Commit Graph

143 Commits

Author SHA1 Message Date
Dmitry Safonov
c845f5f359 net/tcp: Add TCP-AO config and structures
Introduce new kernel config option and common structures as well as
helpers to be used by TCP-AO code.

Co-developed-by: Francesco Ruggeri <fruggeri@arista.com>
Signed-off-by: Francesco Ruggeri <fruggeri@arista.com>
Co-developed-by: Salam Noureddine <noureddine@arista.com>
Signed-off-by: Salam Noureddine <noureddine@arista.com>
Signed-off-by: Dmitry Safonov <dima@arista.com>
Acked-by: David Ahern <dsahern@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2023-10-27 10:35:44 +01:00
Dmitry Safonov
8c73b26315 net/tcp: Prepare tcp_md5sig_pool for TCP-AO
TCP-AO, similarly to TCP-MD5, needs to allocate tfms on a slow-path,
which is setsockopt() and use crypto ahash requests on fast paths,
which are RX/TX softirqs. Also, it needs a temporary/scratch buffer
for preparing the hash.

Rework tcp_md5sig_pool in order to support other hashing algorithms
than MD5. It will make it possible to share pre-allocated crypto_ahash
descriptors and scratch area between all TCP hash users.

Internally tcp_sigpool calls crypto_clone_ahash() API over pre-allocated
crypto ahash tfm. Kudos to Herbert, who provided this new crypto API.

I was a little concerned over GFP_ATOMIC allocations of ahash and
crypto_request in RX/TX (see tcp_sigpool_start()), so I benchmarked both
"backends" with different algorithms, using patched version of iperf3[2].
On my laptop with i7-7600U @ 2.80GHz:

                         clone-tfm                per-CPU-requests
TCP-MD5                  2.25 Gbits/sec           2.30 Gbits/sec
TCP-AO(hmac(sha1))       2.53 Gbits/sec           2.54 Gbits/sec
TCP-AO(hmac(sha512))     1.67 Gbits/sec           1.64 Gbits/sec
TCP-AO(hmac(sha384))     1.77 Gbits/sec           1.80 Gbits/sec
TCP-AO(hmac(sha224))     1.29 Gbits/sec           1.30 Gbits/sec
TCP-AO(hmac(sha3-512))    481 Mbits/sec            480 Mbits/sec
TCP-AO(hmac(md5))        2.07 Gbits/sec           2.12 Gbits/sec
TCP-AO(hmac(rmd160))     1.01 Gbits/sec            995 Mbits/sec
TCP-AO(cmac(aes128))     [not supporetd yet]      2.11 Gbits/sec

So, it seems that my concerns don't have strong grounds and per-CPU
crypto_request allocation can be dropped/removed from tcp_sigpool once
ciphers get crypto_clone_ahash() support.

[1]: https://lore.kernel.org/all/ZDefxOq6Ax0JeTRH@gondor.apana.org.au/T/#u
[2]: https://github.com/0x7f454c46/iperf/tree/tcp-md5-ao
Signed-off-by: Dmitry Safonov <dima@arista.com>
Reviewed-by: Steen Hegelund <Steen.Hegelund@microchip.com>
Acked-by: David Ahern <dsahern@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2023-10-27 10:35:44 +01:00
Gleb Mazovetskiy
aeac4ec8f4 tcp: configurable source port perturb table size
On embedded systems with little memory and no relevant
security concerns, it is beneficial to reduce the size
of the table.

Reducing the size from 2^16 to 2^8 saves 255 KiB
of kernel RAM.

Makes the table size configurable as an expert option.

The size was previously increased from 2^8 to 2^16
in commit 4c2c8f03a5 ("tcp: increase source port perturb table to
2^16").

Signed-off-by: Gleb Mazovetskiy <glex.spb@gmail.com>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2022-11-16 13:02:04 +00:00
Coco Li
753b953774 fou: Remove XRFM from NET_FOU Kconfig
XRFM is no longer needed for configuring FOU tunnels
(CONFIG_NET_FOU_IP_TUNNELS), remove from Kconfig.

Also remove the xrfm.h dependency in fou.c. It was
added in '23461551c006 ("fou: Support for foo-over-udp RX path")'
for depencies of udp_del_offload and udp_offloads, which were removed in
'd92283e338f6 ("fou: change to use UDP socket GRO")'.

Built and installed kernel and setup GUE/FOU tunnels.

Signed-off-by: Coco Li <lixiaoyan@google.com>
Link: https://lore.kernel.org/r/20220411213717.3688789-1-lixiaoyan@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-04-12 14:56:33 -07:00
Colin Ian King
ad6641189c net: ipv4: remove duplicate "the the" phrase in Kconfig text
The Kconfig help text contains the phrase "the the" in the help
text. Fix this and reformat the block of help text.

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-18 16:02:16 -07:00
Alexander A. Klimov
7a6498ebcd Replace HTTP links with HTTPS ones: IPv*
Rationale:
Reduces attack surface on kernel devs opening the links for MITM
as HTTPS traffic is much harder to manipulate.

Deterministic algorithm:
For each file:
  If not .svg:
    For each line:
      If doesn't contain `\bxmlns\b`:
        For each link, `\bhttp://[^# \t\r\n]*(?:\w|/)`:
          If both the HTTP and HTTPS versions
          return 200 OK and serve the same content:
            Replace HTTP with HTTPS.

Signed-off-by: Alexander A. Klimov <grandmaster@al2klimov.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-06 13:23:03 -07:00
David S. Miller
0e5f9d50ad Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec
Steffen Klassert says:

====================
pull request (net): ipsec 2020-06-19

1) Fix double ESP trailer insertion in IPsec crypto offload if
   netif_xmit_frozen_or_stopped is true. From Huy Nguyen.

2) Merge fixup for "remove output_finish indirection from
   xfrm_state_afinfo". From Stephen Rothwell.

3) Select CRYPTO_SEQIV for ESP as this is needed for GCM and several
   other encryption algorithms. Also modernize the crypto algorithm
   selections for ESP and AH, remove those that are maked as "MUST NOT"
   and add those that are marked as "MUST" be implemented in RFC 8221.
   From Eric Biggers.

Please note the merge conflict between commit:

a7f7f6248d ("treewide: replace '---help---' in Kconfig files with 'help'")

from Linus' tree and commits:

7d4e391959 ("esp, ah: consolidate the crypto algorithm selections")
be01369859 ("esp, ah: modernize the crypto algorithm selections")

from the ipsec tree.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-19 13:03:47 -07:00
Eric Biggers
be01369859 esp, ah: modernize the crypto algorithm selections
The crypto algorithms selected by the ESP and AH kconfig options are
out-of-date with the guidance of RFC 8221, which lists the legacy
algorithms MD5 and DES as "MUST NOT" be implemented, and some more
modern algorithms like AES-GCM and HMAC-SHA256 as "MUST" be implemented.
But the options select the legacy algorithms, not the modern ones.

Therefore, modify these options to select the MUST algorithms --
and *only* the MUST algorithms.

Also improve the help text.

Note that other algorithms may still be explicitly enabled in the
kconfig, and the choice of which to actually use is still controlled by
userspace.  This change only modifies the list of algorithms for which
kernel support is guaranteed to be present.

Suggested-by: Herbert Xu <herbert@gondor.apana.org.au>
Suggested-by: Steffen Klassert <steffen.klassert@secunet.com>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Corentin Labbe <clabbe@baylibre.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2020-06-15 06:52:16 +02:00
Eric Biggers
7d4e391959 esp, ah: consolidate the crypto algorithm selections
Instead of duplicating the algorithm selections between INET_AH and
INET6_AH and between INET_ESP and INET6_ESP, create new tristates
XFRM_AH and XFRM_ESP that do the algorithm selections, and make these be
selected by the corresponding INET* options.

Suggested-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Corentin Labbe <clabbe@baylibre.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2020-06-15 06:52:16 +02:00
Masahiro Yamada
a7f7f6248d treewide: replace '---help---' in Kconfig files with 'help'
Since commit 84af7a6194 ("checkpatch: kconfig: prefer 'help' over
'---help---'"), the number of '---help---' has been gradually
decreasing, but there are still more than 2400 instances.

This commit finishes the conversion. While I touched the lines,
I also fixed the indentation.

There are a variety of indentation styles found.

  a) 4 spaces + '---help---'
  b) 7 spaces + '---help---'
  c) 8 spaces + '---help---'
  d) 1 space + 1 tab + '---help---'
  e) 1 tab + '---help---'    (correct indentation)
  f) 1 tab + 1 space + '---help---'
  g) 1 tab + 2 spaces + '---help---'

In order to convert all of them to 1 tab + 'help', I ran the
following commend:

  $ find . -name 'Kconfig*' | xargs sed -i 's/^[[:space:]]*---help---/\thelp/'

Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2020-06-14 01:57:21 +09:00
David S. Miller
f26e9b2c0b Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec-next
Steffen Klassert says:

====================
pull request (net-next): ipsec-next 2020-05-29

1) Add IPv6 encapsulation support for ESP over UDP and TCP.
   From Sabrina Dubroca.

2) Remove unneeded reference when initializing xfrm interfaces.
   From Nicolas Dichtel.

3) Remove some indirect calls from the state_afinfo.
   From Florian Westphal.

Please note that this pull request has two merge conflicts

between commit:

  0c922a4850 ("xfrm: Always set XFRM_TRANSFORMED in xfrm{4,6}_output_finish")

  from Linus' tree and commit:

    2ab6096db2 ("xfrm: remove output_finish indirection from xfrm_state_afinfo")

    from the ipsec-next tree.

and between commit:

  3986912f6a ("ipv6: move SIOCADDRT and SIOCDELRT handling into ->compat_ioctl")

  from the net-next tree and commit:

    0146dca70b ("xfrm: add support for UDPv6 encapsulation of ESP")

    from the ipsec-next tree.

Both conflicts can be resolved as done in linux-next.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-29 13:02:33 -07:00
Mauro Carvalho Chehab
1cec2cacaa docs: networking: convert ip-sysctl.txt to ReST
- add SPDX header;
- adjust titles and chapters, adding proper markups;
- mark code blocks and literals as such;
- mark lists as such;
- mark tables as such;
- use footnote markup;
- adjust identation, whitespaces and blank lines;
- add to networking/index.rst.

Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-28 14:40:18 -07:00
Sabrina Dubroca
26333c37fc xfrm: add IPv6 support for espintcp
This extends espintcp to support IPv6, building on the existing code
and the new UDPv6 encapsulation support. Most of the code is either
reused directly (stream parser, ULP) or very similar to the IPv4
variant (net/ipv6/esp6.c changes).

The separation of config options for IPv4 and IPv6 espintcp requires a
bit of Kconfig gymnastics to enable the core code.

Signed-off-by: Sabrina Dubroca <sd@queasysnail.net>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2020-04-28 11:28:36 +02:00
Linus Torvalds
481ed297d9 This has been a busy cycle for documentation work. Highlights include:
- Lots of RST conversion work by Mauro, Daniel ALmeida, and others.
     Maybe someday we'll get to the end of this stuff...maybe...
 
   - Some organizational work to bring some order to the core-api manual.
 
   - Various new docs and additions to the existing documentation.
 
   - Typo fixes, warning fixes, ...
 -----BEGIN PGP SIGNATURE-----
 
 iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAl6BLf4PHGNvcmJldEBs
 d24ubmV0AAoJEBdDWhNsDH5YLhkIAIhcg6gxp0oZZ3KDfQyhvej0EWQGVDNkmloQ
 O1VOSV3RJsZL9HwN9xSNnNfN5+hw5RUYVbn1s201uj6kovZY9qcTpHP2LCizUeGb
 eFkSTmzkyAuAbJjuVLgMPDerJPEew0HnudiToeSpQeoIL1WB6YGd4/5H/cN1KLex
 8ggjllcY0wOgbiFffmK6+tavDv7vT0lKTdwKRYh2nxu7zrPVVd1ZnW+RtntdTVQt
 i+xwV6/YdWtg5C53IwBPpeyubX40vqaIjU8rzpLq5SCVbsZN14sSR709m1AYCOK0
 i4VDWEhfA2XBi6Nycl5U0czuGziwoHrTgSCkS1mmSDujnpgfKM8=
 =6YOS
 -----END PGP SIGNATURE-----

Merge tag 'docs-5.7' of git://git.lwn.net/linux

Pull documentation updates from Jonathan Corbet:
 "This has been a busy cycle for documentation work.

  Highlights include:

   - Lots of RST conversion work by Mauro, Daniel ALmeida, and others.
     Maybe someday we'll get to the end of this stuff...maybe...

   - Some organizational work to bring some order to the core-api
     manual.

   - Various new docs and additions to the existing documentation.

   - Typo fixes, warning fixes, ..."

* tag 'docs-5.7' of git://git.lwn.net/linux: (123 commits)
  Documentation: x86: exception-tables: document CONFIG_BUILDTIME_TABLE_SORT
  MAINTAINERS: adjust to filesystem doc ReST conversion
  docs: deprecated.rst: Add BUG()-family
  doc: zh_CN: add translation for virtiofs
  doc: zh_CN: index files in filesystems subdirectory
  docs: locking: Drop :c:func: throughout
  docs: locking: Add 'need' to hardirq section
  docs: conf.py: avoid thousands of duplicate label warning on Sphinx
  docs: prevent warnings due to autosectionlabel
  docs: fix reference to core-api/namespaces.rst
  docs: fix pointers to io-mapping.rst and io_ordering.rst files
  Documentation: Better document the softlockup_panic sysctl
  docs: hw-vuln: tsx_async_abort.rst: get rid of an unused ref
  docs: perf: imx-ddr.rst: get rid of a warning
  docs: filesystems: fuse.rst: supress a Sphinx warning
  docs: translations: it: avoid duplicate refs at programming-language.rst
  docs: driver.rst: supress two ReSt warnings
  docs: trace: events.rst: convert some new stuff to ReST format
  Documentation: Add io_ordering.rst to driver-api manual
  Documentation: Add io-mapping.rst to driver-api manual
  ...
2020-03-30 12:45:23 -07:00
Niklas Söderlund
3eb30c51a6 Documentation: nfsroot.rst: Fix references to nfsroot.rst
When converting and moving nfsroot.txt to nfsroot.rst the references to
the old text file was not updated to match the change, fix this.

Fixes: f9a9349846 ("Documentation: nfsroot.txt: convert to ReST")
Signed-off-by: Niklas Söderlund <niklas.soderlund+renesas@ragnatech.se>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Link: https://lore.kernel.org/r/20200212181332.520545-1-niklas.soderlund+renesas@ragnatech.se
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2020-03-02 13:11:46 -07:00
Nicolas Dichtel
f1ed10264e vti[6]: fix packet tx through bpf_redirect() in XinY cases
I forgot the 4in6/6in4 cases in my previous patch. Let's fix them.

Fixes: 95224166a9 ("vti[6]: fix packet tx through bpf_redirect()")
Signed-off-by: Nicolas Dichtel <nicolas.dichtel@6wind.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2020-02-06 13:27:30 +01:00
Sabrina Dubroca
e27cca96cd xfrm: add espintcp (RFC 8229)
TCP encapsulation of IKE and IPsec messages (RFC 8229) is implemented
as a TCP ULP, overriding in particular the sendmsg and recvmsg
operations. A Stream Parser is used to extract messages out of the TCP
stream using the first 2 bytes as length marker. Received IKE messages
are put on "ike_queue", waiting to be dequeued by the custom recvmsg
implementation. Received ESP messages are sent to XFRM, like with UDP
encapsulation.

Some of this code is taken from the original submission by Herbert
Xu. Currently, only IPv4 is supported, like for UDP encapsulation.

Co-developed-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sabrina Dubroca <sd@queasysnail.net>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2019-12-09 09:59:07 +01:00
Krzysztof Kozlowski
43da14110c net: Fix Kconfig indentation, continued
Adjust indentation from spaces to tab (+optional two spaces) as in
coding style.  This fixes various indentation mixups (seven spaces,
tab+one space, etc).

Signed-off-by: Krzysztof Kozlowski <krzk@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-21 12:00:21 -08:00
Krzysztof Kozlowski
bf69abad27 net: Fix Kconfig indentation
Adjust indentation from spaces to tab (+optional two spaces) as in
coding style with command like:
    $ sed -e 's/^        /\t/' -i */Kconfig

Signed-off-by: Krzysztof Kozlowski <krzk@kernel.org>
Acked-by: Sven Eckelmann <sven@narfation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-26 08:56:17 +02:00
Thomas Gleixner
ec8f24b7fa treewide: Add SPDX license identifier - Makefile/Kconfig
Add SPDX license identifiers to all Make/Kconfig files which:

 - Have no license information of any form

These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:

  GPL-2.0-only

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-21 10:50:46 +02:00
Florian Westphal
4c145dce26 xfrm: make xfrm modes builtin
after previous changes, xfrm_mode contains no function pointers anymore
and all modules defining such struct contain no code except an init/exit
functions to register the xfrm_mode struct with the xfrm core.

Just place the xfrm modes core and remove the modules,
the run-time xfrm_mode register/unregister functionality is removed.

Before:

    text    data     bss      dec filename
    7523     200    2364    10087 net/xfrm/xfrm_input.o
   40003     628     440    41071 net/xfrm/xfrm_state.o
15730338 6937080 4046908 26714326 vmlinux

    7389     200    2364    9953  net/xfrm/xfrm_input.o
   40574     656     440   41670  net/xfrm/xfrm_state.o
15730084 6937068 4046908 26714060 vmlinux

The xfrm*_mode_{transport,tunnel,beet} modules are gone.

v2: replace CONFIG_INET6_XFRM_MODE_* IS_ENABLED guards with CONFIG_IPV6
    ones rather than removing them.

Signed-off-by: Florian Westphal <fw@strlen.de>
Reviewed-by: Sabrina Dubroca <sd@queasysnail.net>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2019-04-08 09:15:17 +02:00
Stephen Hemminger
e446a2760f net: remove blank lines at end of file
Several files have extra line at end of file.

Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-24 14:10:43 -07:00
Yuval Mintz
6853f21f76 ipmr,ipmr6: Define a uniform vif_device
The two implementations have almost identical structures - vif_device and
mif_device. As a step toward uniforming the mr_tables, eliminate the
mif_device and relocate the vif_device definition into a new common
header file.

Also, introduce a common initializing function for setting most of the
vif_device fields in a new common source file. This requires modifying
the ipv{4,6] Kconfig and ipv4 makefile as we're introducing a new common
config option - CONFIG_IP_MROUTE_COMMON.

Signed-off-by: Yuval Mintz <yuvalm@mellanox.com>
Acked-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-01 13:13:23 -05:00
Stephen Hemminger
12ed3772b7 ip: update policy routing config help
The kernel config help for policy routing was still pointing at
an ancient document from 2000 that refers to Linux 2.1. Update it
to point to something that is at least occasionally updated.

Signed-off-by: Stephen Hemminger <sthemmin@microsoft.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-12 22:57:11 -07:00
David S. Miller
99d5ceeea5 Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec-next
Steffen Klassert says:

====================
pull request (net-next): ipsec-next 2017-02-16

1) Make struct xfrm_input_afinfo const, nothing writes to it.
   From Florian Westphal.

2) Remove all places that write to the afinfo policy backend
   and make the struct const then.
   From Florian Westphal.

3) Prepare for packet consuming gro callbacks and add
   ESP GRO handlers. ESP packets can be decapsulated
   at the GRO layer then. It saves a round through
   the stack for each ESP packet.

Please note that this has a merge coflict between commit

63fca65d08 ("net: add confirm_neigh method to dst_ops")

from net-next and

3d7d25a68e ("xfrm: policy: remove garbage_collect callback")
a2817d8b27 ("xfrm: policy: remove family field")

from ipsec-next.

The conflict can be solved as it is done in linux-next.

Please pull or let me know if there are problems.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-16 21:25:49 -05:00
Steffen Klassert
7785bba299 esp: Add a software GRO codepath
This patch adds GRO ifrastructure and callbacks for ESP on
ipv4 and ipv6.

In case the GRO layer detects an ESP packet, the
esp{4,6}_gro_receive() function does a xfrm state lookup
and calls the xfrm input layer if it finds a matching state.
The packet will be decapsulated and reinjected it into layer 2.

Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2017-02-15 11:04:11 +01:00
Eric Dumazet
97e219b7c1 gro_cells: move to net/core/gro_cells.c
We have many gro cells users, so lets move the code to avoid
duplication.

This creates a CONFIG_GRO_CELLS option.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-08 14:38:18 -05:00
David S. Miller
2745529ac7 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Couple conflicts resolved here:

1) In the MACB driver, a bug fix to properly initialize the
   RX tail pointer properly overlapped with some changes
   to support variable sized rings.

2) In XGBE we had a "CONFIG_PM" --> "CONFIG_PM_SLEEP" fix
   overlapping with a reorganization of the driver to support
   ACPI, OF, as well as PCI variants of the chip.

3) In 'net' we had several probe error path bug fixes to the
   stmmac driver, meanwhile a lot of this code was cleaned up
   and reorganized in 'net-next'.

4) The cls_flower classifier obtained a helper function in
   'net-next' called __fl_delete() and this overlapped with
   Daniel Borkamann's bug fix to use RCU for object destruction
   in 'net'.  It also overlapped with Jiri's change to guard
   the rhashtable_remove_fast() call with a check against
   tc_skip_sw().

5) In mlx4, a revert bug fix in 'net' overlapped with some
   unrelated changes in 'net-next'.

6) In geneve, a stale header pointer after pskb_expand_head()
   bug fix in 'net' overlapped with a large reorganization of
   the same code in 'net-next'.  Since the 'net-next' code no
   longer had the bug in question, there was nothing to do
   other than to simply take the 'net-next' hunks.

Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-03 12:29:53 -05:00
Julian Wollrath
4df21dfcf2 tcp: Set DEFAULT_TCP_CONG to bbr if DEFAULT_BBR is set
Signed-off-by: Julian Wollrath <jwollrath@web.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-28 12:15:00 -05:00
Cyrill Gorcunov
432490f9d4 net: ip, diag -- Add diag interface for raw sockets
In criu we are actively using diag interface to collect sockets
present in the system when dumping applications. And while for
unix, tcp, udp[lite], packet, netlink it works as expected,
the raw sockets do not have. Thus add it.

v2:
 - add missing sock_put calls in raw_diag_dump_one (by eric.dumazet@)
 - implement @destroy for diag requests (by dsa@)

v3:
 - add export of raw_abort for IPv6 (by dsa@)
 - pass net-admin flag into inet_sk_diag_fill due to
   changes in net-next branch (by dsa@)

v4:
 - use @pad in struct inet_diag_req_v2 for raw socket
   protocol specification: raw module carries sockets
   which may have custom protocol passed from socket()
   syscall and sole @sdiag_protocol is not enough to
   match underlied ones
 - start reporting protocol specifed in socket() call
   when sockets are raw ones for the same reason: user
   space tools like ss may parse this attribute and use
   it for socket matching

v5 (by eric.dumazet@):
 - use sock_hold in raw_sock_get instead of atomic_inc,
   we're holding (raw_v4_hashinfo|raw_v6_hashinfo)->lock
   when looking up so counter won't be zero here.

v6:
 - use sdiag_raw_protocol() helper which will access @pad
   structure used for raw sockets protocol specification:
   we can't simply rename this member without breaking uapi

v7:
 - sine sdiag_raw_protocol() helper is not suitable for
   uapi lets rather make an alias structure with proper
   names. __check_inet_diag_req_raw helper will catch
   if any of structure unintentionally changed.

CC: David S. Miller <davem@davemloft.net>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: David Ahern <dsa@cumulusnetworks.com>
CC: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
CC: James Morris <jmorris@namei.org>
CC: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org>
CC: Patrick McHardy <kaber@trash.net>
CC: Andrey Vagin <avagin@openvz.org>
CC: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-23 19:35:24 -04:00
Neal Cardwell
0f8782ea14 tcp_bbr: add BBR congestion control
This commit implements a new TCP congestion control algorithm: BBR
(Bottleneck Bandwidth and RTT). A detailed description of BBR will be
published in ACM Queue, Vol. 14 No. 5, September-October 2016, as
"BBR: Congestion-Based Congestion Control".

BBR has significantly increased throughput and reduced latency for
connections on Google's internal backbone networks and google.com and
YouTube Web servers.

BBR requires only changes on the sender side, not in the network or
the receiver side. Thus it can be incrementally deployed on today's
Internet, or in datacenters.

The Internet has predominantly used loss-based congestion control
(largely Reno or CUBIC) since the 1980s, relying on packet loss as the
signal to slow down. While this worked well for many years, loss-based
congestion control is unfortunately out-dated in today's networks. On
today's Internet, loss-based congestion control causes the infamous
bufferbloat problem, often causing seconds of needless queuing delay,
since it fills the bloated buffers in many last-mile links. On today's
high-speed long-haul links using commodity switches with shallow
buffers, loss-based congestion control has abysmal throughput because
it over-reacts to losses caused by transient traffic bursts.

In 1981 Kleinrock and Gale showed that the optimal operating point for
a network maximizes delivered bandwidth while minimizing delay and
loss, not only for single connections but for the network as a
whole. Finding that optimal operating point has been elusive, since
any single network measurement is ambiguous: network measurements are
the result of both bandwidth and propagation delay, and those two
cannot be measured simultaneously.

While it is impossible to disambiguate any single bandwidth or RTT
measurement, a connection's behavior over time tells a clearer
story. BBR uses a measurement strategy designed to resolve this
ambiguity. It combines these measurements with a robust servo loop
using recent control systems advances to implement a distributed
congestion control algorithm that reacts to actual congestion, not
packet loss or transient queue delay, and is designed to converge with
high probability to a point near the optimal operating point.

In a nutshell, BBR creates an explicit model of the network pipe by
sequentially probing the bottleneck bandwidth and RTT. On the arrival
of each ACK, BBR derives the current delivery rate of the last round
trip, and feeds it through a windowed max-filter to estimate the
bottleneck bandwidth. Conversely it uses a windowed min-filter to
estimate the round trip propagation delay. The max-filtered bandwidth
and min-filtered RTT estimates form BBR's model of the network pipe.

Using its model, BBR sets control parameters to govern sending
behavior. The primary control is the pacing rate: BBR applies a gain
multiplier to transmit faster or slower than the observed bottleneck
bandwidth. The conventional congestion window (cwnd) is now the
secondary control; the cwnd is set to a small multiple of the
estimated BDP (bandwidth-delay product) in order to allow full
utilization and bandwidth probing while bounding the potential amount
of queue at the bottleneck.

When a BBR connection starts, it enters STARTUP mode and applies a
high gain to perform an exponential search to quickly probe the
bottleneck bandwidth (doubling its sending rate each round trip, like
slow start). However, instead of continuing until it fills up the
buffer (i.e. a loss), or until delay or ACK spacing reaches some
threshold (like Hystart), it uses its model of the pipe to estimate
when that pipe is full: it estimates the pipe is full when it notices
the estimated bandwidth has stopped growing. At that point it exits
STARTUP and enters DRAIN mode, where it reduces its pacing rate to
drain the queue it estimates it has created.

Then BBR enters steady state. In steady state, PROBE_BW mode cycles
between first pacing faster to probe for more bandwidth, then pacing
slower to drain any queue that created if no more bandwidth was
available, and then cruising at the estimated bandwidth to utilize the
pipe without creating excess queue. Occasionally, on an as-needed
basis, it sends significantly slower to probe for RTT (PROBE_RTT
mode).

BBR has been fully deployed on Google's wide-area backbone networks
and we're experimenting with BBR on Google.com and YouTube on a global
scale.  Replacing CUBIC with BBR has resulted in significant
improvements in network latency and application (RPC, browser, and
video) metrics. For more details please refer to our upcoming ACM
Queue publication.

Example performance results, to illustrate the difference between BBR
and CUBIC:

Resilience to random loss (e.g. from shallow buffers):
  Consider a netperf TCP_STREAM test lasting 30 secs on an emulated
  path with a 10Gbps bottleneck, 100ms RTT, and 1% packet loss
  rate. CUBIC gets 3.27 Mbps, and BBR gets 9150 Mbps (2798x higher).

Low latency with the bloated buffers common in today's last-mile links:
  Consider a netperf TCP_STREAM test lasting 120 secs on an emulated
  path with a 10Mbps bottleneck, 40ms RTT, and 1000-packet bottleneck
  buffer. Both fully utilize the bottleneck bandwidth, but BBR
  achieves this with a median RTT 25x lower (43 ms instead of 1.09
  secs).

Our long-term goal is to improve the congestion control algorithms
used on the Internet. We are hopeful that BBR can help advance the
efforts toward this goal, and motivate the community to do further
research.

Test results, performance evaluations, feedback, and BBR-related
discussions are very welcome in the public e-mail list for BBR:

  https://groups.google.com/forum/#!forum/bbr-dev

NOTE: BBR *must* be used with the fq qdisc ("man tc-fq") with pacing
enabled, since pacing is integral to the BBR design and
implementation. BBR without pacing would not function properly, and
may incur unnecessary high packet loss rates.

Signed-off-by: Van Jacobson <vanj@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Nandita Dukkipati <nanditad@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-21 00:23:01 -04:00
Lawrence Brakmo
699fafafab tcp: add NV congestion control
TCP-NV (New Vegas) is a major update to TCP-Vegas.
An earlier version of NV was presented at 2010's LPC.
It is a delayed based congestion avoidance for the
data center. This version has been tested within a
10G rack where the HW RTTs are 20-50us and with
1 to 400 flows.

A description of TCP-NV, including implementation
details as well as experimental results, can be found at:
http://www.brakmo.org/networking/tcp-nv/TCPNV.html

Signed-off-by: Lawrence Brakmo <brakmo@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-10 23:07:49 -07:00
Ben Hutchings
7bbf3cae65 ipv4: Remove inet_lro library
There are no longer any in-tree drivers that use it.

Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-17 16:15:46 -05:00
Paolo Abeni
e09acddf87 ip_tunnel: replace dst_cache with generic implementation
The current ip_tunnel cache implementation is prone to a race
that will cause the wrong dst to be cached on cuncurrent dst cache
miss and ip tunnel update via netlink.

Replacing with the generic implementation fix the issue.

Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Suggested-and-acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-16 20:21:48 -05:00
Thomas Egerer
32b6170ca5 ipv4+ipv6: Make INET*_ESP select CRYPTO_ECHAINIV
The ESP algorithms using CBC mode require echainiv. Hence INET*_ESP have
to select CRYPTO_ECHAINIV in order to work properly. This solves the
issues caused by a misconfiguration as described in [1].
The original approach, patching crypto/Kconfig was turned down by
Herbert Xu [2].

[1] https://lists.strongswan.org/pipermail/users/2015-December/009074.html
[2] http://marc.info/?l=linux-crypto-vger&m=145224655809562&w=2

Signed-off-by: Thomas Egerer <hakke_007@gmx.de>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-01-25 10:45:41 -08:00
Lorenzo Colitti
c1e64e298b net: diag: Support destroying TCP sockets.
This implements SOCK_DESTROY for TCP sockets. It causes all
blocking calls on the socket to fail fast with ECONNABORTED and
causes a protocol close of the socket. It informs the other end
of the connection by sending a RST, i.e., initiating a TCP ABORT
as per RFC 793. ECONNABORTED was chosen for consistency with
FreeBSD.

Signed-off-by: Lorenzo Colitti <lorenzo@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-15 23:26:52 -05:00
Pravin B Shelar
371bd1061d geneve: Consolidate Geneve functionality in single module.
geneve_core module handles send and receive functionality.
This way OVS could use the Geneve API. Now with use of
tunnel meatadata mode OVS can directly use Geneve netdevice.
So there is no need for separate module for Geneve. Following
patch consolidates Geneve protocol processing in single module.

Signed-off-by: Pravin B Shelar <pshelar@nicira.com>
Reviewed-by: Jesse Gross <jesse@nicira.com>
Acked-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-27 15:42:48 -07:00
Kenneth Klette Jonassen
2b0a8c9eee tcp: add CDG congestion control
CAIA Delay-Gradient (CDG) is a TCP congestion control that modifies
the TCP sender in order to [1]:

  o Use the delay gradient as a congestion signal.
  o Back off with an average probability that is independent of the RTT.
  o Coexist with flows that use loss-based congestion control, i.e.,
    flows that are unresponsive to the delay signal.
  o Tolerate packet loss unrelated to congestion. (Disabled by default.)

Its FreeBSD implementation was presented for the ICCRG in July 2012;
slides are available at http://www.ietf.org/proceedings/84/iccrg.html

Running the experiment scenarios in [1] suggests that our implementation
achieves more goodput compared with FreeBSD 10.0 senders, although it also
causes more queueing delay for a given backoff factor.

The loss tolerance heuristic is disabled by default due to safety concerns
for its use in the Internet [2, p. 45-46].

We use a variant of the Hybrid Slow start algorithm in tcp_cubic to reduce
the probability of slow start overshoot.

[1] D.A. Hayes and G. Armitage. "Revisiting TCP congestion control using
    delay gradients." In Networking 2011, pages 328-341. Springer, 2011.
[2] K.K. Jonassen. "Implementing CAIA Delay-Gradient in Linux."
    MSc thesis. Department of Informatics, University of Oslo, 2015.

Cc: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Stephen Hemminger <stephen@networkplumber.org>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: David Hayes <davihay@ifi.uio.no>
Cc: Andreas Petlund <apetlund@simula.no>
Cc: Dave Taht <dave.taht@bufferbloat.net>
Cc: Nicolas Kuhn <nicolas.kuhn@telecom-bretagne.eu>
Signed-off-by: Kenneth Klette Jonassen <kennetkl@ifi.uio.no>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-06-11 00:09:12 -07:00
John W. Linville
11e1fa46b4 geneve: Rename support library as geneve_core
net/ipv4/geneve.c -> net/ipv4/geneve_core.c

This name better reflects the purpose of the module.

Signed-off-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-13 15:59:13 -04:00
Tom Herbert
63487babf0 net: Move fou_build_header into fou.c and refactor
Move fou_build_header out of ip_tunnel.c and into fou.c splitting
it up into fou_build_header, gue_build_header, and fou_build_udp.
This allows for other users for TX of FOU or GUE. Change ip_tunnel_encap
to call fou_build_header or gue_build_header based on the tunnel
encapsulation type. Similarly, added fou_encap_hlen and gue_encap_hlen
functions which are called by ip_encap_hlen. New net/fou.h has
prototypes and defines for this.

Added NET_FOU_IP_TUNNELS configuration. When this is set, IP tunnels
can use FOU/GUE and fou module is also selected.

Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-05 16:30:02 -05:00
Andy Zhou
7c5df8fa19 openvswitch: fix a compilation error when CONFIG_INET is not setW!
Fix a openvswitch compilation error when CONFIG_INET is not set:

=====================================================
   In file included from include/net/geneve.h:4:0,
                       from net/openvswitch/flow_netlink.c:45:
		          include/net/udp_tunnel.h: In function 'udp_tunnel_handle_offloads':
			  >> include/net/udp_tunnel.h💯2: error: implicit declaration of function 'iptunnel_handle_offloads' [-Werror=implicit-function-declaration]
			  >>      return iptunnel_handle_offloads(skb, udp_csum, type);
			  >>           ^
			  >>           >> include/net/udp_tunnel.h💯2: warning: return makes pointer from integer without a cast
			  >>           >>    cc1: some warnings being treated as errors

=====================================================

Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Andy Zhou <azhou@nicira.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-07 00:10:49 -04:00
Andy Zhou
0b5e8b8eea net: Add Geneve tunneling protocol driver
This adds a device level support for Geneve -- Generic Network
Virtualization Encapsulation. The protocol is documented at
http://tools.ietf.org/html/draft-gross-geneve-01

Only protocol layer Geneve support is provided by this driver.
Openvswitch can be used for configuring, set up and tear down
functional Geneve tunnels.

Signed-off-by: Jesse Gross <jesse@nicira.com>
Signed-off-by: Andy Zhou <azhou@nicira.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-06 00:32:20 -04:00
Daniel Borkmann
e3118e8359 net: tcp: add DCTCP congestion control algorithm
This work adds the DataCenter TCP (DCTCP) congestion control
algorithm [1], which has been first published at SIGCOMM 2010 [2],
resp. follow-up analysis at SIGMETRICS 2011 [3] (and also, more
recently as an informational IETF draft available at [4]).

DCTCP is an enhancement to the TCP congestion control algorithm for
data center networks. Typical data center workloads are i.e.
i) partition/aggregate (queries; bursty, delay sensitive), ii) short
messages e.g. 50KB-1MB (for coordination and control state; delay
sensitive), and iii) large flows e.g. 1MB-100MB (data update;
throughput sensitive). DCTCP has therefore been designed for such
environments to provide/achieve the following three requirements:

  * High burst tolerance (incast due to partition/aggregate)
  * Low latency (short flows, queries)
  * High throughput (continuous data updates, large file
    transfers) with commodity, shallow buffered switches

The basic idea of its design consists of two fundamentals: i) on the
switch side, packets are being marked when its internal queue
length > threshold K (K is chosen so that a large enough headroom
for marked traffic is still available in the switch queue); ii) the
sender/host side maintains a moving average of the fraction of marked
packets, so each RTT, F is being updated as follows:

 F := X / Y, where X is # of marked ACKs, Y is total # of ACKs
 alpha := (1 - g) * alpha + g * F, where g is a smoothing constant

The resulting alpha (iow: probability that switch queue is congested)
is then being used in order to adaptively decrease the congestion
window W:

 W := (1 - (alpha / 2)) * W

The means for receiving marked packets resp. marking them on switch
side in DCTCP is the use of ECN.

RFC3168 describes a mechanism for using Explicit Congestion Notification
from the switch for early detection of congestion, rather than waiting
for segment loss to occur.

However, this method only detects the presence of congestion, not
the *extent*. In the presence of mild congestion, it reduces the TCP
congestion window too aggressively and unnecessarily affects the
throughput of long flows [4].

DCTCP, as mentioned, enhances Explicit Congestion Notification (ECN)
processing to estimate the fraction of bytes that encounter congestion,
rather than simply detecting that some congestion has occurred. DCTCP
then scales the TCP congestion window based on this estimate [4],
thus it can derive multibit feedback from the information present in
the single-bit sequence of marks in its control law. And thus act in
*proportion* to the extent of congestion, not its *presence*.

Switches therefore set the Congestion Experienced (CE) codepoint in
packets when internal queue lengths exceed threshold K. Resulting,
DCTCP delivers the same or better throughput than normal TCP, while
using 90% less buffer space.

It was found in [2] that DCTCP enables the applications to handle 10x
the current background traffic, without impacting foreground traffic.
Moreover, a 10x increase in foreground traffic did not cause any
timeouts, and thus largely eliminates TCP incast collapse problems.

The algorithm itself has already seen deployments in large production
data centers since then.

We did a long-term stress-test and analysis in a data center, short
summary of our TCP incast tests with iperf compared to cubic:

This test measured DCTCP throughput and latency and compared it with
CUBIC throughput and latency for an incast scenario. In this test, 19
senders sent at maximum rate to a single receiver. The receiver simply
ran iperf -s.

The senders ran iperf -c <receiver> -t 30. All senders started
simultaneously (using local clocks synchronized by ntp).

This test was repeated multiple times. Below shows the results from a
single test. Other tests are similar. (DCTCP results were extremely
consistent, CUBIC results show some variance induced by the TCP timeouts
that CUBIC encountered.)

For this test, we report statistics on the number of TCP timeouts,
flow throughput, and traffic latency.

1) Timeouts (total over all flows, and per flow summaries):

            CUBIC            DCTCP
  Total     3227             25
  Mean       169.842          1.316
  Median     183              1
  Max        207              5
  Min        123              0
  Stddev      28.991          1.600

Timeout data is taken by measuring the net change in netstat -s
"other TCP timeouts" reported. As a result, the timeout measurements
above are not restricted to the test traffic, and we believe that it
is likely that all of the "DCTCP timeouts" are actually timeouts for
non-test traffic. We report them nevertheless. CUBIC will also include
some non-test timeouts, but they are drawfed by bona fide test traffic
timeouts for CUBIC. Clearly DCTCP does an excellent job of preventing
TCP timeouts. DCTCP reduces timeouts by at least two orders of
magnitude and may well have eliminated them in this scenario.

2) Throughput (per flow in Mbps):

            CUBIC            DCTCP
  Mean      521.684          521.895
  Median    464              523
  Max       776              527
  Min       403              519
  Stddev    105.891            2.601
  Fairness    0.962            0.999

Throughput data was simply the average throughput for each flow
reported by iperf. By avoiding TCP timeouts, DCTCP is able to
achieve much better per-flow results. In CUBIC, many flows
experience TCP timeouts which makes flow throughput unpredictable and
unfair. DCTCP, on the other hand, provides very clean predictable
throughput without incurring TCP timeouts. Thus, the standard deviation
of CUBIC throughput is dramatically higher than the standard deviation
of DCTCP throughput.

Mean throughput is nearly identical because even though cubic flows
suffer TCP timeouts, other flows will step in and fill the unused
bandwidth. Note that this test is something of a best case scenario
for incast under CUBIC: it allows other flows to fill in for flows
experiencing a timeout. Under situations where the receiver is issuing
requests and then waiting for all flows to complete, flows cannot fill
in for timed out flows and throughput will drop dramatically.

3) Latency (in ms):

            CUBIC            DCTCP
  Mean      4.0088           0.04219
  Median    4.055            0.0395
  Max       4.2              0.085
  Min       3.32             0.028
  Stddev    0.1666           0.01064

Latency for each protocol was computed by running "ping -i 0.2
<receiver>" from a single sender to the receiver during the incast
test. For DCTCP, "ping -Q 0x6 -i 0.2 <receiver>" was used to ensure
that traffic traversed the DCTCP queue and was not dropped when the
queue size was greater than the marking threshold. The summary
statistics above are over all ping metrics measured between the single
sender, receiver pair.

The latency results for this test show a dramatic difference between
CUBIC and DCTCP. CUBIC intentionally overflows the switch buffer
which incurs the maximum queue latency (more buffer memory will lead
to high latency.) DCTCP, on the other hand, deliberately attempts to
keep queue occupancy low. The result is a two orders of magnitude
reduction of latency with DCTCP - even with a switch with relatively
little RAM. Switches with larger amounts of RAM will incur increasing
amounts of latency for CUBIC, but not for DCTCP.

4) Convergence and stability test:

This test measured the time that DCTCP took to fairly redistribute
bandwidth when a new flow commences. It also measured DCTCP's ability
to remain stable at a fair bandwidth distribution. DCTCP is compared
with CUBIC for this test.

At the commencement of this test, a single flow is sending at maximum
rate (near 10 Gbps) to a single receiver. One second after that first
flow commences, a new flow from a distinct server begins sending to
the same receiver as the first flow. After the second flow has sent
data for 10 seconds, the second flow is terminated. The first flow
sends for an additional second. Ideally, the bandwidth would be evenly
shared as soon as the second flow starts, and recover as soon as it
stops.

The results of this test are shown below. Note that the flow bandwidth
for the two flows was measured near the same time, but not
simultaneously.

DCTCP performs nearly perfectly within the measurement limitations
of this test: bandwidth is quickly distributed fairly between the two
flows, remains stable throughout the duration of the test, and
recovers quickly. CUBIC, in contrast, is slow to divide the bandwidth
fairly, and has trouble remaining stable.

  CUBIC                      DCTCP

  Seconds  Flow 1  Flow 2    Seconds  Flow 1  Flow 2
   0       9.93    0          0       9.92    0
   0.5     9.87    0          0.5     9.86    0
   1       8.73    2.25       1       6.46    4.88
   1.5     7.29    2.8        1.5     4.9     4.99
   2       6.96    3.1        2       4.92    4.94
   2.5     6.67    3.34       2.5     4.93    5
   3       6.39    3.57       3       4.92    4.99
   3.5     6.24    3.75       3.5     4.94    4.74
   4       6       3.94       4       5.34    4.71
   4.5     5.88    4.09       4.5     4.99    4.97
   5       5.27    4.98       5       4.83    5.01
   5.5     4.93    5.04       5.5     4.89    4.99
   6       4.9     4.99       6       4.92    5.04
   6.5     4.93    5.1        6.5     4.91    4.97
   7       4.28    5.8        7       4.97    4.97
   7.5     4.62    4.91       7.5     4.99    4.82
   8       5.05    4.45       8       5.16    4.76
   8.5     5.93    4.09       8.5     4.94    4.98
   9       5.73    4.2        9       4.92    5.02
   9.5     5.62    4.32       9.5     4.87    5.03
  10       6.12    3.2       10       4.91    5.01
  10.5     6.91    3.11      10.5     4.87    5.04
  11       8.48    0         11       8.49    4.94
  11.5     9.87    0         11.5     9.9     0

SYN/ACK ECT test:

This test demonstrates the importance of ECT on SYN and SYN-ACK packets
by measuring the connection probability in the presence of competing
flows for a DCTCP connection attempt *without* ECT in the SYN packet.
The test was repeated five times for each number of competing flows.

              Competing Flows  1 |    2 |    4 |    8 |   16
                               ------------------------------
Mean Connection Probability    1 | 0.67 | 0.45 | 0.28 |    0
Median Connection Probability  1 | 0.65 | 0.45 | 0.25 |    0

As the number of competing flows moves beyond 1, the connection
probability drops rapidly.

Enabling DCTCP with this patch requires the following steps:

DCTCP must be running both on the sender and receiver side in your
data center, i.e.:

  sysctl -w net.ipv4.tcp_congestion_control=dctcp

Also, ECN functionality must be enabled on all switches in your
data center for DCTCP to work. The default ECN marking threshold (K)
heuristic on the switch for DCTCP is e.g., 20 packets (30KB) at
1Gbps, and 65 packets (~100KB) at 10Gbps (K > 1/7 * C * RTT, [4]).

In above tests, for each switch port, traffic was segregated into two
queues. For any packet with a DSCP of 0x01 - or equivalently a TOS of
0x04 - the packet was placed into the DCTCP queue. All other packets
were placed into the default drop-tail queue. For the DCTCP queue,
RED/ECN marking was enabled, here, with a marking threshold of 75 KB.
More details however, we refer you to the paper [2] under section 3).

There are no code changes required to applications running in user
space. DCTCP has been implemented in full *isolation* of the rest of
the TCP code as its own congestion control module, so that it can run
without a need to expose code to the core of the TCP stack, and thus
nothing changes for non-DCTCP users.

Changes in the CA framework code are minimal, and DCTCP algorithm
operates on mechanisms that are already available in most Silicon.
The gain (dctcp_shift_g) is currently a fixed constant (1/16) from
the paper, but we leave the option that it can be chosen carefully
to a different value by the user.

In case DCTCP is being used and ECN support on peer site is off,
DCTCP falls back after 3WHS to operate in normal TCP Reno mode.

ss {-4,-6} -t -i diag interface:

  ... dctcp wscale:7,7 rto:203 rtt:2.349/0.026 mss:1448 cwnd:2054
  ssthresh:1102 ce_state 0 alpha 15 ab_ecn 0 ab_tot 735584
  send 10129.2Mbps pacing_rate 20254.1Mbps unacked:1822 retrans:0/15
  reordering:101 rcv_space:29200

  ... dctcp-reno wscale:7,7 rto:201 rtt:0.711/1.327 ato:40 mss:1448
  cwnd:10 ssthresh:1102 fallback_mode send 162.9Mbps pacing_rate
  325.5Mbps rcv_rtt:1.5 rcv_space:29200

More information about DCTCP can be found in [1-4].

  [1] http://simula.stanford.edu/~alizade/Site/DCTCP.html
  [2] http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp-final.pdf
  [3] http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp_analysis-full.pdf
  [4] http://tools.ietf.org/html/draft-bensley-tcpm-dctcp-00

Joint work with Florian Westphal and Glenn Judd.

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Glenn Judd <glenn.judd@morganstanley.com>
Acked-by: Stephen Hemminger <stephen@networkplumber.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29 00:13:10 -04:00
Tom Herbert
23461551c0 fou: Support for foo-over-udp RX path
This patch provides a receive path for foo-over-udp. This allows
direct encapsulation of IP protocols over UDP. The bound destination
port is used to map to an IP protocol, and the XFRM framework
(udp_encap_rcv) is used to receive encapsulated packets. Upon
reception, the encapsulation header is logically removed (pointer
to transport header is advanced) and the packet is reinjected into
the receive path with the IP protocol indicated by the mapping.

Netlink is used to configure FOU ports. The configuration information
includes the port number to bind to and the IP protocol corresponding
to that port.

This should support GRE/UDP
(http://tools.ietf.org/html/draft-yong-tsvwg-gre-in-udp-encap-02),
as will as the other IP tunneling protocols (IPIP, SIT).

Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-19 17:15:31 -04:00
Tom Herbert
8024e02879 udp: Add udp_sock_create for UDP tunnels to open listener socket
Added udp_tunnel.c which can contain some common functions for UDP
tunnels. The first function in this is udp_sock_create which is used
to open the listener port for a UDP tunnel.

Signed-off-by: Tom Herbert <therbert@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-14 16:12:15 -07:00
Tim Gardner
3e25c65ed0 net: neighbour: Remove CONFIG_ARPD
This config option is superfluous in that it only guards a call
to neigh_app_ns(). Enabling CONFIG_ARPD by default has no
change in behavior. There will now be call to __neigh_notify()
for each ARP resolution, which has no impact unless there is a
user space daemon waiting to receive the notification, i.e.,
the case for which CONFIG_ARPD was designed anyways.

Suggested-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
Cc: James Morris <jmorris@namei.org>
Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org>
Cc: Patrick McHardy <kaber@trash.net>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Gao feng <gaofeng@cn.fujitsu.com>
Cc: Joe Perches <joe@perches.com>
Cc: Veaceslav Falico <vfalico@redhat.com>
Signed-off-by: Tim Gardner <tim.gardner@canonical.com>
Reviewed-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-09-03 21:41:43 -04:00
Jean Sacren
4960c2c6fa Kconfig: remove dangling references to the deleted file
Commit 202dc3fc59 (Documentation: remove
obsolete networking/multicast.txt file) deleted the obsolete file. After
the file has been removed, clean up a couple of places where references
to the deleted file were made so that users wouldn't be confused when
they consult the Help menu.

Signed-off-by: Jean Sacren <sakiwit@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-04 15:17:39 -07:00
Pravin B Shelar
f61dd388a9 Tunneling: use IP Tunnel stats APIs.
Use common function get calculate rtnl_link_stats64 stats.

Signed-off-by: Pravin B Shelar <pshelar@nicira.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-26 12:27:19 -04:00
Pravin B Shelar
fd58156e45 IPIP: Use ip-tunneling code.
Reuse common ip-tunneling code which is re-factored from GRE
module.

Signed-off-by: Pravin B Shelar <pshelar@nicira.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-26 12:27:18 -04:00
Pravin B Shelar
c544193214 GRE: Refactor GRE tunneling code.
Following patch refactors GRE code into ip tunneling code and GRE
specific code. Common tunneling code is moved to ip_tunnel module.
ip_tunnel module is written as generic library which can be used
by different tunneling implementations.

ip_tunnel module contains following components:
 - packet xmit and rcv generic code. xmit flow looks like
   (gre_xmit/ipip_xmit)->ip_tunnel_xmit->ip_local_out.
 - hash table of all devices.
 - lookup for tunnel devices.
 - control plane operations like device create, destroy, ioctl, netlink
   operations code.
 - registration for tunneling modules, like gre, ipip etc.
 - define single pcpu_tstats dev->tstats.
 - struct tnl_ptk_info added to pass parsed tunnel packet parameters.

ipip.h header is renamed to ip_tunnel.h

Signed-off-by: Pravin B Shelar <pshelar@nicira.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-26 12:27:18 -04:00