Device Coherent type uses device memory that is coherently accesible by
the CPU. This could be shown as SP (special purpose) memory range at the
BIOS-e820 memory enumeration. If no SP memory is supported in system,
this could be faked by setting CONFIG_EFI_FAKE_MEMMAP.
Currently, test_hmm only supports two different SP ranges of at least
256MB size. This could be specified in the kernel parameter variable
efi_fake_mem. Ex. Two SP ranges of 1GB starting at 0x100000000 &
0x140000000 physical address. Ex.
efi_fake_mem=1G@0x100000000:0x40000,1G@0x140000000:0x40000
Private and coherent device mirror instances can be created in the same
probed. This is done by passing the module parameters spm_addr_dev0 &
spm_addr_dev1. In this case, it will create four instances of
device_mirror. The first two correspond to private device type, the last
two to coherent type. Then, they can be easily accessed from user space
through /dev/hmm_mirror<num_device>. Usually num_device 0 and 1 are for
private, and 2 and 3 for coherent types. If no module parameters are
passed, two instances of private type device_mirror will be created only.
Link: https://lkml.kernel.org/r/20220715150521.18165-11-alex.sierra@amd.com
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Reviewed-by: Alistair Poppple <apopple@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In order to configure device coherent in test_hmm, two module parameters
should be passed, which correspond to the SP start address of each device
(2) spm_addr_dev0 & spm_addr_dev1. If no parameters are passed, private
device type is configured.
Link: https://lkml.kernel.org/r/20220715150521.18165-10-alex.sierra@amd.com
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Reviewed-by: Alistair Poppple <apopple@nvidia.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Add new ioctl cmd to query zone device type. This will be used once the
test_hmm adds zone device coherent type.
Link: https://lkml.kernel.org/r/20220715150521.18165-9-alex.sierra@amd.com
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Reviewed-by: Alistair Poppple <apopple@nvidia.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When CPU is connected throug XGMI, it has coherent access to VRAM
resource. In this case that resource is taken from a table in the device
gmc aperture base. This resource is used along with the device type,
which could be DEVICE_PRIVATE or DEVICE_COHERENT to create the device page
map region.
Also, MIGRATE_VMA_SELECT_DEVICE_COHERENT flag is selected for coherent
type case during migration to device.
Link: https://lkml.kernel.org/r/20220715150521.18165-8-alex.sierra@amd.com
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently any attempts to pin a device coherent page will fail. This is
because device coherent pages need to be managed by a device driver, and
pinning them would prevent a driver from migrating them off the device.
However this is no reason to fail pinning of these pages. These are
coherent and accessible from the CPU so can be migrated just like pinning
ZONE_MOVABLE pages. So instead of failing all attempts to pin them first
try migrating them out of ZONE_DEVICE.
[hch@lst.de: rebased to the split device memory checks, moved migrate_device_page to migrate_device.c]
Link: https://lkml.kernel.org/r/20220715150521.18165-7-alex.sierra@amd.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This case is used to migrate pages from device memory, back to system
memory. Device coherent type memory is cache coherent from device and CPU
point of view.
Link: https://lkml.kernel.org/r/20220715150521.18165-6-alex.sierra@amd.com
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Reviewed-by: Alistair Poppple <apopple@nvidia.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
With DEVICE_COHERENT, we'll soon have vm_normal_pages() return
device-managed anonymous pages that are not LRU pages. Although they
behave like normal pages for purposes of mapping in CPU page, and for COW.
They do not support LRU lists, NUMA migration or THP.
Callers to follow_page() currently don't expect ZONE_DEVICE pages,
however, with DEVICE_COHERENT we might now return ZONE_DEVICE. Check for
ZONE_DEVICE pages in applicable users of follow_page() as well.
Link: https://lkml.kernel.org/r/20220715150521.18165-5-alex.sierra@amd.com
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> [v2]
Reviewed-by: Alistair Popple <apopple@nvidia.com> [v6]
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Device memory that is cache coherent from device and CPU point of view.
This is used on platforms that have an advanced system bus (like CAPI or
CXL). Any page of a process can be migrated to such memory. However, no
one should be allowed to pin such memory so that it can always be evicted.
[hch@lst.de: rebased ontop of the refcount changes, remove is_dev_private_or_coherent_page]
Link: https://lkml.kernel.org/r/20220715150521.18165-4-alex.sierra@amd.com
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
It makes more sense to have these helpers in zone specific header
file, rather than the generic mm.h
Link: https://lkml.kernel.org/r/20220715150521.18165-3-alex.sierra@amd.com
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Add MEMORY_DEVICE_COHERENT for coherent device memory
mapping", v9.
This patch series introduces MEMORY_DEVICE_COHERENT, a type of memory
owned by a device that can be mapped into CPU page tables like
MEMORY_DEVICE_GENERIC and can also be migrated like MEMORY_DEVICE_PRIVATE.
This patch series is mostly self-contained except for a few places where
it needs to update other subsystems to handle the new memory type.
System stability and performance are not affected according to our ongoing
testing, including xfstests.
How it works: The system BIOS advertises the GPU device memory (aka VRAM)
as SPM (special purpose memory) in the UEFI system address map.
The amdgpu driver registers the memory with devmap as
MEMORY_DEVICE_COHERENT using devm_memremap_pages. The initial user for
this hardware page migration capability is the Frontier supercomputer
project. This functionality is not AMD-specific. We expect other GPU
vendors to find this functionality useful, and possibly other hardware
types in the future.
Our test nodes in the lab are similar to the Frontier configuration, with
.5 TB of system memory plus 256 GB of device memory split across 4 GPUs,
all in a single coherent address space. Page migration is expected to
improve application efficiency significantly. We will report empirical
results as they become available.
Coherent device type pages at gup are now migrated back to system memory
if they are being pinned long-term (FOLL_LONGTERM). The reason is, that
long-term pinning would interfere with the device memory manager owning
the device-coherent pages (e.g. evictions in TTM). These series
incorporate Alistair Popple patches to do this migration from
pin_user_pages() calls. hmm_gup_test has been added to hmm-test to test
different get user pages calls.
This series includes handling of device-managed anonymous pages returned
by vm_normal_pages. Although they behave like normal pages for purposes
of mapping in CPU page tables and for COW, they do not support LRU lists,
NUMA migration or THP.
We also introduced a FOLL_LRU flag that adds the same behaviour to
follow_page and related APIs, to allow callers to specify that they expect
to put pages on an LRU list.
This patch (of 14):
is_pinnable_page() and folio_is_pinnable() are renamed to
is_longterm_pinnable_page() and folio_is_longterm_pinnable() respectively.
These functions are used in the FOLL_LONGTERM flag context.
Link: https://lkml.kernel.org/r/20220715150521.18165-1-alex.sierra@amd.com
Link: https://lkml.kernel.org/r/20220715150521.18165-2-alex.sierra@amd.com
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
damon_lru_sort_init() returns an error when damon_select_ops() fails
without freeing 'ctx' which allocated before. This commit fixes the
potential memory leak by freeing 'ctx' under the situation.
Link: https://lkml.kernel.org/r/20220714170458.49727-1-sj@kernel.org
Fixes: 40e983cca9 ("mm/damon: introduce DAMON-based LRU-lists Sorting")
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The test va_128TBswitch.c expects to be able to pass mmap an address hint
and length that cross the address 1<<47. On x86_64, this is not possible
without 5-level page tables, so the test fails.
The test is already only run on 64-bit powerpc and x86_64 archs, but this
patch adds an additional check on x86_64 that skips the test if
PG_TABLE_LEVELS < 5. There is precedent for checking /proc/config.gz in
selftests, e.g. in selftests/firmware.
Running the tests produces the desired output:
sudo make -C tools/testing/selftests TARGETS=vm run_tests
---------------------------
running ./va_128TBswitch.sh
---------------------------
./va_128TBswitch.sh: PG_TABLE_LEVELS=4, must be >= 5 to run this test
[SKIP]
-------------------------------
[adam@wowsignal.io: restrict the check to x86_64]
Link: https://lkml.kernel.org/r/20220628163654.337600-1-adam@wowsignal.io
[adam@wowsignal.io: fix formatting issues, rename "die" to "fail"]
Link: https://lkml.kernel.org/r/20220701163030.415735-1-adam@wowsignal.io
Link: https://lkml.kernel.org/r/20220627163912.5581-1-adam@wowsignal.io
Signed-off-by: Adam Sindelar <adam@wowsignal.io>
Cc: Adam Sindelar <ats@fb.com>
Cc: David Vernet <void@manifault.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Transhuge swapcaches won't be freed in __collapse_huge_page_copy(). It's
because release_pte_page() is not called for these pages and thus
free_page_and_swap_cache can't grab the page lock. These pages won't be
freed from swap cache even if we are the only user until next time
reclaim. It shouldn't hurt indeed, but we could try to free these pages
to save more memory for system.
Link: https://lkml.kernel.org/r/20220625092816.4856-8-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: NeilBrown <neilb@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The return value of khugepaged_add_pte_mapped_thp() is always 0 and also
ignored. Remove it to clean up the code.
Link: https://lkml.kernel.org/r/20220625092816.4856-7-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Zach O'Keefe <zokeefe@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: NeilBrown <neilb@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
nr_none is always 0 for non-shmem case because the page can be read from
the backend store. So when nr_none ! = 0, it must be in is_shmem case.
Also only adjust the nrpages and uncharge shmem when nr_none != 0 to save
cpu cycles.
Link: https://lkml.kernel.org/r/20220625092816.4856-5-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Zach O'Keefe <zokeefe@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: NeilBrown <neilb@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Fix some typos and tweak the code to meet codestyle. No functional change
intended.
Link: https://lkml.kernel.org/r/20220625092816.4856-4-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Zach O'Keefe <zokeefe@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: NeilBrown <neilb@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When do_swap_page returns VM_FAULT_RETRY, we do not retry here and thus
swap entry will remain in pagetable. This will result in later failure.
So stop swapping in pages in this case to save cpu cycles. As A further
optimization, mmap_lock is released when __collapse_huge_page_swapin()
fails to avoid relocking mmap_lock. And "swapped_in++" is moved after
error handling to make it more accurate.
Link: https://lkml.kernel.org/r/20220625092816.4856-3-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: NeilBrown <neilb@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "A few cleanup patches for khugepaged", v2.
This series contains a few cleaup patches to remove unneeded return value,
use helper macro, fix typos and so on. More details can be found in the
respective changelogs.
This patch (of 7):
If we reach here, khugepaged_scan_mm_slot() has already made sure that
hugepage is enabled for shmem, via its call to hugepage_vma_check().
Remove this duplicated check.
Link: https://lkml.kernel.org/r/20220625092816.4856-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20220625092816.4856-2-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zach O'Keefe <zokeefe@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Howells <dhowells@redhat.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Commit e5251fd430 ("mm/hugetlb: introduce set_huge_swap_pte_at()
helper") add set_huge_swap_pte_at() to handle swap entries on
architectures that support hugepages consisting of contiguous ptes. And
currently the set_huge_swap_pte_at() is only overridden by arm64.
set_huge_swap_pte_at() provide a sz parameter to help determine the number
of entries to be updated. But in fact, all hugetlb swap entries contain
pfn information, so we can find the corresponding folio through the pfn
recorded in the swap entry, then the folio_size() is the number of entries
that need to be updated.
And considering that users will easily cause bugs by ignoring the
difference between set_huge_swap_pte_at() and set_huge_pte_at(). Let's
handle swap entries in set_huge_pte_at() and remove the
set_huge_swap_pte_at(), then we can call set_huge_pte_at() anywhere, which
simplifies our coding.
Link: https://lkml.kernel.org/r/20220626145717.53572-1-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Not all systems use swap, so estimating available memory would help to
prevent swapping or OOM of system that not use swap.
And we need to reserve some page cache to prevent swapping or thrashing.
If somebody is accessing the pages in pagecache, and if too much would be
freed, most accesses might mean reading data from disk, i.e. thrashing.
Link: https://lkml.kernel.org/r/20220623020833.972979-1-yang.yang29@zte.com.cn
Signed-off-by: Yang Yang <yang.yang29@zte.com.cn>
Signed-off-by: CGEL ZTE <cgel.zte@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Always use crypto_has_comp() so that crypto can lookup module, call
usermodhelper to load the modules, wait for usermodhelper to finish and so
on. Otherwise crypto will do all of these steps under CPU hot-plug lock
and this looks like too much stuff to handle under the CPU hot-plug lock.
Besides this can end up in a deadlock when usermodhelper triggers a code
path that attempts to lock the CPU hot-plug lock, that zram already holds.
An example of such deadlock:
- path A. zram grabs CPU hot-plug lock, execs /sbin/modprobe from crypto
and waits for modprobe to finish
disksize_store
zcomp_create
__cpuhp_state_add_instance
__cpuhp_state_add_instance_cpuslocked
zcomp_cpu_up_prepare
crypto_alloc_base
crypto_alg_mod_lookup
call_usermodehelper_exec
wait_for_completion_killable
do_wait_for_common
schedule
- path B. async work kthread that brings in scsi device. It wants to
register CPUHP states at some point, and it needs the CPU hot-plug
lock for that, which is owned by zram.
async_run_entry_fn
scsi_probe_and_add_lun
scsi_mq_alloc_queue
blk_mq_init_queue
blk_mq_init_allocated_queue
blk_mq_realloc_hw_ctxs
__cpuhp_state_add_instance
__cpuhp_state_add_instance_cpuslocked
mutex_lock
schedule
- path C. modprobe sleeps, waiting for all aync works to finish.
load_module
do_init_module
async_synchronize_full
async_synchronize_cookie_domain
schedule
[senozhatsky@chromium.org: add comment]
Link: https://lkml.kernel.org/r/20220624060606.1014474-1-senozhatsky@chromium.org
Link: https://lkml.kernel.org/r/20220622023501.517125-1-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Comments that mention mem_hotplug_end() are confusing as there is no
function called mem_hotplug_end(). Fix them by replacing all the
occurences of mem_hotplug_end() in the comments with mem_hotplug_done().
[akpm@linux-foundation.org: grammatical fixes]
Link: https://lkml.kernel.org/r/20220620071516.1286101-1-p76091292@gs.ncku.edu.tw
Signed-off-by: Yun-Ze Li <p76091292@gs.ncku.edu.tw>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Pss is the sum of the sizes of clean and dirty private pages, and the
proportional sizes of clean and dirty shared pages:
Private = Private_Dirty + Private_Clean
Shared_Proportional = Shared_Dirty_Proportional + Shared_Clean_Proportional
Pss = Private + Shared_Proportional
The Shared*Proportional fields are not present in smaps, so it is not
always possible to determine how much of the Pss is from dirty pages and
how much is from clean pages. This information can be useful for
measuring memory usage for the purpose of optimisation, since clean pages
can usually be discarded by the kernel immediately while dirty pages
cannot.
The smaps routines in the kernel already have access to this data, so add
a Pss_Dirty to show it to userspace. Pss_Clean is not added since it can
be calculated from Pss and Pss_Dirty.
Link: https://lkml.kernel.org/r/20220620081251.2928103-1-vincent.whitchurch@axis.com
Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Passing index to pte_offset_map_lock() directly so the below calculation
can be avoided. Rename orig_pte to ptep as it's not changed. Also use
helper is_swap_pte() to improve the readability. No functional change
intended.
[akpm@linux-foundation.org: reduce scope of `ptep']
Link: https://lkml.kernel.org/r/20220618090527.37843-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
commit 641844f561 ("mm/hugetlb: introduce minimum hugepage order") fixed
a static checker warning and introduced a global variable minimum_order to
fix the warning. However, the local variable in
dissolve_free_huge_pages() can be initialized to
huge_page_order(&default_hstate) to fix the warning.
So remove minimum_order to simplify the code.
Link: https://lkml.kernel.org/r/20220616033846.96937-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
For now, the feature of hugetlb_free_vmemmap is not compatible with the
feature of memory_hotplug.memmap_on_memory, and hugetlb_free_vmemmap takes
precedence over memory_hotplug.memmap_on_memory. However, someone wants
to make memory_hotplug.memmap_on_memory takes precedence over
hugetlb_free_vmemmap since memmap_on_memory makes it more likely to
succeed memory hotplug in close-to-OOM situations. So the decision of
making hugetlb_free_vmemmap take precedence is not wise and elegant.
The proper approach is to have hugetlb_vmemmap.c do the check whether the
section which the HugeTLB pages belong to can be optimized. If the
section's vmemmap pages are allocated from the added memory block itself,
hugetlb_free_vmemmap should refuse to optimize the vmemmap, otherwise, do
the optimization. Then both kernel parameters are compatible. So this
patch introduces VmemmapSelfHosted to mask any non-optimizable vmemmap
pages. The hugetlb_vmemmap can use this flag to detect if a vmemmap page
can be optimized.
[songmuchun@bytedance.com: walk vmemmap page tables to avoid false-positive]
Link: https://lkml.kernel.org/r/20220620110616.12056-3-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20220617135650.74901-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Co-developed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "make hugetlb_optimize_vmemmap compatible with
memmap_on_memory", v3.
This series makes hugetlb_optimize_vmemmap compatible with
memmap_on_memory.
This patch (of 2):
We are almost running out of section flags, only one bit is available in
the worst case (powerpc with 256k pages). However, there are still some
free bits (in ->section_mem_map) on other architectures (e.g. x86_64 has
10 bits available, arm64 has 8 bits available with worst case of 64K
pages). We have hard coded those numbers in code, it is inconvenient to
use those bits on other architectures except powerpc. So transfer those
section flags to enumeration to make it easy to add new section flags in
the future. Also, move SECTION_TAINT_ZONE_DEVICE into the scope of
CONFIG_ZONE_DEVICE to save a bit on non-zone-device case.
[songmuchun@bytedance.com: replace enum with defines per David]
Link: https://lkml.kernel.org/r/20220620110616.12056-2-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20220617135650.74901-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20220617135650.74901-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The only caller already has a folio, so push the folio->page conversion
down a level.
Link: https://lkml.kernel.org/r/20220617175020.717127-21-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
All callers now have a folio, so push the folio->page conversion
down to this function.
[akpm@linux-foundation.org: uninline destroy_large_folio() to fix build issue]
Link: https://lkml.kernel.org/r/20220617175020.717127-20-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
All the callers now have a folio. Saves several calls to compound_head,
totalling 502 bytes of text.
Link: https://lkml.kernel.org/r/20220617175020.717127-19-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
All the callers now have a folio, so pass it in. This doesn't
save any text, but it does save a call to compound_head() as
folio_test_hugetlb() does not contain a call like PageHuge() does.
Link: https://lkml.kernel.org/r/20220617175020.717127-18-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Pages linked through the LRU list cannot be tail pages as ->compound_head
is in a union with one of the words of the list_head, and they cannot
be ZONE_DEVICE pages as ->pgmap is in a union with the same word.
Saves 60 bytes of text by removing a call to page_is_fake_head().
Link: https://lkml.kernel.org/r/20220617175020.717127-15-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This function was already calling compound_head(), but now it can
cache the result of calling compound_head() and avoid calling it again.
Saves 299 bytes of text by avoiding various calls to compound_page()
and avoiding checks of PageTail.
Link: https://lkml.kernel.org/r/20220617175020.717127-14-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Save a few calls to compound_head by converting the passed page to
a folio. Reduces kernel text size by 74 bytes.
Link: https://lkml.kernel.org/r/20220617175020.717127-13-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Do the per-cpu dereferencing of the fbatches once which saves 14 bytes
of text and several percpu relocations.
Link: https://lkml.kernel.org/r/20220617175020.717127-12-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The function is too long, so pull this complicated conditional out into
cpu_needs_drain(). This ends up shrinking the text by 14 bytes,
by allowing GCC to cache the result of calling per_cpu() instead of
relocating each lookup individually.
Link: https://lkml.kernel.org/r/20220617175020.717127-11-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
No change to generated code, but this struct no longer contains any
pagevecs, and not all the folio batches it contains are lru.
Link: https://lkml.kernel.org/r/20220617175020.717127-10-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Rename it to just 'activate', saving 696 bytes of text from removals
of compound_page() and the pagevec_lru_move_fn() infrastructure.
Inline need_activate_page_drain() into its only caller.
Link: https://lkml.kernel.org/r/20220617175020.717127-9-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Using folios instead of pages removes several calls to compound_head(),
shrinking the kernel by 1089 bytes of text.
Link: https://lkml.kernel.org/r/20220617175020.717127-8-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Using folios instead of pages shrinks deactivate_page() and
lru_deactivate_fn() by 778 bytes between them.
Link: https://lkml.kernel.org/r/20220617175020.717127-7-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use a folio throughout lru_deactivate_file_fn(), removing many hidden
calls to compound_head(). Shrinks the kernel by 864 bytes of text.
Link: https://lkml.kernel.org/r/20220617175020.717127-6-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When adding folios to the LRU for the first time, the LRU flag will
already be clear, so skip the test-and-clear part of moving from one
LRU to another.
Removes 285 bytes from kernel text, mostly due to removing
__pagevec_lru_add().
Link: https://lkml.kernel.org/r/20220617175020.717127-5-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>