalloc(sizeof(THING) * C2, ...)
|
  kzalloc(sizeof(TYPE) * C2, ...)
|
  kzalloc(C1 * C2 * C3, ...)
|
  kzalloc(C1 * C2, ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kzalloc
+ kcalloc
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kzalloc
+ kcalloc
  (
-	E1 * E2
+	E1, E2
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00
Kent Overstreet
d19936a266 bcache: convert to bioset_init()/mempool_init()
Convert bcache to embedded bio sets.

Reviewed-by: Coly Li <colyli@suse.de>
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-05-30 15:33:32 -06:00
Andy Shevchenko
04cbc21137 bcache: Move couple of string arrays to sysfs.c
There is couple of string arrays that are used exclusively in sysfs.c.
Move it to there and make them static.

Besides above, it will allow further clean up.

No functional change intended.

Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-05-28 14:53:18 -06:00
Coly Li
0f0709e6bf bcache: stop bcache device when backing device is offline
Currently bcache does not handle backing device failure, if backing
device is offline and disconnected from system, its bcache device can still
be accessible. If the bcache device is in writeback mode, I/O requests even
can success if the requests hit on cache device. That is to say, when and
how bcache handles offline backing device is undefined.

This patch tries to handle backing device offline in a rather simple way,
- Add cached_dev->status_update_thread kernel thread to update backing
  device status in every 1 second.
- Add cached_dev->offline_seconds to record how many seconds the backing
  device is observed to be offline. If the backing device is offline for
  BACKING_DEV_OFFLINE_TIMEOUT (30) seconds, set dc->io_disable to 1 and
  call bcache_device_stop() to stop the bache device which linked to the
  offline backing device.

Now if a backing device is offline for BACKING_DEV_OFFLINE_TIMEOUT seconds,
its bcache device will be removed, then user space application writing on
it will get error immediately, and handler the device failure in time.

This patch is quite simple, does not handle more complicated situations.
Once the bcache device is stopped, users need to recovery the backing
device, register and attach it manually.

Changelog:
v3: call wait_for_kthread_stop() before exits kernel thread.
v2: remove "bcache: " prefix when calling pr_warn().
v1: initial version.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Cc: Michael Lyle <mlyle@lyle.org>
Cc: Junhui Tang <tang.junhui@zte.com.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-05-28 14:53:16 -06:00
Coly Li
09a44ca211 bcache: use pr_info() to inform duplicated CACHE_SET_IO_DISABLE set
It is possible that multiple I/O requests hits on failed cache device or
backing device, therefore it is quite common that CACHE_SET_IO_DISABLE is
set already when a task tries to set the bit from bch_cache_set_error().
Currently the message "CACHE_SET_IO_DISABLE already set" is printed by
pr_warn(), which might mislead users to think a serious fault happens in
source code.

This patch uses pr_info() to print the information in such situation,
avoid extra worries. This information is helpful to understand bcache
behavior in cache device failures, so I still keep them in source code.

Fixes: 771f393e8f ("bcache: add CACHE_SET_IO_DISABLE to struct cache_set flags")
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-05-03 08:35:16 -06:00
Coly Li
4fd8e13843 bcache: set dc->io_disable to true in conditional_stop_bcache_device()
Commit 7e027ca4b5 ("bcache: add stop_when_cache_set_failed option to
backing device") adds stop_when_cache_set_failed option and stops bcache
device if stop_when_cache_set_failed is auto and there is dirty data on
broken cache device. There might exists a small time gap that the cache
set is released and set to NULL but bcache device is not released yet
(because they are released in parallel). During this time gap, dc->c is
NULL so CACHE_SET_IO_DISABLE won't be checked, and dc->io_disable is still
false, so new coming I/O requests will be accepted and directly go into
backing device as no cache set attached to. If there is dirty data on
cache device, this behavior may introduce potential inconsistent data.

This patch sets dc->io_disable to true before calling bcache_device_stop()
to make sure the backing device will reject new coming I/O request as
well, so even in the small time gap no I/O will directly go into backing
device to corrupt data consistency.

Fixes: 7e027ca4b5 ("bcache: add stop_when_cache_set_failed option to backing device")
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-05-03 08:35:15 -06:00
Coly Li
6147305c73 bcache: set CACHE_SET_IO_DISABLE in bch_cached_dev_error()
Commit c7b7bd0740 ("bcache: add io_disable to struct cached_dev") tries
to stop bcache device by calling bcache_device_stop() when too many I/O
errors happened on backing device. But if there is internal I/O happening
on cache device (writeback scan, garbage collection, etc), a regular I/O
request triggers the internal I/Os may still holds a refcount of dc->count,
and the refcount may only be dropped after the internal I/O stopped.

By this patch, bch_cached_dev_error() will check if the backing device is
attached to a cache set, if yes that CACHE_SET_IO_DISABLE will be set to
flags of this cache set. Then internal I/Os on cache device will be
rejected and stopped immediately, and the bcache device can be stopped.

For people who are not familiar with the interesting refcount dependance,
let me explain a bit more how the fix works. Example the writeback thread
will scan cache device for dirty data writeback purpose. Before it stopps,
it holds a refcount of dc->count. When CACHE_SET_IO_DISABLE bit is set,
the internal I/O will stopped and the while-loop in bch_writeback_thread()
quits and calls cached_dev_put() to drop dc->count. If this is the last
refcount to drop, then cached_dev_detach_finish() will be called. In this
call back function, in turn closure_put(dc->disk.cl) is called to drop a
refcount of closure dc->disk.cl. If this is the last refcount of this
closure to drop, then cached_dev_flush() will be called. Then the cached
device is freed. So if CACHE_SET_IO_DISABLE is not set, the bache device
can not be stopped until all inernal cache device I/O stopped. For large
size cache device, and writeback thread competes locks with gc thread,
there might be a quite long time to wait.

Fixes: c7b7bd0740 ("bcache: add io_disable to struct cached_dev")
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-05-03 08:35:10 -06:00
Coly Li
6e916a7eb1 bcache: store disk name in struct cache and struct cached_dev
Current code uses bdevname() or bio_devname() to reference gendisk
disk name when bcache needs to display the disk names in kernel message.
It was safe before bcache device failure handling patch set merged in,
because when devices are failed, there was deadlock to prevent bcache
printing error messages with gendisk disk name. But after the failure
handling patch set merged, the deadlock is fixed, so it is possible
that the gendisk structure bdev->hd_disk is released when bdevname() is
called to reference bdev->bd_disk->disk_name[]. This is why I receive
bug report of NULL pointers deference panic.

This patch stores gendisk disk name in a buffer inside struct cache and
struct cached_dev, then print out the offline device name won't reference
bdev->hd_disk anymore. And this patch also avoids extra function calls
of bdevname() and bio_devnmae().

Changelog:
v3, add Reviewed-by from Hannes.
v2, call bdevname() earlier in register_bdev()
v1, first version with segguestion from Junhui Tang.

Fixes: c7b7bd0740 ("bcache: add io_disable to struct cached_dev")
Fixes: 5138ac6748 ("bcache: fix misleading error message in bch_count_io_errors()")
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-05-03 08:35:08 -06:00
Linus Torvalds
3526dd0c78 for-4.17/block-20180402
-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABCAAGBQJawr05AAoJEPfTWPspceCmT2UP/1uuaqwzyl4VjFNb/k7KS7UM
 +Cs/1HBlGomgMA8orDTGqtWqLRdR3z4RSh0+MvXTzQ78HpFVYz7CbDc9itHm+G9M
 X0ypD4kF/JGCFb5cxk+x6qv28uO2nv4DP3+0hHqJWLH4UVJBWDY6bs4BPShsf9QB
 I6XjioNMhoqylXgdOITLODJZz+TcChlJMDAqwhpJwh9TH1wjobleAZ6AdmCPfgi5
 h0UCKMUKzcVJlNZwQUrzrs2cxcx9Uhunnbz7HK0ZV4n/FKFtDpGynFpQQ71pZxKe
 Be0ZOBPCQvC3ykOM/egCIvC/e5y7FgrjORD6jxyu1PTwAugI5E1VYSMxHkXvgPAx
 zOo9A7RT4GPO2tDQv+DbzNFpqeSAclTgSmr+/y1wmheBs8DiSt7MPVBiNM4zdCNv
 NLk9z7IEjFhdmluSB/LbTb1aokypMb/q7QTLouPHdwGn80k7yrhFyLHgdjpNTQ2K
 UHfHZvGxkOX6SmFhBNOtIFUkuSceenh64a0RkRle7filx+ImpbCVm2/GYi9zZNCu
 EtctgzLbLmz40zMiyDaZS2bxBgGzfn6yf4xd9LsaAJPMhvZnmXogT0D9ctWXB0WU
 mMaS7sOkLnNjnGkzF1fHkeiZ/oigrstJbe+CA7BtOdwxpWn6MZBgKEoFQ6iA2b3X
 5J1axMgVH5LAsIEcEQVq
 =RVhK
 -----END PGP SIGNATURE-----

Merge tag 'for-4.17/block-20180402' of git://git.kernel.dk/linux-block

Pull block layer updates from Jens Axboe:
 "It's a pretty quiet round this time, which is nice. This contains:

   - series from Bart, cleaning up the way we set/test/clear atomic
     queue flags.

   - series from Bart, fixing races between gendisk and queue
     registration and removal.

   - set of bcache fixes and improvements from various folks, by way of
     Michael Lyle.

   - set of lightnvm updates from Matias, most of it being the 1.2 to
     2.0 transition.

   - removal of unused DIO flags from Nikolay.

   - blk-mq/sbitmap memory ordering fixes from Omar.

   - divide-by-zero fix for BFQ from Paolo.

   - minor documentation patches from Randy.

   - timeout fix from Tejun.

   - Alpha "can't write a char atomically" fix from Mikulas.

   - set of NVMe fixes by way of Keith.

   - bsg and bsg-lib improvements from Christoph.

   - a few sed-opal fixes from Jonas.

   - cdrom check-disk-change deadlock fix from Maurizio.

   - various little fixes, comment fixes, etc from various folks"

* tag 'for-4.17/block-20180402' of git://git.kernel.dk/linux-block: (139 commits)
  blk-mq: Directly schedule q->timeout_work when aborting a request
  blktrace: fix comment in blktrace_api.h
  lightnvm: remove function name in strings
  lightnvm: pblk: remove some unnecessary NULL checks
  lightnvm: pblk: don't recover unwritten lines
  lightnvm: pblk: implement 2.0 support
  lightnvm: pblk: implement get log report chunk
  lightnvm: pblk: rename ppaf* to addrf*
  lightnvm: pblk: check for supported version
  lightnvm: implement get log report chunk helpers
  lightnvm: make address conversions depend on generic device
  lightnvm: add support for 2.0 address format
  lightnvm: normalize geometry nomenclature
  lightnvm: complete geo structure with maxoc*
  lightnvm: add shorten OCSSD version in geo
  lightnvm: add minor version to generic geometry
  lightnvm: simplify geometry structure
  lightnvm: pblk: refactor init/exit sequences
  lightnvm: Avoid validation of default op value
  lightnvm: centralize permission check for lightnvm ioctl
  ...
2018-04-05 14:27:02 -07:00
Bart Van Assche
5f2b18ec8e bcache: Fix a compiler warning in bcache_device_init()
Avoid that building with W=1 triggers the following compiler warning:

drivers/md/bcache/super.c:776:20: warning: comparison is always false due to limited range of data type [-Wtype-limits]
      d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
                    ^

Reviewed-by: Coly Li <colyli@suse.de>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-18 20:15:20 -06:00
Coly Li
c7b7bd0740 bcache: add io_disable to struct cached_dev
If a bcache device is configured to writeback mode, current code does not
handle write I/O errors on backing devices properly.

In writeback mode, write request is written to cache device, and
latter being flushed to backing device. If I/O failed when writing from
cache device to the backing device, bcache code just ignores the error and
upper layer code is NOT noticed that the backing device is broken.

This patch tries to handle backing device failure like how the cache device
failure is handled,
- Add a error counter 'io_errors' and error limit 'error_limit' in struct
  cached_dev. Add another io_disable to struct cached_dev to disable I/Os
  on the problematic backing device.
- When I/O error happens on backing device, increase io_errors counter. And
  if io_errors reaches error_limit, set cache_dev->io_disable to true, and
  stop the bcache device.

The result is, if backing device is broken of disconnected, and I/O errors
reach its error limit, backing device will be disabled and the associated
bcache device will be removed from system.

Changelog:
v2: remove "bcache: " prefix in pr_error(), and use correct name string to
    print out bcache device gendisk name.
v1: indeed this is new added in v2 patch set.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Michael Lyle <mlyle@lyle.org>
Cc: Junhui Tang <tang.junhui@zte.com.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-18 20:15:20 -06:00
Coly Li
27a40ab926 bcache: add backing_request_endio() for bi_end_io
In order to catch I/O error of backing device, a separate bi_end_io
call back is required. Then a per backing device counter can record I/O
errors number and retire the backing device if the counter reaches a
per backing device I/O error limit.

This patch adds backing_request_endio() to bcache backing device I/O code
path, this is a preparation for further complicated backing device failure
handling. So far there is no real code logic change, I make this change a
separate patch to make sure it is stable and reliable for further work.

Changelog:
v2: Fix code comments typo, remove a redundant bch_writeback_add() line
    added in v4 patch set.
v1: indeed this is new added in this patch set.

[mlyle: truncated commit subject]

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Junhui Tang <tang.junhui@zte.com.cn>
Cc: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-18 20:15:20 -06:00
Chengguang Xu
df2b94313a bcache: move closure debug file into debug directory
In current code closure debug file is outside of debug directory
and when unloading module there is lack of removing operation
for closure debug file, so it will cause creating error when trying
to reload  module.

This patch move closure debug file into "bcache" debug direcory
so that the file can get deleted properly.

Signed-off-by: Chengguang Xu <cgxu519@gmx.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-18 20:15:20 -06:00
Coly Li
7e027ca4b5 bcache: add stop_when_cache_set_failed option to backing device
When there are too many I/O errors on cache device, current bcache code
will retire the whole cache set, and detach all bcache devices. But the
detached bcache devices are not stopped, which is problematic when bcache
is in writeback mode.

If the retired cache set has dirty data of backing devices, continue
writing to bcache device will write to backing device directly. If the
LBA of write request has a dirty version cached on cache device, next time
when the cache device is re-registered and backing device re-attached to
it again, the stale dirty data on cache device will be written to backing
device, and overwrite latest directly written data. This situation causes
a quite data corruption.

But we cannot simply stop all attached bcache devices when the cache set is
broken or disconnected. For example, use bcache to accelerate performance
of an email service. In such workload, if cache device is broken but no
dirty data lost, keep the bcache device alive and permit email service
continue to access user data might be a better solution for the cache
device failure.

Nix <nix@esperi.org.uk> points out the issue and provides the above example
to explain why it might be necessary to not stop bcache device for broken
cache device. Pavel Goran <via-bcache@pvgoran.name> provides a brilliant
suggestion to provide "always" and "auto" options to per-cached device
sysfs file stop_when_cache_set_failed. If cache set is retiring and the
backing device has no dirty data on cache, it should be safe to keep the
bcache device alive. In this case, if stop_when_cache_set_failed is set to
"auto", the device failure handling code will not stop this bcache device
and permit application to access the backing device with a unattached
bcache device.

Changelog:
[mlyle: edited to not break string constants across lines]
v3: fix typos pointed out by Nix.
v2: change option values of stop_when_cache_set_failed from 1/0 to
    "auto"/"always".
v1: initial version, stop_when_cache_set_failed can be 0 (not stop) or 1
    (always stop).

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Michael Lyle <mlyle@lyle.org>
Cc: Nix <nix@esperi.org.uk>
Cc: Pavel Goran <via-bcache@pvgoran.name>
Cc: Junhui Tang <tang.junhui@zte.com.cn>
Cc: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-18 20:15:20 -06:00
Coly Li
771f393e8f bcache: add CACHE_SET_IO_DISABLE to struct cache_set flags
When too many I/Os failed on cache device, bch_cache_set_error() is called
in the error handling code path to retire whole problematic cache set. If
new I/O requests continue to come and take refcount dc->count, the cache
set won't be retired immediately, this is a problem.

Further more, there are several kernel thread and self-armed kernel work
may still running after bch_cache_set_error() is called. It needs to wait
quite a while for them to stop, or they won't stop at all. They also
prevent the cache set from being retired.

The solution in this patch is, to add per cache set flag to disable I/O
request on this cache and all attached backing devices. Then new coming I/O
requests can be rejected in *_make_request() before taking refcount, kernel
threads and self-armed kernel worker can stop very fast when flags bit
CACHE_SET_IO_DISABLE is set.

Because bcache also do internal I/Os for writeback, garbage collection,
bucket allocation, journaling, this kind of I/O should be disabled after
bch_cache_set_error() is called. So closure_bio_submit() is modified to
check whether CACHE_SET_IO_DISABLE is set on cache_set->flags. If set,
closure_bio_submit() will set bio->bi_status to BLK_STS_IOERR and
return, generic_make_request() won't be called.

A sysfs interface is also added to set or clear CACHE_SET_IO_DISABLE bit
from cache_set->flags, to disable or enable cache set I/O for debugging. It
is helpful to trigger more corner case issues for failed cache device.

Changelog
v4, add wait_for_kthread_stop(), and call it before exits writeback and gc
    kernel threads.
v3, change CACHE_SET_IO_DISABLE from 4 to 3, since it is bit index.
    remove "bcache: " prefix when printing out kernel message.
v2, more changes by previous review,
- Use CACHE_SET_IO_DISABLE of cache_set->flags, suggested by Junhui.
- Check CACHE_SET_IO_DISABLE in bch_btree_gc() to stop a while-loop, this
  is reported and inspired from origal patch of Pavel Vazharov.
v1, initial version.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Junhui Tang <tang.junhui@zte.com.cn>
Cc: Michael Lyle <mlyle@lyle.org>
Cc: Pavel Vazharov <freakpv@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-18 20:15:20 -06:00
Coly Li
3fd47bfe55 bcache: stop dc->writeback_rate_update properly
struct delayed_work writeback_rate_update in struct cache_dev is a delayed
worker to call function update_writeback_rate() in period (the interval is
defined by dc->writeback_rate_update_seconds).

When a metadate I/O error happens on cache device, bcache error handling
routine bch_cache_set_error() will call bch_cache_set_unregister() to
retire whole cache set. On the unregister code path, this delayed work is
stopped by calling cancel_delayed_work_sync(&dc->writeback_rate_update).

dc->writeback_rate_update is a special delayed work from others in bcache.
In its routine update_writeback_rate(), this delayed work is re-armed
itself. That means when cancel_delayed_work_sync() returns, this delayed
work can still be executed after several seconds defined by
dc->writeback_rate_update_seconds.

The problem is, after cancel_delayed_work_sync() returns, the cache set
unregister code path will continue and release memory of struct cache set.
Then the delayed work is scheduled to run, __update_writeback_rate()
will reference the already released cache_set memory, and trigger a NULL
pointer deference fault.

This patch introduces two more bcache device flags,
- BCACHE_DEV_WB_RUNNING
  bit set:  bcache device is in writeback mode and running, it is OK for
            dc->writeback_rate_update to re-arm itself.
  bit clear:bcache device is trying to stop dc->writeback_rate_update,
            this delayed work should not re-arm itself and quit.
- BCACHE_DEV_RATE_DW_RUNNING
  bit set:  routine update_writeback_rate() is executing.
  bit clear: routine update_writeback_rate() quits.

This patch also adds a function cancel_writeback_rate_update_dwork() to
wait for dc->writeback_rate_update quits before cancel it by calling
cancel_delayed_work_sync(). In order to avoid a deadlock by unexpected
quit dc->writeback_rate_update, after time_out seconds this function will
give up and continue to call cancel_delayed_work_sync().

And here I explain how this patch stops self re-armed delayed work properly
with the above stuffs.

update_writeback_rate() sets BCACHE_DEV_RATE_DW_RUNNING at its beginning
and clears BCACHE_DEV_RATE_DW_RUNNING at its end. Before calling
cancel_writeback_rate_update_dwork() clear flag BCACHE_DEV_WB_RUNNING.

Before calling cancel_delayed_work_sync() wait utill flag
BCACHE_DEV_RATE_DW_RUNNING is clear. So when calling
cancel_delayed_work_sync(), dc->writeback_rate_update must be already re-
armed, or quite by seeing BCACHE_DEV_WB_RUNNING cleared. In both cases
delayed work routine update_writeback_rate() won't be executed after
cancel_delayed_work_sync() returns.

Inside update_writeback_rate() before calling schedule_delayed_work(), flag
BCACHE_DEV_WB_RUNNING is checked before. If this flag is cleared, it means
someone is about to stop the delayed work. Because flag
BCACHE_DEV_RATE_DW_RUNNING is set already and cancel_delayed_work_sync()
has to wait for this flag to be cleared, we don't need to worry about race
condition here.

If update_writeback_rate() is scheduled to run after checking
BCACHE_DEV_RATE_DW_RUNNING and before calling cancel_delayed_work_sync()
in cancel_writeback_rate_update_dwork(), it is also safe. Because at this
moment BCACHE_DEV_WB_RUNNING is cleared with memory barrier. As I mentioned
previously, update_writeback_rate() will see BCACHE_DEV_WB_RUNNING is clear
and quit immediately.

Because there are more dependences inside update_writeback_rate() to struct
cache_set memory, dc->writeback_rate_update is not a simple self re-arm
delayed work. After trying many different methods (e.g. hold dc->count, or
use locks), this is the only way I can find which works to properly stop
dc->writeback_rate_update delayed work.

Changelog:
v3: change values of BCACHE_DEV_WB_RUNNING and BCACHE_DEV_RATE_DW_RUNNING
    to bit index, for test_bit().
v2: Try to fix the race issue which is pointed out by Junhui.
v1: The initial version for review

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Junhui Tang <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Michael Lyle <mlyle@lyle.org>
Cc: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-18 20:15:20 -06:00
Coly Li
804f3c6981 bcache: fix cached_dev->count usage for bch_cache_set_error()
When bcache metadata I/O fails, bcache will call bch_cache_set_error()
to retire the whole cache set. The expected behavior to retire a cache
set is to unregister the cache set, and unregister all backing device
attached to this cache set, then remove sysfs entries of the cache set
and all attached backing devices, finally release memory of structs
cache_set, cache, cached_dev and bcache_device.

In my testing when journal I/O failure triggered by disconnected cache
device, sometimes the cache set cannot be retired, and its sysfs
entry /sys/fs/bcache/<uuid> still exits and the backing device also
references it. This is not expected behavior.

When metadata I/O failes, the call senquence to retire whole cache set is,
        bch_cache_set_error()
        bch_cache_set_unregister()
        bch_cache_set_stop()
        __cache_set_unregister()     <- called as callback by calling
                                        clousre_queue(&c->caching)
        cache_set_flush()            <- called as a callback when refcount
                                        of cache_set->caching is 0
        cache_set_free()             <- called as a callback when refcount
                                        of catch_set->cl is 0
        bch_cache_set_release()      <- called as a callback when refcount
                                        of catch_set->kobj is 0

I find if kernel thread bch_writeback_thread() quits while-loop when
kthread_should_stop() is true and searched_full_index is false, clousre
callback cache_set_flush() set by continue_at() will never be called. The
result is, bcache fails to retire whole cache set.

cache_set_flush() will be called when refcount of closure c->caching is 0,
and in function bcache_device_detach() refcount of closure c->caching is
released to 0 by clousre_put(). In metadata error code path, function
bcache_device_detach() is called by cached_dev_detach_finish(). This is a
callback routine being called when cached_dev->count is 0. This refcount
is decreased by cached_dev_put().

The above dependence indicates, cache_set_flush() will be called when
refcount of cache_set->cl is 0, and refcount of cache_set->cl to be 0
when refcount of cache_dev->count is 0.

The reason why sometimes cache_dev->count is not 0 (when metadata I/O fails
and bch_cache_set_error() called) is, in bch_writeback_thread(), refcount
of cache_dev is not decreased properly.

In bch_writeback_thread(), cached_dev_put() is called only when
searched_full_index is true and cached_dev->writeback_keys is empty, a.k.a
there is no dirty data on cache. In most of run time it is correct, but
when bch_writeback_thread() quits the while-loop while cache is still
dirty, current code forget to call cached_dev_put() before this kernel
thread exits. This is why sometimes cache_set_flush() is not executed and
cache set fails to be retired.

The reason to call cached_dev_put() in bch_writeback_rate() is, when the
cache device changes from clean to dirty, cached_dev_get() is called, to
make sure during writeback operatiions both backing and cache devices
won't be released.

Adding following code in bch_writeback_thread() does not work,
   static int bch_writeback_thread(void *arg)
        }

+       if (atomic_read(&dc->has_dirty))
+               cached_dev_put()
+
        return 0;
 }
because writeback kernel thread can be waken up and start via sysfs entry:
        echo 1 > /sys/block/bcache<N>/bcache/writeback_running
It is difficult to check whether backing device is dirty without race and
extra lock. So the above modification will introduce potential refcount
underflow in some conditions.

The correct fix is, to take cached dev refcount when creating the kernel
thread, and put it before the kernel thread exits. Then bcache does not
need to take a cached dev refcount when cache turns from clean to dirty,
or to put a cached dev refcount when cache turns from ditry to clean. The
writeback kernel thread is alwasy safe to reference data structure from
cache set, cache and cached device (because a refcount of cache device is
taken for it already), and no matter the kernel thread is stopped by I/O
errors or system reboot, cached_dev->count can always be used correctly.

The patch is simple, but understanding how it works is quite complicated.

Changelog:
v2: set dc->writeback_thread to NULL in this patch, as suggested by Hannes.
v1: initial version for review.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Michael Lyle <mlyle@lyle.org>
Cc: Junhui Tang <tang.junhui@zte.com.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-18 20:15:20 -06:00
Bart Van Assche
44e1ebe2a3 bcache: Use the blk_queue_flag_{set,clear}() functions
Use the blk_queue_flag_{set,clear}() functions instead of open-coding
these.

Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Hannes Reinecke <hare@suse.de>
Cc: Ming Lei <ming.lei@redhat.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-08 14:13:48 -07:00
Michael Lyle
86755b7a96 bcache: don't attach backing with duplicate UUID
This can happen e.g. during disk cloning.

This is an incomplete fix: it does not catch duplicate UUIDs earlier
when things are still unattached.  It does not unregister the device.
Further changes to cope better with this are planned but conflict with
Coly's ongoing improvements to handling device errors.  In the meantime,
one can manually stop the device after this has happened.

Attempts to attach a duplicate device result in:

[  136.372404] loop: module loaded
[  136.424461] bcache: register_bdev() registered backing device loop0
[  136.424464] bcache: bch_cached_dev_attach() Tried to attach loop0 but duplicate UUID already attached

My test procedure is:

  dd if=/dev/sdb1 of=imgfile bs=1024 count=262144
  losetup -f imgfile

Signed-off-by: Michael Lyle <mlyle@lyle.org>
Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn>
Cc: <stable@vger.kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-05 14:43:07 -07:00
Tang Junhui
cc40daf91b bcache: fix crashes in duplicate cache device register
Kernel crashed when register a duplicate cache device, the call trace is
bellow:
[  417.643790] CPU: 1 PID: 16886 Comm: bcache-register Tainted: G
   W  OE    4.15.5-amd64-preempt-sysrq-20171018 #2
[  417.643861] Hardware name: LENOVO 20ERCTO1WW/20ERCTO1WW, BIOS
N1DET41W (1.15 ) 12/31/2015
[  417.643870] RIP: 0010:bdevname+0x13/0x1e
[  417.643876] RSP: 0018:ffffa3aa9138fd38 EFLAGS: 00010282
[  417.643884] RAX: 0000000000000000 RBX: ffff8c8f2f2f8000 RCX: ffffd6701f8
c7edf
[  417.643890] RDX: ffffa3aa9138fd88 RSI: ffffa3aa9138fd88 RDI: 00000000000
00000
[  417.643895] RBP: ffffa3aa9138fde0 R08: ffffa3aa9138fae8 R09: 00000000000
1850e
[  417.643901] R10: ffff8c8eed34b271 R11: ffff8c8eed34b250 R12: 00000000000
00000
[  417.643906] R13: ffffd6701f78f940 R14: ffff8c8f38f80000 R15: ffff8c8ea7d
90000
[  417.643913] FS:  00007fde7e66f500(0000) GS:ffff8c8f61440000(0000) knlGS:
0000000000000000
[  417.643919] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  417.643925] CR2: 0000000000000314 CR3: 00000007e6fa0001 CR4: 00000000003
606e0
[  417.643931] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 00000000000
00000
[  417.643938] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 00000000000
00400
[  417.643946] Call Trace:
[  417.643978]  register_bcache+0x1117/0x1270 [bcache]
[  417.643994]  ? slab_pre_alloc_hook+0x15/0x3c
[  417.644001]  ? slab_post_alloc_hook.isra.44+0xa/0x1a
[  417.644013]  ? kernfs_fop_write+0xf6/0x138
[  417.644020]  kernfs_fop_write+0xf6/0x138
[  417.644031]  __vfs_write+0x31/0xcc
[  417.644043]  ? current_kernel_time64+0x10/0x36
[  417.644115]  ? __audit_syscall_entry+0xbf/0xe3
[  417.644124]  vfs_write+0xa5/0xe2
[  417.644133]  SyS_write+0x5c/0x9f
[  417.644144]  do_syscall_64+0x72/0x81
[  417.644161]  entry_SYSCALL_64_after_hwframe+0x3d/0xa2
[  417.644169] RIP: 0033:0x7fde7e1c1974
[  417.644175] RSP: 002b:00007fff13009a38 EFLAGS: 00000246 ORIG_RAX: 0000000
000000001
[  417.644183] RAX: ffffffffffffffda RBX: 0000000001658280 RCX: 00007fde7e1c
1974
[  417.644188] RDX: 000000000000000a RSI: 0000000001658280 RDI: 000000000000
0001
[  417.644193] RBP: 000000000000000a R08: 0000000000000003 R09: 000000000000
0077
[  417.644198] R10: 000000000000089e R11: 0000000000000246 R12: 000000000000
0001
[  417.644203] R13: 000000000000000a R14: 7fffffffffffffff R15: 000000000000
0000
[  417.644213] Code: c7 c2 83 6f ee 98 be 20 00 00 00 48 89 df e8 6c 27 3b 0
0 48 89 d8 5b c3 0f 1f 44 00 00 48 8b 47 70 48 89 f2 48 8b bf 80 00 00 00 <8
b> b0 14 03 00 00 e9 73 ff ff ff 0f 1f 44 00 00 48 8b 47 40 39
[  417.644302] RIP: bdevname+0x13/0x1e RSP: ffffa3aa9138fd38
[  417.644306] CR2: 0000000000000314

When registering duplicate cache device in register_cache(), after failure
on calling register_cache_set(), bch_cache_release() will be called, then
bdev will be freed, so bdevname(bdev, name) caused kernel crash.

Since bch_cache_release() will free bdev, so in this patch we make sure
bdev being freed if register_cache() fail, and do not free bdev again in
register_bcache() when register_cache() fail.

Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Reported-by: Marc MERLIN <marc@merlins.org>
Tested-by: Michael Lyle <mlyle@lyle.org>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-05 14:43:05 -07:00
Coly Li
02aa8a8b2b bcache: correct flash only vols (check all uuids)
Commit 2831231d4c ("bcache: reduce cache_set devices iteration by
devices_max_used") adds c->devices_max_used to reduce iteration of
c->uuids elements, this value is updated in bcache_device_attach().

But for flash only volume, when calling flash_devs_run(), the function
bcache_device_attach() is not called yet and c->devices_max_used is not
updated. The unexpected result is, the flash only volume won't be run
by flash_devs_run().

This patch fixes the issue by iterate all c->uuids elements in
flash_devs_run(). c->devices_max_used will be updated properly when
bcache_device_attach() gets called.

[mlyle: commit subject edited for character limit]

Fixes: 2831231d4c ("bcache: reduce cache_set devices iteration by devices_max_used")
Reported-by: Tang Junhui <tang.junhui@zte.com.cn>
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-02-27 10:54:25 -07:00
Tang Junhui
73ac105be3 bcache: fix for data collapse after re-attaching an attached device
back-end device sdm has already attached a cache_set with ID
f67ebe1f-f8bc-4d73-bfe5-9dc88607f119, then try to attach with
another cache set, and it returns with an error:
[root]# cd /sys/block/sdm/bcache
[root]# echo 5ccd0a63-148e-48b8-afa2-aca9cbd6279f > attach
-bash: echo: write error: Invalid argument

After that, execute a command to modify the label of bcache
device:
[root]# echo data_disk1 > label

Then we reboot the system, when the system power on, the back-end
device can not attach to cache_set, a messages show in the log:
Feb  5 12:05:52 ceph152 kernel: [922385.508498] bcache:
bch_cached_dev_attach() couldn't find uuid for sdm in set

In sysfs_attach(), dc->sb.set_uuid was assigned to the value
which input through sysfs, no matter whether it is success
or not in bch_cached_dev_attach(). For example, If the back-end
device has already attached to an cache set, bch_cached_dev_attach()
would fail, but dc->sb.set_uuid was changed. Then modify the
label of bcache device, it will call bch_write_bdev_super(),
which would write the dc->sb.set_uuid to the super block, so we
record a wrong cache set ID in the super block, after the system
reboot, the cache set couldn't find the uuid of the back-end
device, so the bcache device couldn't exist and use any more.

In this patch, we don't assigned cache set ID to dc->sb.set_uuid
in sysfs_attach() directly, but input it into bch_cached_dev_attach(),
and assigned dc->sb.set_uuid to the cache set ID after the back-end
device attached to the cache set successful.

Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-02-07 12:50:01 -07:00
Tang Junhui
682811b3ce bcache: fix for allocator and register thread race
After long time running of random small IO writing,
I reboot the machine, and after the machine power on,
I found bcache got stuck, the stack is:
[root@ceph153 ~]# cat /proc/2510/task/*/stack
[<ffffffffa06b2455>] closure_sync+0x25/0x90 [bcache]
[<ffffffffa06b6be8>] bch_journal+0x118/0x2b0 [bcache]
[<ffffffffa06b6dc7>] bch_journal_meta+0x47/0x70 [bcache]
[<ffffffffa06be8f7>] bch_prio_write+0x237/0x340 [bcache]
[<ffffffffa06a8018>] bch_allocator_thread+0x3c8/0x3d0 [bcache]
[<ffffffff810a631f>] kthread+0xcf/0xe0
[<ffffffff8164c318>] ret_from_fork+0x58/0x90
[<ffffffffffffffff>] 0xffffffffffffffff
[root@ceph153 ~]# cat /proc/2038/task/*/stack
[<ffffffffa06b1abd>] __bch_btree_map_nodes+0x12d/0x150 [bcache]
[<ffffffffa06b1bd1>] bch_btree_insert+0xf1/0x170 [bcache]
[<ffffffffa06b637f>] bch_journal_replay+0x13f/0x230 [bcache]
[<ffffffffa06c75fe>] run_cache_set+0x79a/0x7c2 [bcache]
[<ffffffffa06c0cf8>] register_bcache+0xd48/0x1310 [bcache]
[<ffffffff812f702f>] kobj_attr_store+0xf/0x20
[<ffffffff8125b216>] sysfs_write_file+0xc6/0x140
[<ffffffff811dfbfd>] vfs_write+0xbd/0x1e0
[<ffffffff811e069f>] SyS_write+0x7f/0xe0
[<ffffffff8164c3c9>] system_call_fastpath+0x16/0x1
The stack shows the register thread and allocator thread
were getting stuck when registering cache device.

I reboot the machine several times, the issue always
exsit in this machine.

I debug the code, and found the call trace as bellow:
register_bcache()
   ==>run_cache_set()
      ==>bch_journal_replay()
         ==>bch_btree_insert()
            ==>__bch_btree_map_nodes()
               ==>btree_insert_fn()
                  ==>btree_split() //node need split
                     ==>btree_check_reserve()
In btree_check_reserve(), It will check if there is enough buckets
of RESERVE_BTREE type, since allocator thread did not work yet, so
no buckets of RESERVE_BTREE type allocated, so the register thread
waits on c->btree_cache_wait, and goes to sleep.

Then the allocator thread initialized, the call trace is bellow:
bch_allocator_thread()
==>bch_prio_write()
   ==>bch_journal_meta()
      ==>bch_journal()
         ==>journal_wait_for_write()
In journal_wait_for_write(), It will check if journal is full by
journal_full(), but the long time random small IO writing
causes the exhaustion of journal buckets(journal.blocks_free=0),
In order to release the journal buckets,
the allocator calls btree_flush_write() to flush keys to
btree nodes, and waits on c->journal.wait until btree nodes writing
over or there has already some journal buckets space, then the
allocator thread goes to sleep. but in btree_flush_write(), since
bch_journal_replay() is not finished, so no btree nodes have journal
(condition "if (btree_current_write(b)->journal)" never satisfied),
so we got no btree node to flush, no journal bucket released,
and allocator sleep all the times.

Through the above analysis, we can see that:
1) Register thread wait for allocator thread to allocate buckets of
   RESERVE_BTREE type;
2) Alloctor thread wait for register thread to replay journal, so it
   can flush btree nodes and get journal bucket.
   then they are all got stuck by waiting for each other.

Hua Rui provided a patch for me, by allocating some buckets of
RESERVE_BTREE type in advance, so the register thread can get bucket
when btree node splitting and no need to waiting for the allocator
thread. I tested it, it has effect, and register thread run a step
forward, but finally are still got stuck, the reason is only 8 bucket
of RESERVE_BTREE type were allocated, and in bch_journal_replay(),
after 2 btree nodes splitting, only 4 bucket of RESERVE_BTREE type left,
then btree_check_reserve() is not satisfied anymore, so it goes to sleep
again, and in the same time, alloctor thread did not flush enough btree
nodes to release a journal bucket, so they all got stuck again.

So we need to allocate more buckets of RESERVE_BTREE type in advance,
but how much is enough?  By experience and test, I think it should be
as much as journal buckets. Then I modify the code as this patch,
and test in the machine, and it works.

This patch modified base on Hua Rui’s patch, and allocate more buckets
of RESERVE_BTREE type in advance to avoid register thread and allocate
thread going to wait for each other.

[patch v2] ca->sb.njournal_buckets would be 0 in the first time after
cache creation, and no journal exists, so just 8 btree buckets is OK.

Signed-off-by: Hua Rui <huarui.dev@gmail.com>
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-02-07 12:50:01 -07:00
Coly Li
7ba0d830dc bcache: set error_limit correctly
Struct cache uses io_errors for two purposes,
- Error decay: when cache set error_decay is set, io_errors is used to
  generate a small piece of delay when I/O error happens.
- I/O errors counter: in order to generate big enough value for error
  decay, I/O errors counter value is stored by left shifting 20 bits (a.k.a
  IO_ERROR_SHIFT).

In function bch_count_io_errors(), if I/O errors counter reaches cache set
error limit, bch_cache_set_error() will be called to retire the whold cache
set. But current code is problematic when checking the error limit, see the
following code piece from bch_count_io_errors(),

 90     if (error) {
 91             char buf[BDEVNAME_SIZE];
 92             unsigned errors = atomic_add_return(1 << IO_ERROR_SHIFT,
 93                                                 &ca->io_errors);
 94             errors >>= IO_ERROR_SHIFT;
 95
 96             if (errors < ca->set->error_limit)
 97                     pr_err("%s: IO error on %s, recovering",
 98                            bdevname(ca->bdev, buf), m);
 99             else
100                     bch_cache_set_error(ca->set,
101                                         "%s: too many IO errors %s",
102                                         bdevname(ca->bdev, buf), m);
103     }

At line 94, errors is right shifting IO_ERROR_SHIFT bits, now it is real
errors counter to compare at line 96. But ca->set->error_limit is initia-
lized with an amplified value in bch_cache_set_alloc(),
1545         c->error_limit  = 8 << IO_ERROR_SHIFT;

It means by default, in bch_count_io_errors(), before 8<<20 errors happened
bch_cache_set_error() won't be called to retire the problematic cache
device. If the average request size is 64KB, it means bcache won't handle
failed device until 512GB data is requested. This is too large to be an I/O
threashold. So I believe the correct error limit should be much less.

This patch sets default cache set error limit to 8, then in
bch_count_io_errors() when errors counter reaches 8 (if it is default
value), function bch_cache_set_error() will be called to retire the whole
cache set. This patch also removes bits shifting when store or show
io_error_limit value via sysfs interface.

Nowadays most of SSDs handle internal flash failure automatically by LBA
address re-indirect mapping. If an I/O error can be observed by upper layer
code, it will be a notable error because that SSD can not re-indirect
map the problematic LBA address to an available flash block. This situation
indicates the whole SSD will be failed very soon. Therefore setting 8 as
the default io error limit value makes sense, it is enough for most of
cache devices.

Changelog:
v2: add reviewed-by from Hannes.
v1: initial version for review.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Junhui Tang <tang.junhui@zte.com.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-02-07 12:50:01 -07:00
Coly Li
5138ac6748 bcache: fix misleading error message in bch_count_io_errors()
Bcache only does recoverable I/O for read operations by calling
cached_dev_read_error(). For write opertions there is no I/O recovery for
failed requests.

But in bch_count_io_errors() no matter read or write I/Os, before errors
counter reaches io error limit, pr_err() always prints "IO error on %,
recoverying". For write requests this information is misleading, because
there is no I/O recovery at all.

This patch adds a parameter 'is_read' to bch_count_io_errors(), and only
prints "recovering" by pr_err() when the bio direction is READ.

Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-08 13:29:00 -07:00