Commit Graph

95 Commits

Author SHA1 Message Date
Eric Biggers
83e57e4790 fscrypt: optimize fscrypt_initialize()
fscrypt_initialize() is a "one-time init" function that is called
whenever the key is set up for any inode on any filesystem.  Make it
implement "one-time init" more efficiently by not taking a global mutex
in the "already initialized case" and doing fewer pointer dereferences.

Link: https://lore.kernel.org/r/20230406181245.36091-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2023-04-06 11:16:39 -07:00
Eric Biggers
41b2ad80fd fscrypt: use WARN_ON_ONCE instead of WARN_ON
As per Linus's suggestion
(https://lore.kernel.org/r/CAHk-=whefxRGyNGzCzG6BVeM=5vnvgb-XhSeFJVxJyAxAF8XRA@mail.gmail.com),
use WARN_ON_ONCE instead of WARN_ON.  This barely adds any extra
overhead, and it makes it so that if any of these ever becomes reachable
(they shouldn't, but that's the point), the logs can't be flooded.

Link: https://lore.kernel.org/r/20230320233943.73600-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2023-03-27 21:15:50 -07:00
Eric Biggers
097d7c1fcb fscrypt: clean up fscrypt_add_test_dummy_key()
Now that fscrypt_add_test_dummy_key() is only called by
setup_file_encryption_key() and not by the individual filesystems,
un-export it.  Also change its prototype to take the
fscrypt_key_specifier directly, as the caller already has it.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20230208062107.199831-6-ebiggers@kernel.org
2023-02-07 22:30:30 -08:00
Eric Biggers
60e463f0be fscrypt: add the test dummy encryption key on-demand
When the key for an inode is not found but the inode is using the
test_dummy_encryption policy, automatically add the
test_dummy_encryption key to the filesystem keyring.  This eliminates
the need for all the individual filesystems to do this at mount time,
which is a bit tricky to clean up from on failure.

Note: this covers the call to fscrypt_find_master_key() from inode key
setup, but not from the fscrypt ioctls.  So, this isn't *exactly* the
same as the key being present from the very beginning.  I think we can
tolerate that, though, since the inode key setup caller is the only one
that actually matters in the context of test_dummy_encryption.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20230208062107.199831-2-ebiggers@kernel.org
2023-02-07 22:30:30 -08:00
Eric Biggers
02aef42252 fscrypt: pass super_block to fscrypt_put_master_key_activeref()
As this code confused Linus [1], pass the super_block as an argument to
fscrypt_put_master_key_activeref().  This removes the need to have the
back-pointer ->mk_sb, so remove that.

[1] https://lore.kernel.org/linux-fscrypt/CAHk-=wgud4Bc_um+htgfagYpZAnOoCb3NUoW67hc9LhOKsMtJg@mail.gmail.com

Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20221110082942.351615-1-ebiggers@kernel.org
2022-11-15 17:19:29 -08:00
Eric Biggers
22e9947a4b fscrypt: stop holding extra request_queue references
Now that the fscrypt_master_key lifetime has been reworked to not be
subject to the quirks of the keyrings subsystem, blk_crypto_evict_key()
no longer gets called after the filesystem has already been unmounted.
Therefore, there is no longer any need to hold extra references to the
filesystem's request_queue(s).  (And these references didn't always do
their intended job anyway, as pinning a request_queue doesn't
necessarily pin the corresponding blk_crypto_profile.)

Stop taking these extra references.  Instead, just pass the super_block
to fscrypt_destroy_inline_crypt_key(), and use it to get the list of
block devices the key needs to be evicted from.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20220901193208.138056-3-ebiggers@kernel.org
2022-09-21 20:33:06 -07:00
Eric Biggers
d7e7b9af10 fscrypt: stop using keyrings subsystem for fscrypt_master_key
The approach of fs/crypto/ internally managing the fscrypt_master_key
structs as the payloads of "struct key" objects contained in a
"struct key" keyring has outlived its usefulness.  The original idea was
to simplify the code by reusing code from the keyrings subsystem.
However, several issues have arisen that can't easily be resolved:

- When a master key struct is destroyed, blk_crypto_evict_key() must be
  called on any per-mode keys embedded in it.  (This started being the
  case when inline encryption support was added.)  Yet, the keyrings
  subsystem can arbitrarily delay the destruction of keys, even past the
  time the filesystem was unmounted.  Therefore, currently there is no
  easy way to call blk_crypto_evict_key() when a master key is
  destroyed.  Currently, this is worked around by holding an extra
  reference to the filesystem's request_queue(s).  But it was overlooked
  that the request_queue reference is *not* guaranteed to pin the
  corresponding blk_crypto_profile too; for device-mapper devices that
  support inline crypto, it doesn't.  This can cause a use-after-free.

- When the last inode that was using an incompletely-removed master key
  is evicted, the master key removal is completed by removing the key
  struct from the keyring.  Currently this is done via key_invalidate().
  Yet, key_invalidate() takes the key semaphore.  This can deadlock when
  called from the shrinker, since in fscrypt_ioctl_add_key(), memory is
  allocated with GFP_KERNEL under the same semaphore.

- More generally, the fact that the keyrings subsystem can arbitrarily
  delay the destruction of keys (via garbage collection delay, or via
  random processes getting temporary key references) is undesirable, as
  it means we can't strictly guarantee that all secrets are ever wiped.

- Doing the master key lookups via the keyrings subsystem results in the
  key_permission LSM hook being called.  fscrypt doesn't want this, as
  all access control for encrypted files is designed to happen via the
  files themselves, like any other files.  The workaround which SELinux
  users are using is to change their SELinux policy to grant key search
  access to all domains.  This works, but it is an odd extra step that
  shouldn't really have to be done.

The fix for all these issues is to change the implementation to what I
should have done originally: don't use the keyrings subsystem to keep
track of the filesystem's fscrypt_master_key structs.  Instead, just
store them in a regular kernel data structure, and rework the reference
counting, locking, and lifetime accordingly.  Retain support for
RCU-mode key lookups by using a hash table.  Replace fscrypt_sb_free()
with fscrypt_sb_delete(), which releases the keys synchronously and runs
a bit earlier during unmount, so that block devices are still available.

A side effect of this patch is that neither the master keys themselves
nor the filesystem keyrings will be listed in /proc/keys anymore.
("Master key users" and the master key users keyrings will still be
listed.)  However, this was mostly an implementation detail, and it was
intended just for debugging purposes.  I don't know of anyone using it.

This patch does *not* change how "master key users" (->mk_users) works;
that still uses the keyrings subsystem.  That is still needed for key
quotas, and changing that isn't necessary to solve the issues listed
above.  If we decide to change that too, it would be a separate patch.

I've marked this as fixing the original commit that added the fscrypt
keyring, but as noted above the most important issue that this patch
fixes wasn't introduced until the addition of inline encryption support.

Fixes: 22d94f493b ("fscrypt: add FS_IOC_ADD_ENCRYPTION_KEY ioctl")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20220901193208.138056-2-ebiggers@kernel.org
2022-09-21 20:33:06 -07:00
Linus Torvalds
786da5da56 We have a good pile of various fixes and cleanups from Xiubo, Jeff,
Luis and others, almost exclusively in the filesystem.  Several patches
 touch files outside of our normal purview to set the stage for bringing
 in Jeff's long awaited ceph+fscrypt series in the near future.  All of
 them have appropriate acks and sat in linux-next for a while.
 -----BEGIN PGP SIGNATURE-----
 
 iQFHBAABCAAxFiEEydHwtzie9C7TfviiSn/eOAIR84sFAmL1HF8THGlkcnlvbW92
 QGdtYWlsLmNvbQAKCRBKf944AhHziwOuB/97JKHFuOlP1HrD6fYe5a0ul9zC9VG4
 57XPDNqG2PSmfXCjvZhyVU4n53sUlJTqzKDSTXydoPCMQjtyHvysA6gEvcgUJFPd
 PHaZDCd9TmqX8my67NiTK70RVpNR9BujJMVMbOfM+aaisl0K6WQbitO+BfhEiJcK
 QStdKm5lPyf02ESH9jF+Ga0DpokARaLbtDFH7975owxske6gWuoPBCJNrkMooKiX
 LjgEmNgH1F/sJSZXftmKdlw9DtGBFaLQBdfbfSB5oVPRb7chI7xBeraNr6Od3rls
 o4davbFkcsOr+s6LJPDH2BJobmOg+HoMoma7ezspF7ZqBF4Uipv5j3VC
 =1427
 -----END PGP SIGNATURE-----

Merge tag 'ceph-for-5.20-rc1' of https://github.com/ceph/ceph-client

Pull ceph updates from Ilya Dryomov:
 "We have a good pile of various fixes and cleanups from Xiubo, Jeff,
  Luis and others, almost exclusively in the filesystem.

  Several patches touch files outside of our normal purview to set the
  stage for bringing in Jeff's long awaited ceph+fscrypt series in the
  near future. All of them have appropriate acks and sat in linux-next
  for a while"

* tag 'ceph-for-5.20-rc1' of https://github.com/ceph/ceph-client: (27 commits)
  libceph: clean up ceph_osdc_start_request prototype
  libceph: fix ceph_pagelist_reserve() comment typo
  ceph: remove useless check for the folio
  ceph: don't truncate file in atomic_open
  ceph: make f_bsize always equal to f_frsize
  ceph: flush the dirty caps immediatelly when quota is approaching
  libceph: print fsid and epoch with osd id
  libceph: check pointer before assigned to "c->rules[]"
  ceph: don't get the inline data for new creating files
  ceph: update the auth cap when the async create req is forwarded
  ceph: make change_auth_cap_ses a global symbol
  ceph: fix incorrect old_size length in ceph_mds_request_args
  ceph: switch back to testing for NULL folio->private in ceph_dirty_folio
  ceph: call netfs_subreq_terminated with was_async == false
  ceph: convert to generic_file_llseek
  ceph: fix the incorrect comment for the ceph_mds_caps struct
  ceph: don't leak snap_rwsem in handle_cap_grant
  ceph: prevent a client from exceeding the MDS maximum xattr size
  ceph: choose auth MDS for getxattr with the Xs caps
  ceph: add session already open notify support
  ...
2022-08-11 12:41:07 -07:00
Jeff Layton
d3e94fdc4e fscrypt: export fscrypt_fname_encrypt and fscrypt_fname_encrypted_size
For ceph, we want to use our own scheme for handling filenames that are
are longer than NAME_MAX after encryption and Base64 encoding. This
allows us to have a consistent view of the encrypted filenames for
clients that don't support fscrypt and clients that do but that don't
have the key.

Currently, fs/crypto only supports encrypting filenames using
fscrypt_setup_filename, but that also handles encoding nokey names. Ceph
can't use that because it handles nokey names in a different way.

Export fscrypt_fname_encrypt. Rename fscrypt_fname_encrypted_size to
__fscrypt_fname_encrypted_size and add a new wrapper called
fscrypt_fname_encrypted_size that takes an inode argument rather than a
pointer to a fscrypt_policy union.

Signed-off-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Xiubo Li <xiubli@redhat.com>
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
2022-08-03 00:54:11 +02:00
Nathan Huckleberry
6b2a51ff03 fscrypt: Add HCTR2 support for filename encryption
HCTR2 is a tweakable, length-preserving encryption mode that is intended
for use on CPUs with dedicated crypto instructions.  HCTR2 has the
property that a bitflip in the plaintext changes the entire ciphertext.
This property fixes a known weakness with filename encryption: when two
filenames in the same directory share a prefix of >= 16 bytes, with
AES-CTS-CBC their encrypted filenames share a common substring, leaking
information.  HCTR2 does not have this problem.

More information on HCTR2 can be found here: "Length-preserving
encryption with HCTR2": https://eprint.iacr.org/2021/1441.pdf

Signed-off-by: Nathan Huckleberry <nhuck@google.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-06-10 16:40:18 +08:00
Eric Biggers
218d921b58 fscrypt: add new helper functions for test_dummy_encryption
Unfortunately the design of fscrypt_set_test_dummy_encryption() doesn't
work properly for the new mount API, as it combines too many steps into
one function:

  - Parse the argument to test_dummy_encryption
  - Check the setting against the filesystem instance
  - Apply the setting to the filesystem instance

The new mount API has split these into separate steps.  ext4 partially
worked around this by duplicating some of the logic, but it still had
some bugs.  To address this, add some new helper functions that split up
the steps of fscrypt_set_test_dummy_encryption():

  - fscrypt_parse_test_dummy_encryption()
  - fscrypt_dummy_policies_equal()
  - fscrypt_add_test_dummy_key()

While we're add it, also add a function fscrypt_is_dummy_policy_set()
which will be useful to avoid some #ifdef's.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20220501050857.538984-5-ebiggers@kernel.org
2022-05-09 16:18:54 -07:00
Eric Biggers
bfb9700bdf fscrypt: factor out fscrypt_policy_to_key_spec()
Factor out a function that builds the fscrypt_key_specifier for an
fscrypt_policy.  Before this was only needed when finding the key for a
file, but now it will also be needed for test_dummy_encryption support.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20220501050857.538984-4-ebiggers@kernel.org
2022-05-09 16:18:54 -07:00
Eric Biggers
a7a5bc5fe8 fscrypt: log when starting to use inline encryption
When inline encryption is used, the usual message "fscrypt: AES-256-XTS
using implementation <impl>" doesn't appear in the kernel log.  Add a
similar message for the blk-crypto case that indicates that inline
encryption was used, and whether blk-crypto-fallback was used or not.
This can be useful for debugging performance problems.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20220414053415.158986-1-ebiggers@kernel.org
2022-04-13 22:35:25 -07:00
Eric Biggers
b7e072f9b7 fscrypt: improve a few comments
Improve a few comments.  These were extracted from the patch
"fscrypt: add support for hardware-wrapped keys"
(https://lore.kernel.org/r/20211021181608.54127-4-ebiggers@kernel.org).

Link: https://lore.kernel.org/r/20211026021042.6581-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2021-10-25 19:11:50 -07:00
Eric Biggers
7f595d6a6c fscrypt: allow 256-bit master keys with AES-256-XTS
fscrypt currently requires a 512-bit master key when AES-256-XTS is
used, since AES-256-XTS keys are 512-bit and fscrypt requires that the
master key be at least as long any key that will be derived from it.

However, this is overly strict because AES-256-XTS doesn't actually have
a 512-bit security strength, but rather 256-bit.  The fact that XTS
takes twice the expected key size is a quirk of the XTS mode.  It is
sufficient to use 256 bits of entropy for AES-256-XTS, provided that it
is first properly expanded into a 512-bit key, which HKDF-SHA512 does.

Therefore, relax the check of the master key size to use the security
strength of the derived key rather than the size of the derived key
(except for v1 encryption policies, which don't use HKDF).

Besides making things more flexible for userspace, this is needed in
order for the use of a KDF which only takes a 256-bit key to be
introduced into the fscrypt key hierarchy.  This will happen with
hardware-wrapped keys support, as all known hardware which supports that
feature uses an SP800-108 KDF using AES-256-CMAC, so the wrapped keys
are wrapped 256-bit AES keys.  Moreover, there is interest in fscrypt
supporting the same type of AES-256-CMAC based KDF in software as an
alternative to HKDF-SHA512.  There is no security problem with such
features, so fix the key length check to work properly with them.

Reviewed-by: Paul Crowley <paulcrowley@google.com>
Link: https://lore.kernel.org/r/20210921030303.5598-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2021-09-22 11:29:38 -07:00
Linus Torvalds
ff49c86f27 f2fs-for-5.11-rc1
In this round, we've made more work into per-file compression support. For
 example, F2FS_IOC_GET|SET_COMPRESS_OPTION provides a way to change the
 algorithm or cluster size per file. F2FS_IOC_COMPRESS|DECOMPRESS_FILE provides
 a way to compress and decompress the existing normal files manually along with
 a new mount option, compress_mode=fs|user, which can control who compresses the
 data. Chao also added a checksum feature with a mount option so that we are able
 to detect any corrupted cluster. In addition, Daniel contributed casefolding
 with encryption patch, which will be used for Android devices.
 
 Enhancement:
  - add ioctls and mount option to manage per-file compression feature
  - support casefolding with encryption
  - support checksum for compressed cluster
  - avoid IO starvation by replacing mutex with rwsem
  - add sysfs, max_io_bytes, to control max bio size
 
 Bug fix:
  - fix use-after-free issue when compression and fsverity are enabled
  - fix consistency corruption during fault injection test
  - fix data offset for lseek
  - get rid of buffer_head which has 32bits limit in fiemap
  - fix some bugs in multi-partitions support
  - fix nat entry count calculation in shrinker
  - fix some stat information
 
 And, we've refactored some logics and fix minor bugs as well.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE00UqedjCtOrGVvQiQBSofoJIUNIFAl/a8ywACgkQQBSofoJI
 UNLa2RAAjK+6tOs+NuYx2w9SegghKxwCg4Mb362BMdaAGx6GzMqAkCiVdujuoz/r
 +wy8sdqO9QE7723ZDNsebNMLRnkNPHnpneSL2p6OsSLJrD3ORTELVRrzNlkemvnK
 rRHZyYnNJvQQnD4uU7ABvROKsIDw/nCfcFvzHmLIgEw8EHO0W4n6fTtBdTwXv1qi
 N3qXhGuQldonR9XICuGjzj7wh17n9ua6Mr12XX3Ok38giMcZb9KFBwgvlhl35cxt
 htEmUpxWD3NTSw6zJmV4VAiajpiIkW6QRQuVA1nzdLZK644gaJMhM1EUsOnZhfDl
 wX0ZtKoNkXxb0glD34O3aYqeHJ3tHWgPmmpVm9TECJP9A/X7kmEHgQYpH/eJ9I7d
 tk51Uz28Mz1RShXU4i5RyKZeeoNTLiVlqiC95E2cnq4C1tLOJyI00N9AinrLzvR+
 fqUrAwCrBpiYX63mWKYwq7GWxWwp4+PY09kyIZxxJiWhTE/St0bRx2bQL8zA8C6J
 Rtxl+QWyQhkFbNu8fAukLFAhC6mqX/FKpXvUqRehBnHRvMWBiVZG0//eOPQLk71u
 qsdCgYuEVcg3itDQrZvmsjxi4Pb5E9mNr0s5oC4I2WvBPMheD4esSyG7cKDN0qfS
 3FFHlRYLOvnjPMLnKTmZXjFvFyHR8mwsD4Z83MeSrqYnWC14tFY=
 =KneU
 -----END PGP SIGNATURE-----

Merge tag 'f2fs-for-5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs

Pull f2fs updates from Jaegeuk Kim:
 "In this round, we've made more work into per-file compression support.

  For example, F2FS_IOC_GET | SET_COMPRESS_OPTION provides a way to
  change the algorithm or cluster size per file. F2FS_IOC_COMPRESS |
  DECOMPRESS_FILE provides a way to compress and decompress the existing
  normal files manually.

  There is also a new mount option, compress_mode=fs|user, which can
  control who compresses the data.

  Chao also added a checksum feature with a mount option so that
  we are able to detect any corrupted cluster.

  In addition, Daniel contributed casefolding with encryption patch,
  which will be used for Android devices.

  Summary:

  Enhancements:
   - add ioctls and mount option to manage per-file compression feature
   - support casefolding with encryption
   - support checksum for compressed cluster
   - avoid IO starvation by replacing mutex with rwsem
   - add sysfs, max_io_bytes, to control max bio size

  Bug fixes:
   - fix use-after-free issue when compression and fsverity are enabled
   - fix consistency corruption during fault injection test
   - fix data offset for lseek
   - get rid of buffer_head which has 32bits limit in fiemap
   - fix some bugs in multi-partitions support
   - fix nat entry count calculation in shrinker
   - fix some stat information

  And, we've refactored some logics and fix minor bugs as well"

* tag 'f2fs-for-5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs: (36 commits)
  f2fs: compress: fix compression chksum
  f2fs: fix shift-out-of-bounds in sanity_check_raw_super()
  f2fs: fix race of pending_pages in decompression
  f2fs: fix to account inline xattr correctly during recovery
  f2fs: inline: fix wrong inline inode stat
  f2fs: inline: correct comment in f2fs_recover_inline_data
  f2fs: don't check PAGE_SIZE again in sanity_check_raw_super()
  f2fs: convert to F2FS_*_INO macro
  f2fs: introduce max_io_bytes, a sysfs entry, to limit bio size
  f2fs: don't allow any writes on readonly mount
  f2fs: avoid race condition for shrinker count
  f2fs: add F2FS_IOC_DECOMPRESS_FILE and F2FS_IOC_COMPRESS_FILE
  f2fs: add compress_mode mount option
  f2fs: Remove unnecessary unlikely()
  f2fs: init dirty_secmap incorrectly
  f2fs: remove buffer_head which has 32bits limit
  f2fs: fix wrong block count instead of bytes
  f2fs: use new conversion functions between blks and bytes
  f2fs: rename logical_to_blk and blk_to_logical
  f2fs: fix kbytes written stat for multi-device case
  ...
2020-12-17 11:18:00 -08:00
Daniel Rosenberg
bb9cd9106b fscrypt: Have filesystems handle their d_ops
This shifts the responsibility of setting up dentry operations from
fscrypt to the individual filesystems, allowing them to have their own
operations while still setting fscrypt's d_revalidate as appropriate.

Most filesystems can just use generic_set_encrypted_ci_d_ops, unless
they have their own specific dentry operations as well. That operation
will set the minimal d_ops required under the circumstances.

Since the fscrypt d_ops are set later on, we must set all d_ops there,
since we cannot adjust those later on. This should not result in any
change in behavior.

Signed-off-by: Daniel Rosenberg <drosen@google.com>
Acked-by: Theodore Ts'o <tytso@mit.edu>
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2020-12-02 22:00:21 -08:00
Eric Biggers
a14d0b6764 fscrypt: allow deleting files with unsupported encryption policy
Currently it's impossible to delete files that use an unsupported
encryption policy, as the kernel will just return an error when
performing any operation on the top-level encrypted directory, even just
a path lookup into the directory or opening the directory for readdir.

More specifically, this occurs in any of the following cases:

- The encryption context has an unrecognized version number.  Current
  kernels know about v1 and v2, but there could be more versions in the
  future.

- The encryption context has unrecognized encryption modes
  (FSCRYPT_MODE_*) or flags (FSCRYPT_POLICY_FLAG_*), an unrecognized
  combination of modes, or reserved bits set.

- The encryption key has been added and the encryption modes are
  recognized but aren't available in the crypto API -- for example, a
  directory is encrypted with FSCRYPT_MODE_ADIANTUM but the kernel
  doesn't have CONFIG_CRYPTO_ADIANTUM enabled.

It's desirable to return errors for most operations on files that use an
unsupported encryption policy, but the current behavior is too strict.
We need to allow enough to delete files, so that people can't be stuck
with undeletable files when downgrading kernel versions.  That includes
allowing directories to be listed and allowing dentries to be looked up.

Fix this by modifying the key setup logic to treat an unsupported
encryption policy in the same way as "key unavailable" in the cases that
are required for a recursive delete to work: preparing for a readdir or
a dentry lookup, revalidating a dentry, or checking whether an inode has
the same encryption policy as its parent directory.

Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Link: https://lore.kernel.org/r/20201203022041.230976-10-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-12-02 18:25:01 -08:00
Eric Biggers
5b421f0880 fscrypt: unexport fscrypt_get_encryption_info()
Now that fscrypt_get_encryption_info() is only called from files in
fs/crypto/ (due to all key setup now being handled by higher-level
helper functions instead of directly by filesystems), unexport it and
move its declaration to fscrypt_private.h.

Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Link: https://lore.kernel.org/r/20201203022041.230976-9-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-12-02 18:25:01 -08:00
Eric Biggers
de3cdc6e75 fscrypt: move fscrypt_require_key() to fscrypt_private.h
fscrypt_require_key() is now only used by files in fs/crypto/.  So
reduce its visibility to fscrypt_private.h.  This is also a prerequsite
for unexporting fscrypt_get_encryption_info().

Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Link: https://lore.kernel.org/r/20201203022041.230976-8-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-12-02 18:25:01 -08:00
Eric Biggers
4a4b8721f1 fscrypt: simplify master key locking
The stated reasons for separating fscrypt_master_key::mk_secret_sem from
the standard semaphore contained in every 'struct key' no longer apply.

First, due to commit a992b20cd4 ("fscrypt: add
fscrypt_prepare_new_inode() and fscrypt_set_context()"),
fscrypt_get_encryption_info() is no longer called from within a
filesystem transaction.

Second, due to commit d3ec10aa95 ("KEYS: Don't write out to userspace
while holding key semaphore"), the semaphore for the "keyring" key type
no longer ranks above page faults.

That leaves performance as the only possible reason to keep the separate
mk_secret_sem.  Specifically, having mk_secret_sem reduces the
contention between setup_file_encryption_key() and
FS_IOC_{ADD,REMOVE}_ENCRYPTION_KEY.  However, these ioctls aren't
executed often, so this doesn't seem to be worth the extra complexity.

Therefore, simplify the locking design by just using key->sem instead of
mk_secret_sem.

Link: https://lore.kernel.org/r/20201117032626.320275-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-11-24 15:29:47 -08:00
Eric Biggers
3ceb6543e9 fscrypt: remove kernel-internal constants from UAPI header
There isn't really any valid reason to use __FSCRYPT_MODE_MAX or
FSCRYPT_POLICY_FLAGS_VALID in a userspace program.  These constants are
only meant to be used by the kernel internally, and they are defined in
the UAPI header next to the mode numbers and flags only so that kernel
developers don't forget to update them when adding new modes or flags.

In https://lkml.kernel.org/r/20201005074133.1958633-2-satyat@google.com
there was an example of someone wanting to use __FSCRYPT_MODE_MAX in a
user program, and it was wrong because the program would have broken if
__FSCRYPT_MODE_MAX were ever increased.  So having this definition
available is harmful.  FSCRYPT_POLICY_FLAGS_VALID has the same problem.

So, remove these definitions from the UAPI header.  Replace
FSCRYPT_POLICY_FLAGS_VALID with just listing the valid flags explicitly
in the one kernel function that needs it.  Move __FSCRYPT_MODE_MAX to
fscrypt_private.h, remove the double underscores (which were only
present to discourage use by userspace), and add a BUILD_BUG_ON() and
comments to (hopefully) ensure it is kept in sync.

Keep the old name FS_POLICY_FLAGS_VALID, since it's been around for
longer and there's a greater chance that removing it would break source
compatibility with some program.  Indeed, mtd-utils is using it in
an #ifdef, and removing it would introduce compiler warnings (about
FS_POLICY_FLAGS_PAD_* being redefined) into the mtd-utils build.
However, reduce its value to 0x07 so that it only includes the flags
with old names (the ones present before Linux 5.4), and try to make it
clear that it's now "frozen" and no new flags should be added to it.

Fixes: 2336d0deb2 ("fscrypt: use FSCRYPT_ prefix for uapi constants")
Cc: <stable@vger.kernel.org> # v5.4+
Link: https://lore.kernel.org/r/20201024005132.495952-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-11-16 11:41:12 -08:00
Eric Biggers
ac4acb1f4b fscrypt: handle test_dummy_encryption in more logical way
The behavior of the test_dummy_encryption mount option is that when a
new file (or directory or symlink) is created in an unencrypted
directory, it's automatically encrypted using a dummy encryption policy.
That's it; in particular, the encryption (or lack thereof) of existing
files (or directories or symlinks) doesn't change.

Unfortunately the implementation of test_dummy_encryption is a bit weird
and confusing.  When test_dummy_encryption is enabled and a file is
being created in an unencrypted directory, we set up an encryption key
(->i_crypt_info) for the directory.  This isn't actually used to do any
encryption, however, since the directory is still unencrypted!  Instead,
->i_crypt_info is only used for inheriting the encryption policy.

One consequence of this is that the filesystem ends up providing a
"dummy context" (policy + nonce) instead of a "dummy policy".  In
commit ed318a6cc0 ("fscrypt: support test_dummy_encryption=v2"), I
mistakenly thought this was required.  However, actually the nonce only
ends up being used to derive a key that is never used.

Another consequence of this implementation is that it allows for
'inode->i_crypt_info != NULL && !IS_ENCRYPTED(inode)', which is an edge
case that can be forgotten about.  For example, currently
FS_IOC_GET_ENCRYPTION_POLICY on an unencrypted directory may return the
dummy encryption policy when the filesystem is mounted with
test_dummy_encryption.  That seems like the wrong thing to do, since
again, the directory itself is not actually encrypted.

Therefore, switch to a more logical and maintainable implementation
where the dummy encryption policy inheritance is done without setting up
keys for unencrypted directories.  This involves:

- Adding a function fscrypt_policy_to_inherit() which returns the
  encryption policy to inherit from a directory.  This can be a real
  policy, a dummy policy, or no policy.

- Replacing struct fscrypt_dummy_context, ->get_dummy_context(), etc.
  with struct fscrypt_dummy_policy, ->get_dummy_policy(), etc.

- Making fscrypt_fname_encrypted_size() take an fscrypt_policy instead
  of an inode.

Acked-by: Jaegeuk Kim <jaegeuk@kernel.org>
Acked-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20200917041136.178600-13-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-09-22 06:48:49 -07:00
Eric Biggers
c7f0207b61 fscrypt: make "#define fscrypt_policy" user-only
The fscrypt UAPI header defines fscrypt_policy to fscrypt_policy_v1,
for source compatibility with old userspace programs.

Internally, the kernel doesn't want that compatibility definition.
Instead, fscrypt_private.h #undefs it and re-defines it to a union.

That works for now.  However, in order to add
fscrypt_operations::get_dummy_policy(), we'll need to forward declare
'union fscrypt_policy' in include/linux/fscrypt.h.  That would cause
build errors because "fscrypt_policy" is used in ioctl numbers.

To avoid this, modify the UAPI header to make the fscrypt_policy
compatibility definition conditional on !__KERNEL__, and make the ioctls
use fscrypt_policy_v1 instead of fscrypt_policy.

Note that this doesn't change the actual ioctl numbers.

Acked-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20200917041136.178600-11-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-09-22 06:48:44 -07:00
Eric Biggers
a992b20cd4 fscrypt: add fscrypt_prepare_new_inode() and fscrypt_set_context()
fscrypt_get_encryption_info() is intended to be GFP_NOFS-safe.  But
actually it isn't, since it uses functions like crypto_alloc_skcipher()
which aren't GFP_NOFS-safe, even when called under memalloc_nofs_save().
Therefore it can deadlock when called from a context that needs
GFP_NOFS, e.g. during an ext4 transaction or between f2fs_lock_op() and
f2fs_unlock_op().  This happens when creating a new encrypted file.

We can't fix this by just not setting up the key for new inodes right
away, since new symlinks need their key to encrypt the symlink target.

So we need to set up the new inode's key before starting the
transaction.  But just calling fscrypt_get_encryption_info() earlier
doesn't work, since it assumes the encryption context is already set,
and the encryption context can't be set until the transaction.

The recently proposed fscrypt support for the ceph filesystem
(https://lkml.kernel.org/linux-fscrypt/20200821182813.52570-1-jlayton@kernel.org/T/#u)
will have this same ordering problem too, since ceph will need to
encrypt new symlinks before setting their encryption context.

Finally, f2fs can deadlock when the filesystem is mounted with
'-o test_dummy_encryption' and a new file is created in an existing
unencrypted directory.  Similarly, this is caused by holding too many
locks when calling fscrypt_get_encryption_info().

To solve all these problems, add new helper functions:

- fscrypt_prepare_new_inode() sets up a new inode's encryption key
  (fscrypt_info), using the parent directory's encryption policy and a
  new random nonce.  It neither reads nor writes the encryption context.

- fscrypt_set_context() persists the encryption context of a new inode,
  using the information from the fscrypt_info already in memory.  This
  replaces fscrypt_inherit_context().

Temporarily keep fscrypt_inherit_context() around until all filesystems
have been converted to use fscrypt_set_context().

Acked-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20200917041136.178600-2-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-09-22 06:48:29 -07:00
Eric Biggers
97c6327f71 fscrypt: use smp_load_acquire() for fscrypt_prepared_key
Normally smp_store_release() or cmpxchg_release() is paired with
smp_load_acquire().  Sometimes smp_load_acquire() can be replaced with
the more lightweight READ_ONCE().  However, for this to be safe, all the
published memory must only be accessed in a way that involves the
pointer itself.  This may not be the case if allocating the object also
involves initializing a static or global variable, for example.

fscrypt_prepared_key includes a pointer to a crypto_skcipher object,
which is internal to and is allocated by the crypto subsystem.  By using
READ_ONCE() for it, we're relying on internal implementation details of
the crypto subsystem.

Remove this fragile assumption by using smp_load_acquire() instead.

(Note: I haven't seen any real-world problems here.  This change is just
fixing the code to be guaranteed correct and less fragile.)

Fixes: 5fee36095c ("fscrypt: add inline encryption support")
Cc: Satya Tangirala <satyat@google.com>
Link: https://lore.kernel.org/r/20200721225920.114347-3-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-21 16:02:13 -07:00
Eric Biggers
1d6217a4f9 fscrypt: rename FS_KEY_DERIVATION_NONCE_SIZE
The name "FS_KEY_DERIVATION_NONCE_SIZE" is a bit outdated since due to
the addition of FSCRYPT_POLICY_FLAG_DIRECT_KEY, the file nonce may now
be used as a tweak instead of for key derivation.  Also, we're now
prefixing the fscrypt constants with "FSCRYPT_" instead of "FS_".

Therefore, rename this constant to FSCRYPT_FILE_NONCE_SIZE.

Link: https://lore.kernel.org/r/20200708215722.147154-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-20 17:26:33 -07:00
Eric Biggers
e455de313e fscrypt: add comments that describe the HKDF info strings
Each HKDF context byte is associated with a specific format of the
remaining part of the application-specific info string.  Add comments so
that it's easier to keep track of what these all are.

Link: https://lore.kernel.org/r/20200708215529.146890-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-20 17:26:32 -07:00
Satya Tangirala
5fee36095c fscrypt: add inline encryption support
Add support for inline encryption to fs/crypto/.  With "inline
encryption", the block layer handles the decryption/encryption as part
of the bio, instead of the filesystem doing the crypto itself via
Linux's crypto API. This model is needed in order to take advantage of
the inline encryption hardware present on most modern mobile SoCs.

To use inline encryption, the filesystem needs to be mounted with
'-o inlinecrypt'. Blk-crypto will then be used instead of the traditional
filesystem-layer crypto whenever possible to encrypt the contents
of any encrypted files in that filesystem. Fscrypt still provides the key
and IV to use, and the actual ciphertext on-disk is still the same;
therefore it's testable using the existing fscrypt ciphertext verification
tests.

Note that since blk-crypto has a fallback to Linux's crypto API, and
also supports all the encryption modes currently supported by fscrypt,
this feature is usable and testable even without actual inline
encryption hardware.

Per-filesystem changes will be needed to set encryption contexts when
submitting bios and to implement the 'inlinecrypt' mount option.  This
patch just adds the common code.

Signed-off-by: Satya Tangirala <satyat@google.com>
Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com
Co-developed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-08 10:29:30 -07:00
Eric Biggers
e3b1078bed fscrypt: add support for IV_INO_LBLK_32 policies
The eMMC inline crypto standard will only specify 32 DUN bits (a.k.a. IV
bits), unlike UFS's 64.  IV_INO_LBLK_64 is therefore not applicable, but
an encryption format which uses one key per policy and permits the
moving of encrypted file contents (as f2fs's garbage collector requires)
is still desirable.

To support such hardware, add a new encryption format IV_INO_LBLK_32
that makes the best use of the 32 bits: the IV is set to
'SipHash-2-4(inode_number) + file_logical_block_number mod 2^32', where
the SipHash key is derived from the fscrypt master key.  We hash only
the inode number and not also the block number, because we need to
maintain contiguity of DUNs to merge bios.

Unlike with IV_INO_LBLK_64, with this format IV reuse is possible; this
is unavoidable given the size of the DUN.  This means this format should
only be used where the requirements of the first paragraph apply.
However, the hash spreads out the IVs in the whole usable range, and the
use of a keyed hash makes it difficult for an attacker to determine
which files use which IVs.

Besides the above differences, this flag works like IV_INO_LBLK_64 in
that on ext4 it is only allowed if the stable_inodes feature has been
enabled to prevent inode numbers and the filesystem UUID from changing.

Link: https://lore.kernel.org/r/20200515204141.251098-1-ebiggers@kernel.org
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Paul Crowley <paulcrowley@google.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-05-19 09:34:18 -07:00
Eric Biggers
cdeb21da17 fscrypt: add fscrypt_add_test_dummy_key()
Currently, the test_dummy_encryption mount option (which is used for
encryption I/O testing with xfstests) uses v1 encryption policies, and
it relies on userspace inserting a test key into the session keyring.

We need test_dummy_encryption to support v2 encryption policies too.
Requiring userspace to add the test key doesn't work well with v2
policies, since v2 policies only support the filesystem keyring (not the
session keyring), and keys in the filesystem keyring are lost when the
filesystem is unmounted.  Hooking all test code that unmounts and
re-mounts the filesystem would be difficult.

Instead, let's make the filesystem automatically add the test key to its
keyring when test_dummy_encryption is enabled.

That puts the responsibility for choosing the test key on the kernel.
We could just hard-code a key.  But out of paranoia, let's first try
using a per-boot random key, to prevent this code from being misused.
A per-boot key will work as long as no one expects dummy-encrypted files
to remain accessible after a reboot.  (gce-xfstests doesn't.)

Therefore, this patch adds a function fscrypt_add_test_dummy_key() which
implements the above.  The next patch will use it.

Link: https://lore.kernel.org/r/20200512233251.118314-3-ebiggers@kernel.org
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-05-15 13:51:45 -07:00
Eric Biggers
607009020a fscrypt: remove unnecessary extern keywords
Remove the unnecessary 'extern' keywords from function declarations.
This makes it so that we don't have a mix of both styles, so it won't be
ambiguous what to use in new fscrypt patches.  This also makes the code
shorter and matches the 'checkpatch --strict' expectation.

Link: https://lore.kernel.org/r/20200511191358.53096-4-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-05-12 16:37:17 -07:00
Eric Biggers
d2fe97545a fscrypt: fix all kerneldoc warnings
Fix all kerneldoc warnings in fs/crypto/ and include/linux/fscrypt.h.
Most of these were due to missing documentation for function parameters.

Detected with:

    scripts/kernel-doc -v -none fs/crypto/*.{c,h} include/linux/fscrypt.h

This cleanup makes it possible to check new patches for kerneldoc
warnings without having to filter out all the existing ones.

For consistency, also adjust some function "brief descriptions" to
include the parentheses and to wrap at 80 characters.  (The latter
matches the checkpatch expectation.)

Link: https://lore.kernel.org/r/20200511191358.53096-2-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-05-12 16:37:17 -07:00
Eric Biggers
e98ad46475 fscrypt: add FS_IOC_GET_ENCRYPTION_NONCE ioctl
Add an ioctl FS_IOC_GET_ENCRYPTION_NONCE which retrieves the nonce from
an encrypted file or directory.  The nonce is the 16-byte random value
stored in the inode's encryption xattr.  It is normally used together
with the master key to derive the inode's actual encryption key.

The nonces are needed by automated tests that verify the correctness of
the ciphertext on-disk.  Except for the IV_INO_LBLK_64 case, there's no
way to replicate a file's ciphertext without knowing that file's nonce.

The nonces aren't secret, and the existing ciphertext verification tests
in xfstests retrieve them from disk using debugfs or dump.f2fs.  But in
environments that lack these debugging tools, getting the nonces by
manually parsing the filesystem structure would be very hard.

To make this important type of testing much easier, let's just add an
ioctl that retrieves the nonce.

Link: https://lore.kernel.org/r/20200314205052.93294-2-ebiggers@kernel.org
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-03-19 21:56:54 -07:00
Eric Biggers
f592efe735 fscrypt: clarify what is meant by a per-file key
Now that there's sometimes a second type of per-file key (the dirhash
key), clarify some function names, macros, and documentation that
specifically deal with per-file *encryption* keys.

Link: https://lore.kernel.org/r/20200120223201.241390-4-ebiggers@kernel.org
Reviewed-by: Daniel Rosenberg <drosen@google.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-01-22 14:49:56 -08:00
Daniel Rosenberg
aa408f835d fscrypt: derive dirhash key for casefolded directories
When we allow indexed directories to use both encryption and
casefolding, for the dirhash we can't just hash the ciphertext filenames
that are stored on-disk (as is done currently) because the dirhash must
be case insensitive, but the stored names are case-preserving.  Nor can
we hash the plaintext names with an unkeyed hash (or a hash keyed with a
value stored on-disk like ext4's s_hash_seed), since that would leak
information about the names that encryption is meant to protect.

Instead, if we can accept a dirhash that's only computable when the
fscrypt key is available, we can hash the plaintext names with a keyed
hash using a secret key derived from the directory's fscrypt master key.
We'll use SipHash-2-4 for this purpose.

Prepare for this by deriving a SipHash key for each casefolded encrypted
directory.  Make sure to handle deriving the key not only when setting
up the directory's fscrypt_info, but also in the case where the casefold
flag is enabled after the fscrypt_info was already set up.  (We could
just always derive the key regardless of casefolding, but that would
introduce unnecessary overhead for people not using casefolding.)

Signed-off-by: Daniel Rosenberg <drosen@google.com>
[EB: improved commit message, updated fscrypt.rst, squashed with change
 that avoids unnecessarily deriving the key, and many other cleanups]
Link: https://lore.kernel.org/r/20200120223201.241390-3-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-01-22 14:49:55 -08:00
Eric Biggers
1b3b827ee5 fscrypt: add "fscrypt_" prefix to fname_encrypt()
fname_encrypt() is a global function, due to being used in both fname.c
and hooks.c.  So it should be prefixed with "fscrypt_", like all the
other global functions in fs/crypto/.

Link: https://lore.kernel.org/r/20200120071736.45915-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-01-22 14:45:10 -08:00
Eric Biggers
b7e8d3d27e fscrypt: remove fscrypt_is_direct_key_policy()
fscrypt_is_direct_key_policy() is no longer used, so remove it.

Link: https://lore.kernel.org/r/20191209211829.239800-5-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-12-31 10:33:50 -06:00
Eric Biggers
ef5b18b00b fscrypt: move fscrypt_valid_enc_modes() to policy.c
fscrypt_valid_enc_modes() is only used by policy.c, so move it to there.

Also adjust the order of the checks to be more natural, matching the
numerical order of the constants and also keeping AES-256 (the
recommended default) first in the list.

No change in behavior.

Link: https://lore.kernel.org/r/20191209211829.239800-4-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-12-31 10:33:50 -06:00
Eric Biggers
85af90e57c fscrypt: check for appropriate use of DIRECT_KEY flag earlier
FSCRYPT_POLICY_FLAG_DIRECT_KEY is currently only allowed with Adiantum
encryption.  But FS_IOC_SET_ENCRYPTION_POLICY allowed it in combination
with other encryption modes, and an error wasn't reported until later
when the encrypted directory was actually used.

Fix it to report the error earlier by validating the correct use of the
DIRECT_KEY flag in fscrypt_supported_policy(), similar to how we
validate the IV_INO_LBLK_64 flag.

Link: https://lore.kernel.org/r/20191209211829.239800-3-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-12-31 10:33:50 -06:00
Eric Biggers
2ebdef6d8c fscrypt: move fscrypt_d_revalidate() to fname.c
fscrypt_d_revalidate() and fscrypt_d_ops really belong in fname.c, since
they're specific to filenames encryption.  crypto.c is for contents
encryption and general fs/crypto/ initialization and utilities.

Link: https://lore.kernel.org/r/20191209204359.228544-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-12-31 10:33:50 -06:00
Eric Biggers
8a4ab0b866 fscrypt: constify inode parameter to filename encryption functions
Constify the struct inode parameter to fscrypt_fname_disk_to_usr() and
the other filename encryption functions so that users don't have to pass
in a non-const inode when they are dealing with a const one, as in [1].

[1] https://lkml.kernel.org/linux-ext4/20191203051049.44573-6-drosen@google.com/

Cc: Daniel Rosenberg <drosen@google.com>
Link: https://lore.kernel.org/r/20191215213947.9521-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-12-31 10:33:50 -06:00
Eric Biggers
2a5831b1d2 fscrypt: constify struct fscrypt_hkdf parameter to fscrypt_hkdf_expand()
Constify the struct fscrypt_hkdf parameter to fscrypt_hkdf_expand().
This makes it clearer that struct fscrypt_hkdf contains the key only,
not any per-request state.

Link: https://lore.kernel.org/r/20191209204054.227736-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-12-31 10:33:50 -06:00
Eric Biggers
b103fb7653 fscrypt: add support for IV_INO_LBLK_64 policies
Inline encryption hardware compliant with the UFS v2.1 standard or with
the upcoming version of the eMMC standard has the following properties:

(1) Per I/O request, the encryption key is specified by a previously
    loaded keyslot.  There might be only a small number of keyslots.

(2) Per I/O request, the starting IV is specified by a 64-bit "data unit
    number" (DUN).  IV bits 64-127 are assumed to be 0.  The hardware
    automatically increments the DUN for each "data unit" of
    configurable size in the request, e.g. for each filesystem block.

Property (1) makes it inefficient to use the traditional fscrypt
per-file keys.  Property (2) precludes the use of the existing
DIRECT_KEY fscrypt policy flag, which needs at least 192 IV bits.

Therefore, add a new fscrypt policy flag IV_INO_LBLK_64 which causes the
encryption to modified as follows:

- The encryption keys are derived from the master key, encryption mode
  number, and filesystem UUID.

- The IVs are chosen as (inode_number << 32) | file_logical_block_num.
  For filenames encryption, file_logical_block_num is 0.

Since the file nonces aren't used in the key derivation, many files may
share the same encryption key.  This is much more efficient on the
target hardware.  Including the inode number in the IVs and mixing the
filesystem UUID into the keys ensures that data in different files is
nevertheless still encrypted differently.

Additionally, limiting the inode and block numbers to 32 bits and
placing the block number in the low bits maintains compatibility with
the 64-bit DUN convention (property (2) above).

Since this scheme assumes that inode numbers are stable (which may
preclude filesystem shrinking) and that inode and file logical block
numbers are at most 32-bit, IV_INO_LBLK_64 will only be allowed on
filesystems that meet these constraints.  These are acceptable
limitations for the cases where this format would actually be used.

Note that IV_INO_LBLK_64 is an on-disk format, not an implementation.
This patch just adds support for it using the existing filesystem layer
encryption.  A later patch will add support for inline encryption.

Reviewed-by: Paul Crowley <paulcrowley@google.com>
Co-developed-by: Satya Tangirala <satyat@google.com>
Signed-off-by: Satya Tangirala <satyat@google.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-11-06 12:34:36 -08:00
Eric Biggers
ff73c2c016 fscrypt: avoid data race on fscrypt_mode::logged_impl_name
The access to logged_impl_name is technically a data race, which tools
like KCSAN could complain about in the future.  See:
https://github.com/google/ktsan/wiki/READ_ONCE-and-WRITE_ONCE

Fix by using xchg(), which also ensures that only one thread does the
logging.

This also required switching from bool to int, to avoid a build error on
the RISC-V architecture which doesn't implement xchg on bytes.

Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-11-06 12:33:15 -08:00
Eric Biggers
1565bdad59 fscrypt: remove struct fscrypt_ctx
Now that ext4 and f2fs implement their own post-read workflow that
supports both fscrypt and fsverity, the fscrypt-only workflow based
around struct fscrypt_ctx is no longer used.  So remove the unused code.

This is based on a patch from Chandan Rajendra's "Consolidate FS read
I/O callbacks code" patchset, but rebased onto the latest kernel, folded
__fscrypt_decrypt_bio() into fscrypt_decrypt_bio(), cleaned up
fscrypt_initialize(), and updated the commit message.

Originally-from: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-10-21 13:22:08 -07:00
Eric Biggers
4006d799d9 fscrypt: invoke crypto API for ESSIV handling
Instead of open-coding the calculations for ESSIV handling, use an ESSIV
skcipher which does all of this under the hood.  ESSIV was added to the
crypto API in v5.4.

This is based on a patch from Ard Biesheuvel, but reworked to apply
after all the fscrypt changes that went into v5.4.

Tested with 'kvm-xfstests -c ext4,f2fs -g encrypt', including the
ciphertext verification tests for v1 and v2 encryption policies.

Originally-from: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-10-21 13:22:08 -07:00
Eric Biggers
5ab7189a31 fscrypt: require that key be added when setting a v2 encryption policy
By looking up the master keys in a filesystem-level keyring rather than
in the calling processes' key hierarchy, it becomes possible for a user
to set an encryption policy which refers to some key they don't actually
know, then encrypt their files using that key.  Cryptographically this
isn't much of a problem, but the semantics of this would be a bit weird.
Thus, enforce that a v2 encryption policy can only be set if the user
has previously added the key, or has capable(CAP_FOWNER).

We tolerate that this problem will continue to exist for v1 encryption
policies, however; there is no way around that.

Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:18:50 -07:00
Eric Biggers
23c688b540 fscrypt: allow unprivileged users to add/remove keys for v2 policies
Allow the FS_IOC_ADD_ENCRYPTION_KEY and FS_IOC_REMOVE_ENCRYPTION_KEY
ioctls to be used by non-root users to add and remove encryption keys
from the filesystem-level crypto keyrings, subject to limitations.

Motivation: while privileged fscrypt key management is sufficient for
some users (e.g. Android and Chromium OS, where a privileged process
manages all keys), the old API by design also allows non-root users to
set up and use encrypted directories, and we don't want to regress on
that.  Especially, we don't want to force users to continue using the
old API, running into the visibility mismatch between files and keyrings
and being unable to "lock" encrypted directories.

Intuitively, the ioctls have to be privileged since they manipulate
filesystem-level state.  However, it's actually safe to make them
unprivileged if we very carefully enforce some specific limitations.

First, each key must be identified by a cryptographic hash so that a
user can't add the wrong key for another user's files.  For v2
encryption policies, we use the key_identifier for this.  v1 policies
don't have this, so managing keys for them remains privileged.

Second, each key a user adds is charged to their quota for the keyrings
service.  Thus, a user can't exhaust memory by adding a huge number of
keys.  By default each non-root user is allowed up to 200 keys; this can
be changed using the existing sysctl 'kernel.keys.maxkeys'.

Third, if multiple users add the same key, we keep track of those users
of the key (of which there remains a single copy), and won't really
remove the key, i.e. "lock" the encrypted files, until all those users
have removed it.  This prevents denial of service attacks that would be
possible under simpler schemes, such allowing the first user who added a
key to remove it -- since that could be a malicious user who has
compromised the key.  Of course, encryption keys should be kept secret,
but the idea is that using encryption should never be *less* secure than
not using encryption, even if your key was compromised.

We tolerate that a user will be unable to really remove a key, i.e.
unable to "lock" their encrypted files, if another user has added the
same key.  But in a sense, this is actually a good thing because it will
avoid providing a false notion of security where a key appears to have
been removed when actually it's still in memory, available to any
attacker who compromises the operating system kernel.

Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:18:50 -07:00
Eric Biggers
5dae460c22 fscrypt: v2 encryption policy support
Add a new fscrypt policy version, "v2".  It has the following changes
from the original policy version, which we call "v1" (*):

- Master keys (the user-provided encryption keys) are only ever used as
  input to HKDF-SHA512.  This is more flexible and less error-prone, and
  it avoids the quirks and limitations of the AES-128-ECB based KDF.
  Three classes of cryptographically isolated subkeys are defined:

    - Per-file keys, like used in v1 policies except for the new KDF.

    - Per-mode keys.  These implement the semantics of the DIRECT_KEY
      flag, which for v1 policies made the master key be used directly.
      These are also planned to be used for inline encryption when
      support for it is added.

    - Key identifiers (see below).

- Each master key is identified by a 16-byte master_key_identifier,
  which is derived from the key itself using HKDF-SHA512.  This prevents
  users from associating the wrong key with an encrypted file or
  directory.  This was easily possible with v1 policies, which
  identified the key by an arbitrary 8-byte master_key_descriptor.

- The key must be provided in the filesystem-level keyring, not in a
  process-subscribed keyring.

The following UAPI additions are made:

- The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a
  fscrypt_policy_v2 to set a v2 encryption policy.  It's disambiguated
  from fscrypt_policy/fscrypt_policy_v1 by the version code prefix.

- A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added.  It allows
  getting the v1 or v2 encryption policy of an encrypted file or
  directory.  The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not
  be used because it did not have a way for userspace to indicate which
  policy structure is expected.  The new ioctl includes a size field, so
  it is extensible to future fscrypt policy versions.

- The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY,
  and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2
  encryption policies.  Such keys are kept logically separate from keys
  for v1 encryption policies, and are identified by 'identifier' rather
  than by 'descriptor'.  The 'identifier' need not be provided when
  adding a key, since the kernel will calculate it anyway.

This patch temporarily keeps adding/removing v2 policy keys behind the
same permission check done for adding/removing v1 policy keys:
capable(CAP_SYS_ADMIN).  However, the next patch will carefully take
advantage of the cryptographically secure master_key_identifier to allow
non-root users to add/remove v2 policy keys, thus providing a full
replacement for v1 policies.

(*) Actually, in the API fscrypt_policy::version is 0 while on-disk
    fscrypt_context::format is 1.  But I believe it makes the most sense
    to advance both to '2' to have them be in sync, and to consider the
    numbering to start at 1 except for the API quirk.

Reviewed-by: Paul Crowley <paulcrowley@google.com>
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:18:50 -07:00