Since restriper kthread starts involuntarily on mount and can suck cpu
and memory bandwidth add a mount option to forcefully skip it. The
restriper in that case hangs around in paused state and can be resumed
from userspace when it's convenient.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
On mount, if balance item is found, resume balance in a separate
kernel thread.
Try to be smart to continue roughly where previous balance (or convert)
was interrupted. For chunk types that were being converted to some
profile we turn on soft convert, in case of a simple balance we turn on
usage filter and relocate only less-than-90%-full chunks of that type.
These are just heuristics but they help quite a bit, and can be improved
in future.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Introduce a new btree objectid for storing balance item. The reason is
to be able to resume restriper after a crash with the same parameters.
Balance item has a very high objectid and goes into tree of tree roots.
The key for the new item is as follows:
[ BTRFS_BALANCE_OBJECTID ; BTRFS_BALANCE_ITEM_KEY ; 0 ]
Older kernels simply ignore it so it's safe to mount with an older
kernel and then go back to the newer one.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
When doing convert from one profile to another if soft mode is on
restriper won't touch chunks that already have the profile we are
converting to. This is useful if e.g. half of the FS was converted
earlier.
The soft mode switch is (like every other filter) per-type. This means
that we can convert for example meta chunks the "hard" way while
converting data chunks selectively with soft switch.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Profile changing is done by launching a balance with
BTRFS_BALANCE_CONVERT bits set and target fields of respective
btrfs_balance_args structs initialized. Profile reducing code in this
case will pick restriper's target profile if it's available instead of
doing a blind reduce. If target profile is not yet available it goes
back to a plain reduce.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Every caller of do_chunk_alloc() feeds it the reduced allocation
profile, so stop trying to reduce it one more time. Instead check the
validity of the passed profile.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Select chunks which have at least one byte located inside a given
[vstart, vend) virtual address space range.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Select chunks which have at least one byte of at least one stripe
located on a device with devid X in a given [pstart,pend) physical
address range.
This filter only works when devid filter is turned on.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
This allows to have a separate set of filters for each chunk type
(data,meta,sys). The code however is generic and switch on chunk type
is only done once.
This commit also adds a type filter: it allows to balance for example
meta and system chunks w/o touching data ones.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Add basic restriper infrastructure: extended balancing ioctl and all
related ioctl data structures, add data structure for tracking
restriper's state to fs_info, etc. The semantics of the old balancing
ioctl are fully preserved.
Explicitly disallow any volume operations when balance is in progress.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Currently when new chunks are created respective avail_alloc_bits field
is updated to reflect profiles of all chunks present in the system.
However when chunks are removed profile bits are never cleared.
This patch clears profile bit of respective avail_alloc_bits field when
the last chunk with that profile is removed. Restriper needs this to
properly operate when "downgrading".
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Right now on-disk BTRFS_BLOCK_GROUP_* profile bits are used for
avail_{data,metadata,system}_alloc_bits fields, which gather info about
available allocation profiles in the FS. When chunk is created or read
from disk, its profile is OR'ed with the corresponding avail_alloc_bits
field. Since SINGLE is denoted by 0 in the on-disk format, currently
there is no way to tell when such chunks become avaialble. Restriper
needs that information, so add a separate bit for SINGLE profile.
This bit is going to be in-memory only, it should never be written out
to disk, so it's not a disk format change. However to avoid remappings
in future, reserve corresponding on-disk bit.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Chunk's type and profile are encoded in u64 flags field. Introduce
masks to easily access them. Also fix the type of BTRFS_BLOCK_GROUP_*
constants, it should be ULL.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
The correct lock order is uuid_mutex -> volume_mutex -> chunk_mutex,
but when we mount a filesystem which has backing seed devices, we have
this lock chain:
open_ctree()
lock(chunk_mutex);
read_chunk_tree();
read_one_dev();
open_seed_devices();
lock(uuid_mutex);
and then we hit a lockdep splat.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
A bug was triggered while using seed device:
# mkfs.btrfs /dev/loop1
# btrfstune -S 1 /dev/loop1
# mount -o /dev/loop1 /mnt
# btrfs dev add /dev/loop2 /mnt
btrfs: block rsv returned -28
------------[ cut here ]------------
WARNING: at fs/btrfs/extent-tree.c:5969 btrfs_alloc_free_block+0x166/0x396 [btrfs]()
...
Call Trace:
...
[<f7b7c31c>] btrfs_cow_block+0x101/0x147 [btrfs]
[<f7b7eaa6>] btrfs_search_slot+0x1b8/0x55f [btrfs]
[<f7b7f844>] btrfs_insert_empty_items+0x42/0x7f [btrfs]
[<f7b7f8c1>] btrfs_insert_item+0x40/0x7e [btrfs]
[<f7b8ac02>] btrfs_make_block_group+0x243/0x2aa [btrfs]
[<f7bb3f53>] __btrfs_alloc_chunk+0x672/0x70e [btrfs]
[<f7bb41ff>] init_first_rw_device+0x77/0x13c [btrfs]
[<f7bb5a62>] btrfs_init_new_device+0x664/0x9fd [btrfs]
[<f7bbb65a>] btrfs_ioctl+0x694/0xdbe [btrfs]
[<c04f55f7>] do_vfs_ioctl+0x496/0x4cc
[<c04f5660>] sys_ioctl+0x33/0x4f
[<c07b9edf>] sysenter_do_call+0x12/0x38
---[ end trace 906adac595facc7d ]---
Since seed device is readonly, there's no usable space in the filesystem.
Afterwards we add a sprout device to it, and the kernel creates a METADATA
block group and a SYSTEM block group where comes free space we can reserve,
but we still get revervation failure because the global block_rsv hasn't
been updated accordingly.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
There are various bugs in block group trimming:
- It may trim from offset smaller than user-specified offset.
- It may trim beyond user-specified range.
- It may leak free space for extents smaller than specified minlen.
- It may truncate the last trimmed extent thus leak free space.
- With mixed extents+bitmaps, some extents may not be trimmed.
- With mixed extents+bitmaps, some bitmaps may not be trimmed (even
none will be trimmed). Even for those trimmed, not all the free space
in the bitmaps will be trimmed.
I rewrite btrfs_trim_block_group() and break it into two functions.
One is to trim extents only, and the other is to trim bitmaps only.
Before patching:
# fstrim -v /mnt/
/mnt/: 1496465408 bytes were trimmed
After patching:
# fstrim -v /mnt/
/mnt/: 2193768448 bytes were trimmed
And this matches the total free space:
# btrfs fi df /mnt
Data: total=3.58GB, used=1.79GB
System, DUP: total=8.00MB, used=4.00KB
System: total=4.00MB, used=0.00
Metadata, DUP: total=205.12MB, used=97.14MB
Metadata: total=8.00MB, used=0.00
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
For btrfs raid, while discarding a range of space, we'll need to know
the start offset and length to discard for each device, and it's done
in btrfs_map_block().
However the calculation is a bit complex for raid0 and raid10, so I
reimplement it based on a fact that:
dev1 dev2 dev3 (raid0)
-----------------------------------
s0 s3 s6 s1 s4 s7 s2 s5
Each device has (total_stripes / nr_dev) stripes, or plus one.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
We pre-allocate a btrfs bio with fixed size, and then may re-allocate
memory if we find stripes are bigger than the fixed size. But this
pre-allocation is not necessary.
Also we don't have to calcuate the stripe number twice.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
If we run into some failure path in io_ctl_prepare_pages(),
io_ctl->pages[] array may have some NULL pointers.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
I got this while running xfstests:
[24256.836098] block group 317849600 has an wrong amount of free space
[24256.836100] btrfs: failed to load free space cache for block group 317849600
We should clamp the extent returned by find_first_extent_bit(),
so the start of the extent won't smaller than the start of the
block group.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Parameterize clusters on minimum total size, minimum chunk size and
minimum contiguous size for at least one chunk, without limits on
cluster, window or gap sizes. Don't tolerate any fragmentation for
SSD_SPREAD; accept it for metadata, but try to keep data dense.
Signed-off-by: Alexandre Oliva <oliva@lsd.ic.unicamp.br>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We store the allocation start and length twice in ins, once right
after the other, but with intervening calls that may prevent the
duplicate from being optimized out by the compiler. Remove one of the
assignments.
Signed-off-by: Alexandre Oliva <oliva@lsd.ic.unicamp.br>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Since the clustered allocation may be taking extents from a different
block group, there's no point in spin-locking and testing the current
block group free space before attempting to allocate space from a
cluster, even more so when we might refrain from even trying the
cluster in the current block group because, after the cluster was set
up, not enough free space remained. Furthermore, cluster creation
attempts fail fast when the block group doesn't have enough free
space, so the test was completely superfluous.
I've move the free space test past the cluster allocation attempt,
where it is more useful, and arranged for a cluster in the current
block group to be released before trying an unclustered allocation,
when we reach the LOOP_NO_EMPTY_SIZE stage, so that the free space in
the cluster stands a chance of being combined with additional free
space in the block group so as to succeed in the allocation attempt.
Signed-off-by: Alexandre Oliva <oliva@lsd.ic.unicamp.br>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The chunk allocation code has tried to keep a pretty tight lid on creating new
metadata chunks. This is partially because in the past the reservation
code didn't give us an accurate idea of how much space was being used.
The new code is much more accurate, so we're able to get rid of some of these
checks.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs tries to batch extent allocation tree changes to improve performance
and reduce metadata trashing. But it doesn't allocate new metadata chunks
while it is doing allocations for the extent allocation tree.
This commit changes the delayed refence code to do chunk allocations if we're
getting low on room. It prevents crashes and improves performance.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
There's code in btrfs_get_extent that should never be used. This patch turns
a WARN_ON(1) into a BUG(), hoping we can remove the transaction code from
btrfs_get_extent soon.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
The old backref iteration code could only safely be used on commit roots.
Besides this limitation, it had bugs in finding the roots for these
references. This commit replaces large parts of it by btrfs_find_all_roots()
which a) really finds all roots and the correct roots, b) works correctly
under heavy file system load, c) considers delayed refs.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
This function gets a byte number (a data extent), collects all the leafs
pointing to it and walks up the trees to find all fs roots pointing to those
leafs. It also returns the list of all leafs pointing to that extent.
It does proper locking for the involved trees, can be used on busy file
systems and honors delayed refs.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Now that we may be holding back delayed refs for a limited period, we
might end up having no runnable delayed refs. Without this commit, we'd
do busy waiting in that thread until another (runnable) ref arives.
Instead, we're detecting this situation and use a waitqueue, such that
we only try to run more refs after
a) another runnable ref was added or
b) delayed refs are no longer held back
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
When processing a delayed ref, first check if there are still old refs in
the process of being added. If so, put this ref back to the tree. To avoid
looping on this ref, choose a newer one in the next loop.
btrfs_find_ref_cluster has to take care of that.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Sequence numbers are needed to reconstruct the backrefs of a given extent to
a certain point in time. The total set of backrefs consist of the set of
backrefs recorded on disk plus the enqueued delayed refs for it that existed
at that moment.
This patch also adds a list that records all delayed refs which are
currently in the process of being added.
When walking all refs of an extent in btrfs_find_all_roots(), we freeze the
current state of delayed refs, honor anythinh up to this point and prevent
processing newer delayed refs to assert consistency.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
This patch adds the possibilty to read-lock an extent even if it is already
write-locked from the same thread. btrfs_find_all_roots() needs this
capability.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
This closes races where btrfs is calling d_instantiate too soon during
inode creation. All of the callers of btrfs_add_nondir are updated to
instantiate after the inode is fully setup in memory.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Dan Carpenter noticed that we were doing a double unlock on the worker
lock, and sometimes picking a worker thread without the lock held.
This fixes both errors.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
For consistent backref walking and (later) qgroup calculation the
information to which root a delayed ref belongs is useful even for shared
refs.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Add a for_cow parameter to add_delayed_*_ref and pass the appropriate value
from every call site. The for_cow parameter will later on be used to
determine if a ref will change anything with respect to qgroups.
Delayed refs coming from relocation are always counted as for_cow, as they
don't change subvol quota.
Also pass in the fs_info for later use.
btrfs_find_all_roots() will use this as an optimization, as changes that are
for_cow will not change anything with respect to which root points to a
certain leaf. Thus, we don't need to add the current sequence number to
those delayed refs.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
btrfs_next_item() makes the btrfs path point to the next item, crossing leaf
boundaries if needed.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
ulist is a generic data structures to hold a collection of unique u64
values. The only operations it supports is adding to the list and
enumerating it.
It is possible to store an auxiliary value along with the key. The
implementation is preliminary and can probably be sped up significantly.
It is used by btrfs_find_all_roots() quota to translate recursions into
iterative loops.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
This is the last part of the patch series. It modifies the btrfs
code to use the integrity check module if configured to do so
with the define BTRFS_FS_CHECK_INTEGRITY. If this define is not set,
the only effective change is that code is added that handles the
mount option to activate the integrity check. If the mount option is
set and the define BTRFS_FS_CHECK_INTEGRITY is not set, that code
complains in the log and the mount fails with EINVAL.
Add the mount option to activate the usage of the integrity check
code.
Add invocation of btrfs integrity check code init and cleanup
function on mount and umount, respectively.
Add hook to call btrfs integrity check code version of
submit_bh/submit_bio.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
If the btrfs integrity check is enabled, the files required to
implement the checks are included in the build.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
The two files added in this patch contain all the code that is
required to implement the integrity checks.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: unplug every once and a while
Btrfs: deal with NULL srv_rsv in the delalloc inode reservation code
Btrfs: only set cache_generation if we setup the block group
Btrfs: don't panic if orphan item already exists
Btrfs: fix leaked space in truncate
Btrfs: fix how we do delalloc reservations and how we free reservations on error
Btrfs: deal with enospc from dirtying inodes properly
Btrfs: fix num_workers_starting bug and other bugs in async thread
BTRFS: Establish i_ops before calling d_instantiate
Btrfs: add a cond_resched() into the worker loop
Btrfs: fix ctime update of on-disk inode
btrfs: keep orphans for subvolume deletion
Btrfs: fix inaccurate available space on raid0 profile
Btrfs: fix wrong disk space information of the files
Btrfs: fix wrong i_size when truncating a file to a larger size
Btrfs: fix btrfs_end_bio to deal with write errors to a single mirror
* 'for-linus-3.2' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: lower the dirty balance poll interval
Tests show that the original large intervals can easily make the dirty
limit exceeded on 100 concurrent dd's. So adapt to as large as the
next check point selected by the dirty throttling algorithm.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The btrfs io submission threads can build up massive plug lists. This
keeps things more reasonable so we don't hand over huge dumps of IO at
once.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
A user reported a problem booting into a new kernel with the old format inodes.
He was panicing in cow_file_range while writing out the inode cache. This is
because if the block group is not cached we'll just skip writing out the cache,
however if it gets dirtied again in the same transaction and it finished caching
we'd go ahead and write it out, but since we set cache_generation to the transid
we think we've already truncated it and will just carry on, running into
cow_file_range and blowing up. We need to make sure we only set
cache_generation if we've done the truncate. The user tested this patch and
verified that the panic no longer occured. Thanks,
Reported-and-Tested-by: Klaus Bitto <klaus.bitto@gmail.com>
Signed-off-by: Josef Bacik <josef@redhat.com>
I've been hitting this BUG_ON() in btrfs_orphan_add when running xfstest 269 in
a loop. This is because we will add an orphan item, do the truncate, the
truncate will fail for whatever reason (*cough*ENOSPC*cough*) and then we're
left with an orphan item still in the fs. Then we come back later to do another
truncate and it blows up because we already have an orphan item. This is ok so
just fix the BUG_ON() to only BUG() if ret is not EEXIST. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
We were occasionaly leaking space when running xfstest 269. This is because if
we failed to start the transaction in the truncate loop we'd just goto out, but
we need to break so that the inode is removed from the orphan list and the space
is properly freed. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Running xfstests 269 with some tracing my scripts kept spitting out errors about
releasing bytes that we didn't actually have reserved. This took me down a huge
rabbit hole and it turns out the way we deal with reserved_extents is wrong,
we need to only be setting it if the reservation succeeds, otherwise the free()
method will come in and unreserve space that isn't actually reserved yet, which
can lead to other warnings and such. The math was all working out right in the
end, but it caused all sorts of other issues in addition to making my scripts
yell and scream and generally make it impossible for me to track down the
original issue I was looking for. The other problem is with our error handling
in the reservation code. There are two cases that we need to deal with
1) We raced with free. In this case free won't free anything because csum_bytes
is modified before we dro the lock in our reservation path, so free rightly
doesn't release any space because the reservation code may be depending on that
reservation. However if we fail, we need the reservation side to do the free at
that point since that space is no longer in use. So as it stands the code was
doing this fine and it worked out, except in case #2
2) We don't race with free. Nobody comes in and changes anything, and our
reservation fails. In this case we didn't reserve anything anyway and we just
need to clean up csum_bytes but not free anything. So we keep track of
csum_bytes before we drop the lock and if it hasn't changed we know we can just
decrement csum_bytes and carry on.
Because of the case where we can race with free()'s since we have to drop our
spin_lock to do the reservation, I'm going to serialize all reservations with
the i_mutex. We already get this for free in the heavy use paths, truncate and
file write all hold the i_mutex, just needed to add it to page_mkwrite and
various ioctl/balance things. With this patch my space leak scripts no longer
scream bloody murder. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Now that we're properly keeping track of delayed inode space we've been getting
a lot of warnings out of btrfs_dirty_inode() when running xfstest 83. This is
because a bunch of people call mark_inode_dirty, which is void so we can't
return ENOSPC. This needs to be fixed in a few areas
1) file_update_time - this updates the mtime and such when writing to a file,
which will call mark_inode_dirty. So copy file_update_time into btrfs so we can
call btrfs_dirty_inode directly and return an error if we get one appropriately.
2) fix symlinks to use btrfs_setattr for ->setattr. For some reason we weren't
setting ->setattr for symlinks, even though we should have been. This catches
one of the cases where we were getting errors in mark_inode_dirty.
3) Fix btrfs_setattr and btrfs_setsize to call btrfs_dirty_inode directly
instead of mark_inode_dirty. This lets us return errors properly for truncate
and chown/anything related to setattr.
4) Add a new btrfs_fs_dirty_inode which will just call btrfs_dirty_inode and
print an error if we have one. The only remaining user we can't control for
this is touch_atime(), but we don't really want to keep people from walking
down the tree if we don't have space to save the atime update, so just complain
but don't worry about it.
With this patch xfstests 83 complains a handful of times instead of hundreds of
times. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Al pointed out we have some random problems with the way we account for
num_workers_starting in the async thread stuff. First of all we need to make
sure to decrement num_workers_starting if we fail to start the worker, so make
__btrfs_start_workers do this. Also fix __btrfs_start_workers so that it
doesn't call btrfs_stop_workers(), there is no point in stopping everybody if we
failed to create a worker. Also check_pending_worker_creates needs to call
__btrfs_start_work in it's work function since it already increments
num_workers_starting.
People only start one worker at a time, so get rid of the num_workers argument
everywhere, and make btrfs_queue_worker a void since it will always succeed.
Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
The Smack LSM hook for security_d_instantiate checks
the inode's i_op->getxattr value to determine if the
containing filesystem supports extended attributes.
The BTRFS filesystem sets the inode's i_op value only
after it has instantiated the inode. This results in
Smack incorrectly giving new BTRFS inodes attributes
from the filesystem defaults on the assumption that
values can't be stored on the filesystem. This patch
moves the assignment of inode operation vectors ahead
of the calls to d_instantiate, letting Smack know that
the filesystem supports extended attributes. There
should be no impact on the performance or behavior of
BTRFS.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
If we have a constant stream of end_io completions or crc work,
we can hit softlockup messages from the async helper threads. This
adds a cond_resched() into the loop to avoid them.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Since we have the free space caches, btrfs_orphan_cleanup also runs for
the tree_root. Unfortunately this also cleans up the orphans used to mark
subvol deletions in progress.
Currently if a subvol deletion gets interrupted twice by umount/mount, the
deletion will not be continued and the space permanently lost, though it
would be possible to write a tool to recover those lost subvol deletions.
This patch checks if the orphan belongs to a subvol (dead root) and skips
the deletion.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When we use raid0 as the data profile, df command may show us a very
inaccurate value of the available space, which may be much less than the
real one. It may make the users puzzled. Fix it by changing the calculation
of the available space, and making it be more similar to a fake chunk
allocation.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfsck report errors after the 83th case of xfstests was run, The error
number is 400, it means the used disk space of the file is wrong.
The reason of this bug is that:
The file truncation may fail when the space of the file system is not enough,
and leave some file extents, whose offset are beyond the end of the files.
When we want to expand those files, we will drop those file extents, and
put in dummy file extents, and then we should update the i-node. But btrfs
forgets to do it.
This patch adds the forgotten i-node update.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfsck report error 100 after the 83th case of xfstests was run, it means
the i_size of the file is wrong.
The reason of this bug is that:
Btrfs increased i_size of the file at the beginning, but it failed to expand
the file, and failed to update the i_size to the old size because there is no
enough space in the file system, so we found a wrong i_size.
This patch fixes this bug by updating the i_size just when we pass the file
expanding and get enough space to update i-node.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs_end_bio checks the number of errors on a bio against the max
number of errors allowed before sending any EIOs up to the higher
levels.
If we got enough copies of the bio done for a given raid level, it is
supposed to clear the bio error flag and return success.
We have pointers to the original bio sent down by the higher layers and
pointers to any cloned bios we made for raid purposes. If the original
bio happens to be the one that got an io error, but not the last one to
finish, it might not have the BIO_UPTODATE bit set.
Then, when the last bio does finish, we'll call bio_end_io on the
original bio. It won't have the uptodate bit set and we'll end up
sending EIO to the higher layers.
We already had a check for this, it just was conditional on getting the
IO error on the very last bio. Make the check unconditional so we eat
the EIOs properly.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: drop spin lock when memory alloc fails
Btrfs: check if the to-be-added device is writable
Btrfs: try cluster but don't advance in search list
Btrfs: try to allocate from cluster even at LOOP_NO_EMPTY_SIZE
Drop spin lock in convert_extent_bit() when memory alloc fails,
otherwise, it will be a deadlock.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
If we call ioctl(BTRFS_IOC_ADD_DEV) directly, we'll succeed in adding
a readonly device to a btrfs filesystem, and btrfs will write to
that device, emitting kernel errors:
[ 3109.833692] lost page write due to I/O error on loop2
[ 3109.833720] lost page write due to I/O error on loop2
...
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When we find an existing cluster, we switch to its block group as the
current block group, possibly skipping multiple blocks in the process.
Furthermore, under heavy contention, multiple threads may fail to
allocate from a cluster and then release just-created clusters just to
proceed to create new ones in a different block group.
This patch tries to allocate from an existing cluster regardless of its
block group, and doesn't switch to that group, instead proceeding to
try to allocate a cluster from the group it was iterating before the
attempt.
Signed-off-by: Alexandre Oliva <oliva@lsd.ic.unicamp.br>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
If we reach LOOP_NO_EMPTY_SIZE, we won't even try to use a cluster that
others might have set up. Odds are that there won't be one, but if
someone else succeeded in setting it up, we might as well use it, even
if we don't try to set up a cluster again.
Signed-off-by: Alexandre Oliva <oliva@lsd.ic.unicamp.br>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix meta data raid-repair merge problem
Btrfs: skip allocation attempt from empty cluster
Btrfs: skip block groups without enough space for a cluster
Btrfs: start search for new cluster at the beginning
Btrfs: reset cluster's max_size when creating bitmap
Btrfs: initialize new bitmaps' list
Btrfs: fix oops when calling statfs on readonly device
Btrfs: Don't error on resizing FS to same size
Btrfs: fix deadlock on metadata reservation when evicting a inode
Fix URL of btrfs-progs git repository in docs
btrfs scrub: handle -ENOMEM from init_ipath()
Commit 4a54c8c16 introduced raid-repair, killing the individual
readpage_io_failed_hook entries from inode.c and disk-io.c. Commit
4bb31e92 introduced new readahead code, adding a readpage_io_failed_hook to
disk-io.c.
The raid-repair commit had logic to disable raid-repair, if
readpage_io_failed_hook is set. Thus, the readahead commit effectively
disabled raid-repair for meta data.
This commit changes the logic to always attempt raid-repair when needed and
call the readpage_io_failed_hook in case raid-repair fails. This is much
more straight forward and should have been like that from the beginning.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Reported-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
If we don't have a cluster, don't bother trying to allocate from it,
jumping right away to the attempt to allocate a new cluster.
Signed-off-by: Alexandre Oliva <oliva@lsd.ic.unicamp.br>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We test whether a block group has enough free space to hold the
requested block, but when we're doing clustered allocation, we can
save some cycles by testing whether it has enough room for the cluster
upfront, otherwise we end up attempting to set up a cluster and
failing. Only in the NO_EMPTY_SIZE loop do we attempt an unclustered
allocation, and by then we'll have zeroed the cluster size, so this
patch won't stop us from using the block group as a last resort.
Signed-off-by: Alexandre Oliva <oliva@lsd.ic.unicamp.br>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Instead of starting at zero (offset is always zero), request a cluster
starting at search_start, that denotes the beginning of the current
block group.
Signed-off-by: Alexandre Oliva <oliva@lsd.ic.unicamp.br>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The field that indicates the size of the largest contiguous chunk of
free space in the cluster is not initialized when setting up bitmaps,
it's only increased when we find a larger contiguous chunk. We end up
retaining a larger value than appropriate for highly-fragmented
clusters, which may cause pointless searches for large contiguous
groups, and even cause clusters that do not meet the density
requirements to be set up.
Signed-off-by: Alexandre Oliva <oliva@lsd.ic.unicamp.br>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We're failing to create clusters with bitmaps because
setup_cluster_no_bitmap checks that the list is empty before inserting
the bitmap entry in the list for setup_cluster_bitmap, but the list
field is only initialized when it is restored from the on-disk free
space cache, or when it is written out to disk.
Besides a potential race condition due to the multiple use of the list
field, filesystem performance severely degrades over time: as we use
up all non-bitmap free extents, the try-to-set-up-cluster dance is
done at every metadata block allocation. For every block group, we
fail to set up a cluster, and after failing on them all up to twice,
we fall back to the much slower unclustered allocation.
To make matters worse, before the unclustered allocation, we try to
create new block groups until we reach the 1% threshold, which
introduces additional bitmaps and thus block groups that we'll iterate
over at each metadata block request.
To reproduce this bug:
# dd if=/dev/zero of=img bs=1M count=256
# mkfs.btrfs img
# losetup -r /dev/loop1 img
# mount /dev/loop1 /mnt
OOPS!!
It triggered BUG_ON(!nr_devices) in btrfs_calc_avail_data_space().
To fix this, instead of checking write-only devices, we check all open
deivces:
# df -h /dev/loop1
Filesystem Size Used Avail Use% Mounted on
/dev/loop1 250M 28K 238M 1% /mnt
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
It seems overly harsh to fail a resize of a btrfs file system to the
same size when a shrink or grow would succeed. User app GParted trips
over this error. Allow it by bypassing the shrink or grow operation.
Signed-off-by: Mike Fleetwood <mike.fleetwood@googlemail.com>
When I ran the xfstests, I found the test tasks was blocked on meta-data
reservation.
By debugging, I found the reason of this bug:
start transaction
|
v
reserve meta-data space
|
v
flush delay allocation -> iput inode -> evict inode
^ |
| v
wait for delay allocation flush <- reserve meta-data space
And besides that, the flush on evicting inode will block the thread, which
is reclaiming the memory, and make oom happen easily.
Fix this bug by skipping the flush step when evicting inode.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: remove free-space-cache.c WARN during log replay
Btrfs: sectorsize align offsets in fiemap
Btrfs: clear pages dirty for io and set them extent mapped
Btrfs: wait on caching if we're loading the free space cache
Btrfs: prefix resize related printks with btrfs:
btrfs: fix stat blocks accounting
Btrfs: avoid unnecessary bitmap search for cluster setup
Btrfs: fix to search one more bitmap for cluster setup
btrfs: mirror_num should be int, not u64
btrfs: Fix up 32/64-bit compatibility for new ioctls
Btrfs: fix barrier flushes
Btrfs: fix tree corruption after multi-thread snapshots and inode_cache flush
The log replay code only partially loads block groups, since
the block group caching code is able to detect and deal with
extents the logging code has pinned down.
While the logging code is pinning down block groups, there is
a bogus WARN_ON we're hitting if the code wasn't able to find
an extent in the cache. This commit removes the warning because
it can happen any time there isn't a valid free space cache
for that block group.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We've been hitting BUG()'s in btrfs_cont_expand and btrfs_fallocate and anywhere
else that calls btrfs_get_extent while running xfstests 13 in a loop. This is
because fiemap is calling btrfs_get_extent with non-sectorsize aligned offsets,
which will end up adding mappings that are not sectorsize aligned, which will
cause problems in some cases for subsequent calls to btrfs_get_extent for
similar areas that are sectorsize aligned. With this patch I ran xfstests 13 in
a loop for a couple of hours and didn't hit the problem that I could previously
hit in at most 20 minutes. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
When doing the io_ctl helpers to clean up the free space cache stuff I stopped
using our normal prepare_pages stuff, which means I of course forgot to do
things like set the pages extent mapped, which will cause us all sorts of
wonderful propblems. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
We've been hitting panics when running xfstest 13 in a loop for long periods of
time. And actually this problem has always existed so we've been hitting these
things randomly for a while. Basically what happens is we get a thread coming
into the allocator and reading the space cache off of disk and adding the
entries to the free space cache as we go. Then we get another thread that comes
in and tries to allocate from that block group. Since block_group->cached !=
BTRFS_CACHE_NO it goes ahead and tries to do the allocation. We do this because
if we're doing the old slow way of caching we don't want to hold people up and
wait for everything to finish. The problem with this is we could end up
discarding the space cache at some arbitrary point in the future, which means we
could very well end up allocating space that is either bad, or when the real
caching happens it could end up thinking the space isn't in use when it really
is and cause all sorts of other problems.
The solution is to add a new flag to indicate we are loading the free space
cache from disk, and always try to cache the block group if cache->cached !=
BTRFS_CACHE_FINISHED. That way if we are loading the space cache anybody else
who tries to allocate from the block group will have to wait until it's finished
to make sure it completes successfully. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
For the user it is confusing to find something like:
[10197.627710] new size for /dev/mapper/vg0-usr_share is 3221225472
in kernel log, because it doesn't point directly to btrfs.
This patch prefixes those messages with "btrfs:" like other btrfs
related printks.
Signed-off-by: Arnd Hannemann <arnd@arndnet.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Round inode bytes and delalloc bytes up to real blocksize before
converting to sector size. Otherwise eg. files smaller than 512
are reported with zero blocks due to incorrect rounding.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
setup_cluster_no_bitmap() searches all the extents and bitmaps starting
from offset. Therefore if it returns -ENOSPC, all the bitmaps starting
from offset are in the bitmaps list, so it's sufficient to search from
this list in setup_cluser_bitmap().
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Suppose there are two bitmaps [0, 256], [256, 512] and one extent
[100, 120] in the free space cache, and we want to setup a cluster
with offset=100, bytes=50.
In this case, there will be only one bitmap [256, 512] in the temporary
bitmaps list, and then setup_cluster_bitmap() won't search bitmap [0, 256].
The cause is, the list is constructed in setup_cluster_no_bitmap(),
and only bitmaps with bitmap_entry->offset >= offset will be added
into the list, and the very bitmap that convers offset has
bitmap_entry->offset <= offset.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
My previous patch introduced some u64 for failed_mirror variables, this one
makes it consistent again.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch casts to unsigned long before casting to a pointer and fixes
the following warnings:
fs/btrfs/extent_io.c:2289:20: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast]
fs/btrfs/ioctl.c:2933:37: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast]
fs/btrfs/ioctl.c:2937:21: warning: cast to pointer from integer of different size [-Wint-to-pointer-cast]
fs/btrfs/ioctl.c:3020:21: warning: cast to pointer from integer of different size [-Wint-to-pointer-cast]
fs/btrfs/scrub.c:275:4: warning: cast to pointer from integer of different size [-Wint-to-pointer-cast]
fs/btrfs/backref.c:686:27: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast]
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When btrfs is writing the super blocks, it send barrier flushes to make
sure writeback caching drives get all the metadata on disk in the
right order.
But, we have two bugs in the way these are sent down. When doing
full commits (not via the tree log), we are sending the barrier down
before the last super when it should be going down before the first.
In multi-device setups, we should be waiting for the barriers to
complete on all devices before writing any of the supers.
Both of these bugs can cause corruptions on power failures. We fix it
with some new code to send down empty barriers to all devices before
writing the first super.
Alexandre Oliva found the multi-device bug. Arne Jansen did the async
barrier loop.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Reported-by: Alexandre Oliva <oliva@lsd.ic.unicamp.br>