[ Upstream commit 197827a05e ]
Now migrate_disable() does not disable preemption and under some
architectures (e.g. arm64) __this_cpu_{inc|dec|inc_return} are neither
preemption-safe nor IRQ-safe, so for fully preemptible kernel concurrent
lookups or updates on the same task local storage and on the same CPU
may make bpf_task_storage_busy be imbalanced, and
bpf_task_storage_trylock() on the specific cpu will always fail.
Fixing it by using this_cpu_{inc|dec|inc_return} when manipulating
bpf_task_storage_busy.
Fixes: bc235cdb42 ("bpf: Prevent deadlock from recursive bpf_task_storage_[get|delete]")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20220901061938.3789460-2-houtao@huaweicloud.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 66a7a92e4d ]
In __htab_map_lookup_and_delete_batch() if htab_lock_bucket() returns
-EBUSY, it will go to next bucket. Going to next bucket may not only
skip the elements in current bucket silently, but also incur
out-of-bound memory access or expose kernel memory to userspace if
current bucket_cnt is greater than bucket_size or zero.
Fixing it by stopping batch operation and returning -EBUSY when
htab_lock_bucket() fails, and the application can retry or skip the busy
batch as needed.
Fixes: 20b6cc34ea ("bpf: Avoid hashtab deadlock with map_locked")
Reported-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20220831042629.130006-3-houtao@huaweicloud.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2775da2162 ]
Per-cpu htab->map_locked is used to prohibit the concurrent accesses
from both NMI and non-NMI contexts. But since commit 74d862b682
("sched: Make migrate_disable/enable() independent of RT"),
migrate_disable() is also preemptible under CONFIG_PREEMPT case, so now
map_locked also disallows concurrent updates from normal contexts
(e.g. userspace processes) unexpectedly as shown below:
process A process B
htab_map_update_elem()
htab_lock_bucket()
migrate_disable()
/* return 1 */
__this_cpu_inc_return()
/* preempted by B */
htab_map_update_elem()
/* the same bucket as A */
htab_lock_bucket()
migrate_disable()
/* return 2, so lock fails */
__this_cpu_inc_return()
return -EBUSY
A fix that seems feasible is using in_nmi() in htab_lock_bucket() and
only checking the value of map_locked for nmi context. But it will
re-introduce dead-lock on bucket lock if htab_lock_bucket() is re-entered
through non-tracing program (e.g. fentry program).
One cannot use preempt_disable() to fix this issue as htab_use_raw_lock
being false causes the bucket lock to be a spin lock which can sleep and
does not work with preempt_disable().
Therefore, use migrate_disable() when using the spinlock instead of
preempt_disable() and defer fixing concurrent updates to when the kernel
has its own BPF memory allocator.
Fixes: 74d862b682 ("sched: Make migrate_disable/enable() independent of RT")
Reviewed-by: Hao Luo <haoluo@google.com>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20220831042629.130006-2-houtao@huaweicloud.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9d9d00ac29 ]
Currently, verifier verifies callback functions (sync and async) as if
they will be executed once, (i.e. it explores execution state as if the
function was being called once). The next insn to explore is set to
start of subprog and the exit from nested frame is handled using
curframe > 0 and prepare_func_exit. In case of async callback it uses a
customized variant of push_stack simulating a kind of branch to set up
custom state and execution context for the async callback.
While this approach is simple and works when callback really will be
executed only once, it is unsafe for all of our current helpers which
are for_each style, i.e. they execute the callback multiple times.
A callback releasing acquired references of the caller may do so
multiple times, but currently verifier sees it as one call inside the
frame, which then returns to caller. Hence, it thinks it released some
reference that the cb e.g. got access through callback_ctx (register
filled inside cb from spilled typed register on stack).
Similarly, it may see that an acquire call is unpaired inside the
callback, so the caller will copy the reference state of callback and
then will have to release the register with new ref_obj_ids. But again,
the callback may execute multiple times, but the verifier will only
account for acquired references for a single symbolic execution of the
callback, which will cause leaks.
Note that for async callback case, things are different. While currently
we have bpf_timer_set_callback which only executes it once, even for
multiple executions it would be safe, as reference state is NULL and
check_reference_leak would force program to release state before
BPF_EXIT. The state is also unaffected by analysis for the caller frame.
Hence async callback is safe.
Since we want the reference state to be accessible, e.g. for pointers
loaded from stack through callback_ctx's PTR_TO_STACK, we still have to
copy caller's reference_state to callback's bpf_func_state, but we
enforce that whatever references it adds to that reference_state has
been released before it hits BPF_EXIT. This requires introducing a new
callback_ref member in the reference state to distinguish between caller
vs callee references. Hence, check_reference_leak now errors out if it
sees we are in callback_fn and we have not released callback_ref refs.
Since there can be multiple nested callbacks, like frame 0 -> cb1 -> cb2
etc. we need to also distinguish between whether this particular ref
belongs to this callback frame or parent, and only error for our own, so
we store state->frameno (which is always non-zero for callbacks).
In short, callbacks can read parent reference_state, but cannot mutate
it, to be able to use pointers acquired by the caller. They must only
undo their changes (by releasing their own acquired_refs before
BPF_EXIT) on top of caller reference_state before returning (at which
point the caller and callback state will match anyway, so no need to
copy it back to caller).
Fixes: 69c087ba62 ("bpf: Add bpf_for_each_map_elem() helper")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220823013125.24938-1-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 0934ae9977 upstream.
The follow commands caused a crash:
# cd /sys/kernel/tracing
# echo 's:open char file[]' > dynamic_events
# echo 'hist:keys=common_pid:file=filename:onchange($file).trace(open,$file)' > events/syscalls/sys_enter_openat/trigger'
# echo 1 > events/synthetic/open/enable
BOOM!
The problem is that the synthetic event field "char file[]" will read
the value given to it as a string without any memory checks to make sure
the address is valid. The above example will pass in the user space
address and the sythetic event code will happily call strlen() on it
and then strscpy() where either one will cause an oops when accessing
user space addresses.
Use the helper functions from trace_kprobe and trace_eprobe that can
read strings safely (and actually succeed when the address is from user
space and the memory is mapped in).
Now the above can show:
packagekitd-1721 [000] ...2. 104.597170: open: file=/usr/lib/rpm/fileattrs/cmake.attr
in:imjournal-978 [006] ...2. 104.599642: open: file=/var/lib/rsyslog/imjournal.state.tmp
packagekitd-1721 [000] ...2. 104.626308: open: file=/usr/lib/rpm/fileattrs/debuginfo.attr
Link: https://lkml.kernel.org/r/20221012104534.826549315@goodmis.org
Cc: stable@vger.kernel.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tom Zanussi <zanussi@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Tom Zanussi <zanussi@kernel.org>
Fixes: bd82631d7c ("tracing: Add support for dynamic strings to synthetic events")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2e9906f84f upstream.
Have the specific functions for kernel probes that read strings to inject
the "(fault)" name directly. trace_probes.c does this too (for uprobes)
but as the code to read strings are going to be used by synthetic events
(and perhaps other utilities), it simplifies the code by making sure those
other uses do not need to implement the "(fault)" name injection as well.
Link: https://lkml.kernel.org/r/20221012104534.644803645@goodmis.org
Cc: stable@vger.kernel.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tom Zanussi <zanussi@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Tom Zanussi <zanussi@kernel.org>
Fixes: bd82631d7c ("tracing: Add support for dynamic strings to synthetic events")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f1d3cbfaaf upstream.
The functions:
fetch_store_strlen_user()
fetch_store_strlen()
fetch_store_string_user()
fetch_store_string()
are identical in both trace_kprobe.c and trace_eprobe.c. Move them into
a new header file trace_probe_kernel.h to share it. This code will later
be used by the synthetic events as well.
Marked for stable as a fix for a crash in synthetic events requires it.
Link: https://lkml.kernel.org/r/20221012104534.467668078@goodmis.org
Cc: stable@vger.kernel.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tom Zanussi <zanussi@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Tom Zanussi <zanussi@kernel.org>
Fixes: bd82631d7c ("tracing: Add support for dynamic strings to synthetic events")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 01b2a52171 upstream.
If a process is waiting on the ring buffer for data, there currently isn't
a clean way to force it to wake up. Add an ioctl call that will force any
tasks that are waiting on the trace_pipe_raw file to wake up.
Link: https://lkml.kernel.org/r/20220929095029.117f913f@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: e30f53aad2 ("tracing: Do not busy wait in buffer splice")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2b0fd9a59b upstream.
When tracing is disabled, there's no reason that waiters should stay
waiting, wake them up, otherwise tasks get stuck when they should be
flushing the buffers.
Cc: stable@vger.kernel.org
Fixes: e30f53aad2 ("tracing: Do not busy wait in buffer splice")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f3ddb74ad0 upstream.
When the file that represents the ring buffer is closed, there may be
waiters waiting on more input from the ring buffer. Call
ring_buffer_wake_waiters() to wake up any waiters when the file is
closed.
Link: https://lkml.kernel.org/r/20220927231825.182416969@goodmis.org
Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: e30f53aad2 ("tracing: Do not busy wait in buffer splice")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c0a581d712 upstream.
It was found that some tracing functions in kernel/trace/trace.c acquire
an arch_spinlock_t with preemption and irqs enabled. An example is the
tracing_saved_cmdlines_size_read() function which intermittently causes
a "BUG: using smp_processor_id() in preemptible" warning when the LTP
read_all_proc test is run.
That can be problematic in case preemption happens after acquiring the
lock. Add the necessary preemption or interrupt disabling code in the
appropriate places before acquiring an arch_spinlock_t.
The convention here is to disable preemption for trace_cmdline_lock and
interupt for max_lock.
Link: https://lkml.kernel.org/r/20220922145622.1744826-1-longman@redhat.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Will Deacon <will@kernel.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: stable@vger.kernel.org
Fixes: a35873a099 ("tracing: Add conditional snapshot")
Fixes: 939c7a4f04 ("tracing: Introduce saved_cmdlines_size file")
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a0fcaaed0c upstream.
The ring buffer is broken up into sub buffers (currently of page size).
Each sub buffer has a pointer to its "tail" (the last event written to the
sub buffer). When a new event is requested, the tail is locally
incremented to cover the size of the new event. This is done in a way that
there is no need for locking.
If the tail goes past the end of the sub buffer, the process of moving to
the next sub buffer takes place. After setting the current sub buffer to
the next one, the previous one that had the tail go passed the end of the
sub buffer needs to be reset back to the original tail location (before
the new event was requested) and the rest of the sub buffer needs to be
"padded".
The race happens when a reader takes control of the sub buffer. As readers
do a "swap" of sub buffers from the ring buffer to get exclusive access to
the sub buffer, it replaces the "head" sub buffer with an empty sub buffer
that goes back into the writable portion of the ring buffer. This swap can
happen as soon as the writer moves to the next sub buffer and before it
updates the last sub buffer with padding.
Because the sub buffer can be released to the reader while the writer is
still updating the padding, it is possible for the reader to see the event
that goes past the end of the sub buffer. This can cause obvious issues.
To fix this, add a few memory barriers so that the reader definitely sees
the updates to the sub buffer, and also waits until the writer has put
back the "tail" of the sub buffer back to the last event that was written
on it.
To be paranoid, it will only spin for 1 second, otherwise it will
warn and shutdown the ring buffer code. 1 second should be enough as
the writer does have preemption disabled. If the writer doesn't move
within 1 second (with preemption disabled) something is horribly
wrong. No interrupt should last 1 second!
Link: https://lore.kernel.org/all/20220830120854.7545-1-jiazi.li@transsion.com/
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216369
Link: https://lkml.kernel.org/r/20220929104909.0650a36c@gandalf.local.home
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org
Fixes: c7b0930857 ("ring-buffer: prevent adding write in discarded area")
Reported-by: Jiazi.Li <jiazi.li@transsion.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7e9fbbb1b7 upstream.
On closing of a file that represents a ring buffer or flushing the file,
there may be waiters on the ring buffer that needs to be woken up and exit
the ring_buffer_wait() function.
Add ring_buffer_wake_waiters() to wake up the waiters on the ring buffer
and allow them to exit the wait loop.
Link: https://lkml.kernel.org/r/20220928133938.28dc2c27@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 15693458c4 ("tracing/ring-buffer: Move poll wake ups into ring buffer code")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ec0bbc5ec5 upstream.
The wake up waiters only checks the "wakeup_full" variable and not the
"full_waiters_pending". The full_waiters_pending is set when a waiter is
added to the wait queue. The wakeup_full is only set when an event is
triggered, and it clears the full_waiters_pending to avoid multiple calls
to irq_work_queue().
The irq_work callback really needs to check both wakeup_full as well as
full_waiters_pending such that this code can be used to wake up waiters
when a file is closed that represents the ring buffer and the waiters need
to be woken up.
Link: https://lkml.kernel.org/r/20220927231824.209460321@goodmis.org
Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 15693458c4 ("tracing/ring-buffer: Move poll wake ups into ring buffer code")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3b19d614b6 upstream.
The logic to know when the shortest waiters on the ring buffer should be
woken up or not has uses a less than instead of a greater than compare,
which causes the shortest_full to actually be the longest.
Link: https://lkml.kernel.org/r/20220927231823.718039222@goodmis.org
Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 2c2b0a78b3 ("ring-buffer: Add percentage of ring buffer full to wake up reader")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fa8f4a8973 upstream.
If a page is partially read, and then the splice system call is run
against the ring buffer, it will always fail to read, no matter how much
is in the ring buffer. That's because the code path for a partial read of
the page does will fail if the "full" flag is set.
The splice system call wants full pages, so if the read of the ring buffer
is not yet full, it should return zero, and the splice will block. But if
a previous read was done, where the beginning has been consumed, it should
still be given to the splice caller if the rest of the page has been
written to.
This caused the splice command to never consume data in this scenario, and
let the ring buffer just fill up and lose events.
Link: https://lkml.kernel.org/r/20220927144317.46be6b80@gandalf.local.home
Cc: stable@vger.kernel.org
Fixes: 8789a9e7df ("ring-buffer: read page interface")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0ce0638edf upstream.
When executing following commands like what document said, but the log
"#### all functions enabled ####" was not shown as expect:
1. Set a 'mod' filter:
$ echo 'write*:mod:ext3' > /sys/kernel/tracing/set_ftrace_filter
2. Invert above filter:
$ echo '!write*:mod:ext3' >> /sys/kernel/tracing/set_ftrace_filter
3. Read the file:
$ cat /sys/kernel/tracing/set_ftrace_filter
By some debugging, I found that flag FTRACE_HASH_FL_MOD was not unset
after inversion like above step 2 and then result of ftrace_hash_empty()
is incorrect.
Link: https://lkml.kernel.org/r/20220926152008.2239274-1-zhengyejian1@huawei.com
Cc: <mingo@redhat.com>
Cc: stable@vger.kernel.org
Fixes: 8c08f0d5c6 ("ftrace: Have cached module filters be an active filter")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 747f7a2901 upstream.
The KLP transition code depends on the TIF_PATCH_PENDING and
the task->patch_state to stay in sync. On a normal (forward)
transition, TIF_PATCH_PENDING will be set on every task in
the system, while on a reverse transition (after a failed
forward one) first TIF_PATCH_PENDING will be cleared from
every task, followed by it being set on tasks that need to
be transitioned back to the original code.
However, the fork code copies over the TIF_PATCH_PENDING flag
from the parent to the child early on, in dup_task_struct and
setup_thread_stack. Much later, klp_copy_process will set
child->patch_state to match that of the parent.
However, the parent's patch_state may have been changed by KLP loading
or unloading since it was initially copied over into the child.
This results in the KLP code occasionally hitting this warning in
klp_complete_transition:
for_each_process_thread(g, task) {
WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
task->patch_state = KLP_UNDEFINED;
}
Set, or clear, the TIF_PATCH_PENDING flag in the child task
depending on whether or not it is needed at the time
klp_copy_process is called, at a point in copy_process where the
tasklist_lock is held exclusively, preventing races with the KLP
code.
The KLP code does have a few places where the state is changed
without the tasklist_lock held, but those should not cause
problems because klp_update_patch_state(current) cannot be
called while the current task is in the middle of fork,
klp_check_and_switch_task() which is called under the pi_lock,
which prevents rescheduling, and manipulation of the patch
state of idle tasks, which do not fork.
This should prevent this warning from triggering again in the
future, and close the race for both normal and reverse transitions.
Signed-off-by: Rik van Riel <riel@surriel.com>
Reported-by: Breno Leitao <leitao@debian.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Fixes: d83a7cb375 ("livepatch: change to a per-task consistency model")
Cc: stable@kernel.org
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20220808150019.03d6a67b@imladris.surriel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 82806744fd upstream.
swiotlb_find_slots() skips slots according to io tlb aligned mask
calculated from min aligned mask and original physical address
offset. This affects max mapping size. The mapping size can't
achieve the IO_TLB_SEGSIZE * IO_TLB_SIZE when original offset is
non-zero. This will cause system boot up failure in Hyper-V
Isolation VM where swiotlb force is enabled. Scsi layer use return
value of dma_max_mapping_size() to set max segment size and it
finally calls swiotlb_max_mapping_size(). Hyper-V storage driver
sets min align mask to 4k - 1. Scsi layer may pass 256k length of
request buffer with 0~4k offset and Hyper-V storage driver can't
get swiotlb bounce buffer via DMA API. Swiotlb_find_slots() can't
find 256k length bounce buffer with offset. Make swiotlb_max_mapping
_size() take min align mask into account.
Signed-off-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Rishabh Bhatnagar <risbhat@amazon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit df02452f3d ]
cgroup has to be one kernfs dir, otherwise kernel panic is caused,
especially cgroup id is provide from userspace.
Reported-by: Marco Patalano <mpatalan@redhat.com>
Fixes: 6b658c4863 ("scsi: cgroup: Add cgroup_get_from_id()")
Cc: Muneendra <muneendra.kumar@broadcom.com>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Acked-by: Mukesh Ojha <quic_mojha@quicinc.com>
Cc: stable@vger.kernel.org # v5.14+
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit be28816971 ]
Currently cgroup_get_from_path() and cgroup_get_from_id() grab
cgroup_mutex before traversing the default hierarchy to find the
kernfs_node corresponding to the path/id and then extract the linked
cgroup. Since cgroup_mutex is still held, it is guaranteed that the
cgroup will be alive and the reference can be taken on it.
However similar guarantee can be provided without depending on the
cgroup_mutex and potentially reducing avenues of cgroup_mutex contentions.
The kernfs_node's priv pointer is RCU protected pointer and with just
rcu read lock we can grab the reference on the cgroup without
cgroup_mutex. So, remove cgroup_mutex from them.
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Stable-dep-of: df02452f3d ("cgroup: cgroup_get_from_id() must check the looked-up kn is a directory")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c0feea594e ]
Like Hillf Danton mentioned
syzbot should have been able to catch cancel_work_sync() in work context
by checking lockdep_map in __flush_work() for both flush and cancel.
in [1], being unable to report an obvious deadlock scenario shown below is
broken. From locking dependency perspective, sync version of cancel request
should behave as if flush request, for it waits for completion of work if
that work has already started execution.
----------
#include <linux/module.h>
#include <linux/sched.h>
static DEFINE_MUTEX(mutex);
static void work_fn(struct work_struct *work)
{
schedule_timeout_uninterruptible(HZ / 5);
mutex_lock(&mutex);
mutex_unlock(&mutex);
}
static DECLARE_WORK(work, work_fn);
static int __init test_init(void)
{
schedule_work(&work);
schedule_timeout_uninterruptible(HZ / 10);
mutex_lock(&mutex);
cancel_work_sync(&work);
mutex_unlock(&mutex);
return -EINVAL;
}
module_init(test_init);
MODULE_LICENSE("GPL");
----------
The check this patch restores was added by commit 0976dfc1d0
("workqueue: Catch more locking problems with flush_work()").
Then, lockdep's crossrelease feature was added by commit b09be676e0
("locking/lockdep: Implement the 'crossrelease' feature"). As a result,
this check was once removed by commit fd1a5b04df ("workqueue: Remove
now redundant lock acquisitions wrt. workqueue flushes").
But lockdep's crossrelease feature was removed by commit e966eaeeb6
("locking/lockdep: Remove the cross-release locking checks"). At this
point, this check should have been restored.
Then, commit d6e89786be ("workqueue: skip lockdep wq dependency in
cancel_work_sync()") introduced a boolean flag in order to distinguish
flush_work() and cancel_work_sync(), for checking "struct workqueue_struct"
dependency when called from cancel_work_sync() was causing false positives.
Then, commit 87915adc3f ("workqueue: re-add lockdep dependencies for
flushing") tried to restore "struct work_struct" dependency check, but by
error checked this boolean flag. Like an example shown above indicates,
"struct work_struct" dependency needs to be checked for both flush_work()
and cancel_work_sync().
Link: https://lkml.kernel.org/r/20220504044800.4966-1-hdanton@sina.com [1]
Reported-by: Hillf Danton <hdanton@sina.com>
Suggested-by: Lai Jiangshan <jiangshanlai@gmail.com>
Fixes: 87915adc3f ("workqueue: re-add lockdep dependencies for flushing")
Cc: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 54c3931957 ]
Currently, The arguments passing to lockdep_hardirqs_{on,off} was fixed
in CALLER_ADDR0.
The function trace_hardirqs_on_caller should have been intended to use
caller_addr to represent the address that caller wants to be traced.
For example, lockdep log in riscv showing the last {enabled,disabled} at
__trace_hardirqs_{on,off} all the time(if called by):
[ 57.853175] hardirqs last enabled at (2519): __trace_hardirqs_on+0xc/0x14
[ 57.853848] hardirqs last disabled at (2520): __trace_hardirqs_off+0xc/0x14
After use trace_hardirqs_xx_caller, we can get more effective information:
[ 53.781428] hardirqs last enabled at (2595): restore_all+0xe/0x66
[ 53.782185] hardirqs last disabled at (2596): ret_from_exception+0xa/0x10
Link: https://lkml.kernel.org/r/20220901104515.135162-2-zouyipeng@huawei.com
Cc: stable@vger.kernel.org
Fixes: c3bc8fd637 ("tracing: Centralize preemptirq tracepoints and unify their usage")
Signed-off-by: Yipeng Zou <zouyipeng@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8b023accc8 ]
While looking into a bug related to the compiler's handling of addresses
of labels, I noticed some uses of _THIS_IP_ seemed unused in lockdep.
Drive by cleanup.
-Wunused-parameter:
kernel/locking/lockdep.c:1383:22: warning: unused parameter 'ip'
kernel/locking/lockdep.c:4246:48: warning: unused parameter 'ip'
kernel/locking/lockdep.c:4844:19: warning: unused parameter 'ip'
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Waiman Long <longman@redhat.com>
Link: https://lore.kernel.org/r/20220314221909.2027027-1-ndesaulniers@google.com
Stable-dep-of: 54c3931957 ("tracing: hold caller_addr to hardirq_{enable,disable}_ip")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3f0461613e ]
The second operand passed to slot_addr() is declared as int or unsigned int
in all call sites. The left-shift to get the offset of a slot can overflow
if swiotlb size is larger than 4G.
Convert the macro to an inline function and declare the second argument as
phys_addr_t to avoid the potential overflow.
Fixes: 26a7e09478 ("swiotlb: refactor swiotlb_tbl_map_single")
Signed-off-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Dongli Zhang <dongli.zhang@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 85eaeb5058 ]
Fix a nested dead lock as part of ODP flow by using mmput_async().
From the below call trace [1] can see that calling mmput() once we have
the umem_odp->umem_mutex locked as required by
ib_umem_odp_map_dma_and_lock() might trigger in the same task the
exit_mmap()->__mmu_notifier_release()->mlx5_ib_invalidate_range() which
may dead lock when trying to lock the same mutex.
Moving to use mmput_async() will solve the problem as the above
exit_mmap() flow will be called in other task and will be executed once
the lock will be available.
[1]
[64843.077665] task:kworker/u133:2 state:D stack: 0 pid:80906 ppid:
2 flags:0x00004000
[64843.077672] Workqueue: mlx5_ib_page_fault mlx5_ib_eqe_pf_action [mlx5_ib]
[64843.077719] Call Trace:
[64843.077722] <TASK>
[64843.077724] __schedule+0x23d/0x590
[64843.077729] schedule+0x4e/0xb0
[64843.077735] schedule_preempt_disabled+0xe/0x10
[64843.077740] __mutex_lock.constprop.0+0x263/0x490
[64843.077747] __mutex_lock_slowpath+0x13/0x20
[64843.077752] mutex_lock+0x34/0x40
[64843.077758] mlx5_ib_invalidate_range+0x48/0x270 [mlx5_ib]
[64843.077808] __mmu_notifier_release+0x1a4/0x200
[64843.077816] exit_mmap+0x1bc/0x200
[64843.077822] ? walk_page_range+0x9c/0x120
[64843.077828] ? __cond_resched+0x1a/0x50
[64843.077833] ? mutex_lock+0x13/0x40
[64843.077839] ? uprobe_clear_state+0xac/0x120
[64843.077860] mmput+0x5f/0x140
[64843.077867] ib_umem_odp_map_dma_and_lock+0x21b/0x580 [ib_core]
[64843.077931] pagefault_real_mr+0x9a/0x140 [mlx5_ib]
[64843.077962] pagefault_mr+0xb4/0x550 [mlx5_ib]
[64843.077992] pagefault_single_data_segment.constprop.0+0x2ac/0x560
[mlx5_ib]
[64843.078022] mlx5_ib_eqe_pf_action+0x528/0x780 [mlx5_ib]
[64843.078051] process_one_work+0x22b/0x3d0
[64843.078059] worker_thread+0x53/0x410
[64843.078065] ? process_one_work+0x3d0/0x3d0
[64843.078073] kthread+0x12a/0x150
[64843.078079] ? set_kthread_struct+0x50/0x50
[64843.078085] ret_from_fork+0x22/0x30
[64843.078093] </TASK>
Fixes: 36f30e486d ("IB/core: Improve ODP to use hmm_range_fault()")
Reviewed-by: Maor Gottlieb <maorg@nvidia.com>
Signed-off-by: Yishai Hadas <yishaih@nvidia.com>
Link: https://lore.kernel.org/r/74d93541ea533ef7daec6f126deb1072500aeb16.1661251841.git.leonro@nvidia.com
Signed-off-by: Leon Romanovsky <leon@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 4f7e723643 ]
Bringing up a CPU may involve creating and destroying tasks which requires
read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
cpus_read_lock(). However, cpuset's ->attach(), which may be called with
thredagroup_rwsem write-locked, also wants to disable CPU hotplug and
acquires cpus_read_lock(), leading to a deadlock.
Fix it by guaranteeing that ->attach() is always called with CPU hotplug
disabled and removing cpus_read_lock() call from cpuset_attach().
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-and-tested-by: Imran Khan <imran.f.khan@oracle.com>
Reported-and-tested-by: Xuewen Yan <xuewen.yan@unisoc.com>
Fixes: 05c7b7a92c ("cgroup/cpuset: Fix a race between cpuset_attach() and cpu hotplug")
Cc: stable@vger.kernel.org # v5.17+
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 671c11f061 ]
cgroup_update_dfl_csses() write-lock the threadgroup_rwsem as updating the
csses can trigger process migrations. However, if the subtree doesn't
contain any tasks, there aren't gonna be any cgroup migrations. This
condition can be trivially detected by testing whether
mgctx.preloaded_src_csets is empty. Elide write-locking threadgroup_rwsem if
the subtree is empty.
After this optimization, the usage pattern of creating a cgroup, enabling
the necessary controllers, and then seeding it with CLONE_INTO_CGROUP and
then removing the cgroup after it becomes empty doesn't need to write-lock
threadgroup_rwsem at all.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit c2e4065965 upstream.
Kuyo reports that the pattern of using debugfs_remove(debugfs_lookup())
leaks a dentry and with a hotplug stress test, the machine eventually
runs out of memory.
Fix this up by using the newly created debugfs_lookup_and_remove() call
instead which properly handles the dentry reference counting logic.
Cc: Major Chen <major.chen@samsung.com>
Cc: stable <stable@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Reported-by: Kuyo Chang <kuyo.chang@mediatek.com>
Tested-by: Kuyo Chang <kuyo.chang@mediatek.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220902123107.109274-2-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit cecf8e128e upstream.
Since the check_user_trigger() is called outside of RCU
read lock, this list_for_each_entry_rcu() caused a suspicious
RCU usage warning.
# echo hist:keys=pid > events/sched/sched_stat_runtime/trigger
# cat events/sched/sched_stat_runtime/trigger
[ 43.167032]
[ 43.167418] =============================
[ 43.167992] WARNING: suspicious RCU usage
[ 43.168567] 5.19.0-rc5-00029-g19ebe4651abf #59 Not tainted
[ 43.169283] -----------------------------
[ 43.169863] kernel/trace/trace_events_trigger.c:145 RCU-list traversed in non-reader section!!
...
However, this file->triggers list is safe when it is accessed
under event_mutex is held.
To fix this warning, adds a lockdep_is_held check to the
list_for_each_entry_rcu().
Link: https://lkml.kernel.org/r/166226474977.223837.1992182913048377113.stgit@devnote2
Cc: stable@vger.kernel.org
Fixes: 7491e2c442 ("tracing: Add a probe that attaches to trace events")
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 14b20b784f ]
The verifier cannot perform sufficient validation of any pointers passed
into bpf_attr and treats them as integers rather than pointers. The helper
will then read from arbitrary pointers passed into it. Restrict the helper
to CAP_PERFMON since the security model in BPF of arbitrary kernel read is
CAP_BPF + CAP_PERFMON.
Fixes: af2ac3e13e ("bpf: Prepare bpf syscall to be used from kernel and user space.")
Signed-off-by: YiFei Zhu <zhuyifei@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220816205517.682470-1-zhuyifei@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit a657182a5c upstream.
Hsin-Wei reported a KASAN splat triggered by their BPF runtime fuzzer which
is based on a customized syzkaller:
BUG: KASAN: slab-out-of-bounds in bpf_int_jit_compile+0x1257/0x13f0
Read of size 8 at addr ffff888004e90b58 by task syz-executor.0/1489
CPU: 1 PID: 1489 Comm: syz-executor.0 Not tainted 5.19.0 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x9c/0xc9
print_address_description.constprop.0+0x1f/0x1f0
? bpf_int_jit_compile+0x1257/0x13f0
kasan_report.cold+0xeb/0x197
? kvmalloc_node+0x170/0x200
? bpf_int_jit_compile+0x1257/0x13f0
bpf_int_jit_compile+0x1257/0x13f0
? arch_prepare_bpf_dispatcher+0xd0/0xd0
? rcu_read_lock_sched_held+0x43/0x70
bpf_prog_select_runtime+0x3e8/0x640
? bpf_obj_name_cpy+0x149/0x1b0
bpf_prog_load+0x102f/0x2220
? __bpf_prog_put.constprop.0+0x220/0x220
? find_held_lock+0x2c/0x110
? __might_fault+0xd6/0x180
? lock_downgrade+0x6e0/0x6e0
? lock_is_held_type+0xa6/0x120
? __might_fault+0x147/0x180
__sys_bpf+0x137b/0x6070
? bpf_perf_link_attach+0x530/0x530
? new_sync_read+0x600/0x600
? __fget_files+0x255/0x450
? lock_downgrade+0x6e0/0x6e0
? fput+0x30/0x1a0
? ksys_write+0x1a8/0x260
__x64_sys_bpf+0x7a/0xc0
? syscall_enter_from_user_mode+0x21/0x70
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f917c4e2c2d
The problem here is that a range of tnum_range(0, map->max_entries - 1) has
limited ability to represent the concrete tight range with the tnum as the
set of resulting states from value + mask can result in a superset of the
actual intended range, and as such a tnum_in(range, reg->var_off) check may
yield true when it shouldn't, for example tnum_range(0, 2) would result in
00XX -> v = 0000, m = 0011 such that the intended set of {0, 1, 2} is here
represented by a less precise superset of {0, 1, 2, 3}. As the register is
known const scalar, really just use the concrete reg->var_off.value for the
upper index check.
Fixes: d2e4c1e6c2 ("bpf: Constant map key tracking for prog array pokes")
Reported-by: Hsin-Wei Hung <hsinweih@uci.edu>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/r/984b37f9fdf7ac36831d2137415a4a915744c1b6.1661462653.git.daniel@iogearbox.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a8faed3a02 upstream.
When CONFIG_ADVISE_SYSCALLS is not set/enabled and CONFIG_COMPAT is
set/enabled, the riscv compat_syscall_table references
'compat_sys_fadvise64_64', which is not defined:
riscv64-linux-ld: arch/riscv/kernel/compat_syscall_table.o:(.rodata+0x6f8):
undefined reference to `compat_sys_fadvise64_64'
Add 'fadvise64_64' to kernel/sys_ni.c as a conditional COMPAT function so
that when CONFIG_ADVISE_SYSCALLS is not set, there is a fallback function
available.
Link: https://lkml.kernel.org/r/20220807220934.5689-1-rdunlap@infradead.org
Fixes: d3ac21cacc ("mm: Support compiling out madvise and fadvise")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 763f4fb76e upstream.
Root cause:
The rebind_subsystems() is no lock held when move css object from A
list to B list,then let B's head be treated as css node at
list_for_each_entry_rcu().
Solution:
Add grace period before invalidating the removed rstat_css_node.
Reported-by: Jing-Ting Wu <jing-ting.wu@mediatek.com>
Suggested-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Jing-Ting Wu <jing-ting.wu@mediatek.com>
Tested-by: Jing-Ting Wu <jing-ting.wu@mediatek.com>
Link: https://lore.kernel.org/linux-arm-kernel/d8f0bc5e2fb6ed259f9334c83279b4c011283c41.camel@mediatek.com/T/
Acked-by: Mukesh Ojha <quic_mojha@quicinc.com>
Fixes: a7df69b81a ("cgroup: rstat: support cgroup1")
Cc: stable@vger.kernel.org # v5.13+
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ad982c3be4 upstream.
Audit_alloc_mark() assign pathname to audit_mark->path, on error path
from fsnotify_add_inode_mark(), fsnotify_put_mark will free memory
of audit_mark->path, but the caller of audit_alloc_mark will free
the pathname again, so there will be double free problem.
Fix this by resetting audit_mark->path to NULL pointer on error path
from fsnotify_add_inode_mark().
Cc: stable@vger.kernel.org
Fixes: 7b12932340 ("fsnotify: Add group pointer in fsnotify_init_mark()")
Signed-off-by: Gaosheng Cui <cuigaosheng1@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 7c56a8733d ]
In some circumstances it may be interesting to reconfigure the watchdog
from inside the kernel.
On PowerPC, this may helpful before and after a LPAR migration (LPM) is
initiated, because it implies some latencies, watchdog, and especially NMI
watchdog is expected to be triggered during this operation. Reconfiguring
the watchdog with a factor, would prevent it to happen too frequently
during LPM.
Rename lockup_detector_reconfigure() as __lockup_detector_reconfigure() and
create a new function lockup_detector_reconfigure() calling
__lockup_detector_reconfigure() under the protection of watchdog_mutex.
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
[mpe: Squash in build fix from Laurent, reported by Sachin]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220713154729.80789-3-ldufour@linux.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit f04dec9346 upstream.
Currently when an event probe (eprobe) hooks to a string field, it does
not display it as a string, but instead as a number. This makes the field
rather useless. Handle the different kinds of strings, dynamic, static,
relational/dynamic etc.
Now when a string field is used, the ":string" type can be used to display
it:
echo "e:sw sched/sched_switch comm=$next_comm:string" > dynamic_events
Link: https://lkml.kernel.org/r/20220820134400.959640191@goodmis.org
Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Fixes: 7491e2c442 ("tracing: Add a probe that attaches to trace events")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ef1e93d2ee upstream.
bpf_iter_attach_map() acquires a map uref, and the uref may be released
before or in the middle of iterating map elements. For example, the uref
could be released in bpf_iter_detach_map() as part of
bpf_link_release(), or could be released in bpf_map_put_with_uref() as
part of bpf_map_release().
So acquiring an extra map uref in bpf_iter_init_hash_map() and
releasing it in bpf_iter_fini_hash_map().
Fixes: d6c4503cc2 ("bpf: Implement bpf iterator for hash maps")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220810080538.1845898-3-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f76fa6b338 upstream.
bpf_iter_attach_map() acquires a map uref, and the uref may be released
before or in the middle of iterating map elements. For example, the uref
could be released in bpf_iter_detach_map() as part of
bpf_link_release(), or could be released in bpf_map_put_with_uref() as
part of bpf_map_release().
Alternative fix is acquiring an extra bpf_link reference just like
a pinned map iterator does, but it introduces unnecessary dependency
on bpf_link instead of bpf_map.
So choose another fix: acquiring an extra map uref in .init_seq_private
for array map iterator.
Fixes: d3cc2ab546 ("bpf: Implement bpf iterator for array maps")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220810080538.1845898-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 275c30bcee upstream.
The LRU map that is preallocated may have its elements reused while
another program holds a pointer to it from bpf_map_lookup_elem. Hence,
only check_and_free_fields is appropriate when the element is being
deleted, as it ensures proper synchronization against concurrent access
of the map value. After that, we cannot call check_and_init_map_value
again as it may rewrite bpf_spin_lock, bpf_timer, and kptr fields while
they can be concurrently accessed from a BPF program.
This is safe to do as when the map entry is deleted, concurrent access
is protected against by check_and_free_fields, i.e. an existing timer
would be freed, and any existing kptr will be released by it. The
program can create further timers and kptrs after check_and_free_fields,
but they will eventually be released once the preallocated items are
freed on map destruction, even if the item is never reused again. Hence,
the deleted item sitting in the free list can still have resources
attached to it, and they would never leak.
With spin_lock, we never touch the field at all on delete or update, as
we may end up modifying the state of the lock. Since the verifier
ensures that a bpf_spin_lock call is always paired with bpf_spin_unlock
call, the program will eventually release the lock so that on reuse the
new user of the value can take the lock.
Essentially, for the preallocated case, we must assume that the map
value may always be in use by the program, even when it is sitting in
the freelist, and handle things accordingly, i.e. use proper
synchronization inside check_and_free_fields, and never reinitialize the
special fields when it is reused on update.
Fixes: 68134668c1 ("bpf: Add map side support for bpf timers.")
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/r/20220809213033.24147-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b2380577d4 upstream.
Make filtering consistent with histograms. As "cpu" can be a field of an
event, allow for "common_cpu" to keep it from being confused with the
"cpu" field of the event.
Link: https://lkml.kernel.org/r/20220820134401.513062765@goodmis.org
Link: https://lore.kernel.org/all/20220820220920.e42fa32b70505b1904f0a0ad@kernel.org/
Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Fixes: 1e3bac71c5 ("tracing/histogram: Rename "cpu" to "common_cpu"")
Suggested-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ab8384442e upstream.
Both $comm and $COMM can be used to get current->comm in eprobes and the
filtering and histogram logic. Make kprobes and uprobes consistent in this
regard and allow both $comm and $COMM as well. Currently kprobes and
uprobes only handle $comm, which is inconsistent with the other utilities,
and can be confusing to users.
Link: https://lkml.kernel.org/r/20220820134401.317014913@goodmis.org
Link: https://lore.kernel.org/all/20220820220442.776e1ddaf8836e82edb34d01@kernel.org/
Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Fixes: 533059281e ("tracing: probeevent: Introduce new argument fetching code")
Suggested-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6a832ec3d6 upstream.
Currently, if a symbol "@" is attempted to be used with an event probe
(eprobes), it will cause a NULL pointer dereference crash.
Both kprobes and uprobes can reference data other than the main registers.
Such as immediate address, symbols and the current task name. Have eprobes
do the same thing.
For "comm", if "comm" is used and the event being attached to does not
have the "comm" field, then make it the "$comm" that kprobes has. This is
consistent to the way histograms and filters work.
Link: https://lkml.kernel.org/r/20220820134401.136924220@goodmis.org
Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Fixes: 7491e2c442 ("tracing: Add a probe that attaches to trace events")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 02333de90e upstream.
The variable $comm is hard coded as a string, which is true for both
kprobes and uprobes, but for event probes (eprobes) it is a field name. In
most cases the "comm" field would be a string, but there's no guarantee of
that fact.
Do not assume that comm is a string. Not to mention, it currently forces
comm fields to fault, as string processing for event probes is currently
broken.
Link: https://lkml.kernel.org/r/20220820134400.756152112@goodmis.org
Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Fixes: 7491e2c442 ("tracing: Add a probe that attaches to trace events")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7249921d94 upstream.
If in perf_trace_event_init(), the perf_trace_event_open() fails, then it
will call perf_trace_event_unreg() which will not only unregister the perf
trace event, but will also call the put() function of the tp_event.
The problem here is that the trace_event_try_get_ref() is called by the
caller of perf_trace_event_init() and if perf_trace_event_init() returns a
failure, it will then call trace_event_put(). But since the
perf_trace_event_unreg() already called the trace_event_put() function, it
triggers a WARN_ON().
WARNING: CPU: 1 PID: 30309 at kernel/trace/trace_dynevent.c:46 trace_event_dyn_put_ref+0x15/0x20
If perf_trace_event_reg() does not call the trace_event_try_get_ref() then
the perf_trace_event_unreg() should not be calling trace_event_put(). This
breaks symmetry and causes bugs like these.
Pull out the trace_event_put() from perf_trace_event_unreg() and call it
in the locations that perf_trace_event_unreg() is called. This not only
fixes this bug, but also brings back the proper symmetry of the reg/unreg
vs get/put logic.
Link: https://lore.kernel.org/all/cover.1660347763.git.kjlx@templeofstupid.com/
Link: https://lkml.kernel.org/r/20220816192817.43d5e17f@gandalf.local.home
Cc: stable@vger.kernel.org
Fixes: 1d18538e6a ("tracing: Have dynamic events have a ref counter")
Reported-by: Krister Johansen <kjlx@templeofstupid.com>
Reviewed-by: Krister Johansen <kjlx@templeofstupid.com>
Tested-by: Krister Johansen <kjlx@templeofstupid.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 55de2c0b56 ]
Add '__rel_loc' using trace event macros. These macros are usually
not used in the kernel, except for testing purpose.
This also add "rel_" variant of macros for dynamic_array string,
and bitmask.
Link: https://lkml.kernel.org/r/163757342119.510314.816029622439099016.stgit@devnote2
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Tom Zanussi <zanussi@kernel.org>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9c9b26b0df ]
The csdlock_debug kernel-boot parameter is parsed by the
early_param() function csdlock_debug(). If set, csdlock_debug()
invokes static_branch_enable() to enable csd_lock_wait feature, which
triggers a panic on arm64 for kernels built with CONFIG_SPARSEMEM=y and
CONFIG_SPARSEMEM_VMEMMAP=n.
With CONFIG_SPARSEMEM_VMEMMAP=n, __nr_to_section is called in
static_key_enable() and returns NULL, resulting in a NULL dereference
because mem_section is initialized only later in sparse_init().
This is also a problem for powerpc because early_param() functions
are invoked earlier than jump_label_init(), also resulting in
static_key_enable() failures. These failures cause the warning "static
key 'xxx' used before call to jump_label_init()".
Thus, early_param is too early for csd_lock_wait to run
static_branch_enable(), so changes it to __setup to fix these.
Fixes: 8d0968cc6b ("locking/csd_lock: Add boot parameter for controlling CSD lock debugging")
Cc: stable@vger.kernel.org
Reported-by: Chen jingwen <chenjingwen6@huawei.com>
Signed-off-by: Chen Zhongjin <chenzhongjin@huawei.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b8ac29b401 ]
The rng's random_init() function contributes the real time to the rng at
boot time, so that events can at least start in relation to something
particular in the real world. But this clock might not yet be set that
point in boot, so nothing is contributed. In addition, the relation
between minor clock changes from, say, NTP, and the cycle counter is
potentially useful entropic data.
This commit addresses this by mixing in a time stamp on calls to
settimeofday and adjtimex. No entropy is credited in doing so, so it
doesn't make initialization faster, but it is still useful input to
have.
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Cc: stable@vger.kernel.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 751d4cbc43 ]
The following warning was triggered on a large machine early in boot on
a distribution kernel but the same problem should also affect mainline.
WARNING: CPU: 439 PID: 10 at ../kernel/workqueue.c:2231 process_one_work+0x4d/0x440
Call Trace:
<TASK>
rescuer_thread+0x1f6/0x360
kthread+0x156/0x180
ret_from_fork+0x22/0x30
</TASK>
Commit c6e7bd7afa ("sched/core: Optimize ttwu() spinning on p->on_cpu")
optimises ttwu by queueing a task that is descheduling on the wakelist,
but does not check if the task descheduling is still allowed to run on that CPU.
In this warning, the problematic task is a workqueue rescue thread which
checks if the rescue is for a per-cpu workqueue and running on the wrong CPU.
While this is early in boot and it should be possible to create workers,
the rescue thread may still used if the MAYDAY_INITIAL_TIMEOUT is reached
or MAYDAY_INTERVAL and on a sufficiently large machine, the rescue
thread is being used frequently.
Tracing confirmed that the task should have migrated properly using the
stopper thread to handle the migration. However, a parallel wakeup from udev
running on another CPU that does not share CPU cache observes p->on_cpu and
uses task_cpu(p), queues the task on the old CPU and triggers the warning.
Check that the wakee task that is descheduling is still allowed to run
on its current CPU and if not, wait for the descheduling to complete
and select an allowed CPU.
Fixes: c6e7bd7afa ("sched/core: Optimize ttwu() spinning on p->on_cpu")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20220804092119.20137-1-mgorman@techsingularity.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f3dd3f6745 ]
Wakelist can help avoid cache bouncing and offload the overhead of waker
cpu. So far, using wakelist within the same llc only happens on
WF_ON_CPU, and this limitation could be removed to further improve
wakeup performance.
The commit 518cd62341 ("sched: Only queue remote wakeups when
crossing cache boundaries") disabled queuing tasks on wakelist when
the cpus share llc. This is because, at that time, the scheduler must
send IPIs to do ttwu_queue_wakelist. Nowadays, ttwu_queue_wakelist also
supports TIF_POLLING, so this is not a problem now when the wakee cpu is
in idle polling.
Benefits:
Queuing the task on idle cpu can help improving performance on waker cpu
and utilization on wakee cpu, and further improve locality because
the wakee cpu can handle its own rq. This patch helps improving rt on
our real java workloads where wakeup happens frequently.
Consider the normal condition (CPU0 and CPU1 share same llc)
Before this patch:
CPU0 CPU1
select_task_rq() idle
rq_lock(CPU1->rq)
enqueue_task(CPU1->rq)
notify CPU1 (by sending IPI or CPU1 polling)
resched()
After this patch:
CPU0 CPU1
select_task_rq() idle
add to wakelist of CPU1
notify CPU1 (by sending IPI or CPU1 polling)
rq_lock(CPU1->rq)
enqueue_task(CPU1->rq)
resched()
We see CPU0 can finish its work earlier. It only needs to put task to
wakelist and return.
While CPU1 is idle, so let itself handle its own runqueue data.
This patch brings no difference about IPI.
This patch only takes effect when the wakee cpu is:
1) idle polling
2) idle not polling
For 1), there will be no IPI with or without this patch.
For 2), there will always be an IPI before or after this patch.
Before this patch: waker cpu will enqueue task and check preempt. Since
"idle" will be sure to be preempted, waker cpu must send a resched IPI.
After this patch: waker cpu will put the task to the wakelist of wakee
cpu, and send an IPI.
Benchmark:
We've tested schbench, unixbench, and hachbench on both x86 and arm64.
On x86 (Intel Xeon Platinum 8269CY):
schbench -m 2 -t 8
Latency percentiles (usec) before after
50.0000th: 8 6
75.0000th: 10 7
90.0000th: 11 8
95.0000th: 12 8
*99.0000th: 13 10
99.5000th: 15 11
99.9000th: 18 14
Unixbench with full threads (104)
before after
Dhrystone 2 using register variables 3011862938 3009935994 -0.06%
Double-Precision Whetstone 617119.3 617298.5 0.03%
Execl Throughput 27667.3 27627.3 -0.14%
File Copy 1024 bufsize 2000 maxblocks 785871.4 784906.2 -0.12%
File Copy 256 bufsize 500 maxblocks 210113.6 212635.4 1.20%
File Copy 4096 bufsize 8000 maxblocks 2328862.2 2320529.1 -0.36%
Pipe Throughput 145535622.8 145323033.2 -0.15%
Pipe-based Context Switching 3221686.4 3583975.4 11.25%
Process Creation 101347.1 103345.4 1.97%
Shell Scripts (1 concurrent) 120193.5 123977.8 3.15%
Shell Scripts (8 concurrent) 17233.4 17138.4 -0.55%
System Call Overhead 5300604.8 5312213.6 0.22%
hackbench -g 1 -l 100000
before after
Time 3.246 2.251
On arm64 (Ampere Altra):
schbench -m 2 -t 8
Latency percentiles (usec) before after
50.0000th: 14 10
75.0000th: 19 14
90.0000th: 22 16
95.0000th: 23 16
*99.0000th: 24 17
99.5000th: 24 17
99.9000th: 28 25
Unixbench with full threads (80)
before after
Dhrystone 2 using register variables 3536194249 3537019613 0.02%
Double-Precision Whetstone 629383.6 629431.6 0.01%
Execl Throughput 65920.5 65846.2 -0.11%
File Copy 1024 bufsize 2000 maxblocks 1063722.8 1064026.8 0.03%
File Copy 256 bufsize 500 maxblocks 322684.5 318724.5 -1.23%
File Copy 4096 bufsize 8000 maxblocks 2348285.3 2328804.8 -0.83%
Pipe Throughput 133542875.3 131619389.8 -1.44%
Pipe-based Context Switching 3215356.1 3576945.1 11.25%
Process Creation 108520.5 120184.6 10.75%
Shell Scripts (1 concurrent) 122636.3 121888 -0.61%
Shell Scripts (8 concurrent) 17462.1 17381.4 -0.46%
System Call Overhead 4429998.9 4435006.7 0.11%
hackbench -g 1 -l 100000
before after
Time 4.217 2.916
Our patch has improvement on schbench, hackbench
and Pipe-based Context Switching of unixbench
when there exists idle cpus,
and no obvious regression on other tests of unixbench.
This can help improve rt in scenes where wakeup happens frequently.
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20220608233412.327341-3-dtcccc@linux.alibaba.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 28156108fe ]
The commit 2ebb177175 ("sched/core: Offload wakee task activation if it
the wakee is descheduling") checked rq->nr_running <= 1 to avoid task
stacking when WF_ON_CPU.
Per the ordering of writes to p->on_rq and p->on_cpu, observing p->on_cpu
(WF_ON_CPU) in ttwu_queue_cond() implies !p->on_rq, IOW p has gone through
the deactivate_task() in __schedule(), thus p has been accounted out of
rq->nr_running. As such, the task being the only runnable task on the rq
implies reading rq->nr_running == 0 at that point.
The benchmark result is in [1].
[1] https://lore.kernel.org/all/e34de686-4e85-bde1-9f3c-9bbc86b38627@linux.alibaba.com/
Suggested-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20220608233412.327341-2-dtcccc@linux.alibaba.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b6e8d40d43 ]
With cgroup v2, the cpuset's cpus_allowed mask can be empty indicating
that the cpuset will just use the effective CPUs of its parent. So
cpuset_can_attach() can call task_can_attach() with an empty mask.
This can lead to cpumask_any_and() returns nr_cpu_ids causing the call
to dl_bw_of() to crash due to percpu value access of an out of bound
CPU value. For example:
[80468.182258] BUG: unable to handle page fault for address: ffffffff8b6648b0
:
[80468.191019] RIP: 0010:dl_cpu_busy+0x30/0x2b0
:
[80468.207946] Call Trace:
[80468.208947] cpuset_can_attach+0xa0/0x140
[80468.209953] cgroup_migrate_execute+0x8c/0x490
[80468.210931] cgroup_update_dfl_csses+0x254/0x270
[80468.211898] cgroup_subtree_control_write+0x322/0x400
[80468.212854] kernfs_fop_write_iter+0x11c/0x1b0
[80468.213777] new_sync_write+0x11f/0x1b0
[80468.214689] vfs_write+0x1eb/0x280
[80468.215592] ksys_write+0x5f/0xe0
[80468.216463] do_syscall_64+0x5c/0x80
[80468.224287] entry_SYSCALL_64_after_hwframe+0x44/0xae
Fix that by using effective_cpus instead. For cgroup v1, effective_cpus
is the same as cpus_allowed. For v2, effective_cpus is the real cpumask
to be used by tasks within the cpuset anyway.
Also update task_can_attach()'s 2nd argument name to cs_effective_cpus to
reflect the change. In addition, a check is added to task_can_attach()
to guard against the possibility that cpumask_any_and() may return a
value >= nr_cpu_ids.
Fixes: 7f51412a41 ("sched/deadline: Fix bandwidth check/update when migrating tasks between exclusive cpusets")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220803015451.2219567-1-longman@redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 772b6539fd ]
Both functions are doing almost the same, that is checking if admission
control is still respected.
With exclusive cpusets, dl_task_can_attach() checks if the destination
cpuset (i.e. its root domain) has enough CPU capacity to accommodate the
task.
dl_cpu_busy() checks if there is enough CPU capacity in the cpuset in
case the CPU is hot-plugged out.
dl_task_can_attach() is used to check if a task can be admitted while
dl_cpu_busy() is used to check if a CPU can be hotplugged out.
Make dl_cpu_busy() able to deal with a task and use it instead of
dl_task_can_attach() in task_can_attach().
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220302183433.333029-4-dietmar.eggemann@arm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 28f6c37a29 ]
kernel_text_address() treats ftrace_trampoline, kprobe_insn_slot
and bpf_text_address as valid kprobe addresses - which is not ideal.
These text areas are removable and changeable without any notification
to kprobes, and probing on them can trigger unexpected behavior:
https://lkml.org/lkml/2022/7/26/1148
Considering that jump_label and static_call text are already
forbiden to probe, kernel_text_address() should be replaced with
core_kernel_text() and is_module_text_address() to check other text
areas which are unsafe to kprobe.
[ mingo: Rewrote the changelog. ]
Fixes: 5b485629ba ("kprobes, extable: Identify kprobes trampolines as kernel text area")
Fixes: 74451e66d5 ("bpf: make jited programs visible in traces")
Signed-off-by: Chen Zhongjin <chenzhongjin@huawei.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Link: https://lore.kernel.org/r/20220801033719.228248-1-chenzhongjin@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c51ba246cb ]
In the failure case of trying to use a buffer which we'd previously
failed to allocate, the "!mem" condition is no longer sufficient since
io_tlb_default_mem became static and assigned by default. Update the
condition to work as intended per the rest of that conversion.
Fixes: 463e862ac6 ("swiotlb: Convert io_default_tlb_mem to static allocation")
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 151c8e499f ]
Using msleep() is problematic because it's compared against
ratelimiter.c's ktime_get_coarse_boottime_ns(), which means on systems
with slow jiffies (such as UML's forced HZ=100), the result is
inaccurate. So switch to using schedule_hrtimeout().
However, hrtimer gives us access only to the traditional posix timers,
and none of the _COARSE variants. So now, rather than being too
imprecise like jiffies, it's too precise.
One solution would be to give it a large "range" value, but this will
still fire early on a loaded system. A better solution is to align the
timeout to the actual coarse timer, and then round up to the nearest
tick, plus change.
So add the timeout to the current coarse time, and then
schedule_hrtimer() until the absolute computed time.
This should hopefully reduce flakes in CI as well. Note that we keep the
retry loop in case the entire function is running behind, because the
test could still be scheduled out, by either the kernel or by the
hypervisor's kernel, in which case restarting the test and hoping to not
be scheduled out still helps.
Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9c7c48d6a1 ]
The commit 7337224fc1 ("bpf: Improve the info.func_info and info.func_info_rec_size behavior")
accidently made bpf_prog_ksym_set_name() conservative for bpf subprograms.
Fixed it so instead of "bpf_prog_tag_F" the stack traces print "bpf_prog_tag_full_subprog_name".
Fixes: 7337224fc1 ("bpf: Improve the info.func_info and info.func_info_rec_size behavior")
Reported-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220714211637.17150-1-alexei.starovoitov@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3002153a91 ]
The RCU priority boosting can fail in two situations:
1) If (nr_cpus= > maxcpus=), which means if the total number of CPUs
is higher than those brought online at boot, then torture_onoff() may
later bring up CPUs that weren't online on boot. Now since rcutorture
initialization only boosts the ksoftirqds of the CPUs that have been
set online on boot, the CPUs later set online by torture_onoff won't
benefit from the boost, making RCU priority boosting fail.
2) The ksoftirqd kthreads are boosted after the creation of
rcu_torture_boost() kthreads, which opens a window large enough for these
rcu_torture_boost() kthreads to wait (despite running at FIFO priority)
for ksoftirqds that are still running at SCHED_NORMAL priority.
The issues can trigger for example with:
./kvm.sh --configs TREE01 --kconfig "CONFIG_RCU_BOOST=y"
[ 34.968561] rcu-torture: !!!
[ 34.968627] ------------[ cut here ]------------
[ 35.014054] WARNING: CPU: 4 PID: 114 at kernel/rcu/rcutorture.c:1979 rcu_torture_stats_print+0x5ad/0x610
[ 35.052043] Modules linked in:
[ 35.069138] CPU: 4 PID: 114 Comm: rcu_torture_sta Not tainted 5.18.0-rc1 #1
[ 35.096424] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.14.0-0-g155821a-rebuilt.opensuse.org 04/01/2014
[ 35.154570] RIP: 0010:rcu_torture_stats_print+0x5ad/0x610
[ 35.198527] Code: 63 1b 02 00 74 02 0f 0b 48 83 3d 35 63 1b 02 00 74 02 0f 0b 48 83 3d 21 63 1b 02 00 74 02 0f 0b 48 83 3d 0d 63 1b 02 00 74 02 <0f> 0b 83 eb 01 0f 8e ba fc ff ff 0f 0b e9 b3 fc ff f82
[ 37.251049] RSP: 0000:ffffa92a0050bdf8 EFLAGS: 00010202
[ 37.277320] rcu: De-offloading 8
[ 37.290367] RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000001
[ 37.290387] RDX: 0000000000000000 RSI: 00000000ffffbfff RDI: 00000000ffffffff
[ 37.290398] RBP: 000000000000007b R08: 0000000000000000 R09: c0000000ffffbfff
[ 37.290407] R10: 000000000000002a R11: ffffa92a0050bc18 R12: ffffa92a0050be20
[ 37.290417] R13: ffffa92a0050be78 R14: 0000000000000000 R15: 000000000001bea0
[ 37.290427] FS: 0000000000000000(0000) GS:ffff96045eb00000(0000) knlGS:0000000000000000
[ 37.290448] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 37.290460] CR2: 0000000000000000 CR3: 000000001dc0c000 CR4: 00000000000006e0
[ 37.290470] Call Trace:
[ 37.295049] <TASK>
[ 37.295065] ? preempt_count_add+0x63/0x90
[ 37.295095] ? _raw_spin_lock_irqsave+0x12/0x40
[ 37.295125] ? rcu_torture_stats_print+0x610/0x610
[ 37.295143] rcu_torture_stats+0x29/0x70
[ 37.295160] kthread+0xe3/0x110
[ 37.295176] ? kthread_complete_and_exit+0x20/0x20
[ 37.295193] ret_from_fork+0x22/0x30
[ 37.295218] </TASK>
Fix this with boosting the ksoftirqds kthreads from the boosting
hotplug callback itself and before the boosting kthreads are created.
Fixes: ea6d962e80 ("rcutorture: Judge RCU priority boosting on grace periods, not callbacks")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit fd13fe16db ]
Currently, in CONFIG_RCU_BOOST kernels, if the rcu_torture_init()
function's call to cpuhp_setup_state() fails, rcu_torture_cleanup()
gamely passes nonsense to cpuhp_remove_state(). This results in
strange and misleading splats. This commit therefore ensures that if
the rcu_torture_init() function's call to cpuhp_setup_state() fails,
rcu_torture_cleanup() avoids invoking cpuhp_remove_state().
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit efeff6b39b ]
When running rcutorture as a module, any rcu_torture_init() issues will be
reflected in the error code from modprobe or insmod, as the case may be.
However, these error codes are not available when running rcutorture
built-in, for example, when using the kvm.sh script. This commit
therefore adds WARN_ON_ONCE() to allow distinguishing rcu_torture_init()
errors when running rcutorture built-in.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5c66d1b9b3 ]
dequeue_task_rt() only decrements 'rt_rq->rt_nr_running' after having
called sched_update_tick_dependency() preventing it from re-enabling the
tick on systems that no longer have pending SCHED_RT tasks but have
multiple runnable SCHED_OTHER tasks:
dequeue_task_rt()
dequeue_rt_entity()
dequeue_rt_stack()
dequeue_top_rt_rq()
sub_nr_running() // decrements rq->nr_running
sched_update_tick_dependency()
sched_can_stop_tick() // checks rq->rt.rt_nr_running,
...
__dequeue_rt_entity()
dec_rt_tasks() // decrements rq->rt.rt_nr_running
...
Every other scheduler class performs the operation in the opposite
order, and sched_update_tick_dependency() expects the values to be
updated as such. So avoid the misbehaviour by inverting the order in
which the above operations are performed in the RT scheduler.
Fixes: 76d92ac305 ("sched: Migrate sched to use new tick dependency mask model")
Signed-off-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lore.kernel.org/r/20220628092259.330171-1-nsaenzju@redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6f194c99f4 ]
When using a NOMAP domain, __irq_resolve_mapping() doesn't store
the Linux IRQ number at the address optionally provided by the caller.
While this isn't a huge deal (the returned value is guaranteed
to the hwirq that was passed as a parameter), let's honour the letter
of the API by writing the expected value.
Fixes: d22558dd0a (“irqdomain: Introduce irq_resolve_mapping()”)
Signed-off-by: Xu Qiang <xuqiang36@huawei.com>
[maz: commit message]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220719063641.56541-2-xuqiang36@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 22c80aac88 ]
Trace the remapped operation and its flags instead of only the data
direction of remapped operations. This issue was detected by analyzing
the warnings reported by sparse related to the new blk_opf_t type.
Reviewed-by: Jun'ichi Nomura <junichi.nomura@nec.com>
Cc: Mike Snitzer <snitzer@kernel.org>
Cc: Mike Christie <michael.christie@oracle.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Chaitanya Kulkarni <kch@nvidia.com>
Fixes: 1b9a9ab78b ("blktrace: use op accessors")
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Link: https://lore.kernel.org/r/20220714180729.1065367-11-bvanassche@acm.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit eae6d58d67 ]
Commit dfd5e3f5fe ("locking/lockdep: Mark local_lock_t") added yet
another lockdep_init_map_*() variant, but forgot to update all the
existing users of the most complicated version.
This could lead to a loss of lock_type and hence an incorrect report.
Given the relative rarity of both local_lock and these annotations,
this is unlikely to happen in practise, still, best fix things.
Fixes: dfd5e3f5fe ("locking/lockdep: Mark local_lock_t")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/YqyEDtoan20K0CVD@worktop.programming.kicks-ass.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8386c414e2 ]
syzbot is reporting hung task at misc_open() [1], for there is a race
window of AB-BA deadlock which involves probe_count variable. Currently
wait_for_device_probe() from snapshot_open() from misc_open() can sleep
forever with misc_mtx held if probe_count cannot become 0.
When a device is probed by hub_event() work function, probe_count is
incremented before the probe function starts, and probe_count is
decremented after the probe function completed.
There are three cases that can prevent probe_count from dropping to 0.
(a) A device being probed stopped responding (i.e. broken/malicious
hardware).
(b) A process emulating a USB device using /dev/raw-gadget interface
stopped responding for some reason.
(c) New device probe requests keeps coming in before existing device
probe requests complete.
The phenomenon syzbot is reporting is (b). A process which is holding
system_transition_mutex and misc_mtx is waiting for probe_count to become
0 inside wait_for_device_probe(), but the probe function which is called
from hub_event() work function is waiting for the processes which are
blocked at mutex_lock(&misc_mtx) to respond via /dev/raw-gadget interface.
This patch mitigates (b) by deferring wait_for_device_probe() from
snapshot_open() to snapshot_write() and snapshot_ioctl(). Please note that
the possibility of (b) remains as long as any thread which is emulating a
USB device via /dev/raw-gadget interface can be blocked by uninterruptible
blocking operations (e.g. mutex_lock()).
Please also note that (a) and (c) are not addressed. Regarding (c), we
should change the code to wait for only one device which contains the
image for resuming from hibernation. I don't know how to address (a), for
use of timeout for wait_for_device_probe() might result in loss of user
data in the image. Maybe we should require the userland to wait for the
image device before opening /dev/snapshot interface.
Link: https://syzkaller.appspot.com/bug?extid=358c9ab4c93da7b7238c [1]
Reported-by: syzbot <syzbot+358c9ab4c93da7b7238c@syzkaller.appspotmail.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Tested-by: syzbot <syzbot+358c9ab4c93da7b7238c@syzkaller.appspotmail.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 401e4963bf ]
With CONFIG_PREEMPT_RT, it is possible to hit a deadlock between two
normal priority tasks (SCHED_OTHER, nice level zero):
INFO: task kworker/u8:0:8 blocked for more than 491 seconds.
Not tainted 5.15.49-rt46 #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u8:0 state:D stack: 0 pid: 8 ppid: 2 flags:0x00000000
Workqueue: writeback wb_workfn (flush-7:0)
[<c08a3a10>] (__schedule) from [<c08a3d84>] (schedule+0xdc/0x134)
[<c08a3d84>] (schedule) from [<c08a65a0>] (rt_mutex_slowlock_block.constprop.0+0xb8/0x174)
[<c08a65a0>] (rt_mutex_slowlock_block.constprop.0) from [<c08a6708>]
+(rt_mutex_slowlock.constprop.0+0xac/0x174)
[<c08a6708>] (rt_mutex_slowlock.constprop.0) from [<c0374d60>] (fat_write_inode+0x34/0x54)
[<c0374d60>] (fat_write_inode) from [<c0297304>] (__writeback_single_inode+0x354/0x3ec)
[<c0297304>] (__writeback_single_inode) from [<c0297998>] (writeback_sb_inodes+0x250/0x45c)
[<c0297998>] (writeback_sb_inodes) from [<c0297c20>] (__writeback_inodes_wb+0x7c/0xb8)
[<c0297c20>] (__writeback_inodes_wb) from [<c0297f24>] (wb_writeback+0x2c8/0x2e4)
[<c0297f24>] (wb_writeback) from [<c0298c40>] (wb_workfn+0x1a4/0x3e4)
[<c0298c40>] (wb_workfn) from [<c0138ab8>] (process_one_work+0x1fc/0x32c)
[<c0138ab8>] (process_one_work) from [<c0139120>] (worker_thread+0x22c/0x2d8)
[<c0139120>] (worker_thread) from [<c013e6e0>] (kthread+0x16c/0x178)
[<c013e6e0>] (kthread) from [<c01000fc>] (ret_from_fork+0x14/0x38)
Exception stack(0xc10e3fb0 to 0xc10e3ff8)
3fa0: 00000000 00000000 00000000 00000000
3fc0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
3fe0: 00000000 00000000 00000000 00000000 00000013 00000000
INFO: task tar:2083 blocked for more than 491 seconds.
Not tainted 5.15.49-rt46 #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:tar state:D stack: 0 pid: 2083 ppid: 2082 flags:0x00000000
[<c08a3a10>] (__schedule) from [<c08a3d84>] (schedule+0xdc/0x134)
[<c08a3d84>] (schedule) from [<c08a41b0>] (io_schedule+0x14/0x24)
[<c08a41b0>] (io_schedule) from [<c08a455c>] (bit_wait_io+0xc/0x30)
[<c08a455c>] (bit_wait_io) from [<c08a441c>] (__wait_on_bit_lock+0x54/0xa8)
[<c08a441c>] (__wait_on_bit_lock) from [<c08a44f4>] (out_of_line_wait_on_bit_lock+0x84/0xb0)
[<c08a44f4>] (out_of_line_wait_on_bit_lock) from [<c0371fb0>] (fat_mirror_bhs+0xa0/0x144)
[<c0371fb0>] (fat_mirror_bhs) from [<c0372a68>] (fat_alloc_clusters+0x138/0x2a4)
[<c0372a68>] (fat_alloc_clusters) from [<c0370b14>] (fat_alloc_new_dir+0x34/0x250)
[<c0370b14>] (fat_alloc_new_dir) from [<c03787c0>] (vfat_mkdir+0x58/0x148)
[<c03787c0>] (vfat_mkdir) from [<c0277b60>] (vfs_mkdir+0x68/0x98)
[<c0277b60>] (vfs_mkdir) from [<c027b484>] (do_mkdirat+0xb0/0xec)
[<c027b484>] (do_mkdirat) from [<c0100060>] (ret_fast_syscall+0x0/0x1c)
Exception stack(0xc2e1bfa8 to 0xc2e1bff0)
bfa0: 01ee42f0 01ee4208 01ee42f0 000041ed 00000000 00004000
bfc0: 01ee42f0 01ee4208 00000000 00000027 01ee4302 00000004 000dcb00 01ee4190
bfe0: 000dc368 bed11924 0006d4b0 b6ebddfc
Here the kworker is waiting on msdos_sb_info::s_lock which is held by
tar which is in turn waiting for a buffer which is locked waiting to be
flushed, but this operation is plugged in the kworker.
The lock is a normal struct mutex, so tsk_is_pi_blocked() will always
return false on !RT and thus the behaviour changes for RT.
It seems that the intent here is to skip blk_flush_plug() in the case
where a non-preemptible lock (such as a spinlock) has been converted to
a rtmutex on RT, which is the case covered by the SM_RTLOCK_WAIT
schedule flag. But sched_submit_work() is only called from schedule()
which is never called in this scenario, so the check can simply be
deleted.
Looking at the history of the -rt patchset, in fact this change was
present from v5.9.1-rt20 until being dropped in v5.13-rt1 as it was part
of a larger patch [1] most of which was replaced by commit b4bfa3fcfe
("sched/core: Rework the __schedule() preempt argument").
As described in [1]:
The schedule process must distinguish between blocking on a regular
sleeping lock (rwsem and mutex) and a RT-only sleeping lock (spinlock
and rwlock):
- rwsem and mutex must flush block requests (blk_schedule_flush_plug())
even if blocked on a lock. This can not deadlock because this also
happens for non-RT.
There should be a warning if the scheduling point is within a RCU read
section.
- spinlock and rwlock must not flush block requests. This will deadlock
if the callback attempts to acquire a lock which is already acquired.
Similarly to being preempted, there should be no warning if the
scheduling point is within a RCU read section.
and with the tsk_is_pi_blocked() in the scheduler path, we hit the first
issue.
[1] https://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-rt-devel.git/tree/patches/0022-locking-rtmutex-Use-custom-scheduling-function-for-s.patch?h=linux-5.10.y-rt-patches
Signed-off-by: John Keeping <john@metanate.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/20220708162702.1758865-1-john@metanate.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0f5209fee9 ]
The generic IPI code depends on the IRQ affinity mask being allocated
and initialized. This will not be the case if SMP is disabled. Fix up
the remaining driver that selected GENERIC_IRQ_IPI in a non-SMP config.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Samuel Holland <samuel@sholland.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220701200056.46555-3-samuel@sholland.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 95001b7564 ]
Function irq_chip::irq_request_resources() is reported as optional
in the declaration of struct irq_chip.
If the parent irq_chip does not implement it, we should ignore it
and return.
Don't return error if the functions is missing.
Signed-off-by: Antonio Borneo <antonio.borneo@foss.st.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220512160544.13561-1-antonio.borneo@foss.st.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 70fb5ccf2e ]
[Problem Statement]
select_idle_cpu() might spend too much time searching for an idle CPU,
when the system is overloaded.
The following histogram is the time spent in select_idle_cpu(),
when running 224 instances of netperf on a system with 112 CPUs
per LLC domain:
@usecs:
[0] 533 | |
[1] 5495 | |
[2, 4) 12008 | |
[4, 8) 239252 | |
[8, 16) 4041924 |@@@@@@@@@@@@@@ |
[16, 32) 12357398 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[32, 64) 14820255 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[64, 128) 13047682 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[128, 256) 8235013 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[256, 512) 4507667 |@@@@@@@@@@@@@@@ |
[512, 1K) 2600472 |@@@@@@@@@ |
[1K, 2K) 927912 |@@@ |
[2K, 4K) 218720 | |
[4K, 8K) 98161 | |
[8K, 16K) 37722 | |
[16K, 32K) 6715 | |
[32K, 64K) 477 | |
[64K, 128K) 7 | |
netperf latency usecs:
=======
case load Lat_99th std%
TCP_RR thread-224 257.39 ( 0.21)
The time spent in select_idle_cpu() is visible to netperf and might have a negative
impact.
[Symptom analysis]
The patch [1] from Mel Gorman has been applied to track the efficiency
of select_idle_sibling. Copy the indicators here:
SIS Search Efficiency(se_eff%):
A ratio expressed as a percentage of runqueues scanned versus
idle CPUs found. A 100% efficiency indicates that the target,
prev or recent CPU of a task was idle at wakeup. The lower the
efficiency, the more runqueues were scanned before an idle CPU
was found.
SIS Domain Search Efficiency(dom_eff%):
Similar, except only for the slower SIS
patch.
SIS Fast Success Rate(fast_rate%):
Percentage of SIS that used target, prev or
recent CPUs.
SIS Success rate(success_rate%):
Percentage of scans that found an idle CPU.
The test is based on Aubrey's schedtests tool, including netperf, hackbench,
schbench and tbench.
Test on vanilla kernel:
schedstat_parse.py -f netperf_vanilla.log
case load se_eff% dom_eff% fast_rate% success_rate%
TCP_RR 28 threads 99.978 18.535 99.995 100.000
TCP_RR 56 threads 99.397 5.671 99.964 100.000
TCP_RR 84 threads 21.721 6.818 73.632 100.000
TCP_RR 112 threads 12.500 5.533 59.000 100.000
TCP_RR 140 threads 8.524 4.535 49.020 100.000
TCP_RR 168 threads 6.438 3.945 40.309 99.999
TCP_RR 196 threads 5.397 3.718 32.320 99.982
TCP_RR 224 threads 4.874 3.661 25.775 99.767
UDP_RR 28 threads 99.988 17.704 99.997 100.000
UDP_RR 56 threads 99.528 5.977 99.970 100.000
UDP_RR 84 threads 24.219 6.992 76.479 100.000
UDP_RR 112 threads 13.907 5.706 62.538 100.000
UDP_RR 140 threads 9.408 4.699 52.519 100.000
UDP_RR 168 threads 7.095 4.077 44.352 100.000
UDP_RR 196 threads 5.757 3.775 35.764 99.991
UDP_RR 224 threads 5.124 3.704 28.748 99.860
schedstat_parse.py -f schbench_vanilla.log
(each group has 28 tasks)
case load se_eff% dom_eff% fast_rate% success_rate%
normal 1 mthread 99.152 6.400 99.941 100.000
normal 2 mthreads 97.844 4.003 99.908 100.000
normal 3 mthreads 96.395 2.118 99.917 99.998
normal 4 mthreads 55.288 1.451 98.615 99.804
normal 5 mthreads 7.004 1.870 45.597 61.036
normal 6 mthreads 3.354 1.346 20.777 34.230
normal 7 mthreads 2.183 1.028 11.257 21.055
normal 8 mthreads 1.653 0.825 7.849 15.549
schedstat_parse.py -f hackbench_vanilla.log
(each group has 28 tasks)
case load se_eff% dom_eff% fast_rate% success_rate%
process-pipe 1 group 99.991 7.692 99.999 100.000
process-pipe 2 groups 99.934 4.615 99.997 100.000
process-pipe 3 groups 99.597 3.198 99.987 100.000
process-pipe 4 groups 98.378 2.464 99.958 100.000
process-pipe 5 groups 27.474 3.653 89.811 99.800
process-pipe 6 groups 20.201 4.098 82.763 99.570
process-pipe 7 groups 16.423 4.156 77.398 99.316
process-pipe 8 groups 13.165 3.920 72.232 98.828
process-sockets 1 group 99.977 5.882 99.999 100.000
process-sockets 2 groups 99.927 5.505 99.996 100.000
process-sockets 3 groups 99.397 3.250 99.980 100.000
process-sockets 4 groups 79.680 4.258 98.864 99.998
process-sockets 5 groups 7.673 2.503 63.659 92.115
process-sockets 6 groups 4.642 1.584 58.946 88.048
process-sockets 7 groups 3.493 1.379 49.816 81.164
process-sockets 8 groups 3.015 1.407 40.845 75.500
threads-pipe 1 group 99.997 0.000 100.000 100.000
threads-pipe 2 groups 99.894 2.932 99.997 100.000
threads-pipe 3 groups 99.611 4.117 99.983 100.000
threads-pipe 4 groups 97.703 2.624 99.937 100.000
threads-pipe 5 groups 22.919 3.623 87.150 99.764
threads-pipe 6 groups 18.016 4.038 80.491 99.557
threads-pipe 7 groups 14.663 3.991 75.239 99.247
threads-pipe 8 groups 12.242 3.808 70.651 98.644
threads-sockets 1 group 99.990 6.667 99.999 100.000
threads-sockets 2 groups 99.940 5.114 99.997 100.000
threads-sockets 3 groups 99.469 4.115 99.977 100.000
threads-sockets 4 groups 87.528 4.038 99.400 100.000
threads-sockets 5 groups 6.942 2.398 59.244 88.337
threads-sockets 6 groups 4.359 1.954 49.448 87.860
threads-sockets 7 groups 2.845 1.345 41.198 77.102
threads-sockets 8 groups 2.871 1.404 38.512 74.312
schedstat_parse.py -f tbench_vanilla.log
case load se_eff% dom_eff% fast_rate% success_rate%
loopback 28 threads 99.976 18.369 99.995 100.000
loopback 56 threads 99.222 7.799 99.934 100.000
loopback 84 threads 19.723 6.819 70.215 100.000
loopback 112 threads 11.283 5.371 55.371 99.999
loopback 140 threads 0.000 0.000 0.000 0.000
loopback 168 threads 0.000 0.000 0.000 0.000
loopback 196 threads 0.000 0.000 0.000 0.000
loopback 224 threads 0.000 0.000 0.000 0.000
According to the test above, if the system becomes busy, the
SIS Search Efficiency(se_eff%) drops significantly. Although some
benchmarks would finally find an idle CPU(success_rate% = 100%), it is
doubtful whether it is worth it to search the whole LLC domain.
[Proposal]
It would be ideal to have a crystal ball to answer this question:
How many CPUs must a wakeup path walk down, before it can find an idle
CPU? Many potential metrics could be used to predict the number.
One candidate is the sum of util_avg in this LLC domain. The benefit
of choosing util_avg is that it is a metric of accumulated historic
activity, which seems to be smoother than instantaneous metrics
(such as rq->nr_running). Besides, choosing the sum of util_avg
would help predict the load of the LLC domain more precisely, because
SIS_PROP uses one CPU's idle time to estimate the total LLC domain idle
time.
In summary, the lower the util_avg is, the more select_idle_cpu()
should scan for idle CPU, and vice versa. When the sum of util_avg
in this LLC domain hits 85% or above, the scan stops. The reason to
choose 85% as the threshold is that this is the imbalance_pct(117)
when a LLC sched group is overloaded.
Introduce the quadratic function:
y = SCHED_CAPACITY_SCALE - p * x^2
and y'= y / SCHED_CAPACITY_SCALE
x is the ratio of sum_util compared to the CPU capacity:
x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
y' is the ratio of CPUs to be scanned in the LLC domain,
and the number of CPUs to scan is calculated by:
nr_scan = llc_weight * y'
Choosing quadratic function is because:
[1] Compared to the linear function, it scans more aggressively when the
sum_util is low.
[2] Compared to the exponential function, it is easier to calculate.
[3] It seems that there is no accurate mapping between the sum of util_avg
and the number of CPUs to be scanned. Use heuristic scan for now.
For a platform with 112 CPUs per LLC, the number of CPUs to scan is:
sum_util% 0 5 15 25 35 45 55 65 75 85 86 ...
scan_nr 112 111 108 102 93 81 65 47 25 1 0 ...
For a platform with 16 CPUs per LLC, the number of CPUs to scan is:
sum_util% 0 5 15 25 35 45 55 65 75 85 86 ...
scan_nr 16 15 15 14 13 11 9 6 3 0 0 ...
Furthermore, to minimize the overhead of calculating the metrics in
select_idle_cpu(), borrow the statistics from periodic load balance.
As mentioned by Abel, on a platform with 112 CPUs per LLC, the
sum_util calculated by periodic load balance after 112 ms would
decay to about 0.5 * 0.5 * 0.5 * 0.7 = 8.75%, thus bringing a delay
in reflecting the latest utilization. But it is a trade-off.
Checking the util_avg in newidle load balance would be more frequent,
but it brings overhead - multiple CPUs write/read the per-LLC shared
variable and introduces cache contention. Tim also mentioned that,
it is allowed to be non-optimal in terms of scheduling for the
short-term variations, but if there is a long-term trend in the load
behavior, the scheduler can adjust for that.
When SIS_UTIL is enabled, the select_idle_cpu() uses the nr_scan
calculated by SIS_UTIL instead of the one from SIS_PROP. As Peter and
Mel suggested, SIS_UTIL should be enabled by default.
This patch is based on the util_avg, which is very sensitive to the
CPU frequency invariance. There is an issue that, when the max frequency
has been clamp, the util_avg would decay insanely fast when
the CPU is idle. Commit addca28512 ("cpufreq: intel_pstate: Handle no_turbo
in frequency invariance") could be used to mitigate this symptom, by adjusting
the arch_max_freq_ratio when turbo is disabled. But this issue is still
not thoroughly fixed, because the current code is unaware of the user-specified
max CPU frequency.
[Test result]
netperf and tbench were launched with 25% 50% 75% 100% 125% 150%
175% 200% of CPU number respectively. Hackbench and schbench were launched
by 1, 2 ,4, 8 groups. Each test lasts for 100 seconds and repeats 3 times.
The following is the benchmark result comparison between
baseline:vanilla v5.19-rc1 and compare:patched kernel. Positive compare%
indicates better performance.
Each netperf test is a:
netperf -4 -H 127.0.1 -t TCP/UDP_RR -c -C -l 100
netperf.throughput
=======
case load baseline(std%) compare%( std%)
TCP_RR 28 threads 1.00 ( 0.34) -0.16 ( 0.40)
TCP_RR 56 threads 1.00 ( 0.19) -0.02 ( 0.20)
TCP_RR 84 threads 1.00 ( 0.39) -0.47 ( 0.40)
TCP_RR 112 threads 1.00 ( 0.21) -0.66 ( 0.22)
TCP_RR 140 threads 1.00 ( 0.19) -0.69 ( 0.19)
TCP_RR 168 threads 1.00 ( 0.18) -0.48 ( 0.18)
TCP_RR 196 threads 1.00 ( 0.16) +194.70 ( 16.43)
TCP_RR 224 threads 1.00 ( 0.16) +197.30 ( 7.85)
UDP_RR 28 threads 1.00 ( 0.37) +0.35 ( 0.33)
UDP_RR 56 threads 1.00 ( 11.18) -0.32 ( 0.21)
UDP_RR 84 threads 1.00 ( 1.46) -0.98 ( 0.32)
UDP_RR 112 threads 1.00 ( 28.85) -2.48 ( 19.61)
UDP_RR 140 threads 1.00 ( 0.70) -0.71 ( 14.04)
UDP_RR 168 threads 1.00 ( 14.33) -0.26 ( 11.16)
UDP_RR 196 threads 1.00 ( 12.92) +186.92 ( 20.93)
UDP_RR 224 threads 1.00 ( 11.74) +196.79 ( 18.62)
Take the 224 threads as an example, the SIS search metrics changes are
illustrated below:
vanilla patched
4544492 +237.5% 15338634 sched_debug.cpu.sis_domain_search.avg
38539 +39686.8% 15333634 sched_debug.cpu.sis_failed.avg
128300000 -87.9% 15551326 sched_debug.cpu.sis_scanned.avg
5842896 +162.7% 15347978 sched_debug.cpu.sis_search.avg
There is -87.9% less CPU scans after patched, which indicates lower overhead.
Besides, with this patch applied, there is -13% less rq lock contention
in perf-profile.calltrace.cycles-pp._raw_spin_lock.raw_spin_rq_lock_nested
.try_to_wake_up.default_wake_function.woken_wake_function.
This might help explain the performance improvement - Because this patch allows
the waking task to remain on the previous CPU, rather than grabbing other CPUs'
lock.
Each hackbench test is a:
hackbench -g $job --process/threads --pipe/sockets -l 1000000 -s 100
hackbench.throughput
=========
case load baseline(std%) compare%( std%)
process-pipe 1 group 1.00 ( 1.29) +0.57 ( 0.47)
process-pipe 2 groups 1.00 ( 0.27) +0.77 ( 0.81)
process-pipe 4 groups 1.00 ( 0.26) +1.17 ( 0.02)
process-pipe 8 groups 1.00 ( 0.15) -4.79 ( 0.02)
process-sockets 1 group 1.00 ( 0.63) -0.92 ( 0.13)
process-sockets 2 groups 1.00 ( 0.03) -0.83 ( 0.14)
process-sockets 4 groups 1.00 ( 0.40) +5.20 ( 0.26)
process-sockets 8 groups 1.00 ( 0.04) +3.52 ( 0.03)
threads-pipe 1 group 1.00 ( 1.28) +0.07 ( 0.14)
threads-pipe 2 groups 1.00 ( 0.22) -0.49 ( 0.74)
threads-pipe 4 groups 1.00 ( 0.05) +1.88 ( 0.13)
threads-pipe 8 groups 1.00 ( 0.09) -4.90 ( 0.06)
threads-sockets 1 group 1.00 ( 0.25) -0.70 ( 0.53)
threads-sockets 2 groups 1.00 ( 0.10) -0.63 ( 0.26)
threads-sockets 4 groups 1.00 ( 0.19) +11.92 ( 0.24)
threads-sockets 8 groups 1.00 ( 0.08) +4.31 ( 0.11)
Each tbench test is a:
tbench -t 100 $job 127.0.0.1
tbench.throughput
======
case load baseline(std%) compare%( std%)
loopback 28 threads 1.00 ( 0.06) -0.14 ( 0.09)
loopback 56 threads 1.00 ( 0.03) -0.04 ( 0.17)
loopback 84 threads 1.00 ( 0.05) +0.36 ( 0.13)
loopback 112 threads 1.00 ( 0.03) +0.51 ( 0.03)
loopback 140 threads 1.00 ( 0.02) -1.67 ( 0.19)
loopback 168 threads 1.00 ( 0.38) +1.27 ( 0.27)
loopback 196 threads 1.00 ( 0.11) +1.34 ( 0.17)
loopback 224 threads 1.00 ( 0.11) +1.67 ( 0.22)
Each schbench test is a:
schbench -m $job -t 28 -r 100 -s 30000 -c 30000
schbench.latency_90%_us
========
case load baseline(std%) compare%( std%)
normal 1 mthread 1.00 ( 31.22) -7.36 ( 20.25)*
normal 2 mthreads 1.00 ( 2.45) -0.48 ( 1.79)
normal 4 mthreads 1.00 ( 1.69) +0.45 ( 0.64)
normal 8 mthreads 1.00 ( 5.47) +9.81 ( 14.28)
*Consider the Standard Deviation, this -7.36% regression might not be valid.
Also, a OLTP workload with a commercial RDBMS has been tested, and there
is no significant change.
There were concerns that unbalanced tasks among CPUs would cause problems.
For example, suppose the LLC domain is composed of 8 CPUs, and 7 tasks are
bound to CPU0~CPU6, while CPU7 is idle:
CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
util_avg 1024 1024 1024 1024 1024 1024 1024 0
Since the util_avg ratio is 87.5%( = 7/8 ), which is higher than 85%,
select_idle_cpu() will not scan, thus CPU7 is undetected during scan.
But according to Mel, it is unlikely the CPU7 will be idle all the time
because CPU7 could pull some tasks via CPU_NEWLY_IDLE.
lkp(kernel test robot) has reported a regression on stress-ng.sock on a
very busy system. According to the sched_debug statistics, it might be caused
by SIS_UTIL terminates the scan and chooses a previous CPU earlier, and this
might introduce more context switch, especially involuntary preemption, which
impacts a busy stress-ng. This regression has shown that, not all benchmarks
in every scenario benefit from idle CPU scan limit, and it needs further
investigation.
Besides, there is slight regression in hackbench's 16 groups case when the
LLC domain has 16 CPUs. Prateek mentioned that we should scan aggressively
in an LLC domain with 16 CPUs. Because the cost to search for an idle one
among 16 CPUs is negligible. The current patch aims to propose a generic
solution and only considers the util_avg. Something like the below could
be applied on top of the current patch to fulfill the requirement:
if (llc_weight <= 16)
nr_scan = nr_scan * 32 / llc_weight;
For LLC domain with 16 CPUs, the nr_scan will be expanded to 2 times large.
The smaller the CPU number this LLC domain has, the larger nr_scan will be
expanded. This needs further investigation.
There is also ongoing work[2] from Abel to filter out the busy CPUs during
wakeup, to further speed up the idle CPU scan. And it could be a following-up
optimization on top of this change.
Suggested-by: Tim Chen <tim.c.chen@intel.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Yicong Yang <yangyicong@hisilicon.com>
Tested-by: Mohini Narkhede <mohini.narkhede@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20220612163428.849378-1-yu.c.chen@intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 4c46091ee9 upstream.
Syzbot found a Use After Free bug in compute_effective_progs().
The reproducer creates a number of BPF links, and causes a fault
injected alloc to fail, while calling bpf_link_detach on them.
Link detach triggers the link to be freed by bpf_link_free(),
which calls __cgroup_bpf_detach() and update_effective_progs().
If the memory allocation in this function fails, the function restores
the pointer to the bpf_cgroup_link on the cgroup list, but the memory
gets freed just after it returns. After this, every subsequent call to
update_effective_progs() causes this already deallocated pointer to be
dereferenced in prog_list_length(), and triggers KASAN UAF error.
To fix this issue don't preserve the pointer to the prog or link in the
list, but remove it and replace it with a dummy prog without shrinking
the table. The subsequent call to __cgroup_bpf_detach() or
__cgroup_bpf_detach() will correct it.
Fixes: af6eea5743 ("bpf: Implement bpf_link-based cgroup BPF program attachment")
Reported-by: <syzbot+f264bffdfbd5614f3bb2@syzkaller.appspotmail.com>
Signed-off-by: Tadeusz Struk <tadeusz.struk@linaro.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Cc: <stable@vger.kernel.org>
Link: https://syzkaller.appspot.com/bug?id=8ebf179a95c2a2670f7cf1ba62429ec044369db4
Link: https://lore.kernel.org/bpf/20220517180420.87954-1-tadeusz.struk@linaro.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6eebd5fb20 upstream.
With commit d257cc8cb8 ("locking/rwsem: Make handoff bit handling more
consistent"), the writer that sets the handoff bit can be interrupted
out without clearing the bit if the wait queue isn't empty. This disables
reader and writer optimistic lock spinning and stealing.
Now if a non-first writer in the queue is somehow woken up or a new
waiter enters the slowpath, it can't acquire the lock. This is not the
case before commit d257cc8cb8 as the writer that set the handoff bit
will clear it when exiting out via the out_nolock path. This is less
efficient as the busy rwsem stays in an unlock state for a longer time.
In some cases, this new behavior may cause lockups as shown in [1] and
[2].
This patch allows a non-first writer to ignore the handoff bit if it
is not originally set or initiated by the first waiter. This patch is
shown to be effective in fixing the lockup problem reported in [1].
[1] https://lore.kernel.org/lkml/20220617134325.GC30825@techsingularity.net/
[2] https://lore.kernel.org/lkml/3f02975c-1a9d-be20-32cf-f1d8e3dfafcc@oracle.com/
Fixes: d257cc8cb8 ("locking/rwsem: Make handoff bit handling more consistent")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: John Donnelly <john.p.donnelly@oracle.com>
Tested-by: Mel Gorman <mgorman@techsingularity.net>
Link: https://lore.kernel.org/r/20220622200419.778799-1-longman@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e64ab2dbd8 upstream.
If a watch is being added to a queue, it needs to guard against
interference from addition of a new watch, manual removal of a watch and
removal of a watch due to some other queue being destroyed.
KEYCTL_WATCH_KEY guards against this for the same {key,queue} pair by
holding the key->sem writelocked and by holding refs on both the key and
the queue - but that doesn't prevent interaction from other {key,queue}
pairs.
While add_watch_to_object() does take the spinlock on the event queue,
it doesn't take the lock on the source's watch list. The assumption was
that the caller would prevent that (say by taking key->sem) - but that
doesn't prevent interference from the destruction of another queue.
Fix this by locking the watcher list in add_watch_to_object().
Fixes: c73be61ced ("pipe: Add general notification queue support")
Reported-by: syzbot+03d7b43290037d1f87ca@syzkaller.appspotmail.com
Signed-off-by: David Howells <dhowells@redhat.com>
cc: keyrings@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e0339f036e upstream.
Since __post_watch_notification() walks wlist->watchers with only the
RCU read lock held, we need to use RCU methods to add to the list (we
already use RCU methods to remove from the list).
Fix add_watch_to_object() to use hlist_add_head_rcu() instead of
hlist_add_head() for that list.
Fixes: c73be61ced ("pipe: Add general notification queue support")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 44e29e64cf upstream.
Sedat Dilek noticed that I had an extraneous semicolon at the end of a
line in the previous patch.
It's harmless, but unintentional, and while compilers just treat it as
an extra empty statement, for all I know some other tooling might warn
about it. So clean it up before other people notice too ;)
Fixes: 353f7988dd ("watchqueue: make sure to serialize 'wqueue->defunct' properly")
Reported-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 353f7988dd upstream.
When the pipe is closed, we mark the associated watchqueue defunct by
calling watch_queue_clear(). However, while that is protected by the
watchqueue lock, new watchqueue entries aren't actually added under that
lock at all: they use the pipe->rd_wait.lock instead, and looking up
that pipe happens without any locking.
The watchqueue code uses the RCU read-side section to make sure that the
wqueue entry itself hasn't disappeared, but that does not protect the
pipe_info in any way.
So make sure to actually hold the wqueue lock when posting watch events,
properly serializing against the pipe being torn down.
Reported-by: Noam Rathaus <noamr@ssd-disclosure.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit b27f266f74 ]
Setting set_event_pid with trailing whitespace lead to endless write
system calls like below.
$ strace echo "123 " > /sys/kernel/debug/tracing/set_event_pid
execve("/usr/bin/echo", ["echo", "123 "], ...) = 0
...
write(1, "123 \n", 5) = 4
write(1, "\n", 1) = 0
write(1, "\n", 1) = 0
write(1, "\n", 1) = 0
write(1, "\n", 1) = 0
write(1, "\n", 1) = 0
....
This is because, the result of trace_get_user's are not returned when it
read at least one pid. To fix it, update read variable even if
parser->idx == 0.
The result of applied patch is below.
$ strace echo "123 " > /sys/kernel/debug/tracing/set_event_pid
execve("/usr/bin/echo", ["echo", "123 "], ...) = 0
...
write(1, "123 \n", 5) = 5
close(1) = 0
Link: https://lkml.kernel.org/r/20220503050546.288911-1-vvghjk1234@gmail.com
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Baik Song An <bsahn@etri.re.kr>
Cc: Hong Yeon Kim <kimhy@etri.re.kr>
Cc: Taeung Song <taeung@reallinux.co.kr>
Cc: linuxgeek@linuxgeek.io
Cc: stable@vger.kernel.org
Fixes: 4909010788 ("tracing: Add set_event_pid directory for future use")
Signed-off-by: Wonhyuk Yang <vvghjk1234@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 6954e41526 ]
Instead of having the logic that does trace_pid_list open coded, wrap it in
abstract functions. This will allow a rewrite of the logic that implements
the trace_pid_list without affecting the users.
Note, this causes a change in behavior. Every time a pid is written into
the set_*_pid file, it creates a new list and uses RCU to update it. If
pid_max is lowered, but there was a pid currently in the list that was
higher than pid_max, those pids will now be removed on updating the list.
The old behavior kept that from happening.
The rewrite of the pid_list logic will no longer depend on pid_max,
and will return the old behavior.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 499f12168a ]
The print fmt check against trace events to make sure that the format does
not use pointers that may be freed from the time of the trace to the time
the event is read, gives a false positive on %pISpc when reading data that
was saved in __get_dynamic_array() when it is perfectly fine to do so, as
the data being read is on the ring buffer.
Link: https://lore.kernel.org/all/20220407144524.2a592ed6@canb.auug.org.au/
Cc: stable@vger.kernel.org
Fixes: 5013f454a3 ("tracing: Add check of trace event print fmts for dereferencing pointers")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit ddfc710395 upstream.
Tasks the are being deboosted from SCHED_DEADLINE might enter
enqueue_task_dl() one last time and hit an erroneous BUG_ON condition:
since they are not boosted anymore, the if (is_dl_boosted()) branch is
not taken, but the else if (!dl_prio) is and inside this one we
BUG_ON(!is_dl_boosted), which is of course false (BUG_ON triggered)
otherwise we had entered the if branch above. Long story short, the
current condition doesn't make sense and always leads to triggering of a
BUG.
Fix this by only checking enqueue flags, properly: ENQUEUE_REPLENISH has
to be present, but additional flags are not a problem.
Fixes: 64be6f1f5f ("sched/deadline: Don't replenish from a !SCHED_DEADLINE entity")
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20220714151908.533052-1-juri.lelli@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 78e36f3b0d ]
sysctl has helpers which let us specify boundary values for a min or max
int value. Since these are used for a boundary check only they don't
change, so move these variables to sysctl_vals to avoid adding duplicate
variables. This will help with our cleanup of kernel/sysctl.c.
[akpm@linux-foundation.org: update it for "mm/pagealloc: sysctl: change watermark_scale_factor max limit to 30%"]
[mcgrof@kernel.org: major rebase]
Link: https://lkml.kernel.org/r/20211123202347.818157-3-mcgrof@kernel.org
Signed-off-by: Xiaoming Ni <nixiaoming@huawei.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Qing Wang <wangqing@vivo.com>
Cc: Sebastian Reichel <sre@kernel.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Stephen Kitt <steve@sk2.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Antti Palosaari <crope@iki.fi>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Clemens Ladisch <clemens@ladisch.de>
Cc: David Airlie <airlied@linux.ie>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Julia Lawall <julia.lawall@inria.fr>
Cc: Lukas Middendorf <kernel@tuxforce.de>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Phillip Potter <phil@philpotter.co.uk>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Douglas Gilbert <dgilbert@interlog.com>
Cc: James E.J. Bottomley <jejb@linux.ibm.com>
Cc: Jani Nikula <jani.nikula@intel.com>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Martin K. Petersen <martin.petersen@oracle.com>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 39c65a94cd ]
For embedded systems with low total memory, having to run applications
with relatively large memory requirements, 10% max limitation for
watermark_scale_factor poses an issue of triggering direct reclaim every
time such application is started. This results in slow application
startup times and bad end-user experience.
By increasing watermark_scale_factor max limit we allow vendors more
flexibility to choose the right level of kswapd aggressiveness for their
device and workload requirements.
Link: https://lkml.kernel.org/r/20211124193604.2758863-1-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Lukas Middendorf <kernel@tuxforce.de>
Cc: Antti Palosaari <crope@iki.fi>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Zhang Yi <yi.zhang@huawei.com>
Cc: Fengfei Xi <xi.fengfei@h3c.com>
Cc: Mike Rapoport <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 68e3c69803 ]
Yang Jihing reported a race between perf_event_set_output() and
perf_mmap_close():
CPU1 CPU2
perf_mmap_close(e2)
if (atomic_dec_and_test(&e2->rb->mmap_count)) // 1 - > 0
detach_rest = true
ioctl(e1, IOC_SET_OUTPUT, e2)
perf_event_set_output(e1, e2)
...
list_for_each_entry_rcu(e, &e2->rb->event_list, rb_entry)
ring_buffer_attach(e, NULL);
// e1 isn't yet added and
// therefore not detached
ring_buffer_attach(e1, e2->rb)
list_add_rcu(&e1->rb_entry,
&e2->rb->event_list)
After this; e1 is attached to an unmapped rb and a subsequent
perf_mmap() will loop forever more:
again:
mutex_lock(&e->mmap_mutex);
if (event->rb) {
...
if (!atomic_inc_not_zero(&e->rb->mmap_count)) {
...
mutex_unlock(&e->mmap_mutex);
goto again;
}
}
The loop in perf_mmap_close() holds e2->mmap_mutex, while the attach
in perf_event_set_output() holds e1->mmap_mutex. As such there is no
serialization to avoid this race.
Change perf_event_set_output() to take both e1->mmap_mutex and
e2->mmap_mutex to alleviate that problem. Additionally, have the loop
in perf_mmap() detach the rb directly, this avoids having to wait for
the concurrent perf_mmap_close() to get around to doing it to make
progress.
Fixes: 9bb5d40cd9 ("perf: Fix mmap() accounting hole")
Reported-by: Yang Jihong <yangjihong1@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Yang Jihong <yangjihong1@huawei.com>
Link: https://lkml.kernel.org/r/YsQ3jm2GR38SW7uD@worktop.programming.kicks-ass.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a382f8fee4 ]
These are indeed "should not happen" situations, but it turns out recent
changes made the 'task_is_stopped_or_trace()' case trigger (fix for that
exists, is pending more testing), and the BUG_ON() makes it
unnecessarily hard to actually debug for no good reason.
It's been that way for a long time, but let's make it clear: BUG_ON() is
not good for debugging, and should never be used in situations where you
could just say "this shouldn't happen, but we can continue".
Use WARN_ON_ONCE() instead to make sure it gets logged, and then just
continue running. Instead of making the system basically unusuable
because you crashed the machine while potentially holding some very core
locks (eg this function is commonly called while holding 'tasklist_lock'
for writing).
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 43b5240ca6 ]
"numa_stat" should not be included in the scope of CONFIG_HUGETLB_PAGE, if
CONFIG_HUGETLB_PAGE is not configured even if CONFIG_NUMA is configured,
"numa_stat" is missed form /proc. Move it out of CONFIG_HUGETLB_PAGE to
fix it.
Fixes: 4518085e12 ("mm, sysctl: make NUMA stats configurable")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: <stable@vger.kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit af16df54b8 ]
Currently, an unsigned kernel could be kexec'ed when IMA arch specific
policy is configured unless lockdown is enabled. Enforce kernel
signature verification check in the kexec_file_load syscall when IMA
arch specific policy is configured.
Fixes: 99d5cadfde ("kexec_file: split KEXEC_VERIFY_SIG into KEXEC_SIG and KEXEC_SIG_FORCE")
Reported-and-suggested-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Coiby Xu <coxu@redhat.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7d1025e559 ]
A sysctl variable is accessed concurrently, and there is always a chance
of data-race. So, all readers and writers need some basic protection to
avoid load/store-tearing.
This patch changes proc_dointvec_ms_jiffies() to use READ_ONCE() and
WRITE_ONCE() internally to fix data-races on the sysctl side. For now,
proc_dointvec_ms_jiffies() itself is tolerant to a data-race, but we still
need to add annotations on the other subsystem's side.
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7dee5d7747 ]
A sysctl variable is accessed concurrently, and there is always a chance
of data-race. So, all readers and writers need some basic protection to
avoid load/store-tearing.
This patch changes proc_dou8vec_minmax() to use READ_ONCE() and
WRITE_ONCE() internally to fix data-races on the sysctl side. For now,
proc_dou8vec_minmax() itself is tolerant to a data-race, but we still
need to add annotations on the other subsystem's side.
Fixes: cb94441306 ("sysctl: add proc_dou8vec_minmax()")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 495fcec864 ]
If you drop into kdb and type "ftdump" you'll get a sleeping while
atomic warning from memory allocation in trace_find_next_entry().
This appears to have been caused by commit ff895103a8 ("tracing:
Save off entry when peeking at next entry"), which added the
allocation in that path. The problematic commit was already fixed by
commit 8e99cf91b9 ("tracing: Do not allocate buffer in
trace_find_next_entry() in atomic") but that fix missed the kdb case.
The fix here is easy: just move the assignment of the static buffer to
the place where it should have been to begin with:
trace_init_global_iter(). That function is called in two places, once
is right before the assignment of the static buffer added by the
previous fix and once is in kdb.
Note that it appears that there's a second static buffer that we need
to assign that was added in commit efbbdaa22b ("tracing: Show real
address for trace event arguments"), so we'll move that too.
Link: https://lkml.kernel.org/r/20220708170919.1.I75844e5038d9425add2ad853a608cb44bb39df40@changeid
Fixes: ff895103a8 ("tracing: Save off entry when peeking at next entry")
Fixes: efbbdaa22b ("tracing: Show real address for trace event arguments")
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e877820877 ]
A sysctl variable is accessed concurrently, and there is always a chance
of data-race. So, all readers and writers need some basic protection to
avoid load/store-tearing.
This patch changes proc_dointvec_jiffies() to use READ_ONCE() and
WRITE_ONCE() internally to fix data-races on the sysctl side. For now,
proc_dointvec_jiffies() itself is tolerant to a data-race, but we still
need to add annotations on the other subsystem's side.
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c31bcc8fb8 ]
A sysctl variable is accessed concurrently, and there is always a chance
of data-race. So, all readers and writers need some basic protection to
avoid load/store-tearing.
This patch changes proc_doulongvec_minmax() to use READ_ONCE() and
WRITE_ONCE() internally to fix data-races on the sysctl side. For now,
proc_doulongvec_minmax() itself is tolerant to a data-race, but we still
need to add annotations on the other subsystem's side.
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2d3b559df3 ]
A sysctl variable is accessed concurrently, and there is always a chance
of data-race. So, all readers and writers need some basic protection to
avoid load/store-tearing.
This patch changes proc_douintvec_minmax() to use READ_ONCE() and
WRITE_ONCE() internally to fix data-races on the sysctl side. For now,
proc_douintvec_minmax() itself is tolerant to a data-race, but we still
need to add annotations on the other subsystem's side.
Fixes: 61d9b56a89 ("sysctl: add unsigned int range support")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f613d86d01 ]
A sysctl variable is accessed concurrently, and there is always a chance
of data-race. So, all readers and writers need some basic protection to
avoid load/store-tearing.
This patch changes proc_dointvec_minmax() to use READ_ONCE() and
WRITE_ONCE() internally to fix data-races on the sysctl side. For now,
proc_dointvec_minmax() itself is tolerant to a data-race, but we still
need to add annotations on the other subsystem's side.
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 4762b532ec ]
A sysctl variable is accessed concurrently, and there is always a chance
of data-race. So, all readers and writers need some basic protection to
avoid load/store-tearing.
This patch changes proc_douintvec() to use READ_ONCE() and WRITE_ONCE()
internally to fix data-races on the sysctl side. For now, proc_douintvec()
itself is tolerant to a data-race, but we still need to add annotations on
the other subsystem's side.
Fixes: e7d316a02f ("sysctl: handle error writing UINT_MAX to u32 fields")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1f1be04b4d ]
A sysctl variable is accessed concurrently, and there is always a chance
of data-race. So, all readers and writers need some basic protection to
avoid load/store-tearing.
This patch changes proc_dointvec() to use READ_ONCE() and WRITE_ONCE()
internally to fix data-races on the sysctl side. For now, proc_dointvec()
itself is tolerant to a data-race, but we still need to add annotations on
the other subsystem's side.
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 07fd5b6cdf upstream.
Each cset (css_set) is pinned by its tasks. When we're moving tasks around
across csets for a migration, we need to hold the source and destination
csets to ensure that they don't go away while we're moving tasks about. This
is done by linking cset->mg_preload_node on either the
mgctx->preloaded_src_csets or mgctx->preloaded_dst_csets list. Using the
same cset->mg_preload_node for both the src and dst lists was deemed okay as
a cset can't be both the source and destination at the same time.
Unfortunately, this overloading becomes problematic when multiple tasks are
involved in a migration and some of them are identity noop migrations while
others are actually moving across cgroups. For example, this can happen with
the following sequence on cgroup1:
#1> mkdir -p /sys/fs/cgroup/misc/a/b
#2> echo $$ > /sys/fs/cgroup/misc/a/cgroup.procs
#3> RUN_A_COMMAND_WHICH_CREATES_MULTIPLE_THREADS &
#4> PID=$!
#5> echo $PID > /sys/fs/cgroup/misc/a/b/tasks
#6> echo $PID > /sys/fs/cgroup/misc/a/cgroup.procs
the process including the group leader back into a. In this final migration,
non-leader threads would be doing identity migration while the group leader
is doing an actual one.
After #3, let's say the whole process was in cset A, and that after #4, the
leader moves to cset B. Then, during #6, the following happens:
1. cgroup_migrate_add_src() is called on B for the leader.
2. cgroup_migrate_add_src() is called on A for the other threads.
3. cgroup_migrate_prepare_dst() is called. It scans the src list.
4. It notices that B wants to migrate to A, so it tries to A to the dst
list but realizes that its ->mg_preload_node is already busy.
5. and then it notices A wants to migrate to A as it's an identity
migration, it culls it by list_del_init()'ing its ->mg_preload_node and
putting references accordingly.
6. The rest of migration takes place with B on the src list but nothing on
the dst list.
This means that A isn't held while migration is in progress. If all tasks
leave A before the migration finishes and the incoming task pins it, the
cset will be destroyed leading to use-after-free.
This is caused by overloading cset->mg_preload_node for both src and dst
preload lists. We wanted to exclude the cset from the src list but ended up
inadvertently excluding it from the dst list too.
This patch fixes the issue by separating out cset->mg_preload_node into
->mg_src_preload_node and ->mg_dst_preload_node, so that the src and dst
preloadings don't interfere with each other.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Mukesh Ojha <quic_mojha@quicinc.com>
Reported-by: shisiyuan <shisiyuan19870131@gmail.com>
Link: http://lkml.kernel.org/r/1654187688-27411-1-git-send-email-shisiyuan@xiaomi.com
Link: https://www.spinics.net/lists/cgroups/msg33313.html
Fixes: f817de9851 ("cgroup: prepare migration path for unified hierarchy")
Cc: stable@vger.kernel.org # v3.16+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7edc3945bd upstream.
This reverts commit 46bbe5c671.
As commit 46bbe5c671 ("tracing: fix double free") said, the
"double free" problem reported by clang static analyzer is:
> In parse_var_defs() if there is a problem allocating
> var_defs.expr, the earlier var_defs.name is freed.
> This free is duplicated by free_var_defs() which frees
> the rest of the list.
However, if there is a problem allocating N-th var_defs.expr:
+ in parse_var_defs(), the freed 'earlier var_defs.name' is
actually the N-th var_defs.name;
+ then in free_var_defs(), the names from 0th to (N-1)-th are freed;
IF ALLOCATING PROBLEM HAPPENED HERE!!! -+
\
|
0th 1th (N-1)-th N-th V
+-------------+-------------+-----+-------------+-----------
var_defs: | name | expr | name | expr | ... | name | expr | name | ///
+-------------+-------------+-----+-------------+-----------
These two frees don't act on same name, so there was no "double free"
problem before. Conversely, after that commit, we get a "memory leak"
problem because the above "N-th var_defs.name" is not freed.
If enable CONFIG_DEBUG_KMEMLEAK and inject a fault at where the N-th
var_defs.expr allocated, then execute on shell like:
$ echo 'hist:key=call_site:val=$v1,$v2:v1=bytes_req,v2=bytes_alloc' > \
/sys/kernel/debug/tracing/events/kmem/kmalloc/trigger
Then kmemleak reports:
unreferenced object 0xffff8fb100ef3518 (size 8):
comm "bash", pid 196, jiffies 4295681690 (age 28.538s)
hex dump (first 8 bytes):
76 31 00 00 b1 8f ff ff v1......
backtrace:
[<0000000038fe4895>] kstrdup+0x2d/0x60
[<00000000c99c049a>] event_hist_trigger_parse+0x206f/0x20e0
[<00000000ae70d2cc>] trigger_process_regex+0xc0/0x110
[<0000000066737a4c>] event_trigger_write+0x75/0xd0
[<000000007341e40c>] vfs_write+0xbb/0x2a0
[<0000000087fde4c2>] ksys_write+0x59/0xd0
[<00000000581e9cdf>] do_syscall_64+0x3a/0x80
[<00000000cf3b065c>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
Link: https://lkml.kernel.org/r/20220711014731.69520-1-zhengyejian1@huawei.com
Cc: stable@vger.kernel.org
Fixes: 46bbe5c671 ("tracing: fix double free")
Reported-by: Hulk Robot <hulkci@huawei.com>
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d5b36a4dbd upstream.
As Chris explains, the comment above exit_itimers() is not correct,
we can race with proc_timers_seq_ops. Change exit_itimers() to clear
signal->posix_timers with ->siglock held.
Cc: <stable@vger.kernel.org>
Reported-by: chris@accessvector.net
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 7fd982f394 ]
elf_validity_check() checks ELF headers for errors and ELF Spec.
compliance and if any of them fail it returns -ENOEXEC from all of
these error paths. Almost all of them don't print any messages.
When elf_validity_check() returns an error, load_module() prints an
error message without error code. It is hard to determine why the
module ELF structure is invalid, even if load_module() prints the
error code which is -ENOEXEC in all of these cases.
Change to print useful error messages from elf_validity_check() to
clearly say what went wrong and why the ELF validity checks failed.
Remove the load_module() error message which is no longer needed.
This patch includes changes to fix build warns on 32-bit platforms:
warning: format '%llu' expects argument of type 'long long unsigned int',
but argument 3 has type 'Elf32_Off' {aka 'unsigned int'}
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 3990ed4c42 upstream.
This patch is to fix an out-of-bound access issue when jit-ing the
bpf_pseudo_func insn (i.e. ld_imm64 with src_reg == BPF_PSEUDO_FUNC)
In jit_subprog(), it currently reuses the subprog index cached in
insn[1].imm. This subprog index is an index into a few array related
to subprogs. For example, in jit_subprog(), it is an index to the newly
allocated 'struct bpf_prog **func' array.
The subprog index was cached in insn[1].imm after add_subprog(). However,
this could become outdated (and too big in this case) if some subprogs
are completely removed during dead code elimination (in
adjust_subprog_starts_after_remove). The cached index in insn[1].imm
is not updated accordingly and causing out-of-bound issue in the later
jit_subprog().
Unlike bpf_pseudo_'func' insn, the current bpf_pseudo_'call' insn
is handling the DCE properly by calling find_subprog(insn->imm) to
figure out the index instead of caching the subprog index.
The existing bpf_adj_branches() will adjust the insn->imm
whenever insn is added or removed.
Instead of having two ways handling subprog index,
this patch is to make bpf_pseudo_func works more like
bpf_pseudo_call.
First change is to stop caching the subprog index result
in insn[1].imm after add_subprog(). The verification
process will use find_subprog(insn->imm) to figure
out the subprog index.
Second change is in bpf_adj_branches() and have it to
adjust the insn->imm for the bpf_pseudo_func insn also
whenever insn is added or removed.
Third change is in jit_subprog(). Like the bpf_pseudo_call handling,
bpf_pseudo_func temporarily stores the find_subprog() result
in insn->off. It is fine because the prog's insn has been finalized
at this point. insn->off will be reset back to 0 later to avoid
confusing the userspace prog dump tool.
Fixes: 69c087ba62 ("bpf: Add bpf_for_each_map_elem() helper")
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211106014014.651018-1-kafai@fb.com
Cc: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3844d153a4 upstream.
Kuee reported a corner case where the tnum becomes constant after the call
to __reg_bound_offset(), but the register's bounds are not, that is, its
min bounds are still not equal to the register's max bounds.
This in turn allows to leak pointers through turning a pointer register as
is into an unknown scalar via adjust_ptr_min_max_vals().
Before:
func#0 @0
0: R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
0: (b7) r0 = 1 ; R0_w=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0))
1: (b7) r3 = 0 ; R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0))
2: (87) r3 = -r3 ; R3_w=scalar()
3: (87) r3 = -r3 ; R3_w=scalar()
4: (47) r3 |= 32767 ; R3_w=scalar(smin=-9223372036854743041,umin=32767,var_off=(0x7fff; 0xffffffffffff8000),s32_min=-2147450881)
5: (75) if r3 s>= 0x0 goto pc+1 ; R3_w=scalar(umin=9223372036854808575,var_off=(0x8000000000007fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
6: (95) exit
from 5 to 7: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
7: (d5) if r3 s<= 0x8000 goto pc+1 ; R3=scalar(umin=32769,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
8: (95) exit
from 7 to 9: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=32768,var_off=(0x7fff; 0x8000)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
9: (07) r3 += -32767 ; R3_w=scalar(imm=0,umax=1,var_off=(0x0; 0x0)) <--- [*]
10: (95) exit
What can be seen here is that R3=scalar(umin=32767,umax=32768,var_off=(0x7fff;
0x8000)) after the operation R3 += -32767 results in a 'malformed' constant, that
is, R3_w=scalar(imm=0,umax=1,var_off=(0x0; 0x0)). Intersecting with var_off has
not been done at that point via __update_reg_bounds(), which would have improved
the umax to be equal to umin.
Refactor the tnum <> min/max bounds information flow into a reg_bounds_sync()
helper and use it consistently everywhere. After the fix, bounds have been
corrected to R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0)) and thus the register
is regarded as a 'proper' constant scalar of 0.
After:
func#0 @0
0: R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
0: (b7) r0 = 1 ; R0_w=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0))
1: (b7) r3 = 0 ; R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0))
2: (87) r3 = -r3 ; R3_w=scalar()
3: (87) r3 = -r3 ; R3_w=scalar()
4: (47) r3 |= 32767 ; R3_w=scalar(smin=-9223372036854743041,umin=32767,var_off=(0x7fff; 0xffffffffffff8000),s32_min=-2147450881)
5: (75) if r3 s>= 0x0 goto pc+1 ; R3_w=scalar(umin=9223372036854808575,var_off=(0x8000000000007fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
6: (95) exit
from 5 to 7: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
7: (d5) if r3 s<= 0x8000 goto pc+1 ; R3=scalar(umin=32769,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
8: (95) exit
from 7 to 9: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=32768,var_off=(0x7fff; 0x8000)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
9: (07) r3 += -32767 ; R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0)) <--- [*]
10: (95) exit
Fixes: b03c9f9fdc ("bpf/verifier: track signed and unsigned min/max values")
Reported-by: Kuee K1r0a <liulin063@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20220701124727.11153-2-daniel@iogearbox.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a12ca6277e upstream.
Kuee reported a quirk in the jmp32's jeq/jne simulation, namely that the
register value does not match expectations for the fall-through path. For
example:
Before fix:
0: R1=ctx(off=0,imm=0) R10=fp0
0: (b7) r2 = 0 ; R2_w=P0
1: (b7) r6 = 563 ; R6_w=P563
2: (87) r2 = -r2 ; R2_w=Pscalar()
3: (87) r2 = -r2 ; R2_w=Pscalar()
4: (4c) w2 |= w6 ; R2_w=Pscalar(umin=563,umax=4294967295,var_off=(0x233; 0xfffffdcc),s32_min=-2147483085) R6_w=P563
5: (56) if w2 != 0x8 goto pc+1 ; R2_w=P571 <--- [*]
6: (95) exit
R0 !read_ok
After fix:
0: R1=ctx(off=0,imm=0) R10=fp0
0: (b7) r2 = 0 ; R2_w=P0
1: (b7) r6 = 563 ; R6_w=P563
2: (87) r2 = -r2 ; R2_w=Pscalar()
3: (87) r2 = -r2 ; R2_w=Pscalar()
4: (4c) w2 |= w6 ; R2_w=Pscalar(umin=563,umax=4294967295,var_off=(0x233; 0xfffffdcc),s32_min=-2147483085) R6_w=P563
5: (56) if w2 != 0x8 goto pc+1 ; R2_w=P8 <--- [*]
6: (95) exit
R0 !read_ok
As can be seen on line 5 for the branch fall-through path in R2 [*] is that
given condition w2 != 0x8 is false, verifier should conclude that r2 = 8 as
upper 32 bit are known to be zero. However, verifier incorrectly concludes
that r2 = 571 which is far off.
The problem is it only marks false{true}_reg as known in the switch for JE/NE
case, but at the end of the function, it uses {false,true}_{64,32}off to
update {false,true}_reg->var_off and they still hold the prior value of
{false,true}_reg->var_off before it got marked as known. The subsequent
__reg_combine_32_into_64() then propagates this old var_off and derives new
bounds. The information between min/max bounds on {false,true}_reg from
setting the register to known const combined with the {false,true}_reg->var_off
based on the old information then derives wrong register data.
Fix it by detangling the BPF_JEQ/BPF_JNE cases and updating relevant
{false,true}_{64,32}off tnums along with the register marking to known
constant.
Fixes: 3f50f132d8 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Reported-by: Kuee K1r0a <liulin063@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20220701124727.11153-1-daniel@iogearbox.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2390095113 upstream.
EXPORT_SYMBOL and __init is a bad combination because the .init.text
section is freed up after the initialization. Hence, modules cannot
use symbols annotated __init. The access to a freed symbol may end up
with kernel panic.
modpost used to detect it, but it had been broken for a decade.
Commit 28438794ab ("modpost: fix section mismatch check for exported
init/exit sections") fixed it so modpost started to warn it again, then
this showed up:
MODPOST vmlinux.symvers
WARNING: modpost: vmlinux.o(___ksymtab_gpl+tick_nohz_full_setup+0x0): Section mismatch in reference from the variable __ksymtab_tick_nohz_full_setup to the function .init.text:tick_nohz_full_setup()
The symbol tick_nohz_full_setup is exported and annotated __init
Fix this by removing the __init annotation of tick_nohz_full_setup or drop the export.
Drop the export because tick_nohz_full_setup() is only called from the
built-in code in kernel/sched/isolation.c.
Fixes: ae9e557b5b ("time: Export tick start/stop functions for rcutorture")
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Backlund <tmb@tmb.nu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3be4562584 upstream.
The third parameter of dma_set_encrypted() is a size in bytes rather than
the number of pages.
Fixes: 4d0564785b ("dma-direct: factor out dma_set_{de,en}crypted helpers")
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit cc72b72073 upstream.
There is a small chance that get_kretprobe(ri) returns NULL in
kretprobe_dispatcher() when another CPU unregisters the kretprobe
right after __kretprobe_trampoline_handler().
To avoid this issue, kretprobe_dispatcher() checks the get_kretprobe()
return value again. And if it is NULL, it returns soon because that
kretprobe is under unregistering process.
This issue has been introduced when the kretprobe is decoupled
from the struct kretprobe_instance by commit d741bf41d7
("kprobes: Remove kretprobe hash"). Before that commit, the
struct kretprob_instance::rp directly points the kretprobe
and it is never be NULL.
Link: https://lkml.kernel.org/r/165366693881.797669.16926184644089588731.stgit@devnote2
Reported-by: Yonghong Song <yhs@fb.com>
Fixes: d741bf41d7 ("kprobes: Remove kretprobe hash")
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: bpf <bpf@vger.kernel.org>
Cc: Kernel Team <kernel-team@fb.com>
Cc: stable@vger.kernel.org
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f858c2b2ca upstream.
The verifier allows programs to call global functions as long as their
argument types match, using BTF to check the function arguments. One of the
allowed argument types to such global functions is PTR_TO_CTX; however the
check for this fails on BPF_PROG_TYPE_EXT functions because the verifier
uses the wrong type to fetch the vmlinux BTF ID for the program context
type. This failure is seen when an XDP program is loaded using
libxdp (which loads it as BPF_PROG_TYPE_EXT and attaches it to a global XDP
type program).
Fix the issue by passing in the target program type instead of the
BPF_PROG_TYPE_EXT type to bpf_prog_get_ctx() when checking function
argument compatibility.
The first Fixes tag refers to the latest commit that touched the code in
question, while the second one points to the code that first introduced
the global function call verification.
v2:
- Use resolve_prog_type()
Fixes: 3363bd0cfb ("bpf: Extend kfunc with PTR_TO_CTX, PTR_TO_MEM argument support")
Fixes: 51c39bb1d5 ("bpf: Introduce function-by-function verification")
Reported-by: Simon Sundberg <simon.sundberg@kau.se>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/r/20220606075253.28422-1-toke@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
[ backport: open-code missing resolve_prog_type() helper, resolve context diff ]
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 57cd6d157e upstream.
RCU_NONIDLE usage during __cfi_slowpath_diag can result in an invalid
RCU state in the cpuidle code path:
WARNING: CPU: 1 PID: 0 at kernel/rcu/tree.c:613 rcu_eqs_enter+0xe4/0x138
...
Call trace:
rcu_eqs_enter+0xe4/0x138
rcu_idle_enter+0xa8/0x100
cpuidle_enter_state+0x154/0x3a8
cpuidle_enter+0x3c/0x58
do_idle.llvm.6590768638138871020+0x1f4/0x2ec
cpu_startup_entry+0x28/0x2c
secondary_start_kernel+0x1b8/0x220
__secondary_switched+0x94/0x98
Instead, call rcu_irq_enter/exit to wake up RCU only when needed and
disable interrupts for the entire CFI shadow/module check when we do.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lore.kernel.org/r/20220531175910.890307-1-samitolvanen@google.com
Fixes: cf68fffb66 ("add support for Clang CFI")
Cc: stable@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 04193d590b ]
The purpose of balance_push() is to act as a filter on task selection
in the case of CPU hotplug, specifically when taking the CPU out.
It does this by (ab)using the balance callback infrastructure, with
the express purpose of keeping all the unlikely/odd cases in a single
place.
In order to serve its purpose, the balance_push_callback needs to be
(exclusively) on the callback list at all times (noting that the
callback always places itself back on the list the moment it runs,
also noting that when the CPU goes down, regular balancing concerns
are moot, so ignoring them is fine).
And here-in lies the problem, __sched_setscheduler()'s use of
splice_balance_callbacks() takes the callbacks off the list across a
lock-break, making it possible for, an interleaving, __schedule() to
see an empty list and not get filtered.
Fixes: ae79270232 ("sched: Optimize finish_lock_switch()")
Reported-by: Jing-Ting Wu <jing-ting.wu@mediatek.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Jing-Ting Wu <jing-ting.wu@mediatek.com>
Link: https://lkml.kernel.org/r/20220519134706.GH2578@worktop.programming.kicks-ass.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e19f8fa6ce ]
Limit the error msg to avoid flooding the console. If you have a lot of
threads hitting this at once, they could have already gotten passed the
dma_debug_disabled() check before they get to the point of allocation
failure, resulting in quite a lot of this error message spamming the
log. Use pr_err_once() to limit that.
Signed-off-by: Rob Clark <robdclark@chromium.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ef9188bcc6 ]
To prepare for support asynchronous tracer_init_tracefs initcall,
avoid calling create_trace_option_files before __update_tracer_options.
Otherwise, create_trace_option_files will show warning because
some tracers in trace_types list are already in tr->topts.
For example, hwlat_tracer call register_tracer in late_initcall,
and global_trace.dir is already created in tracing_init_dentry,
hwlat_tracer will be put into tr->topts.
Then if the __update_tracer_options is executed after hwlat_tracer
registered, create_trace_option_files find that hwlat_tracer is
already in tr->topts.
Link: https://lkml.kernel.org/r/20220426122407.17042-2-mark-pk.tsai@mediatek.com
Link: https://lore.kernel.org/lkml/20220322133339.GA32582@xsang-OptiPlex-9020/
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Mark-PK Tsai <mark-pk.tsai@mediatek.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 12025abdc8 ]
When setting bootparams="trace_event=initcall:initcall_start tp_printk=1" in the
cmdline, the output_printk() was called, and the spin_lock_irqsave() was called in the
atomic and irq disable interrupt context suitation. On the PREEMPT_RT kernel,
these locks are replaced with sleepable rt-spinlock, so the stack calltrace will
be triggered.
Fix it by raw_spin_lock_irqsave when PREEMPT_RT and "trace_event=initcall:initcall_start
tp_printk=1" enabled.
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1, name: swapper/0
preempt_count: 2, expected: 0
RCU nest depth: 0, expected: 0
Preemption disabled at:
[<ffffffff8992303e>] try_to_wake_up+0x7e/0xba0
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.17.1-rt17+ #19 34c5812404187a875f32bee7977f7367f9679ea7
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x60/0x8c
dump_stack+0x10/0x12
__might_resched.cold+0x11d/0x155
rt_spin_lock+0x40/0x70
trace_event_buffer_commit+0x2fa/0x4c0
? map_vsyscall+0x93/0x93
trace_event_raw_event_initcall_start+0xbe/0x110
? perf_trace_initcall_finish+0x210/0x210
? probe_sched_wakeup+0x34/0x40
? ttwu_do_wakeup+0xda/0x310
? trace_hardirqs_on+0x35/0x170
? map_vsyscall+0x93/0x93
do_one_initcall+0x217/0x3c0
? trace_event_raw_event_initcall_level+0x170/0x170
? push_cpu_stop+0x400/0x400
? cblist_init_generic+0x241/0x290
kernel_init_freeable+0x1ac/0x347
? _raw_spin_unlock_irq+0x65/0x80
? rest_init+0xf0/0xf0
kernel_init+0x1e/0x150
ret_from_fork+0x22/0x30
</TASK>
Link: https://lkml.kernel.org/r/20220419013910.894370-1-jun.miao@intel.com
Signed-off-by: Jun Miao <jun.miao@intel.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit cb1c45fb68 ]
Currently the tp_printk option has no effect on syscall tracepoint.
When adding the kernel option parameter tp_printk, then:
echo 1 > /sys/kernel/debug/tracing/events/syscalls/enable
When running any application, no trace information is printed on the
terminal.
Now added printk for syscall tracepoints.
Link: https://lkml.kernel.org/r/20220410145025.681144-1-xiehuan09@gmail.com
Signed-off-by: Jeff Xie <xiehuan09@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit caff1fa411 ]
I think there is something wrong with BPF_PROBE_MEM in ___bpf_prog_run()
in big-endian machine. Let's make a test and see what will happen if we
want to load a 'u16' with BPF_PROBE_MEM.
Let's make the src value '0x0001', the value of dest register will become
0x0001000000000000, as the value will be loaded to the first 2 byte of
DST with following code:
bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off));
Obviously, the value in DST is not correct. In fact, we can compare
BPF_PROBE_MEM with LDX_MEM_H:
DST = *(SIZE *)(unsigned long) (SRC + insn->off);
If the memory load is done by LDX_MEM_H, the value in DST will be 0x1 now.
And I think this error results in the test case 'test_bpf_sk_storage_map'
failing:
test_bpf_sk_storage_map:PASS:bpf_iter_bpf_sk_storage_map__open_and_load 0 nsec
test_bpf_sk_storage_map:PASS:socket 0 nsec
test_bpf_sk_storage_map:PASS:map_update 0 nsec
test_bpf_sk_storage_map:PASS:socket 0 nsec
test_bpf_sk_storage_map:PASS:map_update 0 nsec
test_bpf_sk_storage_map:PASS:socket 0 nsec
test_bpf_sk_storage_map:PASS:map_update 0 nsec
test_bpf_sk_storage_map:PASS:attach_iter 0 nsec
test_bpf_sk_storage_map:PASS:create_iter 0 nsec
test_bpf_sk_storage_map:PASS:read 0 nsec
test_bpf_sk_storage_map:FAIL:ipv6_sk_count got 0 expected 3
$10/26 bpf_iter/bpf_sk_storage_map:FAIL
The code of the test case is simply, it will load sk->sk_family to the
register with BPF_PROBE_MEM and check if it is AF_INET6. With this patch,
now the test case 'bpf_iter' can pass:
$10 bpf_iter:OK
Fixes: 2a02759ef5 ("bpf: Add support for BTF pointers to interpreter")
Signed-off-by: Menglong Dong <imagedong@tencent.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Jiang Biao <benbjiang@tencent.com>
Reviewed-by: Hao Peng <flyingpeng@tencent.com>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Link: https://lore.kernel.org/bpf/20220524021228.533216-1-imagedong@tencent.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 3e35142ef9 upstream.
Since commit d1bcae833b32f1 ("ELF: Don't generate unused section
symbols") [1], binutils (v2.36+) started dropping section symbols that
it thought were unused. This isn't an issue in general, but with
kexec_file.c, gcc is placing kexec_arch_apply_relocations[_add] into a
separate .text.unlikely section and the section symbol ".text.unlikely"
is being dropped. Due to this, recordmcount is unable to find a non-weak
symbol in .text.unlikely to generate a relocation record against.
Address this by dropping the weak attribute from these functions.
Instead, follow the existing pattern of having architectures #define the
name of the function they want to override in their headers.
[1] https://sourceware.org/git/?p=binutils-gdb.git;a=commit;h=d1bcae833b32f1
[akpm@linux-foundation.org: arch/s390/include/asm/kexec.h needs linux/module.h]
Link: https://lkml.kernel.org/r/20220519091237.676736-1-naveen.n.rao@linux.vnet.ibm.com
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 99696a2592 upstream.
In create_var_ref(), init_var_ref() is called to initialize the fields
of variable ref_field, which is allocated in the previous function call
to create_hist_field(). Function init_var_ref() allocates the
corresponding fields such as ref_field->system, but frees these fields
when the function encounters an error. The caller later calls
destroy_hist_field() to conduct error handling, which frees the fields
and the variable itself. This results in double free of the fields which
are already freed in the previous function.
Fix this by storing NULL to the corresponding fields when they are freed
in init_var_ref().
Link: https://lkml.kernel.org/r/20220425063739.3859998-1-keitasuzuki.park@sslab.ics.keio.ac.jp
Fixes: 067fe038e7 ("tracing: Add variable reference handling to hist triggers")
CC: stable@vger.kernel.org
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Tom Zanussi <zanussi@kernel.org>
Signed-off-by: Keita Suzuki <keitasuzuki.park@sslab.ics.keio.ac.jp>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 4a37f3dd9a ]
The original x86 sev_alloc() only called set_memory_decrypted() on
memory returned by alloc_pages_node(), so the page order calculation
fell out of that logic. However, the common dma-direct code has several
potential allocators, not all of which are guaranteed to round up the
underlying allocation to a power-of-two size, so carrying over that
calculation for the encryption/decryption size was a mistake. Fix it by
rounding to a *number* of pages, rather than an order.
Until recently there was an even worse interaction with DMA_DIRECT_REMAP
where we could have ended up decrypting part of the next adjacent
vmalloc area, only averted by no architecture actually supporting both
configs at once. Don't ask how I found that one out...
Fixes: c10f07aa27 ("dma/direct: Handle force decryption for DMA coherent buffers in common code")
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a90cf30437 ]
We must never let unencrypted memory go back into the general page pool.
So if we fail to set it back to encrypted when freeing DMA memory, leak
the memory instead and warn the user.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5570449b68 ]
Remapped allocations handle the encrypted bit through the pgprot passed
to vmap, so there is no call dma_set_decrypted. Note that this case is
currently entirely theoretical as no valid kernel configuration supports
remapped allocations and memory encryption currently.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 4d0564785b ]
Factor out helpers the make dealing with memory encryption a little less
cumbersome.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 92826e9675 ]
When dma_direct_alloc_pages encounters a highmem page it just gives up
currently. But what we really should do is to try memory using the
page allocator instead - without this platforms with a global highmem
CMA pool will fail all dma_alloc_pages allocations.
Fixes: efa70f2fdc ("dma-mapping: add a new dma_alloc_pages API")
Reported-by: Mark O'Neill <mao@tumblingdice.co.uk>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d541ae55d5 ]
Split the code for DMA_ATTR_NO_KERNEL_MAPPING allocations into a separate
helper to make dma_direct_alloc a little more readable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5341b93dea ]
When printk() is called from safe or NMI contexts, it will directly
store the record (vprintk_store()) and then defer the console output.
However, defer_console_output() only causes console printing and does
not wake any waiters of new records.
Wake waiters from defer_console_output() so that they also are aware
of the new records from safe and NMI contexts.
Fixes: 03fc7f9c99 ("printk/nmi: Prevent deadlock when accessing the main log buffer in NMI")
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20220421212250.565456-6-john.ogness@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1f5d783094 ]
It is important that any new records are visible to preparing
waiters before the waker checks if the wait queue is empty.
Otherwise it is possible that:
- there are new records available
- the waker sees an empty wait queue and does not wake
- the preparing waiter sees no new records and begins to wait
This is exactly the problem that the function description of
waitqueue_active() warns about.
Use wq_has_sleeper() instead of waitqueue_active() because it
includes the necessary full memory barrier.
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20220421212250.565456-4-john.ogness@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2ba3673d70 ]
The per-cpu @printk_pending variable can be updated from
sleepable contexts, such as:
get_random_bytes()
warn_unseeded_randomness()
printk_deferred()
defer_console_output()
and can be updated from interrupt contexts, such as:
handle_irq_event_percpu()
__irq_wake_thread()
wake_up_process()
try_to_wake_up()
select_task_rq()
select_fallback_rq()
printk_deferred()
defer_console_output()
and can be updated from NMI contexts, such as:
vprintk()
if (in_nmi()) defer_console_output()
Therefore the atomic variant of the updating functions must be used.
Replace __this_cpu_xchg() with this_cpu_xchg().
Replace __this_cpu_or() with this_cpu_or().
Reported-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/87iltld4ue.fsf@jogness.linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 890d550d7d ]
Martin find it confusing when look at the /proc/pressure/cpu output,
and found no hint about that CPU "full" line in psi Documentation.
% cat /proc/pressure/cpu
some avg10=0.92 avg60=0.91 avg300=0.73 total=933490489
full avg10=0.22 avg60=0.23 avg300=0.16 total=358783277
The PSI_CPU_FULL state is introduced by commit e7fcd76228
("psi: Add PSI_CPU_FULL state"), which mainly for cgroup level,
but also counted at the system level as a side effect.
Naturally, the FULL state doesn't exist for the CPU resource at
the system level. These "full" numbers can come from CPU idle
schedule latency. For example, t1 is the time when task wakeup
on an idle CPU, t2 is the time when CPU pick and switch to it.
The delta of (t2 - t1) will be in CPU_FULL state.
Another case all processes can be stalled is when all cgroups
have been throttled at the same time, which unlikely to happen.
Anyway, CPU_FULL metric is meaningless and confusing at the
system level. So this patch will report zeroes for CPU full
at the system level, and update psi Documentation accordingly.
Fixes: e7fcd76228 ("psi: Add PSI_CPU_FULL state")
Reported-by: Martin Steigerwald <Martin.Steigerwald@proact.de>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lore.kernel.org/r/20220408121914.82855-1-zhouchengming@bytedance.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 64eaf50731 ]
Since commit 2312729688 ("sched/fair: Update scale invariance of PELT")
change to use rq_clock_pelt() instead of rq_clock_task(), we should also
use rq_clock_pelt() for throttled_clock_task_time and throttled_clock_task
accounting to get correct cfs_rq_clock_pelt() of throttled cfs_rq. And
rename throttled_clock_task(_time) to be clock_pelt rather than clock_task.
Fixes: 2312729688 ("sched/fair: Update scale invariance of PELT")
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20220408115309.81603-1-zhouchengming@bytedance.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 78ed93d72d ]
With SIGTRAP on perf events, we have encountered termination of
processes due to user space attempting to block delivery of SIGTRAP.
Consider this case:
<set up SIGTRAP on a perf event>
...
sigset_t s;
sigemptyset(&s);
sigaddset(&s, SIGTRAP | <and others>);
sigprocmask(SIG_BLOCK, &s, ...);
...
<perf event triggers>
When the perf event triggers, while SIGTRAP is blocked, force_sig_perf()
will force the signal, but revert back to the default handler, thus
terminating the task.
This makes sense for error conditions, but not so much for explicitly
requested monitoring. However, the expectation is still that signals
generated by perf events are synchronous, which will no longer be the
case if the signal is blocked and delivered later.
To give user space the ability to clearly distinguish synchronous from
asynchronous signals, introduce siginfo_t::si_perf_flags and
TRAP_PERF_FLAG_ASYNC (opted for flags in case more binary information is
required in future).
The resolution to the problem is then to (a) no longer force the signal
(avoiding the terminations), but (b) tell user space via si_perf_flags
if the signal was synchronous or not, so that such signals can be
handled differently (e.g. let user space decide to ignore or consider
the data imprecise).
The alternative of making the kernel ignore SIGTRAP on perf events if
the signal is blocked may work for some usecases, but likely causes
issues in others that then have to revert back to interception of
sigprocmask() (which we want to avoid). [ A concrete example: when using
breakpoint perf events to track data-flow, in a region of code where
signals are blocked, data-flow can no longer be tracked accurately.
When a relevant asynchronous signal is received after unblocking the
signal, the data-flow tracking logic needs to know its state is
imprecise. ]
Fixes: 97ba62b278 ("perf: Add support for SIGTRAP on perf events")
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Dmitry Vyukov <dvyukov@google.com>
Link: https://lore.kernel.org/r/20220404111204.935357-1-elver@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8106bddbab ]
The scftorture test module's scf_handler() function is supposed to provide
three different distributions of short delays (including "no delay") and
one distribution of long delays, if specified by the scftorture.longwait
module parameter. However, the second of the two non-zero-wait short delays
is disabled due to the first such delay's "goto out" not being enclosed in
the "then" clause with the "udelay()".
This commit therefore adjusts the code to provide the intended set of
delays.
Fixes: e9d338a0b1 ("scftorture: Add smp_call_function() torture test")
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 84bc4f1dbb ]
We observed the error "cacheline tracking ENOMEM, dma-debug disabled"
during a light system load (copying some files). The reason for this error
is that the dma_active_cacheline radix tree uses GFP_NOWAIT allocation -
so it can't access the emergency memory reserves and it fails as soon as
anybody reaches the watermark.
This patch changes GFP_NOWAIT to GFP_ATOMIC, so that it can access the
emergency memory reserves.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2679a83731 ]
When we use raw_spin_rq_lock() to acquire the rq lock and have to
update the rq clock while holding the lock, the kernel may issue
a WARN_DOUBLE_CLOCK warning.
Since we directly use raw_spin_rq_lock() to acquire rq lock instead of
rq_lock(), there is no corresponding change to rq->clock_update_flags.
In particular, we have obtained the rq lock of other CPUs, the
rq->clock_update_flags of this CPU may be RQCF_UPDATED at this time, and
then calling update_rq_clock() will trigger the WARN_DOUBLE_CLOCK warning.
So we need to clear RQCF_UPDATED of rq->clock_update_flags to avoid
the WARN_DOUBLE_CLOCK warning.
For the sched_rt_period_timer() and migrate_task_rq_dl() cases
we simply replace raw_spin_rq_lock()/raw_spin_rq_unlock() with
rq_lock()/rq_unlock().
For the {pull,push}_{rt,dl}_task() cases, we add the
double_rq_clock_clear_update() function to clear RQCF_UPDATED of
rq->clock_update_flags, and call double_rq_clock_clear_update()
before double_lock_balance()/double_rq_lock() returns to avoid the
WARN_DOUBLE_CLOCK warning.
Some call trace reports:
Call Trace 1:
<IRQ>
sched_rt_period_timer+0x10f/0x3a0
? enqueue_top_rt_rq+0x110/0x110
__hrtimer_run_queues+0x1a9/0x490
hrtimer_interrupt+0x10b/0x240
__sysvec_apic_timer_interrupt+0x8a/0x250
sysvec_apic_timer_interrupt+0x9a/0xd0
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x12/0x20
Call Trace 2:
<TASK>
activate_task+0x8b/0x110
push_rt_task.part.108+0x241/0x2c0
push_rt_tasks+0x15/0x30
finish_task_switch+0xaa/0x2e0
? __switch_to+0x134/0x420
__schedule+0x343/0x8e0
? hrtimer_start_range_ns+0x101/0x340
schedule+0x4e/0xb0
do_nanosleep+0x8e/0x160
hrtimer_nanosleep+0x89/0x120
? hrtimer_init_sleeper+0x90/0x90
__x64_sys_nanosleep+0x96/0xd0
do_syscall_64+0x34/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Call Trace 3:
<TASK>
deactivate_task+0x93/0xe0
pull_rt_task+0x33e/0x400
balance_rt+0x7e/0x90
__schedule+0x62f/0x8e0
do_task_dead+0x3f/0x50
do_exit+0x7b8/0xbb0
do_group_exit+0x2d/0x90
get_signal+0x9df/0x9e0
? preempt_count_add+0x56/0xa0
? __remove_hrtimer+0x35/0x70
arch_do_signal_or_restart+0x36/0x720
? nanosleep_copyout+0x39/0x50
? do_nanosleep+0x131/0x160
? audit_filter_inodes+0xf5/0x120
exit_to_user_mode_prepare+0x10f/0x1e0
syscall_exit_to_user_mode+0x17/0x30
do_syscall_64+0x40/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Call Trace 4:
update_rq_clock+0x128/0x1a0
migrate_task_rq_dl+0xec/0x310
set_task_cpu+0x84/0x1e4
try_to_wake_up+0x1d8/0x5c0
wake_up_process+0x1c/0x30
hrtimer_wakeup+0x24/0x3c
__hrtimer_run_queues+0x114/0x270
hrtimer_interrupt+0xe8/0x244
arch_timer_handler_phys+0x30/0x50
handle_percpu_devid_irq+0x88/0x140
generic_handle_domain_irq+0x40/0x60
gic_handle_irq+0x48/0xe0
call_on_irq_stack+0x2c/0x60
do_interrupt_handler+0x80/0x84
Steps to reproduce:
1. Enable CONFIG_SCHED_DEBUG when compiling the kernel
2. echo 1 > /sys/kernel/debug/clear_warn_once
echo "WARN_DOUBLE_CLOCK" > /sys/kernel/debug/sched/features
echo "NO_RT_PUSH_IPI" > /sys/kernel/debug/sched/features
3. Run some rt/dl tasks that periodically work and sleep, e.g.
Create 2*n rt or dl (90% running) tasks via rt-app (on a system
with n CPUs), and Dietmar Eggemann reports Call Trace 4 when running
on PREEMPT_RT kernel.
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20220430085843.62939-2-jiahao.os@bytedance.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 46e861be58 ]
The TASKS_RUDE_RCU does not select IRQ_WORK, which can result in build
failures for kernels that do not otherwise select IRQ_WORK. This commit
therefore causes the TASKS_RUDE_RCU Kconfig option to select IRQ_WORK.
Reported-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f75fd4b922 ]
While booting secondary CPUs, cpus_read_[lock/unlock] is not keeping
online cpumask stable. The transient online mask results in below
calltrace.
[ 0.324121] CPU1: Booted secondary processor 0x0000000001 [0x410fd083]
[ 0.346652] Detected PIPT I-cache on CPU2
[ 0.347212] CPU2: Booted secondary processor 0x0000000002 [0x410fd083]
[ 0.377255] Detected PIPT I-cache on CPU3
[ 0.377823] CPU3: Booted secondary processor 0x0000000003 [0x410fd083]
[ 0.379040] ------------[ cut here ]------------
[ 0.383662] WARNING: CPU: 0 PID: 10 at kernel/workqueue.c:3084 __flush_work+0x12c/0x138
[ 0.384850] Modules linked in:
[ 0.385403] CPU: 0 PID: 10 Comm: rcu_tasks_rude_ Not tainted 5.17.0-rc3-v8+ #13
[ 0.386473] Hardware name: Raspberry Pi 4 Model B Rev 1.4 (DT)
[ 0.387289] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 0.388308] pc : __flush_work+0x12c/0x138
[ 0.388970] lr : __flush_work+0x80/0x138
[ 0.389620] sp : ffffffc00aaf3c60
[ 0.390139] x29: ffffffc00aaf3d20 x28: ffffffc009c16af0 x27: ffffff80f761df48
[ 0.391316] x26: 0000000000000004 x25: 0000000000000003 x24: 0000000000000100
[ 0.392493] x23: ffffffffffffffff x22: ffffffc009c16b10 x21: ffffffc009c16b28
[ 0.393668] x20: ffffffc009e53861 x19: ffffff80f77fbf40 x18: 00000000d744fcc9
[ 0.394842] x17: 000000000000000b x16: 00000000000001c2 x15: ffffffc009e57550
[ 0.396016] x14: 0000000000000000 x13: ffffffffffffffff x12: 0000000100000000
[ 0.397190] x11: 0000000000000462 x10: ffffff8040258008 x9 : 0000000100000000
[ 0.398364] x8 : 0000000000000000 x7 : ffffffc0093c8bf4 x6 : 0000000000000000
[ 0.399538] x5 : 0000000000000000 x4 : ffffffc00a976e40 x3 : ffffffc00810444c
[ 0.400711] x2 : 0000000000000004 x1 : 0000000000000000 x0 : 0000000000000000
[ 0.401886] Call trace:
[ 0.402309] __flush_work+0x12c/0x138
[ 0.402941] schedule_on_each_cpu+0x228/0x278
[ 0.403693] rcu_tasks_rude_wait_gp+0x130/0x144
[ 0.404502] rcu_tasks_kthread+0x220/0x254
[ 0.405264] kthread+0x174/0x1ac
[ 0.405837] ret_from_fork+0x10/0x20
[ 0.406456] irq event stamp: 102
[ 0.406966] hardirqs last enabled at (101): [<ffffffc0093c8468>] _raw_spin_unlock_irq+0x78/0xb4
[ 0.408304] hardirqs last disabled at (102): [<ffffffc0093b8270>] el1_dbg+0x24/0x5c
[ 0.409410] softirqs last enabled at (54): [<ffffffc0081b80c8>] local_bh_enable+0xc/0x2c
[ 0.410645] softirqs last disabled at (50): [<ffffffc0081b809c>] local_bh_disable+0xc/0x2c
[ 0.411890] ---[ end trace 0000000000000000 ]---
[ 0.413000] smp: Brought up 1 node, 4 CPUs
[ 0.413762] SMP: Total of 4 processors activated.
[ 0.414566] CPU features: detected: 32-bit EL0 Support
[ 0.415414] CPU features: detected: 32-bit EL1 Support
[ 0.416278] CPU features: detected: CRC32 instructions
[ 0.447021] Callback from call_rcu_tasks_rude() invoked.
[ 0.506693] Callback from call_rcu_tasks() invoked.
This commit therefore fixes this issue by applying a single-CPU
optimization to the RCU Tasks Rude grace-period process. The key point
here is that the purpose of this RCU flavor is to force a schedule on
each online CPU since some past event. But the rcu_tasks_rude_wait_gp()
function runs in the context of the RCU Tasks Rude's grace-period kthread,
so there must already have been a context switch on the current CPU since
the call to either synchronize_rcu_tasks_rude() or call_rcu_tasks_rude().
So if there is only a single CPU online, RCU Tasks Rude's grace-period
kthread does not need to anything at all.
It turns out that the rcu_tasks_rude_wait_gp() function's call to
schedule_on_each_cpu() causes problems during early boot. During that
time, there is only one online CPU, namely the boot CPU. Therefore,
applying this single-CPU optimization fixes early-boot instances of
this problem.
Link: https://lore.kernel.org/lkml/20220210184319.25009-1-treasure4paddy@gmail.com/T/
Suggested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Padmanabha Srinivasaiah <treasure4paddy@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 6a2d90ba02 upstream.
The current implementation of PTRACE_KILL is buggy and has been for
many years as it assumes it's target has stopped in ptrace_stop. At a
quick skim it looks like this assumption has existed since ptrace
support was added in linux v1.0.
While PTRACE_KILL has been deprecated we can not remove it as
a quick search with google code search reveals many existing
programs calling it.
When the ptracee is not stopped at ptrace_stop some fields would be
set that are ignored except in ptrace_stop. Making the userspace
visible behavior of PTRACE_KILL a noop in those case.
As the usual rules are not obeyed it is not clear what the
consequences are of calling PTRACE_KILL on a running process.
Presumably userspace does not do this as it achieves nothing.
Replace the implementation of PTRACE_KILL with a simple
send_sig_info(SIGKILL) followed by a return 0. This changes the
observable user space behavior only in that PTRACE_KILL on a process
not stopped in ptrace_stop will also kill it. As that has always
been the intent of the code this seems like a reasonable change.
Cc: stable@vger.kernel.org
Reported-by: Al Viro <viro@zeniv.linux.org.uk>
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lkml.kernel.org/r/20220505182645.497868-7-ebiederm@xmission.com
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 97e6d7dab1 upstream.
The commit being fixed was aiming to disallow users from incorrectly
obtaining writable pointer to memory that is only meant to be read. This
is enforced now using a MEM_RDONLY flag.
For instance, in case of global percpu variables, when the BTF type is
not struct (e.g. bpf_prog_active), the verifier marks register type as
PTR_TO_MEM | MEM_RDONLY from bpf_this_cpu_ptr or bpf_per_cpu_ptr
helpers. However, when passing such pointer to kfunc, global funcs, or
BPF helpers, in check_helper_mem_access, there is no expectation
MEM_RDONLY flag will be set, hence it is checked as pointer to writable
memory. Later, verifier sets up argument type of global func as
PTR_TO_MEM | PTR_MAYBE_NULL, so user can use a global func to get around
the limitations imposed by this flag.
This check will also cover global non-percpu variables that may be
introduced in kernel BTF in future.
Also, we update the log message for PTR_TO_BUF case to be similar to
PTR_TO_MEM case, so that the reason for error is clear to user.
Fixes: 34d3a78c68 ("bpf: Make per_cpu_ptr return rdonly PTR_TO_MEM.")
Reviewed-by: Hao Luo <haoluo@google.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220319080827.73251-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7b3552d3f9 upstream.
It is not permitted to write to PTR_TO_MAP_KEY, but the current code in
check_helper_mem_access would allow for it, reject this case as well, as
helpers taking ARG_PTR_TO_UNINIT_MEM also take PTR_TO_MAP_KEY.
Fixes: 69c087ba62 ("bpf: Add bpf_for_each_map_elem() helper")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220319080827.73251-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b45043192b upstream.
The 'n_buckets * (value_size + sizeof(struct stack_map_bucket))' part of the
allocated memory for 'smap' is never used after the memlock accounting was
removed, thus get rid of it.
[ Note, Daniel:
Commit b936ca643a ("bpf: rework memlock-based memory accounting for maps")
moved `cost += n_buckets * (value_size + sizeof(struct stack_map_bucket))`
up and therefore before the bpf_map_area_alloc() allocation, sigh. In a later
step commit c85d69135a ("bpf: move memory size checks to bpf_map_charge_init()"),
and the overflow checks of `cost >= U32_MAX - PAGE_SIZE` moved into
bpf_map_charge_init(). And then 370868107b ("bpf: Eliminate rlimit-based
memory accounting for stackmap maps") finally removed the bpf_map_charge_init().
Anyway, the original code did the allocation same way as /after/ this fix. ]
Fixes: b936ca643a ("bpf: rework memlock-based memory accounting for maps")
Signed-off-by: Yuntao Wang <ytcoode@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220407130423.798386-1-ytcoode@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a2aa95b71c upstream.
The cnt value in the 'cnt >= BPF_MAX_TRAMP_PROGS' check does not
include BPF_TRAMP_MODIFY_RETURN bpf programs, so the number of
the attached BPF_TRAMP_MODIFY_RETURN bpf programs in a trampoline
can exceed BPF_MAX_TRAMP_PROGS.
When this happens, the assignment '*progs++ = aux->prog' in
bpf_trampoline_get_progs() will cause progs array overflow as the
progs field in the bpf_tramp_progs struct can only hold at most
BPF_MAX_TRAMP_PROGS bpf programs.
Fixes: 88fd9e5352 ("bpf: Refactor trampoline update code")
Signed-off-by: Yuntao Wang <ytcoode@gmail.com>
Link: https://lore.kernel.org/r/20220430130803.210624-1-ytcoode@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1366992e16 upstream.
The addition of random_get_entropy_fallback() provides access to
whichever time source has the highest frequency, which is useful for
gathering entropy on platforms without available cycle counters. It's
not necessarily as good as being able to quickly access a cycle counter
that the CPU has, but it's still something, even when it falls back to
being jiffies-based.
In the event that a given arch does not define get_cycles(), falling
back to the get_cycles() default implementation that returns 0 is really
not the best we can do. Instead, at least calling
random_get_entropy_fallback() would be preferable, because that always
needs to return _something_, even falling back to jiffies eventually.
It's not as though random_get_entropy_fallback() is super high precision
or guaranteed to be entropic, but basically anything that's not zero all
the time is better than returning zero all the time.
Finally, since random_get_entropy_fallback() is used during extremely
early boot when randomizing freelists in mm_init(), it can be called
before timekeeping has been initialized. In that case there really is
nothing we can do; jiffies hasn't even started ticking yet. So just give
up and return 0.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3191dd5a11 upstream.
For the irq randomness fast pool, rather than having to use expensive
atomics, which were visibly the most expensive thing in the entire irq
handler, simply take care of the extreme edge case of resetting count to
zero in the cpuhp online handler, just after workqueues have been
reenabled. This simplifies the code a bit and lets us use vanilla
variables rather than atomics, and performance should be improved.
As well, very early on when the CPU comes up, while interrupts are still
disabled, we clear out the per-cpu crng and its batches, so that it
always starts with fresh randomness.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 703f7066f4 upstream.
Since commit
ee3e00e9e7 ("random: use registers from interrupted code for CPU's w/o a cycle counter")
the irq_flags argument is no longer used.
Remove unused irq_flags.
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dexuan Cui <decui@microsoft.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: linux-hyperv@vger.kernel.org
Cc: x86@kernel.org
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Wei Liu <wei.liu@kernel.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit eadb2f47a3 upstream.
KGDB and KDB allow read and write access to kernel memory, and thus
should be restricted during lockdown. An attacker with access to a
serial port (for example, via a hypervisor console, which some cloud
vendors provide over the network) could trigger the debugger so it is
important that the debugger respect the lockdown mode when/if it is
triggered.
Fix this by integrating lockdown into kdb's existing permissions
mechanism. Unfortunately kgdb does not have any permissions mechanism
(although it certainly could be added later) so, for now, kgdb is simply
and brutally disabled by immediately exiting the gdb stub without taking
any action.
For lockdowns established early in the boot (e.g. the normal case) then
this should be fine but on systems where kgdb has set breakpoints before
the lockdown is enacted than "bad things" will happen.
CVE: CVE-2022-21499
Co-developed-by: Stephen Brennan <stephen.s.brennan@oracle.com>
Signed-off-by: Stephen Brennan <stephen.s.brennan@oracle.com>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3ac6487e58 upstream.
Norbert reported that it's possible to race sys_perf_event_open() such
that the looser ends up in another context from the group leader,
triggering many WARNs.
The move_group case checks for races against itself, but the
!move_group case doesn't, seemingly relying on the previous
group_leader->ctx == ctx check. However, that check is racy due to not
holding any locks at that time.
Therefore, re-check the result after acquiring locks and bailing
if they no longer match.
Additionally, clarify the not_move_group case from the
move_group-vs-move_group race.
Fixes: f63a8daa58 ("perf: Fix event->ctx locking")
Reported-by: Norbert Slusarek <nslusarek@gmx.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2685027fca upstream.
There are 3 places where the cpu and node masks of the top cpuset can
be initialized in the order they are executed:
1) start_kernel -> cpuset_init()
2) start_kernel -> cgroup_init() -> cpuset_bind()
3) kernel_init_freeable() -> do_basic_setup() -> cpuset_init_smp()
The first cpuset_init() call just sets all the bits in the masks.
The second cpuset_bind() call sets cpus_allowed and mems_allowed to the
default v2 values. The third cpuset_init_smp() call sets them back to
v1 values.
For systems with cgroup v2 setup, cpuset_bind() is called once. As a
result, cpu and memory node hot add may fail to update the cpu and node
masks of the top cpuset to include the newly added cpu or node in a
cgroup v2 environment.
For systems with cgroup v1 setup, cpuset_bind() is called again by
rebind_subsystem() when the v1 cpuset filesystem is mounted as shown
in the dmesg log below with an instrumented kernel.
[ 2.609781] cpuset_bind() called - v2 = 1
[ 3.079473] cpuset_init_smp() called
[ 7.103710] cpuset_bind() called - v2 = 0
smp_init() is called after the first two init functions. So we don't
have a complete list of active cpus and memory nodes until later in
cpuset_init_smp() which is the right time to set up effective_cpus
and effective_mems.
To fix this cgroup v2 mask setup problem, the potentially incorrect
cpus_allowed & mems_allowed setting in cpuset_init_smp() are removed.
For cgroup v2 systems, the initial cpuset_bind() call will set the masks
correctly. For cgroup v1 systems, the second call to cpuset_bind()
will do the right setup.
cc: stable@vger.kernel.org
Signed-off-by: Waiman Long <longman@redhat.com>
Tested-by: Feng Tang <feng.tang@intel.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a554ba2888 upstream.
Time limit only makes sense when callbacks are serviced in softirq mode
because:
_ In case we need to get back to the scheduler,
cond_resched_tasks_rcu_qs() is called after each callback.
_ In case some other softirq vector needs the CPU, the call to
local_bh_enable() before cond_resched_tasks_rcu_qs() takes care about
them via a call to do_softirq().
Therefore, make sure the time limit only applies to softirq mode.
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Neeraj Upadhyay <neeraju@codeaurora.org>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
[UR: backport to 5.15-stable]
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3e61e95e2d upstream.
The callbacks processing time limit makes sure we are not exceeding a
given amount of time executing the queue.
However its "continue" clause bypasses the cond_resched() call on
rcuc and NOCB kthreads, delaying it until we reach the limit, which can
be very long...
Make sure the scheduler has a higher priority than the time limit.
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Neeraj Upadhyay <neeraju@codeaurora.org>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
[UR: backport to 5.15-stable + commit update]
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8707898e22 upstream.
A kernel hang can be observed when running setserial in a loop on a kernel
with force threaded interrupts. The sequence of events is:
setserial
open("/dev/ttyXXX")
request_irq()
do_stuff()
-> serial interrupt
-> wake(irq_thread)
desc->threads_active++;
close()
free_irq()
kthread_stop(irq_thread)
synchronize_irq() <- hangs because desc->threads_active != 0
The thread is created in request_irq() and woken up, but does not get on a
CPU to reach the actual thread function, which would handle the pending
wake-up. kthread_stop() sets the should stop condition which makes the
thread immediately exit, which in turn leaves the stale threads_active
count around.
This problem was introduced with commit 519cc8652b, which addressed a
interrupt sharing issue in the PCIe code.
Before that commit free_irq() invoked synchronize_irq(), which waits for
the hard interrupt handler and also for associated threads to complete.
To address the PCIe issue synchronize_irq() was replaced with
__synchronize_hardirq(), which only waits for the hard interrupt handler to
complete, but not for threaded handlers.
This was done under the assumption, that the interrupt thread already
reached the thread function and waits for a wake-up, which is guaranteed to
be handled before acting on the stop condition. The problematic case, that
the thread would not reach the thread function, was obviously overlooked.
Make sure that the interrupt thread is really started and reaches
thread_fn() before returning from __setup_irq().
This utilizes the existing wait queue in the interrupt descriptor. The
wait queue is unused for non-shared interrupts. For shared interrupts the
usage might cause a spurious wake-up of a waiter in synchronize_irq() or the
completion of a threaded handler might cause a spurious wake-up of the
waiter for the ready flag. Both are harmless and have no functional impact.
[ tglx: Amended changelog ]
Fixes: 519cc8652b ("genirq: Synchronize only with single thread on free_irq()")
Signed-off-by: Thomas Pfaff <tpfaff@pcs.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/552fe7b4-9224-b183-bb87-a8f36d335690@pcs.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 45ce4b4f90 upstream
When commit e6ac2450d6 ("bpf: Support bpf program calling kernel function") added
kfunc support, it defined reg2btf_ids as a cheap way to translate the verifier
reg type to the appropriate btf_vmlinux BTF ID, however
commit c25b2ae136 ("bpf: Replace PTR_TO_XXX_OR_NULL with PTR_TO_XXX | PTR_MAYBE_NULL")
moved the __BPF_REG_TYPE_MAX from the last member of bpf_reg_type enum to after
the base register types, and defined other variants using type flag
composition. However, now, the direct usage of reg->type to index into
reg2btf_ids may no longer fall into __BPF_REG_TYPE_MAX range, and hence lead to
out of bounds access and kernel crash on dereference of bad pointer.
[backport note: commit 3363bd0cfb ("bpf: Extend kfunc with PTR_TO_CTX, PTR_TO_MEM
argument support") was introduced after 5.15 and contains an out of bound
reg2btf_ids access. Since that commit hasn't been backported, this patch
doesn't include fix to that access. If we backport that commit in future,
we need to fix its faulting access as well.]
Fixes: c25b2ae136 ("bpf: Replace PTR_TO_XXX_OR_NULL with PTR_TO_XXX | PTR_MAYBE_NULL")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220216201943.624869-1-memxor@gmail.com
Cc: stable@vger.kernel.org # v5.15+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 216e3cd2f2 upstream.
Some helper functions may modify its arguments, for example,
bpf_d_path, bpf_get_stack etc. Previously, their argument types
were marked as ARG_PTR_TO_MEM, which is compatible with read-only
mem types, such as PTR_TO_RDONLY_BUF. Therefore it's legitimate,
but technically incorrect, to modify a read-only memory by passing
it into one of such helper functions.
This patch tags the bpf_args compatible with immutable memory with
MEM_RDONLY flag. The arguments that don't have this flag will be
only compatible with mutable memory types, preventing the helper
from modifying a read-only memory. The bpf_args that have
MEM_RDONLY are compatible with both mutable memory and immutable
memory.
Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211217003152.48334-9-haoluo@google.com
Cc: stable@vger.kernel.org # 5.15.x
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 34d3a78c68 upstream.
Tag the return type of {per, this}_cpu_ptr with RDONLY_MEM. The
returned value of this pair of helpers is kernel object, which
can not be updated by bpf programs. Previously these two helpers
return PTR_OT_MEM for kernel objects of scalar type, which allows
one to directly modify the memory. Now with RDONLY_MEM tagging,
the verifier will reject programs that write into RDONLY_MEM.
Fixes: 63d9b80dcf ("bpf: Introducte bpf_this_cpu_ptr()")
Fixes: eaa6bcb71e ("bpf: Introduce bpf_per_cpu_ptr()")
Fixes: 4976b718c3 ("bpf: Introduce pseudo_btf_id")
Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211217003152.48334-8-haoluo@google.com
Cc: stable@vger.kernel.org # 5.15.x
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 20b2aff4bc upstream.
This patch introduce a flag MEM_RDONLY to tag a reg value
pointing to read-only memory. It makes the following changes:
1. PTR_TO_RDWR_BUF -> PTR_TO_BUF
2. PTR_TO_RDONLY_BUF -> PTR_TO_BUF | MEM_RDONLY
Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211217003152.48334-6-haoluo@google.com
Cc: stable@vger.kernel.org # 5.15.x
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c25b2ae136 upstream.
We have introduced a new type to make bpf_reg composable, by
allocating bits in the type to represent flags.
One of the flags is PTR_MAYBE_NULL which indicates a pointer
may be NULL. This patch switches the qualified reg_types to
use this flag. The reg_types changed in this patch include:
1. PTR_TO_MAP_VALUE_OR_NULL
2. PTR_TO_SOCKET_OR_NULL
3. PTR_TO_SOCK_COMMON_OR_NULL
4. PTR_TO_TCP_SOCK_OR_NULL
5. PTR_TO_BTF_ID_OR_NULL
6. PTR_TO_MEM_OR_NULL
7. PTR_TO_RDONLY_BUF_OR_NULL
8. PTR_TO_RDWR_BUF_OR_NULL
[haoluo: backport notes
There was a reg_type_may_be_null() in adjust_ptr_min_max_vals() in
5.15.x, but didn't exist in the upstream commit. This backport
converted that reg_type_may_be_null() to type_may_be_null() as well.]
Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20211217003152.48334-5-haoluo@google.com
Cc: stable@vger.kernel.org # 5.15.x
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3c48073226 upstream.
We have introduced a new type to make bpf_ret composable, by
reserving high bits to represent flags.
One of the flag is PTR_MAYBE_NULL, which indicates a pointer
may be NULL. When applying this flag to ret_types, it means
the returned value could be a NULL pointer. This patch
switches the qualified arg_types to use this flag.
The ret_types changed in this patch include:
1. RET_PTR_TO_MAP_VALUE_OR_NULL
2. RET_PTR_TO_SOCKET_OR_NULL
3. RET_PTR_TO_TCP_SOCK_OR_NULL
4. RET_PTR_TO_SOCK_COMMON_OR_NULL
5. RET_PTR_TO_ALLOC_MEM_OR_NULL
6. RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL
7. RET_PTR_TO_BTF_ID_OR_NULL
This patch doesn't eliminate the use of these names, instead
it makes them aliases to 'RET_PTR_TO_XXX | PTR_MAYBE_NULL'.
Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211217003152.48334-4-haoluo@google.com
Cc: stable@vger.kernel.org # 5.15.x
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 48946bd6a5 upstream.
We have introduced a new type to make bpf_arg composable, by
reserving high bits of bpf_arg to represent flags of a type.
One of the flags is PTR_MAYBE_NULL which indicates a pointer
may be NULL. When applying this flag to an arg_type, it means
the arg can take NULL pointer. This patch switches the
qualified arg_types to use this flag. The arg_types changed
in this patch include:
1. ARG_PTR_TO_MAP_VALUE_OR_NULL
2. ARG_PTR_TO_MEM_OR_NULL
3. ARG_PTR_TO_CTX_OR_NULL
4. ARG_PTR_TO_SOCKET_OR_NULL
5. ARG_PTR_TO_ALLOC_MEM_OR_NULL
6. ARG_PTR_TO_STACK_OR_NULL
This patch does not eliminate the use of these arg_types, instead
it makes them an alias to the 'ARG_XXX | PTR_MAYBE_NULL'.
Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211217003152.48334-3-haoluo@google.com
Cc: stable@vger.kernel.org # 5.15.x
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 60490e7966 ]
This problem can be reproduced with CONFIG_PERF_USE_VMALLOC enabled on
both x86_64 and aarch64 arch when using sysdig -B(using ebpf)[1].
sysdig -B works fine after rebuilding the kernel with
CONFIG_PERF_USE_VMALLOC disabled.
I tracked it down to the if condition event->rb->nr_pages != nr_pages
in perf_mmap is true when CONFIG_PERF_USE_VMALLOC is enabled where
event->rb->nr_pages = 1 and nr_pages = 2048 resulting perf_mmap to
return -EINVAL. This is because when CONFIG_PERF_USE_VMALLOC is
enabled, rb->nr_pages is always equal to 1.
Arch with CONFIG_PERF_USE_VMALLOC enabled by default:
arc/arm/csky/mips/sh/sparc/xtensa
Arch with CONFIG_PERF_USE_VMALLOC disabled by default:
x86_64/aarch64/...
Fix this problem by using data_page_nr()
[1] https://github.com/draios/sysdig
Fixes: 906010b213 ("perf_event: Provide vmalloc() based mmap() backing")
Signed-off-by: Zhipeng Xie <xiezhipeng1@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220209145417.6495-1-xiezhipeng1@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 40f5aa4c5e ]
The warning in cfs_rq_is_decayed() triggered:
SCHED_WARN_ON(cfs_rq->avg.load_avg ||
cfs_rq->avg.util_avg ||
cfs_rq->avg.runnable_avg)
There exists a corner case in attach_entity_load_avg() which will
cause load_sum to be zero while load_avg will not be.
Consider se_weight is 88761 as per the sched_prio_to_weight[] table.
Further assume the get_pelt_divider() is 47742, this gives:
se->avg.load_avg is 1.
However, calculating load_sum:
se->avg.load_sum = div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
se->avg.load_sum = 1*47742/88761 = 0.
Then enqueue_load_avg() adds this to the cfs_rq totals:
cfs_rq->avg.load_avg += se->avg.load_avg;
cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
Resulting in load_avg being 1 with load_sum is 0, which will trigger
the WARN.
Fixes: f207934fb7 ("sched/fair: Align PELT windows between cfs_rq and its se")
Signed-off-by: kuyo chang <kuyo.chang@mediatek.com>
[peterz: massage changelog]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lkml.kernel.org/r/20220414090229.342-1-kuyo.chang@mediatek.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit a9c38c5d26 upstream.
dma_map_resource() uses pfn_valid() to ensure the range is not RAM.
However, pfn_valid() only checks for availability of the memory map for a
PFN but it does not ensure that the PFN is actually backed by RAM.
As dma_map_resource() is the only method in DMA mapping APIs that has this
check, simply drop the pfn_valid() test from dma_map_resource().
Link: https://lore.kernel.org/all/20210824173741.GC623@arm.com/
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20210930013039.11260-2-rppt@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Fixes: 859a85ddf9 ("mm: remove pfn_valid_within() and CONFIG_HOLES_IN_ZONE")
Link: https://lore.kernel.org/r/Yl0IZWT2nsiYtqBT@linux.ibm.com
Signed-off-by: Georgi Djakov <quic_c_gdjako@quicinc.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b7ba6d8dc3 upstream.
Currently the setting of the 'cpu' member of struct cpuhp_cpu_state in
cpuhp_create() is too late as it is used earlier in _cpu_up().
If kzalloc_node() in __smpboot_create_thread() fails then the rollback will
be done with st->cpu==0 causing CPU0 to be erroneously set to be dying,
causing the scheduler to get mightily confused and throw its toys out of
the pram.
However the cpu number is actually available directly, so simply remove
the 'cpu' member and avoid the problem in the first place.
Fixes: 2ea46c6fc9 ("cpumask/hotplug: Fix cpu_dying() state tracking")
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220411152233.474129-2-steven.price@arm.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9e02977bfa upstream.
When we looked into FIO performance with swiotlb enabled in VM, we found
swiotlb_bounce() is always called one more time than expected for each DMA
read request.
It turns out that the bounce buffer is copied to original DMA buffer twice
after the completion of a DMA request (one is done by in
dma_direct_sync_single_for_cpu(), the other by swiotlb_tbl_unmap_single()).
But the content in bounce buffer actually doesn't change between the two
rounds of copy. So, one round of copy is redundant.
Pass DMA_ATTR_SKIP_CPU_SYNC flag to swiotlb_tbl_unmap_single() to
skip the memory copy in it.
This fix increases FIO 64KB sequential read throughput in a guest with
swiotlb=force by 5.6%.
Fixes: 55897af630 ("dma-direct: merge swiotlb_dma_ops into the dma_direct code")
Reported-by: Wang Zhaoyang1 <zhaoyang1.wang@intel.com>
Reported-by: Gao Liang <liang.gao@intel.com>
Signed-off-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c54bc0fc84 upstream.
When the timer base is empty, base::next_expiry is set to base::clk +
NEXT_TIMER_MAX_DELTA and base::next_expiry_recalc is false. When no timer
is queued until jiffies reaches base::next_expiry value, the warning for
not finding any expired timer and base::next_expiry_recalc is false in
__run_timers() triggers.
To prevent triggering the warning in this valid scenario
base::timers_pending needs to be added to the warning condition.
Fixes: 31cd0e119d ("timers: Recalculate next timer interrupt only when necessary")
Reported-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20220405191732.7438-3-anna-maria@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9e949a3886 upstream.
The check in flush_smp_call_function_queue() for callbacks that are sent
to offline CPUs currently checks whether the queue is empty.
However, flush_smp_call_function_queue() has just deleted all the
callbacks from the queue and moved all the entries into a local list.
This checks would only be positive if some callbacks were added in the
short time after llist_del_all() was called. This does not seem to be
the intention of this check.
Change the check to look at the local list to which the entries were
moved instead of the queue from which all the callbacks were just
removed.
Fixes: 8d056c48e4 ("CPU hotplug, smp: flush any pending IPI callbacks before CPU offline")
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220319072015.1495036-1-namit@vmware.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 40e97e4296 upstream.
While running some testing on code that happened to allow the variable
tick_nohz_full_running to get set but with no "possible" NOHZ cores to
back up that setting, this warning triggered:
if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
WARN_ON(tick_nohz_full_running);
The console was overwhemled with an endless stream of one WARN per tick
per core and there was no way to even see what was going on w/o using a
serial console to capture it and then trace it back to this.
Change it to WARN_ON_ONCE().
Fixes: 08ae95f4fd ("nohz_full: Allow the boot CPU to be nohz_full")
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20211206145950.10927-3-paul.gortmaker@windriver.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 08d835dff9 upstream.
If CPUs on a node are offline at boot time, the number of nodes is
different when building affinity masks for present cpus and when building
affinity masks for possible cpus. This causes the following problem:
In the case that the number of vectors is less than the number of nodes
there are cases where bits of masks for present cpus are overwritten when
building masks for possible cpus.
Fix this by excluding CPUs, which are not part of the current build mask
(present/possible).
[ tglx: Massaged changelog and added comment ]
Fixes: b825921990 ("genirq/affinity: Spread IRQs to all available NUMA nodes")
Signed-off-by: Rei Yamamoto <yamamoto.rei@jp.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20220331003309.10891-1-yamamoto.rei@jp.fujitsu.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f39f21b3dd upstream.
filter_irq_stacks() has little to do with the stackdepot implementation,
except that it is usually used by users (such as KASAN) of stackdepot to
reduce the stack trace.
However, filter_irq_stacks() itself is not useful without a stack trace
as obtained by stack_trace_save() and friends.
Therefore, move filter_irq_stacks() to kernel/stacktrace.c, so that new
users of filter_irq_stacks() do not have to start depending on
STACKDEPOT only for filter_irq_stacks().
Link: https://lkml.kernel.org/r/20210923104803.2620285-1-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Aleksandr Nogikh <nogikh@google.com>
Cc: Taras Madan <tarasmadan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8fd4ddda2f upstream.
System.map shows that vmlinux contains several instances of
__static_call_return0():
c0004fc0 t __static_call_return0
c0011518 t __static_call_return0
c00d8160 t __static_call_return0
arch_static_call_transform() uses the middle one to check whether we are
setting a call to __static_call_return0 or not:
c0011520 <arch_static_call_transform>:
c0011520: 3d 20 c0 01 lis r9,-16383 <== r9 = 0xc001 << 16
c0011524: 39 29 15 18 addi r9,r9,5400 <== r9 += 0x1518
c0011528: 7c 05 48 00 cmpw r5,r9 <== r9 has value 0xc0011518 here
So if static_call_update() is called with one of the other instances of
__static_call_return0(), arch_static_call_transform() won't recognise it.
In order to work properly, global single instance of __static_call_return0() is required.
Fixes: 3f2a8fc4b1 ("static_call/x86: Add __static_call_return0()")
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/30821468a0e7d28251954b578e5051dc09300d04.1647258493.git.christophe.leroy@csgroup.eu
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 386ef214c3 upstream.
try_steal_cookie() looks at task_struct::cpus_mask to decide if the
task could be moved to `this' CPU. It ignores that the task might be in
a migration disabled section while not on the CPU. In this case the task
must not be moved otherwise per-CPU assumption are broken.
Use is_cpu_allowed(), as suggested by Peter Zijlstra, to decide if the a
task can be moved.
Fixes: d2dfa17bc7 ("sched: Trivial forced-newidle balancer")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/YjNK9El+3fzGmswf@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e3265a4386 upstream.
It was reported that some perf event setup can make fork failed on
ARM64. It was the case of a group of mixed hw and sw events and it
failed in perf_event_init_task() due to armpmu_event_init().
The ARM PMU code checks if all the events in a group belong to the
same PMU except for software events. But it didn't set the event_caps
of inherited events and no longer identify them as software events.
Therefore the test failed in a child process.
A simple reproducer is:
$ perf stat -e '{cycles,cs,instructions}' perf bench sched messaging
# Running 'sched/messaging' benchmark:
perf: fork(): Invalid argument
The perf stat was fine but the perf bench failed in fork(). Let's
inherit the event caps from the parent.
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20220328200112.457740-1-namhyung@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e81e99bacc upstream.
Add an argument to swiotlb_tbl_map_single that specifies the desired
alignment of the allocated buffer. This is used by dma-iommu to ensure
the buffer is aligned to the iova granule size when using swiotlb with
untrusted sub-granule mappings. This addresses an issue where adjacent
slots could be exposed to the untrusted device if IO_TLB_SIZE < iova
granule < PAGE_SIZE.
Signed-off-by: David Stevens <stevensd@chromium.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20210929023300.335969-7-stevensd@google.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Cc: Mario Limonciello <Mario.Limonciello@amd.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ee2a098851 upstream.
Let's say that the caller has storage for num_elem stack frames. Then,
the BPF stack helper functions walk the stack for only num_elem frames.
This means that if skip > 0, one keeps only 'num_elem - skip' frames.
This is because it sets init_nr in the perf_callchain_entry to the end
of the buffer to save num_elem entries only. I believe it was because
the perf callchain code unwound the stack frames until it reached the
global max size (sysctl_perf_event_max_stack).
However it now has perf_callchain_entry_ctx.max_stack to limit the
iteration locally. This simplifies the code to handle init_nr in the
BPF callstack entries and removes the confusion with the perf_event's
__PERF_SAMPLE_CALLCHAIN_EARLY which sets init_nr to 0.
Also change the comment on bpf_get_stack() in the header file to be
more explicit what the return value means.
Fixes: c195651e56 ("bpf: add bpf_get_stack helper")
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/30a7b5d5-6726-1cc2-eaee-8da2828a9a9c@oracle.com
Link: https://lore.kernel.org/bpf/20220314182042.71025-1-namhyung@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Based-on-patch-by: Eugene Loh <eugene.loh@oracle.com>
commit 795301d3c2 upstream.
When an enum is used in the visible parts of a trace event that is
exported to user space, the user space applications like perf and
trace-cmd do not have a way to know what the value of the enum is. To
solve this, at boot up (or module load) the printk formats are modified to
replace the enum with their numeric value in the string output.
Array fields of the event are defined by [<nr-elements>] in the type
portion of the format file so that the user space parsers can correctly
parse the array into the appropriate size chunks. But in some trace
events, an enum is used in defining the size of the array, which once
again breaks the parsing of user space tooling.
This was solved the same way as the print formats were, but it modified
the type strings of the trace event. This caused crashes in some
architectures because, as supposed to the print string, is a const string
value. This was not detected on x86, as it appears that const strings are
still writable (at least in boot up), but other architectures this is not
the case, and writing to a const string will cause a kernel fault.
To fix this, use kstrdup() to copy the type before modifying it. If the
trace event is for the core kernel there's no need to free it because the
string will be in use for the life of the machine being on line. For
modules, create a link list to store all the strings being allocated for
modules and when the module is removed, free them.
Link: https://lore.kernel.org/all/yt9dr1706b4i.fsf@linux.ibm.com/
Link: https://lkml.kernel.org/r/20220318153432.3984b871@gandalf.local.home
Tested-by: Marc Zyngier <maz@kernel.org>
Tested-by: Sven Schnelle <svens@linux.ibm.com>
Reported-by: Sven Schnelle <svens@linux.ibm.com>
Fixes: b3bc8547d3 ("tracing: Have TRACE_DEFINE_ENUM affect trace event types as well")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 901c7280ca upstream.
Halil Pasic points out [1] that the full revert of that commit (revert
in bddac7c1e0), and that a partial revert that only reverts the
problematic case, but still keeps some of the cleanups is probably
better. 
And that partial revert [2] had already been verified by Oleksandr
Natalenko to also fix the issue, I had just missed that in the long
discussion.
So let's reinstate the cleanups from commit aa6f8dcbab ("swiotlb:
rework "fix info leak with DMA_FROM_DEVICE""), and effectively only
revert the part that caused problems.
Link: https://lore.kernel.org/all/20220328013731.017ae3e3.pasic@linux.ibm.com/ [1]
Link: https://lore.kernel.org/all/20220324055732.GB12078@lst.de/ [2]
Link: https://lore.kernel.org/all/4386660.LvFx2qVVIh@natalenko.name/ [3]
Suggested-by: Halil Pasic <pasic@linux.ibm.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit b3bc8547d3 ]
The macro TRACE_DEFINE_ENUM is used to convert enums in the kernel to
their actual value when they are exported to user space via the trace
event format file.
Currently only the enums in the "print fmt" (TP_printk in the TRACE_EVENT
macro) have the enums converted. But the enums can be used to denote array
size:
field:unsigned int fc_ineligible_rc[EXT4_FC_REASON_MAX]; offset:12; size:36; signed:0;
The EXT4_FC_REASON_MAX has no meaning to userspace but it needs to know
that information to know how to parse the array.
Have the array indexes also be parsed as well.
Link: https://lore.kernel.org/all/cover.1646922487.git.riteshh@linux.ibm.com/
Reported-by: Ritesh Harjani <riteshh@linux.ibm.com>
Tested-by: Ritesh Harjani <riteshh@linux.ibm.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit fb7275acd6 ]
When dumping lock_classes information via /proc/lockdep, we can't take
the lockdep lock as the lock hold time is indeterminate. Iterating
over all_lock_classes without holding lock can be dangerous as there
is a slight chance that it may branch off to other lists leading to
infinite loop or even access invalid memory if changes are made to
all_lock_classes list in parallel.
To avoid this problem, iteration of lock classes is now done directly
on the lock_classes array itself. The lock_classes_in_use bitmap is
checked to see if the lock class is being used. To avoid iterating
the full array all the times, a new max_lock_class_idx value is added
to track the maximum lock_class index that is currently being used.
We can theoretically take the lockdep lock for iterating all_lock_classes
when other lockdep files (lockdep_stats and lock_stat) are accessed as
the lock hold time will be shorter for them. For consistency, they are
also modified to iterate the lock_classes array directly.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220211035526.1329503-2-longman@redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c099290310 ]
KCSAN reports data races between the rcu_segcblist_clear_flags() and
rcu_segcblist_set_flags() functions, though misreporting the latter
as a call to rcu_segcblist_is_enabled() from call_rcu(). This commit
converts the updates of this field to WRITE_ONCE(), relying on the
resulting unmarked reads to continue to detect buggy concurrent writes
to this field.
Reported-by: Zhouyi Zhou <zhouzhouyi@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c1cb81429d ]
Currently kdb_putarea_size() uses copy_from_kernel_nofault() to write *to*
arbitrary kernel memory. This is obviously wrong and means the memory
modify ('mm') command is a serious risk to debugger stability: if we poke
to a bad address we'll double-fault and lose our debug session.
Fix this the (very) obvious way.
Note that there are two Fixes: tags because the API was renamed and this
patch will only trivially backport as far as the rename (and this is
probably enough). Nevertheless Christoph's rename did not introduce this
problem so I wanted to record that!
Fixes: fe557319aa ("maccess: rename probe_kernel_{read,write} to copy_{from,to}_kernel_nofault")
Fixes: 5d5314d679 ("kdb: core for kgdb back end (1 of 2)")
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Link: https://lore.kernel.org/r/20220128144055.207267-1-daniel.thompson@linaro.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 80e4390981 ]
When valid kernel command line parameters
dma_debug=off dma_debug_entries=100
are used, they are reported as Unknown parameters and added to init's
environment strings, polluting it.
Unknown kernel command line parameters "BOOT_IMAGE=/boot/bzImage-517rc5
dma_debug=off dma_debug_entries=100", will be passed to user space.
and
Run /sbin/init as init process
with arguments:
/sbin/init
with environment:
HOME=/
TERM=linux
BOOT_IMAGE=/boot/bzImage-517rc5
dma_debug=off
dma_debug_entries=100
Return 1 from these __setup handlers to indicate that the command line
option has been handled.
Fixes: 59d3daafa1 ("dma-debug: add kernel command line parameters")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru>
Link: lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: iommu@lists.linux-foundation.org
Cc: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0cbcc92917 ]
Since commit ebff7d8f27 ("mem hotunplug: fix kfree() of bootmem
memory"), we could get a resource allocated during boot via
alloc_resource(). And it's required to release the resource using
free_resource(). Howerver, many people use kfree directly which will
result in kernel BUG. In order to fix this without fixing every call
site, just leak a couple of bytes in such corner case.
Link: https://lkml.kernel.org/r/20220217083619.19305-1-linmiaohe@huawei.com
Fixes: ebff7d8f27 ("mem hotunplug: fix kfree() of bootmem memory")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Alistair Popple <apopple@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 18688de203 ]
While working on code to populate kfunc BTF ID sets for module BTF from
its initcall, I noticed that by the time the initcall is invoked, the
module BTF can already be seen by userspace (and the BPF verifier). The
existing btf_try_get_module calls try_module_get which only fails if
mod->state == MODULE_STATE_GOING, i.e. it can increment module reference
when module initcall is happening in parallel.
Currently, BTF parsing happens from MODULE_STATE_COMING notifier
callback. At this point, the module initcalls have not been invoked.
The notifier callback parses and prepares the module BTF, allocates an
ID, which publishes it to userspace, and then adds it to the btf_modules
list allowing the kernel to invoke btf_try_get_module for the BTF.
However, at this point, the module has not been fully initialized (i.e.
its initcalls have not finished). The code in module.c can still fail
and free the module, without caring for other users. However, nothing
stops btf_try_get_module from succeeding between the state transition
from MODULE_STATE_COMING to MODULE_STATE_LIVE.
This leads to a use-after-free issue when BPF program loads
successfully in the state transition, load_module's do_init_module call
fails and frees the module, and BPF program fd on close calls module_put
for the freed module. Future patch has test case to verify we don't
regress in this area in future.
There are multiple points after prepare_coming_module (in load_module)
where failure can occur and module loading can return error. We
illustrate and test for the race using the last point where it can
practically occur (in module __init function).
An illustration of the race:
CPU 0 CPU 1
load_module
notifier_call(MODULE_STATE_COMING)
btf_parse_module
btf_alloc_id // Published to userspace
list_add(&btf_mod->list, btf_modules)
mod->init(...)
... ^
bpf_check |
check_pseudo_btf_id |
btf_try_get_module |
returns true | ...
... | module __init in progress
return prog_fd | ...
... V
if (ret < 0)
free_module(mod)
...
close(prog_fd)
...
bpf_prog_free_deferred
module_put(used_btf.mod) // use-after-free
We fix this issue by setting a flag BTF_MODULE_F_LIVE, from the notifier
callback when MODULE_STATE_LIVE state is reached for the module, so that
we return NULL from btf_try_get_module for modules that are not fully
formed. Since try_module_get already checks that module is not in
MODULE_STATE_GOING state, and that is the only transition a live module
can make before being removed from btf_modules list, this is enough to
close the race and prevent the bug.
A later selftest patch crafts the race condition artifically to verify
that it has been fixed, and that verifier fails to load program (with
ENXIO).
Lastly, a couple of comments:
1. Even if this race didn't exist, it seems more appropriate to only
access resources (ksyms and kfuncs) of a fully formed module which
has been initialized completely.
2. This patch was born out of need for synchronization against module
initcall for the next patch, so it is needed for correctness even
without the aforementioned race condition. The BTF resources
initialized by module initcall are set up once and then only looked
up, so just waiting until the initcall has finished ensures correct
behavior.
Fixes: 541c3bad8d ("bpf: Support BPF ksym variables in kernel modules")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220114163953.1455836-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b665eae7a7 ]
If an invalid option value is used with "printk.devkmsg=<value>",
it is silently ignored.
If a valid option value is used, it is honored but the wrong return
value (0) is used, indicating that the command line option had an
error and was not handled. This string is not added to init's
environment strings due to init/main.c::unknown_bootoption()
checking for a '.' in the boot option string and then considering
that string to be an "Unused module parameter".
Print a warning message if a bad option string is used.
Always return 1 from the __setup handler to indicate that the command
line option has been handled.
Fixes: 750afe7bab ("printk: add kernel parameter to control writes to /dev/kmsg")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru>
Link: lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru
Cc: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: John Ogness <john.ogness@linutronix.de>
Reviewed-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20220228220556.23484-1-rdunlap@infradead.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 49bef33e4b ]
John reported that push_rt_task() can end up invoking
find_lowest_rq(rq->curr) when curr is not an RT task (in this case a CFS
one), which causes mayhem down convert_prio().
This can happen when current gets demoted to e.g. CFS when releasing an
rt_mutex, and the local CPU gets hit with an rto_push_work irqwork before
getting the chance to reschedule. Exactly who triggers this work isn't
entirely clear to me - switched_from_rt() only invokes rt_queue_pull_task()
if there are no RT tasks on the local RQ, which means the local CPU can't
be in the rto_mask.
My current suspected sequence is something along the lines of the below,
with the demoted task being current.
mark_wakeup_next_waiter()
rt_mutex_adjust_prio()
rt_mutex_setprio() // deboost originally-CFS task
check_class_changed()
switched_from_rt() // Only rt_queue_pull_task() if !rq->rt.rt_nr_running
switched_to_fair() // Sets need_resched
__balance_callbacks() // if pull_rt_task(), tell_cpu_to_push() can't select local CPU per the above
raw_spin_rq_unlock(rq)
// need_resched is set, so task_woken_rt() can't
// invoke push_rt_tasks(). Best I can come up with is
// local CPU has rt_nr_migratory >= 2 after the demotion, so stays
// in the rto_mask, and then:
<some other CPU running rto_push_irq_work_func() queues rto_push_work on this CPU>
push_rt_task()
// breakage follows here as rq->curr is CFS
Move an existing check to check rq->curr vs the next pushable task's
priority before getting anywhere near find_lowest_rq(). While at it, add an
explicit sched_class of rq->curr check prior to invoking
find_lowest_rq(rq->curr). Align the DL logic to also reschedule regardless
of next_task's migratability.
Fixes: a7c81556ec ("sched: Fix migrate_disable() vs rt/dl balancing")
Reported-by: John Keeping <john@metanate.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: John Keeping <john@metanate.com>
Link: https://lore.kernel.org/r/20220127154059.974729-1-valentin.schneider@arm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 248cc9993d ]
The cpuacct_account_field() is always called by the current task
itself, so it's ok to use __this_cpu_add() to charge the tick time.
But cpuacct_charge() maybe called by update_curr() in load_balance()
on a random CPU, different from the CPU on which the task is running.
So __this_cpu_add() will charge that cputime to a random incorrect CPU.
Fixes: 73e6aafd9e ("sched/cpuacct: Simplify the cpuacct code")
Reported-by: Minye Zhu <zhuminye@bytedance.com>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20220220051426.5274-1-zhouchengming@bytedance.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2cfb7a1b03 ]
There are inconsistencies when determining if a NUMA imbalance is allowed
that should be corrected.
o allow_numa_imbalance changes types and is not always examining
the destination group so both the type should be corrected as
well as the naming.
o find_idlest_group uses the sched_domain's weight instead of the
group weight which is different to find_busiest_group
o find_busiest_group uses the source group instead of the destination
which is different to task_numa_find_cpu
o Both find_idlest_group and find_busiest_group should account
for the number of running tasks if a move was allowed to be
consistent with task_numa_find_cpu
Fixes: 7d2b5dd0bc ("sched/numa: Allow a floating imbalance between NUMA nodes")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Gautham R. Shenoy <gautham.shenoy@amd.com>
Link: https://lore.kernel.org/r/20220208094334.16379-2-mgorman@techsingularity.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d680ff24e9 ]
Reset appropriate variables in the parser loop between parsing separate
filters, so that they do not interfere with parsing the next filter.
Fixes: 375637bc52 ("perf/core: Introduce address range filtering")
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220131072453.2839535-4-adrian.hunter@intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit bfdf4e6208 ]
The rseq rseq_cs.ptr.{ptr32,padding} uapi endianness handling is
entirely wrong on 32-bit little endian: a preprocessor logic mistake
wrongly uses the big endian field layout on 32-bit little endian
architectures.
Fortunately, those ptr32 accessors were never used within the kernel,
and only meant as a convenience for user-space.
Remove those and replace the whole rseq_cs union by a __u64 type, as
this is the only thing really needed to express the ABI. Document how
32-bit architectures are meant to interact with this field.
Fixes: ec9c82e03a ("rseq: uapi: Declare rseq_cs field as union, update includes")
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220127152720.25898-1-mathieu.desnoyers@efficios.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d37aee9018 ]
iowait_boost signal is applied independently of util and doesn't take
into account uclamp settings of the rq. An io heavy task that is capped
by uclamp_max could still request higher frequency because
sugov_iowait_apply() doesn't clamp the boost via uclamp_rq_util_with()
like effective_cpu_util() does.
Make sure that iowait_boost honours uclamp requests by calling
uclamp_rq_util_with() when applying the boost.
Fixes: 982d9cdc22 ("sched/cpufreq, sched/uclamp: Add clamps for FAIR and RT tasks")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lore.kernel.org/r/20211216225320.2957053-3-qais.yousef@arm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 77cf151b7b ]
We can't use this tracepoint in modules without having the symbol
exported first, fix that.
Fixes: 765047932f ("sched/pelt: Add support to track thermal pressure")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20211028115005.873539-1-qais.yousef@arm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 28c988c3ec ]
The older format of /proc/pid/sched printed home node info which
required the mempolicy and task lock around mpol_get(). However
the format has changed since then and there is no need for
sched_show_numa() any more to have mempolicy argument,
asssociated mpol_get/put and task_lock/unlock. Remove them.
Fixes: 397f2378f1 ("sched/numa: Fix numa balancing stats in /proc/pid/sched")
Signed-off-by: Bharata B Rao <bharata@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20220118050515.2973-1-bharata@amd.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a635415a06 ]
In watch_queue_set_size(), the error cleanup code doesn't take account of
the fact that __free_page() can't handle a NULL pointer when trying to free
up buffer pages that did get allocated.
Fix this by only calling __free_page() on the pages actually allocated.
Without the fix, this can lead to something like the following:
BUG: KASAN: null-ptr-deref in __free_pages+0x1f/0x1b0 mm/page_alloc.c:5473
Read of size 4 at addr 0000000000000034 by task syz-executor168/3599
...
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
__kasan_report mm/kasan/report.c:446 [inline]
kasan_report.cold+0x66/0xdf mm/kasan/report.c:459
check_region_inline mm/kasan/generic.c:183 [inline]
kasan_check_range+0x13d/0x180 mm/kasan/generic.c:189
instrument_atomic_read include/linux/instrumented.h:71 [inline]
atomic_read include/linux/atomic/atomic-instrumented.h:27 [inline]
page_ref_count include/linux/page_ref.h:67 [inline]
put_page_testzero include/linux/mm.h:717 [inline]
__free_pages+0x1f/0x1b0 mm/page_alloc.c:5473
watch_queue_set_size+0x499/0x630 kernel/watch_queue.c:275
pipe_ioctl+0xac/0x2b0 fs/pipe.c:632
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:874 [inline]
__se_sys_ioctl fs/ioctl.c:860 [inline]
__x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
Fixes: c73be61ced ("pipe: Add general notification queue support")
Reported-and-tested-by: syzbot+d55757faa9b80590767b@syzkaller.appspotmail.com
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7a64ca17e4 ]
If an invalid option is given for "test_suspend=<option>", the entire
string is added to init's environment, so return 1 instead of 0 from
the __setup handler.
Unknown kernel command line parameters "BOOT_IMAGE=/boot/bzImage-517rc5
test_suspend=invalid"
and
Run /sbin/init as init process
with arguments:
/sbin/init
with environment:
HOME=/
TERM=linux
BOOT_IMAGE=/boot/bzImage-517rc5
test_suspend=invalid
Fixes: 2ce986892f ("PM / sleep: Enhance test_suspend option with repeat capability")
Fixes: 27ddcc6596 ("PM / sleep: Add state field to pm_states[] entries")
Fixes: a9d7052363 ("PM: Separate suspend to RAM functionality from core")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru>
Link: lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ba7ffcd4c4 ]
If an invalid value is used in "resumedelay=<seconds>", it is
silently ignored. Add a warning message and then let the __setup
handler return 1 to indicate that the kernel command line option
has been handled.
Fixes: 317cf7e5e8 ("PM / hibernate: convert simple_strtoul to kstrtoul")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru>
Link: lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 272ceeaea3 ]
AUDIT_TIME_* events are generated when there are syscall rules present
that are not related to time keeping. This will produce noisy log
entries that could flood the logs and hide events we really care about.
Rather than immediately produce the AUDIT_TIME_* records, store the data
in the context and log it at syscall exit time respecting the filter
rules.
Note: This eats the audit_buffer, unlike any others in show_special().
Please see https://bugzilla.redhat.com/show_bug.cgi?id=1991919
Fixes: 7e8eda734d ("ntp: Audit NTP parameters adjustment")
Fixes: 2d87a0674b ("timekeeping: Audit clock adjustments")
Signed-off-by: Richard Guy Briggs <rgb@redhat.com>
[PM: fixed style/whitespace issues]
Signed-off-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit eca344a736 upstream.
If a trace event has in its TP_printk():
"%*.s", len, len ? __get_str(string) : NULL
It is perfectly valid if len is zero and passing in the NULL.
Unfortunately, the runtime string check at time of reading the trace sees
the NULL and flags it as a bad string and produces a WARN_ON().
Handle this case by passing into the test function if the format has an
asterisk (star) and if so, if the length is zero, then mark it as safe.
Link: https://lore.kernel.org/all/YjsWzuw5FbWPrdqq@bfoster/
Cc: stable@vger.kernel.org
Reported-by: Brian Foster <bfoster@redhat.com>
Tested-by: Brian Foster <bfoster@redhat.com>
Fixes: 9a6944fee6 ("tracing: Add a verifier to check string pointers for trace events")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ee1fee9005 upstream.
Setting PTRACE_O_SUSPEND_SECCOMP is supposed to be a highly privileged
operation because it allows the tracee to completely bypass all seccomp
filters on kernels with CONFIG_CHECKPOINT_RESTORE=y. It is only supposed to
be settable by a process with global CAP_SYS_ADMIN, and only if that
process is not subject to any seccomp filters at all.
However, while these permission checks were done on the PTRACE_SETOPTIONS
path, they were missing on the PTRACE_SEIZE path, which also sets
user-specified ptrace flags.
Move the permissions checks out into a helper function and let both
ptrace_attach() and ptrace_setoptions() call it.
Cc: stable@kernel.org
Fixes: 13c4a90119 ("seccomp: add ptrace options for suspend/resume")
Signed-off-by: Jann Horn <jannh@google.com>
Link: https://lkml.kernel.org/r/20220319010838.1386861-1-jannh@google.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 61cc4534b6 upstream.
It was found that reading /proc/lockdep after a lockdep splat may
potentially cause an access to freed memory if lockdep_unregister_key()
is called after the splat but before access to /proc/lockdep [1]. This
is due to the fact that graph_lock() call in lockdep_unregister_key()
fails after the clearing of debug_locks by the splat process.
After lockdep_unregister_key() is called, the lock_name may be freed
but the corresponding lock_class structure still have a reference to
it. That invalid memory pointer will then be accessed when /proc/lockdep
is read by a user and a use-after-free (UAF) error will be reported if
KASAN is enabled.
To fix this problem, lockdep_unregister_key() is now modified to always
search for a matching key irrespective of the debug_locks state and
zap the corresponding lock class if a matching one is found.
[1] https://lore.kernel.org/lkml/77f05c15-81b6-bddd-9650-80d5f23fe330@i-love.sakura.ne.jp/
Fixes: 8b39adbee8 ("locking/lockdep: Make lockdep_unregister_key() honor 'debug_locks' again")
Reported-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Cc: Cheng-Jui Wang <cheng-jui.wang@mediatek.com>
Link: https://lkml.kernel.org/r/20220103023558.1377055-1-longman@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bddac7c1e0 upstream.
This reverts commit aa6f8dcbab.
It turns out this breaks at least the ath9k wireless driver, and
possibly others.
What the ath9k driver does on packet receive is to set up the DMA
transfer with:
int ath_rx_init(..)
..
bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
common->rx_bufsize,
DMA_FROM_DEVICE);
and then the receive logic (through ath_rx_tasklet()) will fetch
incoming packets
static bool ath_edma_get_buffers(..)
..
dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
common->rx_bufsize, DMA_FROM_DEVICE);
ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
if (ret == -EINPROGRESS) {
/*let device gain the buffer again*/
dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
common->rx_bufsize, DMA_FROM_DEVICE);
return false;
}
and it's worth noting how that first DMA sync:
dma_sync_single_for_cpu(..DMA_FROM_DEVICE);
is there to make sure the CPU can read the DMA buffer (possibly by
copying it from the bounce buffer area, or by doing some cache flush).
The iommu correctly turns that into a "copy from bounce bufer" so that
the driver can look at the state of the packets.
In the meantime, the device may continue to write to the DMA buffer, but
we at least have a snapshot of the state due to that first DMA sync.
But that _second_ DMA sync:
dma_sync_single_for_device(..DMA_FROM_DEVICE);
is telling the DMA mapping that the CPU wasn't interested in the area
because the packet wasn't there. In the case of a DMA bounce buffer,
that is a no-op.
Note how it's not a sync for the CPU (the "for_device()" part), and it's
not a sync for data written by the CPU (the "DMA_FROM_DEVICE" part).
Or rather, it _should_ be a no-op. That's what commit aa6f8dcbab
broke: it made the code bounce the buffer unconditionally, and changed
the DMA_FROM_DEVICE to just unconditionally and illogically be
DMA_TO_DEVICE.
[ Side note: purely within the confines of the swiotlb driver it wasn't
entirely illogical: The reason it did that odd DMA_FROM_DEVICE ->
DMA_TO_DEVICE conversion thing is because inside the swiotlb driver,
it uses just a swiotlb_bounce() helper that doesn't care about the
whole distinction of who the sync is for - only which direction to
bounce.
So it took the "sync for device" to mean that the CPU must have been
the one writing, and thought it meant DMA_TO_DEVICE. ]
Also note how the commentary in that commit was wrong, probably due to
that whole confusion, claiming that the commit makes the swiotlb code
"bounce unconditionally (that is, also
when dir == DMA_TO_DEVICE) in order do avoid synchronising back stale
data from the swiotlb buffer"
which is nonsensical for two reasons:
- that "also when dir == DMA_TO_DEVICE" is nonsensical, as that was
exactly when it always did - and should do - the bounce.
- since this is a sync for the device (not for the CPU), we're clearly
fundamentally not coping back stale data from the bounce buffers at
all, because we'd be copying *to* the bounce buffers.
So that commit was just very confused. It confused the direction of the
synchronization (to the device, not the cpu) with the direction of the
DMA (from the device).
Reported-and-bisected-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Reported-by: Olha Cherevyk <olha.cherevyk@gmail.com>
Cc: Halil Pasic <pasic@linux.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Kalle Valo <kvalo@kernel.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Toke Høiland-Jørgensen <toke@toke.dk>
Cc: Maxime Bizon <mbizon@freebox.fr>
Cc: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 10c5357874 upstream.
Currently rcu_preempt_deferred_qs_irqrestore() releases rnp->boost_mtx
before reporting the expedited quiescent state. Under heavy real-time
load, this can result in this function being preempted before the
quiescent state is reported, which can in turn prevent the expedited grace
period from completing. Tim Murray reports that the resulting expedited
grace periods can take hundreds of milliseconds and even more than one
second, when they should normally complete in less than a millisecond.
This was fine given that there were no particular response-time
constraints for synchronize_rcu_expedited(), as it was designed
for throughput rather than latency. However, some users now need
sub-100-millisecond response-time constratints.
This patch therefore follows Neeraj's suggestion (seconded by Tim and
by Uladzislau Rezki) of simply reversing the two operations.
Reported-by: Tim Murray <timmurray@google.com>
Reported-by: Joel Fernandes <joelaf@google.com>
Reported-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Reviewed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Tested-by: Tim Murray <timmurray@google.com>
Cc: Todd Kjos <tkjos@google.com>
Cc: Sandeep Patil <sspatil@google.com>
Cc: <stable@vger.kernel.org> # 5.4.x
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4edc076041 upstream.
watch_queue_clear() has a comment stating that setting ->defunct to true
preventing new additions as well as preventing notifications. Whilst
the latter is true, the first bit is superfluous since at the time this
function is called, the pipe cannot be accessed to add new event
sources.
Remove the "new additions" bit from the comment.
Fixes: c73be61ced ("pipe: Add general notification queue support")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2ed147f015 upstream.
There's nothing to synchronise post_one_notification() versus
pipe_read(). Whilst posting is done under pipe->rd_wait.lock, the
reader only takes pipe->mutex which cannot bar notification posting as
that may need to be made from contexts that cannot sleep.
Fix this by setting pipe->head with a barrier in post_one_notification()
and reading pipe->head with a barrier in pipe_read().
If that's not sufficient, the rd_wait.lock will need to be taken,
possibly in a ->confirm() op so that it only applies to notifications.
The lock would, however, have to be dropped before copy_page_to_iter()
is invoked.
Fixes: c73be61ced ("pipe: Add general notification queue support")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3b4c037192 upstream.
Currently, watch_queue_set_size() sets the number of notes available in
wqueue->nr_notes according to the number of notes allocated, but sets
the size of the bitmap to the unrounded number of notes originally asked
for.
Fix this by setting the bitmap size to the number of notes we're
actually going to make available (ie. the number allocated).
Fixes: c73be61ced ("pipe: Add general notification queue support")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 96a4d8912b upstream.
The pipe ring size must always be a power of 2 as the head and tail
pointers are masked off by AND'ing with the size of the ring - 1.
watch_queue_set_size(), however, lets you specify any number of notes
between 1 and 511. This number is passed through to pipe_resize_ring()
without checking/forcing its alignment.
Fix this by rounding the number of slots required up to the nearest
power of two. The request is meant to guarantee that at least that many
notifications can be generated before the queue is full, so rounding
down isn't an option, but, alternatively, it may be better to give an
error if we aren't allowed to allocate that much ring space.
Fixes: c73be61ced ("pipe: Add general notification queue support")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c1853fbadc upstream.
When a pipe ring descriptor points to a notification message, the
refcount on the backing page is incremented by the generic get function,
but the release function, which marks the bitmap, doesn't drop the page
ref.
Fix this by calling generic_pipe_buf_release() at the end of
watch_queue_pipe_buf_release().
Fixes: c73be61ced ("pipe: Add general notification queue support")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c993ee0f9f upstream.
In watch_queue_set_filter(), there are a couple of places where we check
that the filter type value does not exceed what the type_filter bitmap
can hold. One place calculates the number of bits by:
if (tf[i].type >= sizeof(wfilter->type_filter) * 8)
which is fine, but the second does:
if (tf[i].type >= sizeof(wfilter->type_filter) * BITS_PER_LONG)
which is not. This can lead to a couple of out-of-bounds writes due to
a too-large type:
(1) __set_bit() on wfilter->type_filter
(2) Writing more elements in wfilter->filters[] than we allocated.
Fix this by just using the proper WATCH_TYPE__NR instead, which is the
number of types we actually know about.
The bug may cause an oops looking something like:
BUG: KASAN: slab-out-of-bounds in watch_queue_set_filter+0x659/0x740
Write of size 4 at addr ffff88800d2c66bc by task watch_queue_oob/611
...
Call Trace:
<TASK>
dump_stack_lvl+0x45/0x59
print_address_description.constprop.0+0x1f/0x150
...
kasan_report.cold+0x7f/0x11b
...
watch_queue_set_filter+0x659/0x740
...
__x64_sys_ioctl+0x127/0x190
do_syscall_64+0x43/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Allocated by task 611:
kasan_save_stack+0x1e/0x40
__kasan_kmalloc+0x81/0xa0
watch_queue_set_filter+0x23a/0x740
__x64_sys_ioctl+0x127/0x190
do_syscall_64+0x43/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
The buggy address belongs to the object at ffff88800d2c66a0
which belongs to the cache kmalloc-32 of size 32
The buggy address is located 28 bytes inside of
32-byte region [ffff88800d2c66a0, ffff88800d2c66c0)
Fixes: c73be61ced ("pipe: Add general notification queue support")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit aa6f8dcbab upstream.
Unfortunately, we ended up merging an old version of the patch "fix info
leak with DMA_FROM_DEVICE" instead of merging the latest one. Christoph
(the swiotlb maintainer), he asked me to create an incremental fix
(after I have pointed this out the mix up, and asked him for guidance).
So here we go.
The main differences between what we got and what was agreed are:
* swiotlb_sync_single_for_device is also required to do an extra bounce
* We decided not to introduce DMA_ATTR_OVERWRITE until we have exploiters
* The implantation of DMA_ATTR_OVERWRITE is flawed: DMA_ATTR_OVERWRITE
must take precedence over DMA_ATTR_SKIP_CPU_SYNC
Thus this patch removes DMA_ATTR_OVERWRITE, and makes
swiotlb_sync_single_for_device() bounce unconditionally (that is, also
when dir == DMA_TO_DEVICE) in order do avoid synchronising back stale
data from the swiotlb buffer.
Let me note, that if the size used with dma_sync_* API is less than the
size used with dma_[un]map_*, under certain circumstances we may still
end up with swiotlb not being transparent. In that sense, this is no
perfect fix either.
To get this bullet proof, we would have to bounce the entire
mapping/bounce buffer. For that we would have to figure out the starting
address, and the size of the mapping in
swiotlb_sync_single_for_device(). While this does seem possible, there
seems to be no firm consensus on how things are supposed to work.
Signed-off-by: Halil Pasic <pasic@linux.ibm.com>
Fixes: ddbd89deb7 ("swiotlb: fix info leak with DMA_FROM_DEVICE")
Cc: stable@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit caf4c86bf1 upstream.
At the moment running osnoise on a nohz_full CPU or uncontested FIFO
priority and a PREEMPT_RCU kernel might have the side effect of
extending grace periods too much. This will entice RCU to force a
context switch on the wayward CPU to end the grace period, all while
introducing unwarranted noise into the tracer. This behaviour is
unavoidable as overly extending grace periods might exhaust the system's
memory.
This same exact problem is what extended quiescent states (EQS) were
created for, conversely, rcu_momentary_dyntick_idle() emulates them by
performing a zero duration EQS. So let's make use of it.
In the common case rcu_momentary_dyntick_idle() is fairly inexpensive:
atomically incrementing a local per-CPU counter and doing a store. So it
shouldn't affect osnoise's measurements (which has a 1us granularity),
so we'll call it unanimously.
The uncommon case involve calling rcu_momentary_dyntick_idle() after
having the osnoise process:
- Receive an expedited quiescent state IPI with preemption disabled or
during an RCU critical section. (activates rdp->cpu_no_qs.b.exp
code-path).
- Being preempted within in an RCU critical section and having the
subsequent outermost rcu_read_unlock() called with interrupts
disabled. (t->rcu_read_unlock_special.b.blocked code-path).
Neither of those are possible at the moment, and are unlikely to be in
the future given the osnoise's loop design. On top of this, the noise
generated by the situations described above is unavoidable, and if not
exposed by rcu_momentary_dyntick_idle() will be eventually seen in
subsequent rcu_read_unlock() calls or schedule operations.
Link: https://lkml.kernel.org/r/20220307180740.577607-1-nsaenzju@redhat.com
Cc: stable@vger.kernel.org
Fixes: bce29ac9ce ("trace: Add osnoise tracer")
Signed-off-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit dd990352f0 ]
osnoise's runtime and period are in the microseconds scale, but it is
currently sleeping in the millisecond's scale. This behavior roots in the
usage of hwlat as the skeleton for osnoise.
Make osnoise to sleep in the microseconds scale. Also, move the sleep to
a specialized function.
Link: https://lkml.kernel.org/r/302aa6c7bdf2d131719b22901905e9da122a11b2.1645197336.git.bristot@kernel.org
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ddbd89deb7 ]
The problem I'm addressing was discovered by the LTP test covering
cve-2018-1000204.
A short description of what happens follows:
1) The test case issues a command code 00 (TEST UNIT READY) via the SG_IO
interface with: dxfer_len == 524288, dxdfer_dir == SG_DXFER_FROM_DEV
and a corresponding dxferp. The peculiar thing about this is that TUR
is not reading from the device.
2) In sg_start_req() the invocation of blk_rq_map_user() effectively
bounces the user-space buffer. As if the device was to transfer into
it. Since commit a45b599ad8 ("scsi: sg: allocate with __GFP_ZERO in
sg_build_indirect()") we make sure this first bounce buffer is
allocated with GFP_ZERO.
3) For the rest of the story we keep ignoring that we have a TUR, so the
device won't touch the buffer we prepare as if the we had a
DMA_FROM_DEVICE type of situation. My setup uses a virtio-scsi device
and the buffer allocated by SG is mapped by the function
virtqueue_add_split() which uses DMA_FROM_DEVICE for the "in" sgs (here
scatter-gather and not scsi generics). This mapping involves bouncing
via the swiotlb (we need swiotlb to do virtio in protected guest like
s390 Secure Execution, or AMD SEV).
4) When the SCSI TUR is done, we first copy back the content of the second
(that is swiotlb) bounce buffer (which most likely contains some
previous IO data), to the first bounce buffer, which contains all
zeros. Then we copy back the content of the first bounce buffer to
the user-space buffer.
5) The test case detects that the buffer, which it zero-initialized,
ain't all zeros and fails.
One can argue that this is an swiotlb problem, because without swiotlb
we leak all zeros, and the swiotlb should be transparent in a sense that
it does not affect the outcome (if all other participants are well
behaved).
Copying the content of the original buffer into the swiotlb buffer is
the only way I can think of to make swiotlb transparent in such
scenarios. So let's do just that if in doubt, but allow the driver
to tell us that the whole mapped buffer is going to be overwritten,
in which case we can preserve the old behavior and avoid the performance
impact of the extra bounce.
Signed-off-by: Halil Pasic <pasic@linux.ibm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 44a3918c82 upstream.
With unprivileged eBPF enabled, eIBRS (without retpoline) is vulnerable
to Spectre v2 BHB-based attacks.
When both are enabled, print a warning message and report it in the
'spectre_v2' sysfs vulnerabilities file.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
[fllinden@amazon.com: backported to 5.15]
Signed-off-by: Frank van der Linden <fllinden@amazon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1d02b444b8 upstream.
__setup() handlers should generally return 1 to indicate that the
boot options have been handled.
Using invalid option values causes the entire kernel boot option
string to be reported as Unknown and added to init's environment
strings, polluting it.
Unknown kernel command line parameters "BOOT_IMAGE=/boot/bzImage-517rc6
kprobe_event=p,syscall_any,$arg1 trace_options=quiet
trace_clock=jiffies", will be passed to user space.
Run /sbin/init as init process
with arguments:
/sbin/init
with environment:
HOME=/
TERM=linux
BOOT_IMAGE=/boot/bzImage-517rc6
kprobe_event=p,syscall_any,$arg1
trace_options=quiet
trace_clock=jiffies
Return 1 from the __setup() handlers so that init's environment is not
polluted with kernel boot options.
Link: lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru
Link: https://lkml.kernel.org/r/20220303031744.32356-1-rdunlap@infradead.org
Cc: stable@vger.kernel.org
Fixes: 7bcfaf54f5 ("tracing: Add trace_options kernel command line parameter")
Fixes: e1e232ca6b ("tracing: Add trace_clock=<clock> kernel parameter")
Fixes: 970988e19e ("tracing/kprobe: Add kprobe_event= boot parameter")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1d1898f656 upstream.
When trying to add a histogram against an event with the "cpu" field, it
was impossible due to "cpu" being a keyword to key off of the running CPU.
So to fix this, it was changed to "common_cpu" to match the other generic
fields (like "common_pid"). But since some scripts used "cpu" for keying
off of the CPU (for events that did not have "cpu" as a field, which is
most of them), a backward compatibility trick was added such that if "cpu"
was used as a key, and the event did not have "cpu" as a field name, then
it would fallback and switch over to "common_cpu".
This fix has a couple of subtle bugs. One was that when switching over to
"common_cpu", it did not change the field name, it just set a flag. But
the code still found a "cpu" field. The "cpu" field is used for filtering
and is returned when the event does not have a "cpu" field.
This was found by:
# cd /sys/kernel/tracing
# echo hist:key=cpu,pid:sort=cpu > events/sched/sched_wakeup/trigger
# cat events/sched/sched_wakeup/hist
Which showed the histogram unsorted:
{ cpu: 19, pid: 1175 } hitcount: 1
{ cpu: 6, pid: 239 } hitcount: 2
{ cpu: 23, pid: 1186 } hitcount: 14
{ cpu: 12, pid: 249 } hitcount: 2
{ cpu: 3, pid: 994 } hitcount: 5
Instead of hard coding the "cpu" checks, take advantage of the fact that
trace_event_field_field() returns a special field for "cpu" and "CPU" if
the event does not have "cpu" as a field. This special field has the
"filter_type" of "FILTER_CPU". Check that to test if the returned field is
of the CPU type instead of doing the string compare.
Also, fix the sorting bug by testing for the hist_field flag of
HIST_FIELD_FL_CPU when setting up the sort routine. Otherwise it will use
the special CPU field to know what compare routine to use, and since that
special field does not have a size, it returns tracing_map_cmp_none.
Cc: stable@vger.kernel.org
Fixes: 1e3bac71c5 ("tracing/histogram: Rename "cpu" to "common_cpu"")
Reported-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b1e8206582 upstream.
Where commit 4ef0c5c6b5 ("kernel/sched: Fix sched_fork() access an
invalid sched_task_group") fixed a fork race vs cgroup, it opened up a
race vs syscalls by not placing the task on the runqueue before it
gets exposed through the pidhash.
Commit 13765de814 ("sched/fair: Fix fault in reweight_entity") is
trying to fix a single instance of this, instead fix the whole class
of issues, effectively reverting this commit.
Fixes: 4ef0c5c6b5 ("kernel/sched: Fix sched_fork() access an invalid sched_task_group")
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Tadeusz Struk <tadeusz.struk@linaro.org>
Tested-by: Zhang Qiao <zhangqiao22@huawei.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lkml.kernel.org/r/YgoeCbwj5mbCR0qA@hirez.programming.kicks-ass.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0ac983f512 upstream.
Long story short recursively enforcing RLIMIT_NPROC when it is not
enforced on the process that creates a new user namespace, causes
currently working code to fail. There is no reason to enforce
RLIMIT_NPROC recursively when we don't enforce it normally so update
the code to detect this case.
I would like to simply use capable(CAP_SYS_RESOURCE) to detect when
RLIMIT_NPROC is not enforced upon the caller. Unfortunately because
RLIMIT_NPROC is charged and checked for enforcement based upon the
real uid, using capable() which is euid based is inconsistent with reality.
Come as close as possible to testing for capable(CAP_SYS_RESOURCE) by
testing for when the real uid would match the conditions when
CAP_SYS_RESOURCE would be present if the real uid was the effective
uid.
Reported-by: Etienne Dechamps <etienne@edechamps.fr>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=215596
Link: https://lkml.kernel.org/r/e9589141-cfeb-90cd-2d0e-83a62787239a@edechamps.fr
Link: https://lkml.kernel.org/r/87sfs8jmpz.fsf_-_@email.froward.int.ebiederm.org
Cc: stable@vger.kernel.org
Fixes: 21d1c5e386 ("Reimplement RLIMIT_NPROC on top of ucounts")
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 0e3135d3bf ]
It seems inc_misses_counter() suffers from same issue fixed in
the commit d979617aa8 ("bpf: Fixes possible race in update_prog_stats()
for 32bit arches"):
As it can run while interrupts are enabled, it could
be re-entered and the u64_stats syncp could be mangled.
Fixes: 9ed9e9ba23 ("bpf: Count the number of times recursion was prevented")
Signed-off-by: He Fengqing <hefengqing@huawei.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/r/20220122102936.1219518-1-hefengqing@huawei.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 61a0abaee2 ]
Commit 316580b69d ("u64_stats: provide u64_stats_t type")
fixed possible load/store tearing on 64bit arches.
For instance the following C code
stats->nsecs += sched_clock() - start;
Could be rightfully implemented like this by a compiler,
confusing concurrent readers a lot:
stats->nsecs += sched_clock();
// arbitrary delay
stats->nsecs -= start;
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211026214133.3114279-4-eric.dumazet@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1c1857d400 ]
kstrndup() is a memory allocation-related function, it returns NULL when
some internal memory errors happen. It is better to check the return
value of it so to catch the memory error in time.
Link: https://lkml.kernel.org/r/tencent_4D6E270731456EB88712ED7F13883C334906@qq.com
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Fixes: a42e3c4de9 ("tracing/probe: Add immediate string parameter support")
Signed-off-by: Xiaoke Wang <xkernel.wang@foxmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8c72242455 ]
kstrdup() returns NULL when some internal memory errors happen, it is
better to check the return value of it so to catch the memory error in
time.
Link: https://lkml.kernel.org/r/tencent_3C2E330722056D7891D2C83F29C802734B06@qq.com
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Fixes: 33ea4b2427 ("perf/core: Implement the 'perf_uprobe' PMU")
Signed-off-by: Xiaoke Wang <xkernel.wang@foxmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 4f67cca70c ]
synth_events is returning -EINVAL if the dyn_event create command does
not contain ' \t'. This prevents other systems from getting called back.
synth_events needs to return -ECANCELED in these cases when the command
is not targeting the synth_event system.
Link: https://lore.kernel.org/linux-trace-devel/20210930223821.11025-1-beaub@linux.microsoft.com
Fixes: c9e759b1e8 ("tracing: Rework synthetic event command parsing")
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e7f7c99ba9 ]
Recently while investigating a problem with rr and signals I noticed
that siglock is dropped in ptrace_signal and get_signal does not jump
to relock.
Looking farther to see if the problem is anywhere else I see that
do_signal_stop also returns if signal_group_exit is true. I believe
that test can now never be true, but it is a bit hard to trace
through and be certain.
Testing signal_group_exit is not expensive, so move the test for
signal_group_exit into the for loop inside of get_signal to ensure
the test is never skipped improperly.
This has been a potential problem since I added the test for
signal_group_exit was added.
Fixes: 35634ffa17 ("signal: Always notice exiting tasks")
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/875yssekcd.fsf_-_@email.froward.int.ebiederm.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f37c3bbc63 ]
Since referencing user space pointers is special, if the user wants to
filter on a field that is a pointer to user space, then they need to
specify it.
Add a ".ustring" attribute to the field name for filters to state that the
field is pointing to user space such that the kernel can take the
appropriate action to read that pointer.
Link: https://lore.kernel.org/all/yt9d8rvmt2jq.fsf@linux.ibm.com/
Fixes: 77360f9bbc ("tracing: Add test for user space strings when filtering on string pointers")
Tested-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 13765de814 ]
Syzbot found a GPF in reweight_entity. This has been bisected to
commit 4ef0c5c6b5 ("kernel/sched: Fix sched_fork() access an invalid
sched_task_group")
There is a race between sched_post_fork() and setpriority(PRIO_PGRP)
within a thread group that causes a null-ptr-deref in
reweight_entity() in CFS. The scenario is that the main process spawns
number of new threads, which then call setpriority(PRIO_PGRP, 0, -20),
wait, and exit. For each of the new threads the copy_process() gets
invoked, which adds the new task_struct and calls sched_post_fork()
for it.
In the above scenario there is a possibility that
setpriority(PRIO_PGRP) and set_one_prio() will be called for a thread
in the group that is just being created by copy_process(), and for
which the sched_post_fork() has not been executed yet. This will
trigger a null pointer dereference in reweight_entity(), as it will
try to access the run queue pointer, which hasn't been set.
Before the mentioned change the cfs_rq pointer for the task has been
set in sched_fork(), which is called much earlier in copy_process(),
before the new task is added to the thread_group. Now it is done in
the sched_post_fork(), which is called after that. To fix the issue
the remove the update_load param from the update_load param() function
and call reweight_task() only if the task flag doesn't have the
TASK_NEW flag set.
Fixes: 4ef0c5c6b5 ("kernel/sched: Fix sched_fork() access an invalid sched_task_group")
Reported-by: syzbot+af7a719bc92395ee41b3@syzkaller.appspotmail.com
Signed-off-by: Tadeusz Struk <tadeusz.struk@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20220203161846.1160750-1-tadeusz.struk@linaro.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 77360f9bbc ]
Pingfan reported that the following causes a fault:
echo "filename ~ \"cpu\"" > events/syscalls/sys_enter_openat/filter
echo 1 > events/syscalls/sys_enter_at/enable
The reason is that trace event filter treats the user space pointer
defined by "filename" as a normal pointer to compare against the "cpu"
string. The following bug happened:
kvm-03-guest16 login: [72198.026181] BUG: unable to handle page fault for address: 00007fffaae8ef60
#PF: supervisor read access in kernel mode
#PF: error_code(0x0001) - permissions violation
PGD 80000001008b7067 P4D 80000001008b7067 PUD 2393f1067 PMD 2393ec067 PTE 8000000108f47867
Oops: 0001 [#1] PREEMPT SMP PTI
CPU: 1 PID: 1 Comm: systemd Kdump: loaded Not tainted 5.14.0-32.el9.x86_64 #1
Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011
RIP: 0010:strlen+0x0/0x20
Code: 48 89 f9 74 09 48 83 c1 01 80 39 00 75 f7 31 d2 44 0f b6 04 16 44 88 04 11
48 83 c2 01 45 84 c0 75 ee c3 0f 1f 80 00 00 00 00 <80> 3f 00 74 10 48 89 f8
48 83 c0 01 80 38 00 75 f7 48 29 f8 c3 31
RSP: 0018:ffffb5b900013e48 EFLAGS: 00010246
RAX: 0000000000000018 RBX: ffff8fc1c49ede00 RCX: 0000000000000000
RDX: 0000000000000020 RSI: ffff8fc1c02d601c RDI: 00007fffaae8ef60
RBP: 00007fffaae8ef60 R08: 0005034f4ddb8ea4 R09: 0000000000000000
R10: ffff8fc1c02d601c R11: 0000000000000000 R12: ffff8fc1c8a6e380
R13: 0000000000000000 R14: ffff8fc1c02d6010 R15: ffff8fc1c00453c0
FS: 00007fa86123db40(0000) GS:ffff8fc2ffd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fffaae8ef60 CR3: 0000000102880001 CR4: 00000000007706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
filter_pred_pchar+0x18/0x40
filter_match_preds+0x31/0x70
ftrace_syscall_enter+0x27a/0x2c0
syscall_trace_enter.constprop.0+0x1aa/0x1d0
do_syscall_64+0x16/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7fa861d88664
The above happened because the kernel tried to access user space directly
and triggered a "supervisor read access in kernel mode" fault. Worse yet,
the memory could not even be loaded yet, and a SEGFAULT could happen as
well. This could be true for kernel space accessing as well.
To be even more robust, test both kernel and user space strings. If the
string fails to read, then simply have the filter fail.
Note, TASK_SIZE is used to determine if the pointer is user or kernel space
and the appropriate strncpy_from_kernel/user_nofault() function is used to
copy the memory. For some architectures, the compare to TASK_SIZE may always
pick user space or kernel space. If it gets it wrong, the only thing is that
the filter will fail to match. In the future, this needs to be fixed to have
the event denote which should be used. But failing a filter is much better
than panicing the machine, and that can be solved later.
Link: https://lore.kernel.org/all/20220107044951.22080-1-kernelfans@gmail.com/
Link: https://lkml.kernel.org/r/20220110115532.536088fd@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Tom Zanussi <zanussi@kernel.org>
Reported-by: Pingfan Liu <kernelfans@gmail.com>
Tested-by: Pingfan Liu <kernelfans@gmail.com>
Fixes: 87a342f5db ("tracing/filters: Support filtering for char * strings")
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 302e9edd54 upstream.
If a trigger is set on an event to disable or enable tracing within an
instance, then tracing should be disabled or enabled in the instance and
not at the top level, which is confusing to users.
Link: https://lkml.kernel.org/r/20220223223837.14f94ec3@rorschach.local.home
Cc: stable@vger.kernel.org
Fixes: ae63b31e4d ("tracing: Separate out trace events from global variables")
Tested-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Reviewed-by: Tom Zanussi <zanussi@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ce33c845b0 upstream.
The stacktrace event trigger is not dumping the stacktrace to the instance
where it was enabled, but to the global "instance."
Use the private_data, pointing to the trigger file, to figure out the
corresponding trace instance, and use it in the trigger action, like
snapshot_trigger does.
Link: https://lkml.kernel.org/r/afbb0b4f18ba92c276865bc97204d438473f4ebc.1645396236.git.bristot@kernel.org
Cc: stable@vger.kernel.org
Fixes: ae63b31e4d ("tracing: Separate out trace events from global variables")
Reviewed-by: Tom Zanussi <zanussi@kernel.org>
Tested-by: Tom Zanussi <zanussi@kernel.org>
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 75134f16e7 upstream.
syzbot reported various soft lockups caused by bpf batch operations.
INFO: task kworker/1:1:27 blocked for more than 140 seconds.
INFO: task hung in rcu_barrier
Nothing prevents batch ops to process huge amount of data,
we need to add schedule points in them.
Note that maybe_wait_bpf_programs(map) calls from
generic_map_delete_batch() can be factorized by moving
the call after the loop.
This will be done later in -next tree once we get this fix merged,
unless there is strong opinion doing this optimization sooner.
Fixes: aa2e93b8e5 ("bpf: Add generic support for update and delete batch ops")
Fixes: cb4d03ab49 ("bpf: Add generic support for lookup batch op")
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Acked-by: Brian Vazquez <brianvv@google.com>
Link: https://lore.kernel.org/bpf/20220217181902.808742-1-eric.dumazet@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 467a726b75 upstream.
The idea is to check: a) the owning user_ns of cgroup_ns, b)
capabilities in init_user_ns.
The commit 24f6008564 ("cgroup-v1: Require capabilities to set
release_agent") got this wrong in the write handler of release_agent
since it checked user_ns of the opener (may be different from the owning
user_ns of cgroup_ns).
Secondly, to avoid possibly confused deputy, the capability of the
opener must be checked.
Fixes: 24f6008564 ("cgroup-v1: Require capabilities to set release_agent")
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/stable/20220216121142.GB30035@blackbody.suse.cz/
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Reviewed-by: Masami Ichikawa(CIP) <masami.ichikawa@cybertrust.co.jp>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 05c7b7a92c upstream.
As previously discussed(https://lkml.org/lkml/2022/1/20/51),
cpuset_attach() is affected with similar cpu hotplug race,
as follow scenario:
cpuset_attach() cpu hotplug
--------------------------- ----------------------
down_write(cpuset_rwsem)
guarantee_online_cpus() // (load cpus_attach)
sched_cpu_deactivate
set_cpu_active()
// will change cpu_active_mask
set_cpus_allowed_ptr(cpus_attach)
__set_cpus_allowed_ptr_locked()
// (if the intersection of cpus_attach and
cpu_active_mask is empty, will return -EINVAL)
up_write(cpuset_rwsem)
To avoid races such as described above, protect cpuset_attach() call
with cpu_hotplug_lock.
Fixes: be367d0992 ("cgroups: let ss->can_attach and ss->attach do whole threadgroups at a time")
Cc: stable@vger.kernel.org # v2.6.32+
Reported-by: Zhao Gongyi <zhaogongyi@huawei.com>
Signed-off-by: Zhang Qiao <zhangqiao22@huawei.com>
Acked-by: Waiman Long <longman@redhat.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 28df029d53 upstream.
A kernel exception was hit when trying to dump /proc/lockdep_chains after
lockdep report "BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!":
Unable to handle kernel paging request at virtual address 00054005450e05c3
...
00054005450e05c3] address between user and kernel address ranges
...
pc : [0xffffffece769b3a8] string+0x50/0x10c
lr : [0xffffffece769ac88] vsnprintf+0x468/0x69c
...
Call trace:
string+0x50/0x10c
vsnprintf+0x468/0x69c
seq_printf+0x8c/0xd8
print_name+0x64/0xf4
lc_show+0xb8/0x128
seq_read_iter+0x3cc/0x5fc
proc_reg_read_iter+0xdc/0x1d4
The cause of the problem is the function lock_chain_get_class() will
shift lock_classes index by 1, but the index don't need to be shifted
anymore since commit 01bb6f0af9 ("locking/lockdep: Change the range
of class_idx in held_lock struct") already change the index to start
from 0.
The lock_classes[-1] located at chain_hlocks array. When printing
lock_classes[-1] after the chain_hlocks entries are modified, the
exception happened.
The output of lockdep_chains are incorrect due to this problem too.
Fixes: f611e8cf98 ("lockdep: Take read/write status in consideration when generate chainkey")
Signed-off-by: Cheng Jui Wang <cheng-jui.wang@mediatek.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Boqun Feng <boqun.feng@gmail.com>
Link: https://lore.kernel.org/r/20220210105011.21712-1-cheng-jui.wang@mediatek.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c923a8e7ed upstream.
During set*id() which cred->ucounts to charge the the current process
to is not known until after set_cred_ucounts. So move the
RLIMIT_NPROC checking into a new helper flag_nproc_exceeded and call
flag_nproc_exceeded after set_cred_ucounts.
This is very much an arbitrary subset of the places where we currently
change the RLIMIT_NPROC accounting, designed to preserve the existing
logic.
Fixing the existing logic will be the subject of another series of
changes.
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20220216155832.680775-4-ebiederm@xmission.com
Fixes: 21d1c5e386 ("Reimplement RLIMIT_NPROC on top of ucounts")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c16bdeb5a3 upstream.
Solar Designer <solar@openwall.com> wrote:
> I'm not aware of anyone actually running into this issue and reporting
> it. The systems that I personally know use suexec along with rlimits
> still run older/distro kernels, so would not yet be affected.
>
> So my mention was based on my understanding of how suexec works, and
> code review. Specifically, Apache httpd has the setting RLimitNPROC,
> which makes it set RLIMIT_NPROC:
>
> https://httpd.apache.org/docs/2.4/mod/core.html#rlimitnproc
>
> The above documentation for it includes:
>
> "This applies to processes forked from Apache httpd children servicing
> requests, not the Apache httpd children themselves. This includes CGI
> scripts and SSI exec commands, but not any processes forked from the
> Apache httpd parent, such as piped logs."
>
> In code, there are:
>
> ./modules/generators/mod_cgid.c: ( (cgid_req.limits.limit_nproc_set) && ((rc = apr_procattr_limit_set(procattr, APR_LIMIT_NPROC,
> ./modules/generators/mod_cgi.c: ((rc = apr_procattr_limit_set(procattr, APR_LIMIT_NPROC,
> ./modules/filters/mod_ext_filter.c: rv = apr_procattr_limit_set(procattr, APR_LIMIT_NPROC, conf->limit_nproc);
>
> For example, in mod_cgi.c this is in run_cgi_child().
>
> I think this means an httpd child sets RLIMIT_NPROC shortly before it
> execs suexec, which is a SUID root program. suexec then switches to the
> target user and execs the CGI script.
>
> Before 2863643fb8, the setuid() in suexec would set the flag, and the
> target user's process count would be checked against RLIMIT_NPROC on
> execve(). After 2863643fb8, the setuid() in suexec wouldn't set the
> flag because setuid() is (naturally) called when the process is still
> running as root (thus, has those limits bypass capabilities), and
> accordingly execve() would not check the target user's process count
> against RLIMIT_NPROC.
In commit 2863643fb8 ("set_user: add capability check when
rlimit(RLIMIT_NPROC) exceeds") capable calls were added to set_user to
make it more consistent with fork. Unfortunately because of call site
differences those capable calls were checking the credentials of the
user before set*id() instead of after set*id().
This breaks enforcement of RLIMIT_NPROC for applications that set the
rlimit and then call set*id() while holding a full set of
capabilities. The capabilities are only changed in the new credential
in security_task_fix_setuid().
The code in apache suexec appears to follow this pattern.
Commit 909cc4ae86f3 ("[PATCH] Fix two bugs with process limits
(RLIMIT_NPROC)") where this check was added describes the targes of this
capability check as:
2/ When a root-owned process (e.g. cgiwrap) sets up process limits and then
calls setuid, the setuid should fail if the user would then be running
more than rlim_cur[RLIMIT_NPROC] processes, but it doesn't. This patch
adds an appropriate test. With this patch, and per-user process limit
imposed in cgiwrap really works.
So the original use case of this check also appears to match the broken
pattern.
Restore the enforcement of RLIMIT_NPROC by removing the bad capable
checks added in set_user. This unfortunately restores the
inconsistent state the code has been in for the last 11 years, but
dealing with the inconsistencies looks like a larger problem.
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20210907213042.GA22626@openwall.com/
Link: https://lkml.kernel.org/r/20220212221412.GA29214@openwall.com
Link: https://lkml.kernel.org/r/20220216155832.680775-1-ebiederm@xmission.com
Fixes: 2863643fb8 ("set_user: add capability check when rlimit(RLIMIT_NPROC) exceeds")
History-Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git
Reviewed-by: Solar Designer <solar@openwall.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8f2f9c4d82 upstream.
Michal Koutný <mkoutny@suse.com> wrote:
> It was reported that v5.14 behaves differently when enforcing
> RLIMIT_NPROC limit, namely, it allows one more task than previously.
> This is consequence of the commit 21d1c5e386 ("Reimplement
> RLIMIT_NPROC on top of ucounts") that missed the sharpness of
> equality in the forking path.
This can be fixed either by fixing the test or by moving the increment
to be before the test. Fix it my moving copy_creds which contains
the increment before is_ucounts_overlimit.
In the case of CLONE_NEWUSER the ucounts in the task_cred changes.
The function is_ucounts_overlimit needs to use the final version of
the ucounts for the new process. Which means moving the
is_ucounts_overlimit test after copy_creds is necessary.
Both the test in fork and the test in set_user were semantically
changed when the code moved to ucounts. The change of the test in
fork was bad because it was before the increment. The test in
set_user was wrong and the change to ucounts fixed it. So this
fix only restores the old behavior in one lcation not two.
Link: https://lkml.kernel.org/r/20220204181144.24462-1-mkoutny@suse.com
Link: https://lkml.kernel.org/r/20220216155832.680775-2-ebiederm@xmission.com
Cc: stable@vger.kernel.org
Reported-by: Michal Koutný <mkoutny@suse.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Fixes: 21d1c5e386 ("Reimplement RLIMIT_NPROC on top of ucounts")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a55d07294f upstream.
Michal Koutný <mkoutny@suse.com> wrote:
> Tasks are associated to multiple users at once. Historically and as per
> setrlimit(2) RLIMIT_NPROC is enforce based on real user ID.
>
> The commit 21d1c5e386 ("Reimplement RLIMIT_NPROC on top of ucounts")
> made the accounting structure "indexed" by euid and hence potentially
> account tasks differently.
>
> The effective user ID may be different e.g. for setuid programs but
> those are exec'd into already existing task (i.e. below limit), so
> different accounting is moot.
>
> Some special setresuid(2) users may notice the difference, justifying
> this fix.
I looked at cred->ucount and it is only used for rlimit operations
that were previously stored in cred->user. Making the fact
cred->ucount can refer to a different user from cred->user a bug,
affecting all uses of cred->ulimit not just RLIMIT_NPROC.
Fix set_cred_ucounts to always use the real uid not the effective uid.
Further simplify set_cred_ucounts by noticing that set_cred_ucounts
somehow retained a draft version of the check to see if alloc_ucounts
was needed that checks the new->user and new->user_ns against the
current_real_cred(). Remove that draft version of the check.
All that matters for setting the cred->ucounts are the user_ns and uid
fields in the cred.
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20220207121800.5079-4-mkoutny@suse.com
Link: https://lkml.kernel.org/r/20220216155832.680775-3-ebiederm@xmission.com
Reported-by: Michal Koutný <mkoutny@suse.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Fixes: 21d1c5e386 ("Reimplement RLIMIT_NPROC on top of ucounts")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 99c31f9fed upstream.
Any cred that is destined for use by commit_creds must have a non-NULL
cred->ucounts field. Only curing credential construction is a NULL
cred->ucounts valid. Only abort_creds, put_cred, and put_cred_rcu
needs to deal with a cred with a NULL ucount. As set_cred_ucounts is
non of those case don't confuse people by handling something that can
not happen.
Link: https://lkml.kernel.org/r/871r4irzds.fsf_-_@disp2133
Tested-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Alexey Gladkov <legion@kernel.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0cbae9e24f upstream.
While examining is_ucounts_overlimit and reading the various messages
I realized that is_ucounts_overlimit fails to deal with counts that
may have wrapped.
Being wrapped should be a transitory state for counts and they should
never be wrapped for long, but it can happen so handle it.
Cc: stable@vger.kernel.org
Fixes: 21d1c5e386 ("Reimplement RLIMIT_NPROC on top of ucounts")
Link: https://lkml.kernel.org/r/20220216155832.680775-5-ebiederm@xmission.com
Reviewed-by: Shuah Khan <skhan@linuxfoundation.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>