With commit 633d6f17cd (x86/xen: prepare
p2m list for memory hotplug) the P2M may be sized to accomdate a much
larger amount of memory than the domain currently has.
When saving a domain, the toolstack must scan all the P2M looking for
populated pages. This results in a performance regression due to the
unnecessary scanning.
Instead of reporting (via shared_info) the maximum possible size of
the P2M, hint at the last PFN which might be populated. This hint is
increased as new leaves are added to the P2M (in the expectation that
they will be used for populated entries).
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Cc: <stable@vger.kernel.org> # 4.0+
Sanitizing the e820 map may produce extra E820 entries which would result in
the topmost E820 entries being removed. The removed entries would typically
include the top E820 usable RAM region and thus result in the domain having
signicantly less RAM available to it.
Fix by allowing sanitize_e820_map to use the full size of the allocated E820
array.
Signed-off-by: Malcolm Crossley <malcolm.crossley@citrix.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Currently there is a number of issues preventing PVHVM Xen guests from
doing successful kexec/kdump:
- Bound event channels.
- Registered vcpu_info.
- PIRQ/emuirq mappings.
- shared_info frame after XENMAPSPACE_shared_info operation.
- Active grant mappings.
Basically, newly booted kernel stumbles upon already set up Xen
interfaces and there is no way to reestablish them. In Xen-4.7 a new
feature called 'soft reset' is coming. A guest performing kexec/kdump
operation is supposed to call SCHEDOP_shutdown hypercall with
SHUTDOWN_soft_reset reason before jumping to new kernel. Hypervisor
(with some help from toolstack) will do full domain cleanup (but
keeping its memory and vCPU contexts intact) returning the guest to
the state it had when it was first booted and thus allowing it to
start over.
Doing SHUTDOWN_soft_reset on Xen hypervisors which don't support it is
probably OK as by default all unknown shutdown reasons cause domain
destroy with a message in toolstack log: 'Unknown shutdown reason code
5. Destroying domain.' which gives a clue to what the problem is and
eliminates false expectations.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
For PV guests these registers are set up by hypervisor and thus
should not be written by the guest. The comment in xen_write_msr_safe()
says so but we still write the MSRs, causing the hypervisor to
print a warning.
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
HYPERVISOR_memory_op() is defined to return an "int" value. This is
wrong, as the Xen hypervisor will return "long".
The sub-function XENMEM_maximum_reservation returns the maximum
number of pages for the current domain. An int will overflow for a
domain configured with 8TB of memory or more.
Correct this by using the correct type.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
- Use the correct GFN/BFN terms more consistently.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJV8VRMAAoJEFxbo/MsZsTRiGQH/i/jrAJUJfrFC2PINaA2gDwe
O0dlrkCiSgAYChGmxxxXZQSPM5Po5+EbT/dLjZ/uvSooeorM9RYY/mFo7ut/qLep
4pyQUuwGtebWGBZTrj9sygUVXVhgJnyoZxskNUbhj9zvP7hb9++IiI78mzne6cpj
lCh/7Z2dgpfRcKlNRu+qpzP79Uc7OqIfDK+IZLrQKlXa7IQDJTQYoRjbKpfCtmMV
BEG3kN9ESx5tLzYiAfxvaxVXl9WQFEoktqe9V8IgOQlVRLgJ2DQWS6vmraGrokWM
3HDOCHtRCXlPhu1Vnrp0R9OgqWbz8FJnmVAndXT8r3Nsjjmd0aLwhJx7YAReO/4=
=JDia
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.3-rc0b-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen terminology fixes from David Vrabel:
"Use the correct GFN/BFN terms more consistently"
* tag 'for-linus-4.3-rc0b-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen/xenbus: Rename the variable xen_store_mfn to xen_store_gfn
xen/privcmd: Further s/MFN/GFN/ clean-up
hvc/xen: Further s/MFN/GFN clean-up
video/xen-fbfront: Further s/MFN/GFN clean-up
xen/tmem: Use xen_page_to_gfn rather than pfn_to_gfn
xen: Use correctly the Xen memory terminologies
arm/xen: implement correctly pfn_to_mfn
xen: Make clear that swiotlb and biomerge are dealing with DMA address
- Convert xen-blkfront to the multiqueue API
- [arm] Support binding event channels to different VCPUs.
- [x86] Support > 512 GiB in a PV guests (off by default as such a
guest cannot be migrated with the current toolstack).
- [x86] PMU support for PV dom0 (limited support for using perf with
Xen and other guests).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJV7wIdAAoJEFxbo/MsZsTR0hEH/04HTKLKGnSJpZ5WbMPxqZxE
UqGlvhvVWNAmFocZmbPcEi9T1qtcFrX5pM55JQr6UmAp3ovYsT2q1Q1kKaOaawks
pSfc/YEH3oQW5VUQ9Lm9Ru5Z8Btox0WrzRREO92OF36UOgUOBOLkGsUfOwDinNIM
lSk2djbYwDYAsoeC3PHB32wwMI//Lz6B/9ZVXcyL6ULynt1ULdspETjGnptRPZa7
JTB5L4/soioKOn18HDwwOhKmvaFUPQv9Odnv7dc85XwZreajhM/KMu3qFbMDaF/d
WVB1NMeCBdQYgjOrUjrmpyr5uTMySiQEG54cplrEKinfeZgKlEyjKvjcAfJfiac=
=Ktjl
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.3-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from David Vrabel:
"Xen features and fixes for 4.3:
- Convert xen-blkfront to the multiqueue API
- [arm] Support binding event channels to different VCPUs.
- [x86] Support > 512 GiB in a PV guests (off by default as such a
guest cannot be migrated with the current toolstack).
- [x86] PMU support for PV dom0 (limited support for using perf with
Xen and other guests)"
* tag 'for-linus-4.3-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: (33 commits)
xen: switch extra memory accounting to use pfns
xen: limit memory to architectural maximum
xen: avoid another early crash of memory limited dom0
xen: avoid early crash of memory limited dom0
arm/xen: Remove helpers which are PV specific
xen/x86: Don't try to set PCE bit in CR4
xen/PMU: PMU emulation code
xen/PMU: Intercept PMU-related MSR and APIC accesses
xen/PMU: Describe vendor-specific PMU registers
xen/PMU: Initialization code for Xen PMU
xen/PMU: Sysfs interface for setting Xen PMU mode
xen: xensyms support
xen: remove no longer needed p2m.h
xen: allow more than 512 GB of RAM for 64 bit pv-domains
xen: move p2m list if conflicting with e820 map
xen: add explicit memblock_reserve() calls for special pages
mm: provide early_memremap_ro to establish read-only mapping
xen: check for initrd conflicting with e820 map
xen: check pre-allocated page tables for conflict with memory map
xen: check for kernel memory conflicting with memory layout
...
The privcmd code is mixing the usage of GFN and MFN within the same
functions which make the code difficult to understand when you only work
with auto-translated guests.
The privcmd driver is only dealing with GFN so replace all the mention
of MFN into GFN.
The ioctl structure used to map foreign change has been left unchanged
given that the userspace is using it. Nonetheless, add a comment to
explain the expected value within the "mfn" field.
Signed-off-by: Julien Grall <julien.grall@citrix.com>
Reviewed-by: David Vrabel <david.vrabel@citrix.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Based on include/xen/mm.h [1], Linux is mistakenly using MFN when GFN
is meant, I suspect this is because the first support for Xen was for
PV. This resulted in some misimplementation of helpers on ARM and
confused developers about the expected behavior.
For instance, with pfn_to_mfn, we expect to get an MFN based on the name.
Although, if we look at the implementation on x86, it's returning a GFN.
For clarity and avoid new confusion, replace any reference to mfn with
gfn in any helpers used by PV drivers. The x86 code will still keep some
reference of pfn_to_mfn which may be used by all kind of guests
No changes as been made in the hypercall field, even
though they may be invalid, in order to keep the same as the defintion
in xen repo.
Note that page_to_mfn has been renamed to xen_page_to_gfn to avoid a
name to close to the KVM function gfn_to_page.
Take also the opportunity to simplify simple construction such
as pfn_to_mfn(page_to_pfn(page)) into xen_page_to_gfn. More complex clean up
will come in follow-up patches.
[1] http://xenbits.xen.org/gitweb/?p=xen.git;a=commitdiff;h=e758ed14f390342513405dd766e874934573e6cb
Signed-off-by: Julien Grall <julien.grall@citrix.com>
Reviewed-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Acked-by: Wei Liu <wei.liu2@citrix.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Instead of using physical addresses for accounting of extra memory
areas available for ballooning switch to pfns as this is much less
error prone regarding partial pages.
Reported-by: Roger Pau Monné <roger.pau@citrix.com>
Tested-by: Roger Pau Monné <roger.pau@citrix.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
When a pv-domain (including dom0) is started it tries to size it's
p2m list according to the maximum possible memory amount it ever can
achieve. Limit the initial maximum memory size to the architectural
limit of the hardware in order to avoid overflows during remapping
of memory.
This problem will occur when dom0 is started with an initial memory
size being a multiple of 1GB, but without specifying it's maximum
memory size. The kernel must be configured without
CONFIG_XEN_BALLOON_MEMORY_HOTPLUG for the problem to happen.
Reported-by: Roger Pau Monné <roger.pau@citrix.com>
Tested-by: Roger Pau Monné <roger.pau@citrix.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Commit b1c9f169047b ("xen: split counting of extra memory pages...")
introduced an error when dom0 was started with limited memory occurring
only on some hardware.
The problem arises in case dom0 is started with initial memory and
maximum memory being the same. The kernel must be configured without
CONFIG_XEN_BALLOON_MEMORY_HOTPLUG for the problem to happen. If all
of this is true and the E820 map of the machine is sparse (some areas
are not covered) then the machine might crash early in the boot
process.
An example E820 map triggering the problem looks like this:
[ 0.000000] e820: BIOS-provided physical RAM map:
[ 0.000000] BIOS-e820: [mem 0x0000000000000000-0x000000000009d7ff] usable
[ 0.000000] BIOS-e820: [mem 0x000000000009d800-0x000000000009ffff] reserved
[ 0.000000] BIOS-e820: [mem 0x00000000000e0000-0x00000000000fffff] reserved
[ 0.000000] BIOS-e820: [mem 0x0000000000100000-0x00000000cf7fafff] usable
[ 0.000000] BIOS-e820: [mem 0x00000000cf7fb000-0x00000000cf95ffff] reserved
[ 0.000000] BIOS-e820: [mem 0x00000000cf960000-0x00000000cfb62fff] ACPI NVS
[ 0.000000] BIOS-e820: [mem 0x00000000cfb63000-0x00000000cfd14fff] usable
[ 0.000000] BIOS-e820: [mem 0x00000000cfd15000-0x00000000cfd61fff] ACPI NVS
[ 0.000000] BIOS-e820: [mem 0x00000000cfd62000-0x00000000cfd6cfff] ACPI data
[ 0.000000] BIOS-e820: [mem 0x00000000cfd6d000-0x00000000cfd6ffff] ACPI NVS
[ 0.000000] BIOS-e820: [mem 0x00000000cfd70000-0x00000000cfd70fff] usable
[ 0.000000] BIOS-e820: [mem 0x00000000cfd71000-0x00000000cfea8fff] reserved
[ 0.000000] BIOS-e820: [mem 0x00000000cfea9000-0x00000000cfeb9fff] ACPI NVS
[ 0.000000] BIOS-e820: [mem 0x00000000cfeba000-0x00000000cfecafff] reserved
[ 0.000000] BIOS-e820: [mem 0x00000000cfecb000-0x00000000cfecbfff] ACPI NVS
[ 0.000000] BIOS-e820: [mem 0x00000000cfecc000-0x00000000cfedbfff] reserved
[ 0.000000] BIOS-e820: [mem 0x00000000cfedc000-0x00000000cfedcfff] ACPI NVS
[ 0.000000] BIOS-e820: [mem 0x00000000cfedd000-0x00000000cfeddfff] reserved
[ 0.000000] BIOS-e820: [mem 0x00000000cfede000-0x00000000cfee3fff] ACPI NVS
[ 0.000000] BIOS-e820: [mem 0x00000000cfee4000-0x00000000cfef6fff] reserved
[ 0.000000] BIOS-e820: [mem 0x00000000cfef7000-0x00000000cfefffff] usable
[ 0.000000] BIOS-e820: [mem 0x00000000e0000000-0x00000000efffffff] reserved
[ 0.000000] BIOS-e820: [mem 0x00000000fec00000-0x00000000fec00fff] reserved
[ 0.000000] BIOS-e820: [mem 0x00000000fec10000-0x00000000fec10fff] reserved
[ 0.000000] BIOS-e820: [mem 0x00000000fed00000-0x00000000fed00fff] reserved
[ 0.000000] BIOS-e820: [mem 0x00000000fed40000-0x00000000fed44fff] reserved
[ 0.000000] BIOS-e820: [mem 0x00000000fed61000-0x00000000fed70fff] reserved
[ 0.000000] BIOS-e820: [mem 0x00000000fed80000-0x00000000fed8ffff] reserved
[ 0.000000] BIOS-e820: [mem 0x00000000ff000000-0x00000000ffffffff] reserved
[ 0.000000] BIOS-e820: [mem 0x0000000100001000-0x000000020effffff] usable
In this case the area a0000-dffff isn't present in the map. This will
confuse the memory setup of the domain when remapping the memory from
such holes to populated areas.
To avoid the problem the accounting of to be remapped memory has to
count such holes in the E820 map as well.
Reported-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Commit b1c9f169047b ("xen: split counting of extra memory pages...")
introduced an error when dom0 was started with limited memory.
The problem arises in case dom0 is started with initial memory and
maximum memory being the same and exactly a multiple of 1 GB. The
kernel must be configured without CONFIG_XEN_BALLOON_MEMORY_HOTPLUG
for the problem to happen. In this case it will crash very early
during boot due to the virtual mapped p2m list not being large
enough to be able to remap any memory:
(XEN) Freed 304kB init memory.
mapping kernel into physical memory
about to get started...
(XEN) traps.c:459:d0v0 Unhandled invalid opcode fault/trap [#6] on VCPU 0 [ec=0000]
(XEN) domain_crash_sync called from entry.S: fault at ffff82d080229a93 create_bounce_frame+0x12b/0x13a
(XEN) Domain 0 (vcpu#0) crashed on cpu#0:
(XEN) ----[ Xen-4.5.2-pre x86_64 debug=n Not tainted ]----
(XEN) CPU: 0
(XEN) RIP: e033:[<ffffffff81d120cb>]
(XEN) RFLAGS: 0000000000000206 EM: 1 CONTEXT: pv guest (d0v0)
(XEN) rax: ffffffff81db2000 rbx: 000000004d000000 rcx: 0000000000000000
(XEN) rdx: 000000004d000000 rsi: 0000000000063000 rdi: 000000004d063000
(XEN) rbp: ffffffff81c03d78 rsp: ffffffff81c03d28 r8: 0000000000023000
(XEN) r9: 00000001040ff000 r10: 0000000000007ff0 r11: 0000000000000000
(XEN) r12: 0000000000063000 r13: 000000000004d000 r14: 0000000000000063
(XEN) r15: 0000000000000063 cr0: 0000000080050033 cr4: 00000000000006f0
(XEN) cr3: 0000000105c0f000 cr2: ffffc90000268000
(XEN) ds: 0000 es: 0000 fs: 0000 gs: 0000 ss: e02b cs: e033
(XEN) Guest stack trace from rsp=ffffffff81c03d28:
(XEN) 0000000000000000 0000000000000000 ffffffff81d120cb 000000010000e030
(XEN) 0000000000010006 ffffffff81c03d68 000000000000e02b ffffffffffffffff
(XEN) 0000000000000063 000000000004d063 ffffffff81c03de8 ffffffff81d130a7
(XEN) ffffffff81c03de8 000000000004d000 00000001040ff000 0000000000105db1
(XEN) 00000001040ff001 000000000004d062 ffff8800092d6ff8 0000000002027000
(XEN) ffff8800094d8340 ffff8800092d6ff8 00003ffffffff000 ffff8800092d7ff8
(XEN) ffffffff81c03e48 ffffffff81d13c43 ffff8800094d8000 ffff8800094d9000
(XEN) 0000000000000000 ffff8800092d6000 00000000092d6000 000000004cfbf000
(XEN) 00000000092d6000 00000000052d5442 0000000000000000 0000000000000000
(XEN) ffffffff81c03ed8 ffffffff81d185c1 0000000000000000 0000000000000000
(XEN) ffffffff81c03e78 ffffffff810f8ca4 ffffffff81c03ed8 ffffffff8171a15d
(XEN) 0000000000000010 ffffffff81c03ee8 0000000000000000 0000000000000000
(XEN) ffffffff81f0e402 ffffffffffffffff ffffffff81dae900 0000000000000000
(XEN) 0000000000000000 0000000000000000 ffffffff81c03f28 ffffffff81d0cf0f
(XEN) 0000000000000000 0000000000000000 0000000000000000 ffffffff81db82e0
(XEN) 0000000000000000 0000000000000000 0000000000000000 0000000000000000
(XEN) ffffffff81c03f38 ffffffff81d0c603 ffffffff81c03ff8 ffffffff81d11c86
(XEN) 0300000100000032 0000000000000005 0000000000000020 0000000000000000
(XEN) 0000000000000000 0000000000000000 0000000000000000 0000000000000000
(XEN) 0000000000000000 0000000000000000 0000000000000000 0000000000000000
(XEN) Domain 0 crashed: rebooting machine in 5 seconds.
This can be avoided by allocating aneough space for the p2m to cover
the maximum memory of dom0 plus the identity mapped holes required
for PCI space, BIOS etc.
Reported-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Pull x86 core platform updates from Ingo Molnar:
"The main changes are:
- Intel Atom platform updates. (Andy Shevchenko)
- modularity fixlets. (Paul Gortmaker)
- x86 platform clockevents driver updates for lguest, uv and Xen.
(Viresh Kumar)
- Microsoft Hyper-V TSC fixlet. (Vitaly Kuznetsov)"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/platform: Make atom/pmc_atom.c explicitly non-modular
x86/hyperv: Mark the Hyper-V TSC as unstable
x86/xen/time: Migrate to new set-state interface
x86/uv/time: Migrate to new set-state interface
x86/lguest/timer: Migrate to new set-state interface
x86/pci/intel_mid_pci: Use proper constants for irq polarity
x86/pci/intel_mid_pci: Make intel_mid_pci_ops static
x86/pci/intel_mid_pci: Propagate actual return code
x86/pci/intel_mid_pci: Work around for IRQ0 assignment
x86/platform/iosf_mbi: Add Intel Tangier PCI id
x86/platform/iosf_mbi: Source cleanup
x86/platform/iosf_mbi: Remove NULL pointer checks for pci_dev_put()
x86/platform/iosf_mbi: Check return value of debugfs_create properly
x86/platform/iosf_mbi: Move to dedicated folder
x86/platform/intel/pmc_atom: Move the PMC-Atom code to arch/x86/platform/atom
x86/platform/intel/pmc_atom: Add Cherrytrail PMC interface
x86/platform/intel/pmc_atom: Supply register mappings via PMC object
x86/platform/intel/pmc_atom: Print index of device in loop
x86/platform/intel/pmc_atom: Export accessors to PMC registers
Pull x86 asm changes from Ingo Molnar:
"The biggest changes in this cycle were:
- Revamp, simplify (and in some cases fix) Time Stamp Counter (TSC)
primitives. (Andy Lutomirski)
- Add new, comprehensible entry and exit handlers written in C.
(Andy Lutomirski)
- vm86 mode cleanups and fixes. (Brian Gerst)
- 32-bit compat code cleanups. (Brian Gerst)
The amount of simplification in low level assembly code is already
palpable:
arch/x86/entry/entry_32.S | 130 +----
arch/x86/entry/entry_64.S | 197 ++-----
but more simplifications are planned.
There's also the usual laudry mix of low level changes - see the
changelog for details"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (83 commits)
x86/asm: Drop repeated macro of X86_EFLAGS_AC definition
x86/asm/msr: Make wrmsrl() a function
x86/asm/delay: Introduce an MWAITX-based delay with a configurable timer
x86/asm: Add MONITORX/MWAITX instruction support
x86/traps: Weaken context tracking entry assertions
x86/asm/tsc: Add rdtscll() merge helper
selftests/x86: Add syscall_nt selftest
selftests/x86: Disable sigreturn_64
x86/vdso: Emit a GNU hash
x86/entry: Remove do_notify_resume(), syscall_trace_leave(), and their TIF masks
x86/entry/32: Migrate to C exit path
x86/entry/32: Remove 32-bit syscall audit optimizations
x86/vm86: Rename vm86->v86flags and v86mask
x86/vm86: Rename vm86->vm86_info to user_vm86
x86/vm86: Clean up vm86.h includes
x86/vm86: Move the vm86 IRQ definitions to vm86.h
x86/vm86: Use the normal pt_regs area for vm86
x86/vm86: Eliminate 'struct kernel_vm86_struct'
x86/vm86: Move fields from 'struct kernel_vm86_struct' to 'struct vm86'
x86/vm86: Move vm86 fields out of 'thread_struct'
...
- Fix i386 build with an (uncommon) configuration
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJV1bZtAAoJEFxbo/MsZsTR3sYH/2Q+wabqeFZotSZsJjYjSh+q
6hCRB/tD+LbmReYuFBsqStHUDEL0Ljh9kw6YQvUrEVLv6CIH/pCVhj2U+/INlUur
aScKQe1ttKaMzEAB2opLQnYMw5Q/C/pHAtq88MYMWnYBb9fM/puMyI0iXu8FhoOP
+QYdaDt7+hRfID3PWZ7JxLGu+AqVgis5OAh/rt/Y4aC/WaNF7ifrE4qIJlgaR9x4
IDglRBc4cPhLjwb2yhykiRHREhydVvRqEPsgji20T7pXVduj5DEqqVpU1XMqKBNU
0EmZ5wLnELvWxPWv3zCScAtvmH30+i4QQcGB/3igJCeYN0gBxzeoGbTKWf4P0HM=
=lRue
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.2-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen build fix from David Vrabel:
"Fix i386 build with an (uncommon) configuration"
* tag 'for-linus-4.2-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
x86/xen: make CONFIG_XEN depend on CONFIG_X86_LOCAL_APIC
Since VPMU code emulates RDPMC instruction with RDMSR and because hypervisor
does not emulate it there is no reason to try setting CR4's PCE bit (and the
hypervisor will warn on seeing it set).
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Add PMU emulation code that runs when we are processing a PMU interrupt.
This code will allow us not to trap to hypervisor on each MSR/LVTPC access
(of which there may be quite a few in the handler).
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: David Vrabel <david.vrabel@citrix.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Provide interfaces for recognizing accesses to PMU-related MSRs and
LVTPC APIC and process these accesses in Xen PMU code.
(The interrupt handler performs XENPMU_flush right away in the beginning
since no PMU emulation is available. It will be added with a later patch).
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: David Vrabel <david.vrabel@citrix.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
AMD and Intel PMU register initialization and helpers that determine
whether a register belongs to PMU.
This and some of subsequent PMU emulation code is somewhat similar to
Xen's PMU implementation.
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: David Vrabel <david.vrabel@citrix.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Map shared data structure that will hold CPU registers, VPMU context,
V/PCPU IDs of the CPU interrupted by PMU interrupt. Hypervisor fills
this information in its handler and passes it to the guest for further
processing.
Set up PMU VIRQ.
Now that perf infrastructure will assume that PMU is available on a PV
guest we need to be careful and make sure that accesses via RDPMC
instruction don't cause fatal traps by the hypervisor. Provide a nop
RDPMC handler.
For the same reason avoid issuing a warning on a write to APIC's LVTPC.
Both of these will be made functional in later patches.
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: David Vrabel <david.vrabel@citrix.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Set Xen's PMU mode via /sys/hypervisor/pmu/pmu_mode. Add XENPMU hypercall.
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Cleanup by removing arch/x86/xen/p2m.h as it isn't needed any more.
Most definitions in this file are used in p2m.c only. Move those into
p2m.c.
set_phys_range_identity() is already declared in
arch/x86/include/asm/xen/page.h, add __init annotation there.
MAX_REMAP_RANGES isn't used at all, just delete it.
The only define left is P2M_PER_PAGE which is moved to page.h as well.
Signed-off-by: Juergen Gross <jgross@suse.com>
Acked-by: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
64 bit pv-domains under Xen are limited to 512 GB of RAM today. The
main reason has been the 3 level p2m tree, which was replaced by the
virtual mapped linear p2m list. Parallel to the p2m list which is
being used by the kernel itself there is a 3 level mfn tree for usage
by the Xen tools and eventually for crash dump analysis. For this tree
the linear p2m list can serve as a replacement, too. As the kernel
can't know whether the tools are capable of dealing with the p2m list
instead of the mfn tree, the limit of 512 GB can't be dropped in all
cases.
This patch replaces the hard limit by a kernel parameter which tells
the kernel to obey the 512 GB limit or not. The default is selected by
a configuration parameter which specifies whether the 512 GB limit
should be active per default for domUs (domain save/restore/migration
and crash dump analysis are affected).
Memory above the domain limit is returned to the hypervisor instead of
being identity mapped, which was wrong anyway.
The kernel configuration parameter to specify the maximum size of a
domain can be deleted, as it is not relevant any more.
Signed-off-by: Juergen Gross <jgross@suse.com>
Acked-by: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Check whether the hypervisor supplied p2m list is placed at a location
which is conflicting with the target E820 map. If this is the case
relocate it to a new area unused up to now and compliant to the E820
map.
As the p2m list might by huge (up to several GB) and is required to be
mapped virtually, set up a temporary mapping for the copied list.
For pvh domains just delete the p2m related information from start
info instead of reserving the p2m memory, as we don't need it at all.
For 32 bit kernels adjust the memblock_reserve() parameters in order
to cover the page tables only. This requires to memblock_reserve() the
start_info page on it's own.
Signed-off-by: Juergen Gross <jgross@suse.com>
Acked-by: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Some special pages containing interfaces to xen are being reserved
implicitly only today. The memblock_reserve() call to reserve them is
meant to reserve the p2m list supplied by xen. It is just reserving
not only the p2m list itself, but some more pages up to the start of
the xen built page tables.
To be able to move the p2m list to another pfn range, which is needed
for support of huge RAM, this memblock_reserve() must be split up to
cover all affected reserved pages explicitly.
The affected pages are:
- start_info page
- xenstore ring (might be missing, mfn is 0 in this case)
- console ring (not for initial domain)
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Check whether the initrd is placed at a location which is conflicting
with the target E820 map. If this is the case relocate it to a new
area unused up to now and compliant to the E820 map.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: David Vrabel <david.vrabel@citrix.com>
Acked-by: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Check whether the page tables built by the domain builder are at
memory addresses which are in conflict with the target memory map.
If this is the case just panic instead of running into problems
later.
Signed-off-by: Juergen Gross <jgross@suse.com>
Acked-by: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Checks whether the pre-allocated memory of the loaded kernel is in
conflict with the target memory map. If this is the case, just panic
instead of run into problems later, as there is nothing we can do
to repair this situation.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: David Vrabel <david.vrabel@citrix.com>
Acked-by: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
For being able to relocate pre-allocated data areas like initrd or
p2m list it is mandatory to find a contiguous memory area which is
not yet in use and doesn't conflict with the memory map we want to
be in effect.
In case such an area is found reserve it at once as this will be
required to be done in any case.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: David Vrabel <david.vrabel@citrix.com>
Acked-by: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Provide a service routine to check a physical memory area against the
E820 map. The routine will return false if the complete area is RAM
according to the E820 map and true otherwise.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: David Vrabel <david.vrabel@citrix.com>
Acked-by: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Memory pages in the initial memory setup done by the Xen hypervisor
conflicting with the target E820 map are remapped. In order to do this
those pages are counted and remapped in xen_set_identity_and_remap().
Split the counting from the remapping operation to be able to setup
the needed memory sizes in time but doing the remap operation at a
later time. This enables us to simplify the interface to
xen_set_identity_and_remap() as the number of remapped and released
pages is no longer needed here.
Finally move the remapping further down to prepare relocating
conflicting memory contents before the memory might be clobbered by
xen_set_identity_and_remap(). This requires to not destroy the Xen
E820 map when the one for the system is being constructed.
Signed-off-by: Juergen Gross <jgross@suse.com>
Acked-by: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Instead of using a function local static e820 map in xen_memory_setup()
and calling various functions in the same source with the map as a
parameter use a map directly accessible by all functions in the source.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: David Vrabel <david.vrabel@citrix.com>
Acked-by: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Direct Xen to place the initial P->M table outside of the initial
mapping, as otherwise the 1G (implementation) / 2G (theoretical)
restriction on the size of the initial mapping limits the amount
of memory a domain can be handed initially.
As the initial P->M table is copied rather early during boot to
domain private memory and it's initial virtual mapping is dropped,
the easiest way to avoid virtual address conflicts with other
addresses in the kernel is to use a user address area for the
virtual address of the initial P->M table. This allows us to just
throw away the page tables of the initial mapping after the copy
without having to care about address invalidation.
It should be noted that this patch won't enable a pv-domain to USE
more than 512 GB of RAM. It just enables it to be started with a
P->M table covering more memory. This is especially important for
being able to boot a Dom0 on a system with more than 512 GB memory.
Signed-off-by: Juergen Gross <jgross@suse.com>
Based-on-patch-by: Jan Beulich <jbeulich@suse.com>
Acked-by: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
In case the Xen tools indicate they don't need the p2m 3 level tree
as they support the virtual mapped linear p2m list, just omit building
the tree.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: David Vrabel <david.vrabel@citrix.com>
Acked-by: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
The virtual address of the linear p2m list should be stored in the
shared info structure read by the Xen tools to be able to support
64 bit pv-domains larger than 512 GB. Additionally the linear p2m
list interface includes a generation count which is changed prior
to and after each mapping change of the p2m list. Reading the
generation count the Xen tools can detect changes of the mappings
and re-read the p2m list eventually.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: David Vrabel <david.vrabel@citrix.com>
Acked-by: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
xen_has_pv_devices() has no parameters, so use the normal void
parameter convention to make it match the prototype in the header file
include/xen/platform_pci.h.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Since commit feb44f1f7a (x86/xen:
Provide a "Xen PV" APIC driver to support >255 VCPUs) Xen guests need
a full APIC driver and thus should depend on X86_LOCAL_APIC.
This fixes an i386 build failure with !SMP && !CONFIG_X86_UP_APIC by
disabling Xen support in this configuration.
Users needing Xen support in a non-SMP i386 kernel will need to enable
CONFIG_X86_UP_APIC.
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Cc: <stable@vger.kernel.org>
- Revert a fix from 4.2-rc5 that was causing lots of WARNING spam.
- Fix a memory leak affecting backends in HVM guests.
- Fix PV domU hang with certain configurations.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJVzHsAAAoJEFxbo/MsZsTR9Y0H/2j1PHt29RPcNdgGQ84AH0Wh
tw1emL8rMcdhWQnsO7bNmywNNvRNQnU3ZJ8dzoq+5GPikNsbfQzYc7U2pIL4A+gB
AAJsNDNzecuq4srk8vNxcmZ7ySvm9w6dccDUex2ge3sNWaq6gzSQvz6FSWiL0Sxg
k3JcnemEg6JrYOTWdxKInAORMcRO6rgx9eIsdPUPOpgC5XLg6/mZOqBAWXIksDvs
V9uCMqQicaUgBgKFIOSllqH6fcCNooRu3aDwNNj/2mMcJmEvMeBkHmNlQgEm2j5L
ubdDyrC5y48TUPJm8i3+W2/AY+kgWzhThcqyVy6LRAAj5RItJFxMf0nMXzIEqlQ=
=UgMy
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.2-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen bug fixes from David Vrabel:
- revert a fix from 4.2-rc5 that was causing lots of WARNING spam.
- fix a memory leak affecting backends in HVM guests.
- fix PV domU hang with certain configurations.
* tag 'for-linus-4.2-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen/xenbus: Don't leak memory when unmapping the ring on HVM backend
Revert "xen/events/fifo: Handle linked events when closing a port"
x86/xen: build "Xen PV" APIC driver for domU as well
It turns out that a PV domU also requires the "Xen PV" APIC
driver. Otherwise, the flat driver is used and we get stuck in busy
loops that never exit, such as in this stack trace:
(gdb) target remote localhost:9999
Remote debugging using localhost:9999
__xapic_wait_icr_idle () at ./arch/x86/include/asm/ipi.h:56
56 while (native_apic_mem_read(APIC_ICR) & APIC_ICR_BUSY)
(gdb) bt
#0 __xapic_wait_icr_idle () at ./arch/x86/include/asm/ipi.h:56
#1 __default_send_IPI_shortcut (shortcut=<optimized out>,
dest=<optimized out>, vector=<optimized out>) at
./arch/x86/include/asm/ipi.h:75
#2 apic_send_IPI_self (vector=246) at arch/x86/kernel/apic/probe_64.c:54
#3 0xffffffff81011336 in arch_irq_work_raise () at
arch/x86/kernel/irq_work.c:47
#4 0xffffffff8114990c in irq_work_queue (work=0xffff88000fc0e400) at
kernel/irq_work.c:100
#5 0xffffffff8110c29d in wake_up_klogd () at kernel/printk/printk.c:2633
#6 0xffffffff8110ca60 in vprintk_emit (facility=0, level=<optimized
out>, dict=0x0 <irq_stack_union>, dictlen=<optimized out>,
fmt=<optimized out>, args=<optimized out>)
at kernel/printk/printk.c:1778
#7 0xffffffff816010c8 in printk (fmt=<optimized out>) at
kernel/printk/printk.c:1868
#8 0xffffffffc00013ea in ?? ()
#9 0x0000000000000000 in ?? ()
Mailing-list-thread: https://lkml.org/lkml/2015/8/4/755
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
The update_va_mapping hypercall can fail if the VA isn't present
in the guest's page tables. Under certain loads, this can
result in an OOPS when the target address is in unpopulated vmap
space.
While we're at it, add comments to help explain what's going on.
This isn't a great long-term fix. This code should probably be
changed to use something like set_memory_ro.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Vrabel <dvrabel@cantab.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jan Beulich <jbeulich@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: security@kernel.org <security@kernel.org>
Cc: <stable@vger.kernel.org>
Cc: xen-devel <xen-devel@lists.xen.org>
Link: http://lkml.kernel.org/r/0b0e55b995cda11e7829f140b833ef932fcabe3a.1438291540.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Migrate xen driver to the new 'set-state' interface provided by
clockevents core, the earlier 'set-mode' interface is marked obsolete
now.
This also enables us to implement callbacks for new states of clockevent
devices, for example: ONESHOT_STOPPED.
Callbacks aren't implemented for modes where we weren't doing anything.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: xen-devel@lists.xenproject.org (moderated list:XEN HYPERVISOR INTERFACE)
Link: http://lkml.kernel.org/r/881eea6e1a3d483cd33e044cd34827cce26a57fd.1437042675.git.viresh.kumar@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We've had ->read_tsc() and ->read_tscp() paravirt hooks since
the very beginning of paravirt, i.e.,
d3561b7fa0 ("[PATCH] paravirt: header and stubs for paravirtualisation").
AFAICT, the only paravirt guest implementation that ever
replaced these calls was vmware, and it's gone. Arguably even
vmware shouldn't have hooked RDTSC -- we fully support systems
that don't have a TSC at all, so there's no point for a paravirt
implementation to pretend that we have a TSC but to replace it.
I also doubt that these hooks actually worked. Calls to rdtscl()
and rdtscll(), which respected the hooks, were used seemingly
interchangeably with native_read_tsc(), which did not.
Just remove them. If anyone ever needs them again, they can try
to make a case for why they need them.
Before, on a paravirt config:
text data bss dec hex filename
12618257 1816384 1093632 15528273 ecf151 vmlinux
After:
text data bss dec hex filename
12617207 1816384 1093632 15527223 eced37 vmlinux
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang Rui <ray.huang@amd.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: virtualization@lists.linux-foundation.org
Link: http://lkml.kernel.org/r/d08a2600fb298af163681e5efd8e599d889a5b97.1434501121.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 core updates from Ingo Molnar:
"There were so many changes in the x86/asm, x86/apic and x86/mm topics
in this cycle that the topical separation of -tip broke down somewhat -
so the result is a more traditional architecture pull request,
collected into the 'x86/core' topic.
The topics were still maintained separately as far as possible, so
bisectability and conceptual separation should still be pretty good -
but there were a handful of merge points to avoid excessive
dependencies (and conflicts) that would have been poorly tested in the
end.
The next cycle will hopefully be much more quiet (or at least will
have fewer dependencies).
The main changes in this cycle were:
* x86/apic changes, with related IRQ core changes: (Jiang Liu, Thomas
Gleixner)
- This is the second and most intrusive part of changes to the x86
interrupt handling - full conversion to hierarchical interrupt
domains:
[IOAPIC domain] -----
|
[MSI domain] --------[Remapping domain] ----- [ Vector domain ]
| (optional) |
[HPET MSI domain] ----- |
|
[DMAR domain] -----------------------------
|
[Legacy domain] -----------------------------
This now reflects the actual hardware and allowed us to distangle
the domain specific code from the underlying parent domain, which
can be optional in the case of interrupt remapping. It's a clear
separation of functionality and removes quite some duct tape
constructs which plugged the remap code between ioapic/msi/hpet
and the vector management.
- Intel IOMMU IRQ remapping enhancements, to allow direct interrupt
injection into guests (Feng Wu)
* x86/asm changes:
- Tons of cleanups and small speedups, micro-optimizations. This
is in preparation to move a good chunk of the low level entry
code from assembly to C code (Denys Vlasenko, Andy Lutomirski,
Brian Gerst)
- Moved all system entry related code to a new home under
arch/x86/entry/ (Ingo Molnar)
- Removal of the fragile and ugly CFI dwarf debuginfo annotations.
Conversion to C will reintroduce many of them - but meanwhile
they are only getting in the way, and the upstream kernel does
not rely on them (Ingo Molnar)
- NOP handling refinements. (Borislav Petkov)
* x86/mm changes:
- Big PAT and MTRR rework: making the code more robust and
preparing to phase out exposing direct MTRR interfaces to drivers -
in favor of using PAT driven interfaces (Toshi Kani, Luis R
Rodriguez, Borislav Petkov)
- New ioremap_wt()/set_memory_wt() interfaces to support
Write-Through cached memory mappings. This is especially
important for good performance on NVDIMM hardware (Toshi Kani)
* x86/ras changes:
- Add support for deferred errors on AMD (Aravind Gopalakrishnan)
This is an important RAS feature which adds hardware support for
poisoned data. That means roughly that the hardware marks data
which it has detected as corrupted but wasn't able to correct, as
poisoned data and raises an APIC interrupt to signal that in the
form of a deferred error. It is the OS's responsibility then to
take proper recovery action and thus prolonge system lifetime as
far as possible.
- Add support for Intel "Local MCE"s: upcoming CPUs will support
CPU-local MCE interrupts, as opposed to the traditional system-
wide broadcasted MCE interrupts (Ashok Raj)
- Misc cleanups (Borislav Petkov)
* x86/platform changes:
- Intel Atom SoC updates
... and lots of other cleanups, fixlets and other changes - see the
shortlog and the Git log for details"
* 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (222 commits)
x86/hpet: Use proper hpet device number for MSI allocation
x86/hpet: Check for irq==0 when allocating hpet MSI interrupts
x86/mm/pat, drivers/infiniband/ipath: Use arch_phys_wc_add() and require PAT disabled
x86/mm/pat, drivers/media/ivtv: Use arch_phys_wc_add() and require PAT disabled
x86/platform/intel/baytrail: Add comments about why we disabled HPET on Baytrail
genirq: Prevent crash in irq_move_irq()
genirq: Enhance irq_data_to_desc() to support hierarchy irqdomain
iommu, x86: Properly handle posted interrupts for IOMMU hotplug
iommu, x86: Provide irq_remapping_cap() interface
iommu, x86: Setup Posted-Interrupts capability for Intel iommu
iommu, x86: Add cap_pi_support() to detect VT-d PI capability
iommu, x86: Avoid migrating VT-d posted interrupts
iommu, x86: Save the mode (posted or remapped) of an IRTE
iommu, x86: Implement irq_set_vcpu_affinity for intel_ir_chip
iommu: dmar: Provide helper to copy shared irte fields
iommu: dmar: Extend struct irte for VT-d Posted-Interrupts
iommu: Add new member capability to struct irq_remap_ops
x86/asm/entry/64: Disentangle error_entry/exit gsbase/ebx/usermode code
x86/asm/entry/32: Shorten __audit_syscall_entry() args preparation
x86/asm/entry/32: Explain reloading of registers after __audit_syscall_entry()
...
Pull x86 FPU updates from Ingo Molnar:
"This tree contains two main changes:
- The big FPU code rewrite: wide reaching cleanups and reorganization
that pulls all the FPU code together into a clean base in
arch/x86/fpu/.
The resulting code is leaner and faster, and much easier to
understand. This enables future work to further simplify the FPU
code (such as removing lazy FPU restores).
By its nature these changes have a substantial regression risk: FPU
code related bugs are long lived, because races are often subtle
and bugs mask as user-space failures that are difficult to track
back to kernel side backs. I'm aware of no unfixed (or even
suspected) FPU related regression so far.
- MPX support rework/fixes. As this is still not a released CPU
feature, there were some buglets in the code - should be much more
robust now (Dave Hansen)"
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (250 commits)
x86/fpu: Fix double-increment in setup_xstate_features()
x86/mpx: Allow 32-bit binaries on 64-bit kernels again
x86/mpx: Do not count MPX VMAs as neighbors when unmapping
x86/mpx: Rewrite the unmap code
x86/mpx: Support 32-bit binaries on 64-bit kernels
x86/mpx: Use 32-bit-only cmpxchg() for 32-bit apps
x86/mpx: Introduce new 'directory entry' to 'addr' helper function
x86/mpx: Add temporary variable to reduce masking
x86: Make is_64bit_mm() widely available
x86/mpx: Trace allocation of new bounds tables
x86/mpx: Trace the attempts to find bounds tables
x86/mpx: Trace entry to bounds exception paths
x86/mpx: Trace #BR exceptions
x86/mpx: Introduce a boot-time disable flag
x86/mpx: Restrict the mmap() size check to bounds tables
x86/mpx: Remove redundant MPX_BNDCFG_ADDR_MASK
x86/mpx: Clean up the code by not passing a task pointer around when unnecessary
x86/mpx: Use the new get_xsave_field_ptr()API
x86/fpu/xstate: Wrap get_xsave_addr() to make it safer
x86/fpu/xstate: Fix up bad get_xsave_addr() assumptions
...
The 'system_call' entry points differ starkly between native 32-bit and 64-bit
kernels: on 32-bit kernels it defines the INT 0x80 entry point, while on
64-bit it's the SYSCALL entry point.
This is pretty confusing when looking at generic code, and it also obscures
the nature of the entry point at the assembly level.
So unangle this by splitting the name into its two uses:
system_call (32) -> entry_INT80_32
system_call (64) -> entry_SYSCALL_64
As per the generic naming scheme for x86 system call entry points:
entry_MNEMONIC_qualifier
where 'qualifier' is one of _32, _64 or _compat.
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>