Now that synchronous readers are using ocfs2_read_blocks_sync(), all
callers of ocfs2_read_blocks() are passing an inode. Use it
unconditionally. Since it's there, we don't need to pass the
ocfs2_super either.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This patch implements storing extended attributes both in inode or a single
external block. We only store EA's in-inode when blocksize > 512 or that
inode block has free space for it. When an EA's value is larger than 80
bytes, we will store the value via b-tree outside inode or block.
Signed-off-by: Tiger Yang <tiger.yang@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Factor out the non-inode specifics of ocfs2_do_extend_allocation() into a more generic
function, ocfs2_do_cluster_allocation(). ocfs2_do_extend_allocation calls
ocfs2_do_cluster_allocation() now, but the latter can be used for other
btree types as well.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
ocfs2_rename() was being too aggressive with the rename lock - we only need
it for certain forms of directory rename.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Inode allocation is modified to look in other nodes allocators during
extreme out of space situations. We retry our own slot when space is freed
back to the global bitmap, or whenever we've allocated more than 1024 inodes
from another slot.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Create separate lockdep lock classes for system file's i_mutexes. They are
used to guard allocations and similar things and thus rank differently
than i_mutex of a regular file or directory.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Call this the "inode_lock" now, since it covers both data and meta data.
This patch makes no functional changes.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
The node maps that are set/unset by these votes are no longer relevant, thus
we can remove the mount and umount votes. Since those are the last two
remaining votes, we can also remove the entire vote infrastructure.
The vote thread has been renamed to the downconvert thread, and the small
amount of functionality related to managing it has been moved into
fs/ocfs2/dlmglue.c. All references to votes have been removed or updated.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
If another node unlinks the destination while ocfs2_rename() is waiting on a
cluster lock, ocfs2_rename() simply logs an error and continues. This causes
a crash because the renaming node is now trying to delete a non-existent
inode. The correct solution is to return -ENOENT.
Signed-off-by: Srinivas Eeda <srinivas.eeda@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Create all new directories with OCFS2_INLINE_DATA_FL and the inline data
bytes formatted as an empty directory. Inode size field reflects the actual
amount of inline data available, which makes searching for dirent space
very similar to the regular directory search.
Inline-data directories are automatically pushed out to extents on any
insert request which is too large for the available space.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Reviewed-by: Joel Becker <joel.becker@oracle.com>
ocfs2_rename() does direct manipulation of the dirent it's gotten back from
a directory search. Wrap this manipulation inside of a function so that we
can transparently change directory update behavior in the future. As an
added bonus, this gets rid of an ugly macro.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Reviewed-by: Joel Becker <joel.becker@oracle.com>
A couple paths which needed to just match a parent dir + name pair to an
inode number were a bit messy because they had to deal with
ocfs2_find_files_on_disk() which returns a larger number of values. Provide
a convenience function, ocfs2_lookup_ino_from_name() which internalizes all
the extra accounting.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Reviewed-by: Joel Becker <joel.becker@oracle.com>
The code for adding, removing, deleting directory entries was splattered all
over namei.c. I'd rather have this all centralized, so that it's easier to
make changes for inline dir data, and eventually indexed directories.
None of the code in any of the functions was changed. I only removed the
static keyword from some prototypes so that they could be exported.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Reviewed-by: Joel Becker <joel.becker@oracle.com>
If one process is extending a file while another is renaming it, there
exists a window when rename could flush the old inode's stale i_size to
disk. This patch recognizes the fact that rename is only updating the old
inode's ctime, so it ensures only that value is flushed to disk.
Signed-off-by: Sunil Mushran <sunil.musran@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
This can now be trivially supported with re-use of our existing extend code.
ocfs2_allocate_unwritten_extents() takes a start offset and a byte length
and iterates over the inode, adding extents (marked as unwritten) until len
is reached. Existing extents are skipped over.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Older file systems which didn't support holes did a dumb calculation of
i_blocks based on i_size. This is no longer accurate, so fix things up to
take actual allocation into account.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Initially, we had wired things to return a size '1' of holes. Cook up a
small amount of code to find the next extent and calculate the number of
clusters between the virtual offset and the next allocated extent.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Return an optional extent flags field from our lookup functions and wire up
callers to treat unwritten regions as holes for the purpose of returning
zeros to the user.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
The code in extent_map.c is not prepared to deal with a subtree being
rotated between lookups. This can happen when filling holes in sparse files.
Instead of a lengthy patch to update the code (which would likely lose the
benefit of caching subtree roots), we remove most of the algorithms and
implement a simple path based lookup. A less ambitious extent caching scheme
will be added in a later patch.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Introduce tree rotations into the b-tree code. This will allow ocfs2 to
support sparse files. Much of the added code is designed to be generic (in
the ocfs2 sense) so that it can later be re-used to implement large
extended attributes.
This patch only adds the rotation code and does minimal updates to callers
of the extent api.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Ocfs2 currently does cluster-wide node messaging to check the open state of
an inode during delete. This patch removes that mechanism in favor of an
inode cluster lock which is taken at shared read when an inode is first read
and dropped in clear_inode(). This allows a deleting node to test the
liveness of an inode by attempting to take an exclusive lock.
Signed-off-by: Tiger Yang <tiger.yang@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
We don't want to print anything at all in ocfs2_lookup() when getting an
error from ocfs2_iget() - it could be something as innocuous as a signal
being detected in the dlm.
ocfs2_permission() should filter on -ENOENT which ocfs2_meta_lock() can
return if the inode was deleted on another node.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Many struct inode_operations in the kernel can be "const". Marking them const
moves these to the .rodata section, which avoids false sharing with potential
dirty data. In addition it'll catch accidental writes at compile time to
these shared resources.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ocfs2 wasn't updating c/mtime on directories during dirent
creation/deletion. Fix ocfs2_unlink(), ocfs2_rename() and
__ocfs2_add_entry() by adding the proper code to update the struct inode and
push the change out to disk.
This helps rename/unlink on nfs exported file systems in particular as those
clients compare directory time values to avoid a full re-reading a directory
which hasn't changed.
ocfs2_rename() loses some superfluous error handling as a result of this
patch.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
This allows users to format an ocfs2 file system with a special flag,
OCFS2_FEATURE_INCOMPAT_LOCAL_MOUNT. When the file system sees this flag, it
will not use any cluster services, nor will it require a cluster
configuration, thus acting like a 'local' file system.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Implement .permission() in ocfs2_file_iops, ocfs2_special_file_iops and
ocfs2_dir_iops.
This helps us avoid some multi-node races with mode change and vfs
operations.
Signed-off-by: Tiger Yang <tiger.yang@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
This is mostly a search and replace as ocfs2_journal_handle is now no more
than a container for a handle_t pointer.
ocfs2_commit_trans() becomes very straight forward, and we remove some out
of date comments / code.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
All callers either pass in NULL directly, or a local variable that is
already set to NULL.
The internals of ocfs2_start_trans() get a nice cleanup as a result.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Instead we record our state on the allocation context structure which all
callers already know about and lifetime correctly. This means the
reservation functions don't need a handle passed in any more, and we can
also take it off the alloc context.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
This was causing some folks to incorrectly get -EBUSY during rename.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
OCFS2 does some operations on i_nlink, then reverts them if some of its
operations fail to complete. This does not fit in well with the
drop_nlink() logic where we expect i_nlink to stay at zero once it gets
there.
So, delay all of the nlink operations until we're sure that the operations
have completed. Also, introduce a small helper to check whether an inode
has proper "unlinkable" i_nlink counts no matter whether it is a directory
or regular inode.
This patch is broken out from the others because it does contain some
logical changes.
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This is mostly included for parity with dec_nlink(), where we will have some
more hooks. This one should stay pretty darn straightforward for now.
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When a filesystem decrements i_nlink to zero, it means that a write must be
performed in order to drop the inode from the filesystem.
We're shortly going to have keep filesystems from being remounted r/o between
the time that this i_nlink decrement and that write occurs.
So, add a little helper function to do the decrements. We'll tie into it in a
bit to note when i_nlink hits zero.
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
OCFS2 puts inode meta data in the "lock value block" provided by the DLM.
Typically, i_generation is encoded in the lock name so that a deleted inode
on and a new one in the same block don't share the same lvb.
Unfortunately, that scheme means that the read in ocfs2_read_locked_inode()
is potentially thrown away as soon as the meta data lock is taken - we
cannot encode the lock name without first knowing i_generation, which
requires a disk read.
This patch encodes i_generation in the inode meta data lvb, and removes the
value from the inode meta data lock name. This way, the read can be covered
by a lock, and at the same time we can distinguish between an up to date and
a stale LVB.
This will help cold-cache stat(2) performance in particular.
Since this patch changes the protocol version, we take the opportunity to do
a minor re-organization of two of the LVB fields.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
We can't use LKM_LOCAL for new dentry locks because an unlink and subsequent
re-create of a name/inode pair may result in the lock still being mastered
somewhere in the cluster.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Actually replace the vote calls with the new dentry operations. Make any
necessary adjustments to get the scheme to work.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Uptodate.c now knows about read-ahead buffers. Use some more aggressive
logic in ocfs2_readdir().
The two functions which currently use directory read-ahead are
ocfs2_find_entry() and ocfs2_readdir().
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Remove the redundant "i_nlink >= OCFS2_LINK_MAX" check and adds an unlinked
directory check in ocfs2_link().
Signed-off-by: Tiger Yang <tiger.yang@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
The dir nlink check in ocfs2_mknod() was being done outside of the cluster
lock, which means we could have been checking against a stale version of the
inode. Fix this by doing the check after the cluster lock instead.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>