Commit Graph

1402 Commits

Author SHA1 Message Date
Roman Gushchin
468e3ebf47 mm: kmem: drop __GFP_NOFAIL when allocating objcg vectors
commit 24948e3b7b upstream.

Objcg vectors attached to slab pages to store slab object ownership
information are allocated using gfp flags for the original slab
allocation.  Depending on slab page order and the size of slab objects,
objcg vector can take several pages.

If the original allocation was done with the __GFP_NOFAIL flag, it
triggered a warning in the page allocation code.  Indeed, order > 1 pages
should not been allocated with the __GFP_NOFAIL flag.

Fix this by simply dropping the __GFP_NOFAIL flag when allocating the
objcg vector.  It effectively allows to skip the accounting of a single
slab object under a heavy memory pressure.

An alternative would be to implement the mechanism to fallback to order-0
allocations for accounting metadata, which is also not perfect because it
will increase performance penalty and memory footprint of the kernel
memory accounting under memory pressure.

Link: https://lkml.kernel.org/r/ZUp8ZFGxwmCx4ZFr@P9FQF9L96D.corp.robot.car
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Reported-by: Christoph Lameter <cl@linux.com>
Closes: https://lkml.kernel.org/r/6b42243e-f197-600a-5d22-56bd728a5ad8@gentwo.org
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-11-28 16:56:35 +00:00
Johannes Weiner
ef1fcad854 mm: memcontrol: deprecate charge moving
commit da34a8484d upstream.

Charge moving mode in cgroup1 allows memory to follow tasks as they
migrate between cgroups.  This is, and always has been, a questionable
thing to do - for several reasons.

First, it's expensive.  Pages need to be identified, locked and isolated
from various MM operations, and reassigned, one by one.

Second, it's unreliable.  Once pages are charged to a cgroup, there isn't
always a clear owner task anymore.  Cache isn't moved at all, for example.
Mapped memory is moved - but if trylocking or isolating a page fails,
it's arbitrarily left behind.  Frequent moving between domains may leave a
task's memory scattered all over the place.

Third, it isn't really needed.  Launcher tasks can kick off workload tasks
directly in their target cgroup.  Using dedicated per-workload groups
allows fine-grained policy adjustments - no need to move tasks and their
physical pages between control domains.  The feature was never
forward-ported to cgroup2, and it hasn't been missed.

Despite it being a niche usecase, the maintenance overhead of supporting
it is enormous.  Because pages are moved while they are live and subject
to various MM operations, the synchronization rules are complicated.
There are lock_page_memcg() in MM and FS code, which non-cgroup people
don't understand.  In some cases we've been able to shift code and cgroup
API calls around such that we can rely on native locking as much as
possible.  But that's fragile, and sometimes we need to hold MM locks for
longer than we otherwise would (pte lock e.g.).

Mark the feature deprecated. Hopefully we can remove it soon.

And backport into -stable kernels so that people who develop against
earlier kernels are warned about this deprecation as early as possible.

[akpm@linux-foundation.org: fix memory.rst underlining]
Link: https://lkml.kernel.org/r/Y5COd+qXwk/S+n8N@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-03-10 09:40:09 +01:00
Tejun Heo
aad8bbd17a memcg: fix possible use-after-free in memcg_write_event_control()
commit 4a7ba45b1a upstream.

memcg_write_event_control() accesses the dentry->d_name of the specified
control fd to route the write call.  As a cgroup interface file can't be
renamed, it's safe to access d_name as long as the specified file is a
regular cgroup file.  Also, as these cgroup interface files can't be
removed before the directory, it's safe to access the parent too.

Prior to 347c4a8747 ("memcg: remove cgroup_event->cft"), there was a
call to __file_cft() which verified that the specified file is a regular
cgroupfs file before further accesses.  The cftype pointer returned from
__file_cft() was no longer necessary and the commit inadvertently dropped
the file type check with it allowing any file to slip through.  With the
invarients broken, the d_name and parent accesses can now race against
renames and removals of arbitrary files and cause use-after-free's.

Fix the bug by resurrecting the file type check in __file_cft().  Now that
cgroupfs is implemented through kernfs, checking the file operations needs
to go through a layer of indirection.  Instead, let's check the superblock
and dentry type.

Link: https://lkml.kernel.org/r/Y5FRm/cfcKPGzWwl@slm.duckdns.org
Fixes: 347c4a8747 ("memcg: remove cgroup_event->cft")
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jann Horn <jannh@google.com>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: <stable@vger.kernel.org>	[3.14+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-14 11:37:19 +01:00
Shakeel Butt
07bdd20777 memcg: sync flush only if periodic flush is delayed
commit 9b3016154c upstream.

Daniel Dao has reported [1] a regression on workloads that may trigger a
lot of refaults (anon and file).  The underlying issue is that flushing
rstat is expensive.  Although rstat flush are batched with (nr_cpus *
MEMCG_BATCH) stat updates, it seems like there are workloads which
genuinely do stat updates larger than batch value within short amount of
time.  Since the rstat flush can happen in the performance critical
codepaths like page faults, such workload can suffer greatly.

This patch fixes this regression by making the rstat flushing
conditional in the performance critical codepaths.  More specifically,
the kernel relies on the async periodic rstat flusher to flush the stats
and only if the periodic flusher is delayed by more than twice the
amount of its normal time window then the kernel allows rstat flushing
from the performance critical codepaths.

Now the question: what are the side-effects of this change? The worst
that can happen is the refault codepath will see 4sec old lruvec stats
and may cause false (or missed) activations of the refaulted page which
may under-or-overestimate the workingset size.  Though that is not very
concerning as the kernel can already miss or do false activations.

There are two more codepaths whose flushing behavior is not changed by
this patch and we may need to come to them in future.  One is the
writeback stats used by dirty throttling and second is the deactivation
heuristic in the reclaim.  For now keeping an eye on them and if there
is report of regression due to these codepaths, we will reevaluate then.

Link: https://lore.kernel.org/all/CA+wXwBSyO87ZX5PVwdHm-=dBjZYECGmfnydUicUyrQqndgX2MQ@mail.gmail.com [1]
Link: https://lkml.kernel.org/r/20220304184040.1304781-1-shakeelb@google.com
Fixes: 1f828223b7 ("memcg: flush lruvec stats in the refault")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reported-by: Daniel Dao <dqminh@cloudflare.com>
Tested-by: Ivan Babrou <ivan@cloudflare.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Frank Hofmann <fhofmann@cloudflare.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-04-27 14:38:57 +02:00
Randy Dunlap
c9acbcd636 mm/memcontrol: return 1 from cgroup.memory __setup() handler
commit 460a79e188 upstream.

__setup() handlers should return 1 if the command line option is handled
and 0 if not (or maybe never return 0; it just pollutes init's
environment).

The only reason that this particular __setup handler does not pollute
init's environment is that the setup string contains a '.', as in
"cgroup.memory".  This causes init/main.c::unknown_boottoption() to
consider it to be an "Unused module parameter" and ignore it.  (This is
for parsing of loadable module parameters any time after kernel init.)
Otherwise the string "cgroup.memory=whatever" would be added to init's
environment strings.

Instead of relying on this '.' quirk, just return 1 to indicate that the
boot option has been handled.

Note that there is no warning message if someone enters:
	cgroup.memory=anything_invalid

Link: https://lkml.kernel.org/r/20220222005811.10672-1-rdunlap@infradead.org
Fixes: f7e1cb6ec5 ("mm: memcontrol: account socket memory in unified hierarchy memory controller")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru>
Link: lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-04-08 14:24:13 +02:00
Roman Gushchin
956cf21cd1 mm: memcg: synchronize objcg lists with a dedicated spinlock
commit 0764db9b49 upstream.

Alexander reported a circular lock dependency revealed by the mmap1 ltp
test:

  LOCKDEP_CIRCULAR (suite: ltp, case: mtest06 (mmap1))
          WARNING: possible circular locking dependency detected
          5.17.0-20220113.rc0.git0.f2211f194038.300.fc35.s390x+debug #1 Not tainted
          ------------------------------------------------------
          mmap1/202299 is trying to acquire lock:
          00000001892c0188 (css_set_lock){..-.}-{2:2}, at: obj_cgroup_release+0x4a/0xe0
          but task is already holding lock:
          00000000ca3b3818 (&sighand->siglock){-.-.}-{2:2}, at: force_sig_info_to_task+0x38/0x180
          which lock already depends on the new lock.
          the existing dependency chain (in reverse order) is:
          -> #1 (&sighand->siglock){-.-.}-{2:2}:
                 __lock_acquire+0x604/0xbd8
                 lock_acquire.part.0+0xe2/0x238
                 lock_acquire+0xb0/0x200
                 _raw_spin_lock_irqsave+0x6a/0xd8
                 __lock_task_sighand+0x90/0x190
                 cgroup_freeze_task+0x2e/0x90
                 cgroup_migrate_execute+0x11c/0x608
                 cgroup_update_dfl_csses+0x246/0x270
                 cgroup_subtree_control_write+0x238/0x518
                 kernfs_fop_write_iter+0x13e/0x1e0
                 new_sync_write+0x100/0x190
                 vfs_write+0x22c/0x2d8
                 ksys_write+0x6c/0xf8
                 __do_syscall+0x1da/0x208
                 system_call+0x82/0xb0
          -> #0 (css_set_lock){..-.}-{2:2}:
                 check_prev_add+0xe0/0xed8
                 validate_chain+0x736/0xb20
                 __lock_acquire+0x604/0xbd8
                 lock_acquire.part.0+0xe2/0x238
                 lock_acquire+0xb0/0x200
                 _raw_spin_lock_irqsave+0x6a/0xd8
                 obj_cgroup_release+0x4a/0xe0
                 percpu_ref_put_many.constprop.0+0x150/0x168
                 drain_obj_stock+0x94/0xe8
                 refill_obj_stock+0x94/0x278
                 obj_cgroup_charge+0x164/0x1d8
                 kmem_cache_alloc+0xac/0x528
                 __sigqueue_alloc+0x150/0x308
                 __send_signal+0x260/0x550
                 send_signal+0x7e/0x348
                 force_sig_info_to_task+0x104/0x180
                 force_sig_fault+0x48/0x58
                 __do_pgm_check+0x120/0x1f0
                 pgm_check_handler+0x11e/0x180
          other info that might help us debug this:
           Possible unsafe locking scenario:
                 CPU0                    CPU1
                 ----                    ----
            lock(&sighand->siglock);
                                         lock(css_set_lock);
                                         lock(&sighand->siglock);
            lock(css_set_lock);
           *** DEADLOCK ***
          2 locks held by mmap1/202299:
           #0: 00000000ca3b3818 (&sighand->siglock){-.-.}-{2:2}, at: force_sig_info_to_task+0x38/0x180
           #1: 00000001892ad560 (rcu_read_lock){....}-{1:2}, at: percpu_ref_put_many.constprop.0+0x0/0x168
          stack backtrace:
          CPU: 15 PID: 202299 Comm: mmap1 Not tainted 5.17.0-20220113.rc0.git0.f2211f194038.300.fc35.s390x+debug #1
          Hardware name: IBM 3906 M04 704 (LPAR)
          Call Trace:
            dump_stack_lvl+0x76/0x98
            check_noncircular+0x136/0x158
            check_prev_add+0xe0/0xed8
            validate_chain+0x736/0xb20
            __lock_acquire+0x604/0xbd8
            lock_acquire.part.0+0xe2/0x238
            lock_acquire+0xb0/0x200
            _raw_spin_lock_irqsave+0x6a/0xd8
            obj_cgroup_release+0x4a/0xe0
            percpu_ref_put_many.constprop.0+0x150/0x168
            drain_obj_stock+0x94/0xe8
            refill_obj_stock+0x94/0x278
            obj_cgroup_charge+0x164/0x1d8
            kmem_cache_alloc+0xac/0x528
            __sigqueue_alloc+0x150/0x308
            __send_signal+0x260/0x550
            send_signal+0x7e/0x348
            force_sig_info_to_task+0x104/0x180
            force_sig_fault+0x48/0x58
            __do_pgm_check+0x120/0x1f0
            pgm_check_handler+0x11e/0x180
          INFO: lockdep is turned off.

In this example a slab allocation from __send_signal() caused a
refilling and draining of a percpu objcg stock, resulted in a releasing
of another non-related objcg.  Objcg release path requires taking the
css_set_lock, which is used to synchronize objcg lists.

This can create a circular dependency with the sighandler lock, which is
taken with the locked css_set_lock by the freezer code (to freeze a
task).

In general it seems that using css_set_lock to synchronize objcg lists
makes any slab allocations and deallocation with the locked css_set_lock
and any intervened locks risky.

To fix the problem and make the code more robust let's stop using
css_set_lock to synchronize objcg lists and use a new dedicated spinlock
instead.

Link: https://lkml.kernel.org/r/Yfm1IHmoGdyUR81T@carbon.dhcp.thefacebook.com
Fixes: bf4f059954 ("mm: memcg/slab: obj_cgroup API")
Signed-off-by: Roman Gushchin <guro@fb.com>
Reported-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Tested-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Reviewed-by: Waiman Long <longman@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Jeremy Linton <jeremy.linton@arm.com>
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-02-16 12:56:38 +01:00
Shakeel Butt
6ebe994b54 memcg: better bounds on the memcg stats updates
commit 5b3be698a8 upstream.

Commit 11192d9c12 ("memcg: flush stats only if updated") added
tracking of memcg stats updates which is used by the readers to flush
only if the updates are over a certain threshold.  However each
individual update can correspond to a large value change for a given
stat.  For example adding or removing a hugepage to an LRU changes the
stat by thp_nr_pages (512 on x86_64).

Treating the update related to THP as one can keep the stat off, in
theory, by (thp_nr_pages * nr_cpus * CHARGE_BATCH) before flush.

To handle such scenarios, this patch adds consideration of the stat
update value as well instead of just the update event.  In addition let
the asyn flusher unconditionally flush the stats to put time limit on
the stats skew and hopefully a lot less readers would need to flush.

Link: https://lkml.kernel.org/r/20211118065350.697046-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Michal Koutný" <mkoutny@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ivan Babrou <ivan@cloudflare.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-01-29 10:58:24 +01:00
Shakeel Butt
6c8076660d memcg: unify memcg stat flushing
commit fd25a9e0e2 upstream.

The memcg stats can be flushed in multiple context and potentially in
parallel too.  For example multiple parallel user space readers for
memcg stats will contend on the rstat locks with each other.  There is
no need for that.  We just need one flusher and everyone else can
benefit.

In addition after aa48e47e39 ("memcg: infrastructure to flush memcg
stats") the kernel periodically flush the memcg stats from the root, so,
the other flushers will potentially have much less work to do.

Link: https://lkml.kernel.org/r/20211001190040.48086-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Michal Koutný" <mkoutny@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ivan Babrou <ivan@cloudflare.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-01-29 10:58:24 +01:00
Shakeel Butt
7182935bd5 memcg: flush stats only if updated
commit 11192d9c12 upstream.

At the moment, the kernel flushes the memcg stats on every refault and
also on every reclaim iteration.  Although rstat maintains per-cpu
update tree but on the flush the kernel still has to go through all the
cpu rstat update tree to check if there is anything to flush.  This
patch adds the tracking on the stats update side to make flush side more
clever by skipping the flush if there is no update.

The stats update codepath is very sensitive performance wise for many
workloads and benchmarks.  So, we can not follow what the commit
aa48e47e39 ("memcg: infrastructure to flush memcg stats") did which
was triggering async flush through queue_work() and caused a lot
performance regression reports.  That got reverted by the commit
1f828223b7 ("memcg: flush lruvec stats in the refault").

In this patch we kept the stats update codepath very minimal and let the
stats reader side to flush the stats only when the updates are over a
specific threshold.  For now the threshold is (nr_cpus * CHARGE_BATCH).

To evaluate the impact of this patch, an 8 GiB tmpfs file is created on
a system with swap-on-zram and the file was pushed to swap through
memory.force_empty interface.  On reading the whole file, the memcg stat
flush in the refault code path is triggered.  With this patch, we
observed 63% reduction in the read time of 8 GiB file.

Link: https://lkml.kernel.org/r/20211001190040.48086-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Reviewed-by: "Michal Koutný" <mkoutny@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ivan Babrou <ivan@cloudflare.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-01-29 10:58:24 +01:00
Vasily Averin
f1e83db27a memcg: prohibit unconditional exceeding the limit of dying tasks
commit a4ebf1b6ca upstream.

Memory cgroup charging allows killed or exiting tasks to exceed the hard
limit.  It is assumed that the amount of the memory charged by those
tasks is bound and most of the memory will get released while the task
is exiting.  This is resembling a heuristic for the global OOM situation
when tasks get access to memory reserves.  There is no global memory
shortage at the memcg level so the memcg heuristic is more relieved.

The above assumption is overly optimistic though.  E.g.  vmalloc can
scale to really large requests and the heuristic would allow that.  We
used to have an early break in the vmalloc allocator for killed tasks
but this has been reverted by commit b8c8a338f7 ("Revert "vmalloc:
back off when the current task is killed"").  There are likely other
similar code paths which do not check for fatal signals in an
allocation&charge loop.  Also there are some kernel objects charged to a
memcg which are not bound to a process life time.

It has been observed that it is not really hard to trigger these
bypasses and cause global OOM situation.

One potential way to address these runaways would be to limit the amount
of excess (similar to the global OOM with limited oom reserves).  This
is certainly possible but it is not really clear how much of an excess
is desirable and still protects from global OOMs as that would have to
consider the overall memcg configuration.

This patch is addressing the problem by removing the heuristic
altogether.  Bypass is only allowed for requests which either cannot
fail or where the failure is not desirable while excess should be still
limited (e.g.  atomic requests).  Implementation wise a killed or dying
task fails to charge if it has passed the OOM killer stage.  That should
give all forms of reclaim chance to restore the limit before the failure
(ENOMEM) and tell the caller to back off.

In addition, this patch renames should_force_charge() helper to
task_is_dying() because now its use is not associated witch forced
charging.

This patch depends on pagefault_out_of_memory() to not trigger
out_of_memory(), because then a memcg failure can unwind to VM_FAULT_OOM
and cause a global OOM killer.

Link: https://lkml.kernel.org/r/8f5cebbb-06da-4902-91f0-6566fc4b4203@virtuozzo.com
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-18 19:17:16 +01:00
Shakeel Butt
1f828223b7 memcg: flush lruvec stats in the refault
Prior to the commit 7e1c0d6f58 ("memcg: switch lruvec stats to rstat")
and the commit aa48e47e39 ("memcg: infrastructure to flush memcg
stats"), each lruvec memcg stats can be off by (nr_cgroups * nr_cpus *
32) at worst and for unbounded amount of time.  The commit aa48e47e39
moved the lruvec stats to rstat infrastructure and the commit
7e1c0d6f58 bounded the error for all the lruvec stats to (nr_cpus *
32) at worst for at most 2 seconds.  More specifically it decoupled the
number of stats and the number of cgroups from the error rate.

However this reduction in error comes with the cost of triggering the
slowpath of stats update more frequently.  Previously in the slowpath
the kernel adds the stats up the memcg tree.  After aa48e47e39, the
kernel triggers the asyn lruvec stats flush through queue_work().  This
causes regression reports from 0day kernel bot [1] as well as from
phoronix test suite [2].

We tried two options to fix the regression:

 1) Increase the threshold to trigger the slowpath in lruvec stats
    update codepath from 32 to 512.

 2) Remove the slowpath from lruvec stats update codepath and instead
    flush the stats in the page refault codepath. The assumption is that
    the kernel timely flush the stats, so, the update tree would be
    small in the refault codepath to not cause the preformance impact.

Following are the results of will-it-scale/page_fault[1|2|3] benchmark
on four settings i.e.  (1) 5.15-rc1 as baseline (2) 5.15-rc1 with
aa48e47e39 and 7e1c0d6f58 reverted (3) 5.15-rc1 with option-1
(4) 5.15-rc1 with option-2.

  test       (1)      (2)               (3)               (4)
  pg_f1   368563   406277 (10.23%)   399693  (8.44%)   416398 (12.97%)
  pg_f2   338399   372133  (9.96%)   369180  (9.09%)   381024 (12.59%)
  pg_f3   500853   575399 (14.88%)   570388 (13.88%)   576083 (15.02%)

From the above result, it seems like the option-2 not only solves the
regression but also improves the performance for at least these
benchmarks.

Feng Tang (intel) ran the aim7 benchmark with these two options and
confirms that option-1 reduces the regression but option-2 removes the
regression.

Michael Larabel (phoronix) ran multiple benchmarks with these options
and reported the results at [3] and it shows for most benchmarks
option-2 removes the regression introduced by the commit aa48e47e39
("memcg: infrastructure to flush memcg stats").

Based on the experiment results, this patch proposed the option-2 as the
solution to resolve the regression.

Link: https://lore.kernel.org/all/20210726022421.GB21872@xsang-OptiPlex-9020 [1]
Link: https://www.phoronix.com/scan.php?page=article&item=linux515-compile-regress [2]
Link: https://openbenchmarking.org/result/2109226-DEBU-LINUX5104 [3]
Fixes: aa48e47e39 ("memcg: infrastructure to flush memcg stats")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Tested-by: Michael Larabel <Michael@phoronix.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hillf Danton <hdanton@sina.com>,
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>,
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-23 10:09:13 -07:00
Linus Torvalds
14726903c8 Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:
 "173 patches.

  Subsystems affected by this series: ia64, ocfs2, block, and mm (debug,
  pagecache, gup, swap, shmem, memcg, selftests, pagemap, mremap,
  bootmem, sparsemem, vmalloc, kasan, pagealloc, memory-failure,
  hugetlb, userfaultfd, vmscan, compaction, mempolicy, memblock,
  oom-kill, migration, ksm, percpu, vmstat, and madvise)"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (173 commits)
  mm/madvise: add MADV_WILLNEED to process_madvise()
  mm/vmstat: remove unneeded return value
  mm/vmstat: simplify the array size calculation
  mm/vmstat: correct some wrong comments
  mm/percpu,c: remove obsolete comments of pcpu_chunk_populated()
  selftests: vm: add COW time test for KSM pages
  selftests: vm: add KSM merging time test
  mm: KSM: fix data type
  selftests: vm: add KSM merging across nodes test
  selftests: vm: add KSM zero page merging test
  selftests: vm: add KSM unmerge test
  selftests: vm: add KSM merge test
  mm/migrate: correct kernel-doc notation
  mm: wire up syscall process_mrelease
  mm: introduce process_mrelease system call
  memblock: make memblock_find_in_range method private
  mm/mempolicy.c: use in_task() in mempolicy_slab_node()
  mm/mempolicy: unify the create() func for bind/interleave/prefer-many policies
  mm/mempolicy: advertise new MPOL_PREFERRED_MANY
  mm/hugetlb: add support for mempolicy MPOL_PREFERRED_MANY
  ...
2021-09-03 10:08:28 -07:00
Hui Su
9647875be5 mm/vmpressure: replace vmpressure_to_css() with vmpressure_to_memcg()
We can get memcg directly form vmpr instead of vmpr->memcg->css->memcg, so
add a new func helper vmpressure_to_memcg().  And no code will use
vmpressure_to_css(), so delete it.

Link: https://lkml.kernel.org/r/20210630112146.455103-1-suhui@zeku.com
Signed-off-by: Hui Su <suhui@zeku.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:17 -07:00
Shakeel Butt
4ba9515d32 memcg: make memcg->event_list_lock irqsafe
The memcg->event_list_lock is usually taken in the normal context but when
the userspace closes the corresponding eventfd, eventfd_release through
memcg_event_wake takes memcg->event_list_lock with interrupts disabled.
This is not an issue on its own but it creates a nested dependency from
eventfd_ctx->wqh.lock to memcg->event_list_lock.

Independently, for unrelated eventfd, eventfd_signal() can be called in
the irq context, thus making eventfd_ctx->wqh.lock an irq lock.  For
example, FPGA DFL driver, VHOST VPDA driver and couple of VFIO drivers.
This will force memcg->event_list_lock to be an irqsafe lock as well.

One way to break the nested dependency between eventfd_ctx->wqh.lock and
memcg->event_list_lock is to add an indirection.  However the simplest
solution would be to make memcg->event_list_lock irqsafe.  This is cgroup
v1 feature, is in maintenance and may get deprecated in near future.  So,
no need to add more code.

BTW this has been discussed previously [1] but there weren't irq users of
eventfd_signal() at the time.

[1] https://www.spinics.net/lists/cgroups/msg06248.html

Link: https://lkml.kernel.org/r/20210830172953.207257-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:13 -07:00
Michal Hocko
5c49cf9ad6 memcg: fix up drain_local_stock comment
Thomas and Vlastimil have noticed that the comment in drain_local_stock
doesn't quite make sense.  It talks about a synchronization with the
memory hotplug but there is no actual memory hotplug involvement here.  I
meant to talk about cpu hotplug here.  Fix that up and hopefuly make the
comment more helpful by referencing the cpu hotplug callback as well.

Link: https://lkml.kernel.org/r/YRDwOhVglJmY7ES5@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:13 -07:00
Miaohe Lin
27fb0956ed mm, memcg: save some atomic ops when flush is already true
Add 'else' to save some atomic ops in obj_stock_flush_required() when
flush is already true.  No functional change intended here.

Link: https://lkml.kernel.org/r/20210807082835.61281-3-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Alex Shi <alexs@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:13 -07:00
Baolin Wang
37bc3cb9bb mm: memcontrol: set the correct memcg swappiness restriction
Since commit c843966c55 ("mm: allow swappiness that prefers reclaiming
anon over the file workingset") has expended the swappiness value to make
swap to be preferred in some systems.  We should also change the memcg
swappiness restriction to allow memcg swap-preferred.

Link: https://lkml.kernel.org/r/d77469b90c45c49953ccbc51e54a1d465bc18f70.1627626255.git.baolin.wang@linux.alibaba.com
Fixes: c843966c55 ("mm: allow swappiness that prefers reclaiming anon over the file workingset")
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:13 -07:00
Vasily Averin
55a68c8239 memcg: replace in_interrupt() by !in_task() in active_memcg()
set_active_memcg() uses in_interrupt() check to select proper storage for
cgroup: pointer on task struct or per-cpu pointer.

It isn't fully correct: obsoleted in_interrupt() includes tasks with
disabled BH.  It's better to use '!in_task()' instead.

Link: https://lkml.org/lkml/2021/7/26/487
Link: https://lkml.kernel.org/r/ed4448b0-4970-616f-7368-ef9dd3cb628d@virtuozzo.com
Fixes: 37d5985c00 ("mm: kmem: prepare remote memcg charging infra for interrupt contexts")
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:13 -07:00
Shakeel Butt
aa48e47e39 memcg: infrastructure to flush memcg stats
At the moment memcg stats are read in four contexts:

1. memcg stat user interfaces
2. dirty throttling
3. page fault
4. memory reclaim

Currently the kernel flushes the stats for first two cases.  Flushing the
stats for remaining two casese may have performance impact.  Always
flushing the memcg stats on the page fault code path may negatively
impacts the performance of the applications.  In addition flushing in the
memory reclaim code path, though treated as slowpath, can become the
source of contention for the global lock taken for stat flushing because
when system or memcg is under memory pressure, many tasks may enter the
reclaim path.

This patch uses following mechanisms to solve these challenges:

1. Periodically flush the stats from root memcg every 2 seconds.  This
   will time limit the out of sync stats.

2. Asynchronously flush the stats after fixed number of stat updates.
   In the worst case the stat can be out of sync by O(nr_cpus * BATCH) for
   2 seconds.

3. For avoiding thundering herd to flush the stats particularly from
   the memory reclaim context, introduce memcg local spinlock and let only
   one flusher active at a time.  This could have been done through
   cgroup_rstat_lock lock but that lock is used by other subsystem and for
   userspace reading memcg stats.  So, it is better to keep flushers
   introduced by this patch decoupled from cgroup_rstat_lock.  However we
   would have to use irqsafe version of rstat flush but that is fine as
   this code path will be flushing for whole tree and do the work for
   everyone.  No one will be waiting for that worker.

[shakeelb@google.com: fix sleep-in-wrong context bug]
  Link: https://lkml.kernel.org/r/20210716212137.1391164-2-shakeelb@google.com

Link: https://lkml.kernel.org/r/20210714013948.270662-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:12 -07:00
Shakeel Butt
7e1c0d6f58 memcg: switch lruvec stats to rstat
The commit 2d146aa3aa ("mm: memcontrol: switch to rstat") switched memcg
stats to rstat infrastructure but skipped the conversion of the lruvec
stats as such stats are read in the performance critical code paths and
flushing stats may have impacted the performances of the applications.
This patch converts the lruvec stats to rstat and later patches add
mechanisms to keep the performance impact to minimum.

The rstat conversion comes with the price i.e.  memory cost.  Effectively
this patch reverts the savings done by the commit f3344adf38 ("mm:
memcontrol: optimize per-lruvec stats counter memory usage").  However
this cost is justified due to negative impact of the inaccurate lruvec
stats on many heuristics.  One such case is reported in [1].

The memory reclaim code is filled with plethora of heuristics and many of
those heuristics reads the lruvec stats.  So, inaccurate stats can make
such heuristics ineffective.  [1] reports the impact of inaccurate lruvec
stats on the "cache trim mode" heuristic.  Inaccurate lruvec stats can
impact the deactivation and aging anon heuristics as well.

[1] https://lore.kernel.org/linux-mm/20210311004449.1170308-1-ying.huang@intel.com/

Link: https://lkml.kernel.org/r/20210716212137.1391164-1-shakeelb@google.com
Link: https://lkml.kernel.org/r/20210714013948.270662-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:12 -07:00
Suren Baghdasaryan
01c4b28cd2 mm, memcg: inline swap-related functions to improve disabled memcg config
Inline mem_cgroup_try_charge_swap, mem_cgroup_uncharge_swap and
cgroup_throttle_swaprate functions to perform mem_cgroup_disabled static
key check inline before calling the main body of the function.  This
minimizes the memcg overhead in the pagefault and exit_mmap paths when
memcgs are disabled using cgroup_disable=memory command-line option.  This
change results in ~1% overhead reduction when running PFT test [1]
comparing {CONFIG_MEMCG=n} against {CONFIG_MEMCG=y, cgroup_disable=memory}
configuration on an 8-core ARM64 Android device.

[1] https://lkml.org/lkml/2006/8/29/294 also used in mmtests suite

Link: https://lkml.kernel.org/r/20210713010934.299876-3-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:12 -07:00
Suren Baghdasaryan
2c8d8f97ae mm, memcg: inline mem_cgroup_{charge/uncharge} to improve disabled memcg config
Inline mem_cgroup_{charge/uncharge} and mem_cgroup_uncharge_list functions
functions to perform mem_cgroup_disabled static key check inline before
calling the main body of the function.  This minimizes the memcg overhead
in the pagefault and exit_mmap paths when memcgs are disabled using
cgroup_disable=memory command-line option.

This change results in ~0.4% overhead reduction when running PFT test [1]
comparing {CONFIG_MEMCG=n} against {CONFIG_MEMCG=y, cgroup_disable=memory}
configuration on an 8-core ARM64 Android device.

[1] https://lkml.org/lkml/2006/8/29/294 also used in mmtests suite

Link: https://lkml.kernel.org/r/20210713010934.299876-2-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Alex Shi <alexs@kernel.org>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:12 -07:00
Suren Baghdasaryan
56cab2859f mm, memcg: add mem_cgroup_disabled checks in vmpressure and swap-related functions
Add mem_cgroup_disabled check in vmpressure, mem_cgroup_uncharge_swap and
cgroup_throttle_swaprate functions.  This minimizes the memcg overhead in
the pagefault and exit_mmap paths when memcgs are disabled using
cgroup_disable=memory command-line option.

This change results in ~2.1% overhead reduction when running PFT test [1]
comparing {CONFIG_MEMCG=n, CONFIG_MEMCG_SWAP=n} against {CONFIG_MEMCG=y,
CONFIG_MEMCG_SWAP=y, cgroup_disable=memory} configuration on an 8-core
ARM64 Android device.

[1] https://lkml.org/lkml/2006/8/29/294 also used in mmtests suite

Link: https://lkml.kernel.org/r/20210713010934.299876-1-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:12 -07:00
Shakeel Butt
7490a2d248 writeback: memcg: simplify cgroup_writeback_by_id
Currently cgroup_writeback_by_id calls mem_cgroup_wb_stats() to get dirty
pages for a memcg.  However mem_cgroup_wb_stats() does a lot more than
just get the number of dirty pages.  Just directly get the number of dirty
pages instead of calling mem_cgroup_wb_stats().  Also
cgroup_writeback_by_id() is only called for best-effort dirty flushing, so
remove the unused 'nr' parameter and no need to explicitly flush memcg
stats.

Link: https://lkml.kernel.org/r/20210722182627.2267368-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:10 -07:00
Jakub Kicinski
f444fea789 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
drivers/ptp/Kconfig:
  55c8fca1da ("ptp_pch: Restore dependency on PCI")
  e5f3155267 ("ethernet: fix PTP_1588_CLOCK dependencies")

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-19 18:09:18 -07:00
Wei Wang
4b1327be9f net-memcg: pass in gfp_t mask to mem_cgroup_charge_skmem()
Add gfp_t mask as an input parameter to mem_cgroup_charge_skmem(),
to give more control to the networking stack and enable it to change
memcg charging behavior. In the future, the networking stack may decide
to avoid oom-kills when fallbacks are more appropriate.

One behavior change in mem_cgroup_charge_skmem() by this patch is to
avoid force charging by default and let the caller decide when and if
force charging is needed through the presence or absence of
__GFP_NOFAIL.

Signed-off-by: Wei Wang <weiwan@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-18 11:39:44 +01:00
Waiman Long
7fa0dacbaf mm/memcg: fix incorrect flushing of lruvec data in obj_stock
When mod_objcg_state() is called with a pgdat that is different from
that in the obj_stock, the old lruvec data cached in obj_stock are
flushed out.  Unfortunately, they were flushed to the new pgdat and so
the data go to the wrong node.  This will screw up the slab data
reported in /sys/devices/system/node/node*/meminfo.

Fix that by flushing the data to the cached pgdat instead.

Link: https://lkml.kernel.org/r/20210802143834.30578-1-longman@redhat.com
Fixes: 68ac5b3c8d ("mm/memcg: cache vmstat data in percpu memcg_stock_pcp")
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: Yafang Shao <laoar.shao@gmail.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Xing Zhengjun <zhengjun.xing@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-08-13 14:09:32 -10:00
Jakub Kicinski
d2e11fd2b7 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Conflicting commits, all resolutions pretty trivial:

drivers/bus/mhi/pci_generic.c
  5c2c853159 ("bus: mhi: pci-generic: configurable network interface MRU")
  56f6f4c4eb ("bus: mhi: pci_generic: Apply no-op for wake using sideband wake boolean")

drivers/nfc/s3fwrn5/firmware.c
  a0302ff590 ("nfc: s3fwrn5: remove unnecessary label")
  46573e3ab0 ("nfc: s3fwrn5: fix undefined parameter values in dev_err()")
  801e541c79 ("nfc: s3fwrn5: fix undefined parameter values in dev_err()")

MAINTAINERS
  7d901a1e87 ("net: phy: add Maxlinear GPY115/21x/24x driver")
  8a7b46fa79 ("MAINTAINERS: add Yasushi SHOJI as reviewer for the Microchip CAN BUS Analyzer Tool driver")

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-07-31 09:14:46 -07:00
Johannes Weiner
30def93565 mm: memcontrol: fix blocking rstat function called from atomic cgroup1 thresholding code
Dan Carpenter reports:

    The patch 2d146aa3aa: "mm: memcontrol: switch to rstat" from Apr
    29, 2021, leads to the following static checker warning:

	    kernel/cgroup/rstat.c:200 cgroup_rstat_flush()
	    warn: sleeping in atomic context

    mm/memcontrol.c
      3572  static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
      3573  {
      3574          unsigned long val;
      3575
      3576          if (mem_cgroup_is_root(memcg)) {
      3577                  cgroup_rstat_flush(memcg->css.cgroup);
			    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

    This is from static analysis and potentially a false positive.  The
    problem is that mem_cgroup_usage() is called from __mem_cgroup_threshold()
    which holds an rcu_read_lock().  And the cgroup_rstat_flush() function
    can sleep.

      3578                  val = memcg_page_state(memcg, NR_FILE_PAGES) +
      3579                          memcg_page_state(memcg, NR_ANON_MAPPED);
      3580                  if (swap)
      3581                          val += memcg_page_state(memcg, MEMCG_SWAP);
      3582          } else {
      3583                  if (!swap)
      3584                          val = page_counter_read(&memcg->memory);
      3585                  else
      3586                          val = page_counter_read(&memcg->memsw);
      3587          }
      3588          return val;
      3589  }

__mem_cgroup_threshold() indeed holds the rcu lock.  In addition, the
thresholding code is invoked during stat changes, and those contexts
have irqs disabled as well.  If the lock breaking occurs inside the
flush function, it will result in a sleep from an atomic context.

Use the irqsafe flushing variant in mem_cgroup_usage() to fix this.

Link: https://lkml.kernel.org/r/20210726150019.251820-1-hannes@cmpxchg.org
Fixes: 2d146aa3aa ("mm: memcontrol: switch to rstat")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Chris Down <chris@chrisdown.name>
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-30 10:14:39 -07:00
Vasily Averin
6126891c6d memcg: enable accounting for IP address and routing-related objects
An netadmin inside container can use 'ip a a' and 'ip r a'
to assign a large number of ipv4/ipv6 addresses and routing entries
and force kernel to allocate megabytes of unaccounted memory
for long-lived per-netdevice related kernel objects:
'struct in_ifaddr', 'struct inet6_ifaddr', 'struct fib6_node',
'struct rt6_info', 'struct fib_rules' and ip_fib caches.

These objects can be manually removed, though usually they lives
in memory till destroy of its net namespace.

It makes sense to account for them to restrict the host's memory
consumption from inside the memcg-limited container.

One of such objects is the 'struct fib6_node' mostly allocated in
net/ipv6/route.c::__ip6_ins_rt() inside the lock_bh()/unlock_bh() section:

 write_lock_bh(&table->tb6_lock);
 err = fib6_add(&table->tb6_root, rt, info, mxc);
 write_unlock_bh(&table->tb6_lock);

In this case it is not enough to simply add SLAB_ACCOUNT to corresponding
kmem cache. The proper memory cgroup still cannot be found due to the
incorrect 'in_interrupt()' check used in memcg_kmem_bypass().

Obsoleted in_interrupt() does not describe real execution context properly.
>From include/linux/preempt.h:

 The following macros are deprecated and should not be used in new code:
 in_interrupt()	- We're in NMI,IRQ,SoftIRQ context or have BH disabled

To verify the current execution context new macro should be used instead:
 in_task()	- We're in task context

Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-20 06:00:38 -07:00
Linus Torvalds
71bd934101 Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:
 "190 patches.

  Subsystems affected by this patch series: mm (hugetlb, userfaultfd,
  vmscan, kconfig, proc, z3fold, zbud, ras, mempolicy, memblock,
  migration, thp, nommu, kconfig, madvise, memory-hotplug, zswap,
  zsmalloc, zram, cleanups, kfence, and hmm), procfs, sysctl, misc,
  core-kernel, lib, lz4, checkpatch, init, kprobes, nilfs2, hfs,
  signals, exec, kcov, selftests, compress/decompress, and ipc"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (190 commits)
  ipc/util.c: use binary search for max_idx
  ipc/sem.c: use READ_ONCE()/WRITE_ONCE() for use_global_lock
  ipc: use kmalloc for msg_queue and shmid_kernel
  ipc sem: use kvmalloc for sem_undo allocation
  lib/decompressors: remove set but not used variabled 'level'
  selftests/vm/pkeys: exercise x86 XSAVE init state
  selftests/vm/pkeys: refill shadow register after implicit kernel write
  selftests/vm/pkeys: handle negative sys_pkey_alloc() return code
  selftests/vm/pkeys: fix alloc_random_pkey() to make it really, really random
  kcov: add __no_sanitize_coverage to fix noinstr for all architectures
  exec: remove checks in __register_bimfmt()
  x86: signal: don't do sas_ss_reset() until we are certain that sigframe won't be abandoned
  hfsplus: report create_date to kstat.btime
  hfsplus: remove unnecessary oom message
  nilfs2: remove redundant continue statement in a while-loop
  kprobes: remove duplicated strong free_insn_page in x86 and s390
  init: print out unknown kernel parameters
  checkpatch: do not complain about positive return values starting with EPOLL
  checkpatch: improve the indented label test
  checkpatch: scripts/spdxcheck.py now requires python3
  ...
2021-07-02 12:08:10 -07:00
Linus Torvalds
e267992f9e Merge branch 'for-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu
Pull percpu updates from Dennis Zhou:

 - percpu chunk depopulation - depopulate backing pages for chunks with
   empty pages when we exceed a global threshold without those pages.
   This lets us reclaim a portion of memory that would previously be
   lost until the full chunk would be freed (possibly never).

 - memcg accounting cleanup - previously separate chunks were managed
   for normal allocations and __GFP_ACCOUNT allocations. These are now
   consolidated which cleans up the code quite a bit.

 - a few misc clean ups for clang warnings

* 'for-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu:
  percpu: optimize locking in pcpu_balance_workfn()
  percpu: initialize best_upa variable
  percpu: rework memcg accounting
  mm, memcg: introduce mem_cgroup_kmem_disabled()
  mm, memcg: mark cgroup_memory_nosocket, nokmem and noswap as __ro_after_init
  percpu: make symbol 'pcpu_free_slot' static
  percpu: implement partial chunk depopulation
  percpu: use pcpu_free_slot instead of pcpu_nr_slots - 1
  percpu: factor out pcpu_check_block_hint()
  percpu: split __pcpu_balance_workfn()
  percpu: fix a comment about the chunks ordering
2021-07-01 17:17:24 -07:00
Alistair Popple
af5cdaf822 mm: remove special swap entry functions
Patch series "Add support for SVM atomics in Nouveau", v11.

Introduction
============

Some devices have features such as atomic PTE bits that can be used to
implement atomic access to system memory.  To support atomic operations to
a shared virtual memory page such a device needs access to that page which
is exclusive of the CPU.  This series introduces a mechanism to
temporarily unmap pages granting exclusive access to a device.

These changes are required to support OpenCL atomic operations in Nouveau
to shared virtual memory (SVM) regions allocated with the
CL_MEM_SVM_ATOMICS clSVMAlloc flag.  A more complete description of the
OpenCL SVM feature is available at
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/
OpenCL_API.html#_shared_virtual_memory .

Implementation
==============

Exclusive device access is implemented by adding a new swap entry type
(SWAP_DEVICE_EXCLUSIVE) which is similar to a migration entry.  The main
difference is that on fault the original entry is immediately restored by
the fault handler instead of waiting.

Restoring the entry triggers calls to MMU notifers which allows a device
driver to revoke the atomic access permission from the GPU prior to the
CPU finalising the entry.

Patches
=======

Patches 1 & 2 refactor existing migration and device private entry
functions.

Patches 3 & 4 rework try_to_unmap_one() by splitting out unrelated
functionality into separate functions - try_to_migrate_one() and
try_to_munlock_one().

Patch 5 renames some existing code but does not introduce functionality.

Patch 6 is a small clean-up to swap entry handling in copy_pte_range().

Patch 7 contains the bulk of the implementation for device exclusive
memory.

Patch 8 contains some additions to the HMM selftests to ensure everything
works as expected.

Patch 9 is a cleanup for the Nouveau SVM implementation.

Patch 10 contains the implementation of atomic access for the Nouveau
driver.

Testing
=======

This has been tested with upstream Mesa 21.1.0 and a simple OpenCL program
which checks that GPU atomic accesses to system memory are atomic.
Without this series the test fails as there is no way of write-protecting
the page mapping which results in the device clobbering CPU writes.  For
reference the test is available at
https://ozlabs.org/~apopple/opencl_svm_atomics/

Further testing has been performed by adding support for testing exclusive
access to the hmm-tests kselftests.

This patch (of 10):

Remove multiple similar inline functions for dealing with different types
of special swap entries.

Both migration and device private swap entries use the swap offset to
store a pfn.  Instead of multiple inline functions to obtain a struct page
for each swap entry type use a common function pfn_swap_entry_to_page().
Also open-code the various entry_to_pfn() functions as this results is
shorter code that is easier to understand.

Link: https://lkml.kernel.org/r/20210616105937.23201-1-apopple@nvidia.com
Link: https://lkml.kernel.org/r/20210616105937.23201-2-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 11:06:03 -07:00
Mel Gorman
05395718b2 mm/memcontrol.c: fix kerneldoc comment for mem_cgroup_calculate_protection
make W=1 generates the following warning for mem_cgroup_calculate_protection

  mm/memcontrol.c:6468: warning: expecting prototype for mem_cgroup_protected(). Prototype was for mem_cgroup_calculate_protection() instead

Commit 45c7f7e1ef ("mm, memcg: decouple e{low,min} state mutations from
protection checks") changed the function definition but not the associated
kerneldoc comment.

Link: https://lkml.kernel.org/r/20210520084809.8576-7-mgorman@techsingularity.net
Fixes: 45c7f7e1ef ("mm, memcg: decouple e{low,min} state mutations from protection checks")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 11:06:02 -07:00
Dan Schatzberg
c74d40e8b5 loop: charge i/o to mem and blk cg
The current code only associates with the existing blkcg when aio is used
to access the backing file.  This patch covers all types of i/o to the
backing file and also associates the memcg so if the backing file is on
tmpfs, memory is charged appropriately.

This patch also exports cgroup_get_e_css and int_active_memcg so it can be
used by the loop module.

Link: https://lkml.kernel.org/r/20210610173944.1203706-4-schatzberg.dan@gmail.com
Signed-off-by: Dan Schatzberg <schatzberg.dan@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Jens Axboe <axboe@kernel.dk>
Cc: Chris Down <chris@chrisdown.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:50 -07:00
Dan Schatzberg
04f94e3fbe mm: charge active memcg when no mm is set
set_active_memcg() worked for kernel allocations but was silently ignored
for user pages.

This patch establishes a precedence order for who gets charged:

1. If there is a memcg associated with the page already, that memcg is
   charged. This happens during swapin.

2. If an explicit mm is passed, mm->memcg is charged. This happens
   during page faults, which can be triggered in remote VMs (eg gup).

3. Otherwise consult the current process context. If there is an
   active_memcg, use that. Otherwise, current->mm->memcg.

Previously, if a NULL mm was passed to mem_cgroup_charge (case 3) it would
always charge the root cgroup.  Now it looks up the active_memcg first
(falling back to charging the root cgroup if not set).

Link: https://lkml.kernel.org/r/20210610173944.1203706-3-schatzberg.dan@gmail.com
Signed-off-by: Dan Schatzberg <schatzberg.dan@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Jens Axboe <axboe@kernel.dk>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:50 -07:00
Muchun Song
271dd6b1f6 mm: memcontrol: move obj_cgroup_uncharge_pages() out of css_set_lock
The css_set_lock is used to guard the list of inherited objcgs.  So there
is no need to uncharge kernel memory under css_set_lock.  Just move it out
of the lock.

Link: https://lkml.kernel.org/r/20210417043538.9793-8-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:50 -07:00
Muchun Song
9838354e16 mm: memcontrol: simplify the logic of objcg pinning memcg
The obj_cgroup_release() and memcg_reparent_objcgs() are serialized by the
css_set_lock.  We do not need to care about objcg->memcg being released in
the process of obj_cgroup_release().  So there is no need to pin memcg
before releasing objcg.  Remove those pinning logic to simplfy the code.

There are only two places that modifies the objcg->memcg.  One is the
initialization to objcg->memcg in the memcg_online_kmem(), another is
objcgs reparenting in the memcg_reparent_objcgs().  It is also impossible
for the two to run in parallel.  So xchg() is unnecessary and it is enough
to use WRITE_ONCE().

Link: https://lkml.kernel.org/r/20210417043538.9793-7-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:50 -07:00
Muchun Song
a984226f45 mm: memcontrol: remove the pgdata parameter of mem_cgroup_page_lruvec
All the callers of mem_cgroup_page_lruvec() just pass page_pgdat(page) as
the 2nd parameter to it (except isolate_migratepages_block()).  But for
isolate_migratepages_block(), the page_pgdat(page) is also equal to the
local variable of @pgdat.  So mem_cgroup_page_lruvec() do not need the
pgdat parameter.  Just remove it to simplify the code.

Link: https://lkml.kernel.org/r/20210417043538.9793-4-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:50 -07:00
Muchun Song
2884b6b7ee mm: memcontrol: bail out early when !mm in get_mem_cgroup_from_mm
When mm is NULL, we do not need to hold rcu lock and call css_tryget for
the root memcg.  And we also do not need to check !mm in every loop of
while.  So bail out early when !mm.

Link: https://lkml.kernel.org/r/20210417043538.9793-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:50 -07:00
Muchun Song
8dc87c7d1f mm: memcontrol: fix page charging in page replacement
Patch series "memcontrol code cleanup and simplification", v3.

This patch (of 8):

The pages aren't accounted at the root level, so do not charge the page to
the root memcg in page replacement.  Although we do not display the value
(mem_cgroup_usage) so there shouldn't be any actual problem, but there is
a WARN_ON_ONCE in the page_counter_cancel().  Who knows if it will
trigger?  So it is better to fix it.

Link: https://lkml.kernel.org/r/20210417043538.9793-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20210417043538.9793-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:50 -07:00
Muchun Song
c5c8b16b59 mm: memcontrol: fix root_mem_cgroup charging
The below scenario can cause the page counters of the root_mem_cgroup to
be out of balance.

CPU0:                                   CPU1:

objcg = get_obj_cgroup_from_current()
obj_cgroup_charge_pages(objcg)
                                        memcg_reparent_objcgs()
                                            // reparent to root_mem_cgroup
                                            WRITE_ONCE(iter->memcg, parent)
    // memcg == root_mem_cgroup
    memcg = get_mem_cgroup_from_objcg(objcg)
    // do not charge to the root_mem_cgroup
    try_charge(memcg)

obj_cgroup_uncharge_pages(objcg)
    memcg = get_mem_cgroup_from_objcg(objcg)
    // uncharge from the root_mem_cgroup
    refill_stock(memcg)
        drain_stock(memcg)
            page_counter_uncharge(&memcg->memory)

get_obj_cgroup_from_current() never returns a root_mem_cgroup's objcg, so
we never explicitly charge the root_mem_cgroup.  And it's not going to
change.  It's all about a race when we got an obj_cgroup pointing at some
non-root memcg, but before we were able to charge it, the cgroup was gone,
objcg was reparented to the root and so we're skipping the charging.  Then
we store the objcg pointer and later use to uncharge the root_mem_cgroup.

This can cause the page counter to be less than the actual value.
Although we do not display the value (mem_cgroup_usage) so there shouldn't
be any actual problem, but there is a WARN_ON_ONCE in the
page_counter_cancel().  Who knows if it will trigger?  So it is better to
fix it.

Link: https://lkml.kernel.org/r/20210425075410.19255-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:50 -07:00
Waiman Long
494c1dfe85 mm: memcg/slab: create a new set of kmalloc-cg-<n> caches
There are currently two problems in the way the objcg pointer array
(memcg_data) in the page structure is being allocated and freed.

On its allocation, it is possible that the allocated objcg pointer
array comes from the same slab that requires memory accounting. If this
happens, the slab will never become empty again as there is at least
one object left (the obj_cgroup array) in the slab.

When it is freed, the objcg pointer array object may be the last one
in its slab and hence causes kfree() to be called again. With the
right workload, the slab cache may be set up in a way that allows the
recursive kfree() calling loop to nest deep enough to cause a kernel
stack overflow and panic the system.

One way to solve this problem is to split the kmalloc-<n> caches
(KMALLOC_NORMAL) into two separate sets - a new set of kmalloc-<n>
(KMALLOC_NORMAL) caches for unaccounted objects only and a new set of
kmalloc-cg-<n> (KMALLOC_CGROUP) caches for accounted objects only. All
the other caches can still allow a mix of accounted and unaccounted
objects.

With this change, all the objcg pointer array objects will come from
KMALLOC_NORMAL caches which won't have their objcg pointer arrays. So
both the recursive kfree() problem and non-freeable slab problem are
gone.

Since both the KMALLOC_NORMAL and KMALLOC_CGROUP caches no longer have
mixed accounted and unaccounted objects, this will slightly reduce the
number of objcg pointer arrays that need to be allocated and save a bit
of memory. On the other hand, creating a new set of kmalloc caches does
have the effect of reducing cache utilization. So it is properly a wash.

The new KMALLOC_CGROUP is added between KMALLOC_NORMAL and
KMALLOC_RECLAIM so that the first for loop in create_kmalloc_caches()
will include the newly added caches without change.

[vbabka@suse.cz: don't create kmalloc-cg caches with cgroup.memory=nokmem]
  Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com
[akpm@linux-foundation.org: un-fat-finger v5 delta creation]
[longman@redhat.com: disable cache merging for KMALLOC_NORMAL caches]
  Link: https://lkml.kernel.org/r/20210505200610.13943-4-longman@redhat.com

Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com
Link: https://lkml.kernel.org/r/20210505200610.13943-3-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
[longman@redhat.com: fix for CONFIG_ZONE_DMA=n]
Suggested-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:49 -07:00
Waiman Long
41eb5df1cb mm: memcg/slab: properly set up gfp flags for objcg pointer array
Patch series "mm: memcg/slab: Fix objcg pointer array handling problem", v4.

Since the merging of the new slab memory controller in v5.9, the page
structure stores a pointer to objcg pointer array for slab pages.  When
the slab has no used objects, it can be freed in free_slab() which will
call kfree() to free the objcg pointer array in
memcg_alloc_page_obj_cgroups().  If it happens that the objcg pointer
array is the last used object in its slab, that slab may then be freed
which may caused kfree() to be called again.

With the right workload, the slab cache may be set up in a way that allows
the recursive kfree() calling loop to nest deep enough to cause a kernel
stack overflow and panic the system.  In fact, we have a reproducer that
can cause kernel stack overflow on a s390 system involving kmalloc-rcl-256
and kmalloc-rcl-128 slabs with the following kfree() loop recursively
called 74 times:

  [ 285.520739] [<000000000ec432fc>] kfree+0x4bc/0x560 [ 285.520740]
[<000000000ec43466>] __free_slab+0xc6/0x228 [ 285.520741]
[<000000000ec41fc2>] __slab_free+0x3c2/0x3e0 [ 285.520742]
[<000000000ec432fc>] kfree+0x4bc/0x560 : While investigating this issue, I
also found an issue on the allocation side.  If the objcg pointer array
happen to come from the same slab or a circular dependency linkage is
formed with multiple slabs, those affected slabs can never be freed again.

This patch series addresses these two issues by introducing a new set of
kmalloc-cg-<n> caches split from kmalloc-<n> caches.  The new set will
only contain non-reclaimable and non-dma objects that are accounted in
memory cgroups whereas the old set are now for unaccounted objects only.
By making this split, all the objcg pointer arrays will come from the
kmalloc-<n> caches, but those caches will never hold any objcg pointer
array.  As a result, deeply nested kfree() call and the unfreeable slab
problems are now gone.

This patch (of 4):

Since the merging of the new slab memory controller in v5.9, the page
structure may store a pointer to obj_cgroup pointer array for slab pages.
Currently, only the __GFP_ACCOUNT bit is masked off.  However, the array
is not readily reclaimable and doesn't need to come from the DMA buffer.
So those GFP bits should be masked off as well.

Do the flag bit clearing at memcg_alloc_page_obj_cgroups() to make sure
that it is consistently applied no matter where it is called.

Link: https://lkml.kernel.org/r/20210505200610.13943-1-longman@redhat.com
Link: https://lkml.kernel.org/r/20210505200610.13943-2-longman@redhat.com
Fixes: 286e04b8ed ("mm: memcg/slab: allocate obj_cgroups for non-root slab pages")
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:49 -07:00
Waiman Long
559271146e mm/memcg: optimize user context object stock access
Most kmem_cache_alloc() calls are from user context.  With instrumentation
enabled, the measured amount of kmem_cache_alloc() calls from non-task
context was about 0.01% of the total.

The irq disable/enable sequence used in this case to access content from
object stock is slow.  To optimize for user context access, there are now
two sets of object stocks (in the new obj_stock structure) for task
context and interrupt context access respectively.

The task context object stock can be accessed after disabling preemption
which is cheap in non-preempt kernel.  The interrupt context object stock
can only be accessed after disabling interrupt.  User context code can
access interrupt object stock, but not vice versa.

The downside of this change is that there are more data stored in local
object stocks and not reflected in the charge counter and the vmstat
arrays.  However, this is a small price to pay for better performance.

[longman@redhat.com: fix potential uninitialized variable warning]
  Link: https://lkml.kernel.org/r/20210526193602.8742-1-longman@redhat.com
[akpm@linux-foundation.org: coding style fixes]

Link: https://lkml.kernel.org/r/20210506150007.16288-5-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Roman Gushchin <guro@fb.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: Yafang Shao <laoar.shao@gmail.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Xing Zhengjun <zhengjun.xing@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:49 -07:00
Waiman Long
5387c90490 mm/memcg: improve refill_obj_stock() performance
There are two issues with the current refill_obj_stock() code.  First of
all, when nr_bytes reaches over PAGE_SIZE, it calls drain_obj_stock() to
atomically flush out remaining bytes to obj_cgroup, clear cached_objcg and
do a obj_cgroup_put().  It is likely that the same obj_cgroup will be used
again which leads to another call to drain_obj_stock() and
obj_cgroup_get() as well as atomically retrieve the available byte from
obj_cgroup.  That is costly.  Instead, we should just uncharge the excess
pages, reduce the stock bytes and be done with it.  The drain_obj_stock()
function should only be called when obj_cgroup changes.

Secondly, when charging an object of size not less than a page in
obj_cgroup_charge(), it is possible that the remaining bytes to be
refilled to the stock will overflow a page and cause refill_obj_stock() to
uncharge 1 page.  To avoid the additional uncharge in this case, a new
allow_uncharge flag is added to refill_obj_stock() which will be set to
false when called from obj_cgroup_charge() so that an uncharge_pages()
call won't be issued right after a charge_pages() call unless the objcg
changes.

A multithreaded kmalloc+kfree microbenchmark on a 2-socket 48-core
96-thread x86-64 system with 96 testing threads were run.  Before this
patch, the total number of kilo kmalloc+kfree operations done for a 4k
large object by all the testing threads per second were 4,304 kops/s
(cgroup v1) and 8,478 kops/s (cgroup v2).  After applying this patch, the
number were 4,731 (cgroup v1) and 418,142 (cgroup v2) respectively.  This
represents a performance improvement of 1.10X (cgroup v1) and 49.3X
(cgroup v2).

Link: https://lkml.kernel.org/r/20210506150007.16288-4-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xing Zhengjun <zhengjun.xing@linux.intel.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:49 -07:00
Waiman Long
68ac5b3c8d mm/memcg: cache vmstat data in percpu memcg_stock_pcp
Before the new slab memory controller with per object byte charging,
charging and vmstat data update happen only when new slab pages are
allocated or freed.  Now they are done with every kmem_cache_alloc() and
kmem_cache_free().  This causes additional overhead for workloads that
generate a lot of alloc and free calls.

The memcg_stock_pcp is used to cache byte charge for a specific obj_cgroup
to reduce that overhead.  To further reducing it, this patch makes the
vmstat data cached in the memcg_stock_pcp structure as well until it
accumulates a page size worth of update or when other cached data change.
Caching the vmstat data in the per-cpu stock eliminates two writes to
non-hot cachelines for memcg specific as well as memcg-lruvecs specific
vmstat data by a write to a hot local stock cacheline.

On a 2-socket Cascade Lake server with instrumentation enabled and this
patch applied, it was found that about 20% (634400 out of 3243830) of the
time when mod_objcg_state() is called leads to an actual call to
__mod_objcg_state() after initial boot.  When doing parallel kernel build,
the figure was about 17% (24329265 out of 142512465).  So caching the
vmstat data reduces the number of calls to __mod_objcg_state() by more
than 80%.

Link: https://lkml.kernel.org/r/20210506150007.16288-3-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xing Zhengjun <zhengjun.xing@linux.intel.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:49 -07:00
Waiman Long
fdbcb2a6d6 mm/memcg: move mod_objcg_state() to memcontrol.c
Patch series "mm/memcg: Reduce kmemcache memory accounting overhead", v6.

With the recent introduction of the new slab memory controller, we
eliminate the need for having separate kmemcaches for each memory cgroup
and reduce overall kernel memory usage.  However, we also add additional
memory accounting overhead to each call of kmem_cache_alloc() and
kmem_cache_free().

For workloads that require a lot of kmemcache allocations and
de-allocations, they may experience performance regression as illustrated
in [1] and [2].

A simple kernel module that performs repeated loop of 100,000,000
kmem_cache_alloc() and kmem_cache_free() of either a small 32-byte object
or a big 4k object at module init time with a batch size of 4 (4 kmalloc's
followed by 4 kfree's) is used for benchmarking.  The benchmarking tool
was run on a kernel based on linux-next-20210419.  The test was run on a
CascadeLake server with turbo-boosting disable to reduce run-to-run
variation.

The small object test exercises mainly the object stock charging and
vmstat update code paths.  The large object test also exercises the
refill_obj_stock() and __memcg_kmem_charge()/__memcg_kmem_uncharge() code
paths.

With memory accounting disabled, the run time was 3.130s with both small
object big object tests.

With memory accounting enabled, both cgroup v1 and v2 showed similar
results in the small object test.  The performance results of the large
object test, however, differed between cgroup v1 and v2.

The execution times with the application of various patches in the
patchset were:

  Applied patches   Run time   Accounting overhead   %age 1   %age 2
  ---------------   --------   -------------------   ------   ------

  Small 32-byte object:
       None          11.634s         8.504s          100.0%   271.7%
        1-2           9.425s         6.295s           74.0%   201.1%
        1-3           9.708s         6.578s           77.4%   210.2%
        1-4           8.062s         4.932s           58.0%   157.6%

  Large 4k object (v2):
       None          22.107s        18.977s          100.0%   606.3%
        1-2          20.960s        17.830s           94.0%   569.6%
        1-3          14.238s        11.108s           58.5%   354.9%
        1-4          11.329s         8.199s           43.2%   261.9%

  Large 4k object (v1):
       None          36.807s        33.677s          100.0%  1075.9%
        1-2          36.648s        33.518s           99.5%  1070.9%
        1-3          22.345s        19.215s           57.1%   613.9%
        1-4          18.662s        15.532s           46.1%   496.2%

  N.B. %age 1 = overhead/unpatched overhead
       %age 2 = overhead/accounting disabled time

Patch 2 (vmstat data stock caching) helps in both the small object test
and the large v2 object test. It doesn't help much in v1 big object test.

Patch 3 (refill_obj_stock improvement) does help the small object test
but offer significant performance improvement for the large object test
(both v1 and v2).

Patch 4 (eliminating irq disable/enable) helps in all test cases.

To test for the extreme case, a multi-threaded kmalloc/kfree
microbenchmark was run on the 2-socket 48-core 96-thread system with
96 testing threads in the same memcg doing kmalloc+kfree of a 4k object
with accounting enabled for 10s. The total number of kmalloc+kfree done
in kilo operations per second (kops/s) were as follows:

  Applied patches   v1 kops/s   v1 change   v2 kops/s   v2 change
  ---------------   ---------   ---------   ---------   ---------
       None           3,520        1.00X      6,242        1.00X
        1-2           4,304        1.22X      8,478        1.36X
        1-3           4,731        1.34X    418,142       66.99X
        1-4           4,587        1.30X    438,838       70.30X

With memory accounting disabled, the kmalloc/kfree rate was 1,481,291
kop/s. This test shows how significant the memory accouting overhead
can be in some extreme situations.

For this multithreaded test, the improvement from patch 2 mainly
comes from the conditional atomic xchg of objcg->nr_charged_bytes in
mod_objcg_state(). By using an unconditional xchg, the operation rates
were similar to the unpatched kernel.

Patch 3 elminates the single highly contended cacheline of
objcg->nr_charged_bytes for cgroup v2 leading to a huge performance
improvement. Cgroup v1, however, still has another highly contended
cacheline in the shared page counter &memcg->kmem. So the improvement
is only modest.

Patch 4 helps in cgroup v2, but performs worse in cgroup v1 as
eliminating the irq_disable/irq_enable overhead seems to aggravate the
cacheline contention.

[1] https://lore.kernel.org/linux-mm/20210408193948.vfktg3azh2wrt56t@gabell/T/#u
[2] https://lore.kernel.org/lkml/20210114025151.GA22932@xsang-OptiPlex-9020/

This patch (of 4):

mod_objcg_state() is moved from mm/slab.h to mm/memcontrol.c so that
further optimization can be done to it in later patches without exposing
unnecessary details to other mm components.

Link: https://lkml.kernel.org/r/20210506150007.16288-1-longman@redhat.com
Link: https://lkml.kernel.org/r/20210506150007.16288-2-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xing Zhengjun <zhengjun.xing@linux.intel.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:49 -07:00
Roman Gushchin
4d5c8aedc8 mm, memcg: introduce mem_cgroup_kmem_disabled()
Introduce a new mem_cgroup_kmem_disabled() helper, similar to
mem_cgroup_disabled(), to check whether the kernel memory accounting
is off. A user could disable it using a boot option to eliminate
some associated costs.

The helper can be used outside of memcontrol.c to dynamically disable
the kmem-related code. The returned value is stable after the kernel
initialization is finished.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
2021-06-05 20:41:14 +00:00
Roman Gushchin
0f0cace35f mm, memcg: mark cgroup_memory_nosocket, nokmem and noswap as __ro_after_init
cgroup_memory_nosocket, cgroup_memory_nokmem and cgroup_memory_noswap
are initialized during the kernel initialization and never change
their value afterwards.

cgroup_memory_nosocket, cgroup_memory_nokmem are written only from
cgroup_memory(), which is marked as __init.

cgroup_memory_noswap is written from setup_swap_account() and
mem_cgroup_swap_init(), both are marked as __init.

Mark all three variables as __ro_after_init.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
2021-06-05 20:40:59 +00:00