Commit Graph

291 Commits

Author SHA1 Message Date
Chris Mason
d397712bcc Btrfs: Fix checkpatch.pl warnings
There were many, most are fixed now.  struct-funcs.c generates some warnings
but these are bogus.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-01-05 21:25:51 -05:00
Chris Mason
cad321ad52 Btrfs: shift all end_io work to thread pools
bio_end_io for reads without checksumming on and btree writes were
happening without using async thread pools.  This means the extent_io.c
code had to use spin_lock_irq and friends on the rb tree locks for
extent state.

There were some irq safe vs unsafe lock inversions between the delallock
lock and the extent state locks.  This patch gets rid of them by moving
all end_io code into the thread pools.

To avoid contention and deadlocks between the data end_io processing and the
metadata end_io processing yet another thread pool is added to finish
off metadata writes.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-12-17 14:51:42 -05:00
Yan Zheng
17d217fe97 Btrfs: fix nodatasum handling in balancing code
Checksums on data can be disabled by mount option, so it's
possible some data extents don't have checksums or have
invalid checksums. This causes trouble for data relocation.
This patch contains following things to make data relocation
work.

1) make nodatasum/nodatacow mount option only affects new
files. Checksums and COW on data are only controlled by the
inode flags.

2) check the existence of checksum in the nodatacow checker.
If checksums exist, force COW the data extent. This ensure that
checksum for a given block is either valid or does not exist.

3) update data relocation code to properly handle the case
of checksum missing.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
2008-12-12 10:03:38 -05:00
Yan Zheng
d2fb3437e4 Btrfs: fix leaking block group on balance
The block group structs are referenced in many different
places, and it's not safe to free while balancing.  So, those block
group structs were simply leaked instead.

This patch replaces the block group pointer in the inode with the starting byte
offset of the block group and adds reference counting to the block group
struct.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
2008-12-11 16:30:39 -05:00
Chris Mason
459931eca5 Btrfs: Delete csum items when freeing extents
This finishes off the new checksumming code by removing csum items
for extents that are no longer in use.

The trick is doing it without racing because a single csum item may
hold csums for more than one extent.  Extra checks are added to
btrfs_csum_file_blocks to make sure that we are using the correct
csum item after dropping locks.

A new btrfs_split_item is added to split a single csum item so it
can be split without dropping the leaf lock.  This is used to
remove csum bytes from the middle of an item.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-12-10 09:10:46 -05:00
Chris Mason
c3027eb552 Btrfs: Add inode sequence number for NFS and reserved space in a few structs
This adds a sequence number to the btrfs inode that is increased on
every update.  NFS will be able to use that to detect when an inode has
changed, without relying on inaccurate time fields.

While we're here, this also:

Puts reserved space into the super block and inode

Adds a log root transid to the super so we can pick the newest super
based on the fsync log as well as the main transaction ID.  For now
the log root transid is always zero, but that'll get fixed.

Adds a starting offset to the dev_item.  This will let us do better
alignment calculations if we know the start of a partition on the disk.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-12-08 16:40:21 -05:00
Chris Mason
d20f7043fa Btrfs: move data checksumming into a dedicated tree
Btrfs stores checksums for each data block.  Until now, they have
been stored in the subvolume trees, indexed by the inode that is
referencing the data block.  This means that when we read the inode,
we've probably read in at least some checksums as well.

But, this has a few problems:

* The checksums are indexed by logical offset in the file.  When
compression is on, this means we have to do the expensive checksumming
on the uncompressed data.  It would be faster if we could checksum
the compressed data instead.

* If we implement encryption, we'll be checksumming the plain text and
storing that on disk.  This is significantly less secure.

* For either compression or encryption, we have to get the plain text
back before we can verify the checksum as correct.  This makes the raid
layer balancing and extent moving much more expensive.

* It makes the front end caching code more complex, as we have touch
the subvolume and inodes as we cache extents.

* There is potentitally one copy of the checksum in each subvolume
referencing an extent.

The solution used here is to store the extent checksums in a dedicated
tree.  This allows us to index the checksums by phyiscal extent
start and length.  It means:

* The checksum is against the data stored on disk, after any compression
or encryption is done.

* The checksum is stored in a central location, and can be verified without
following back references, or reading inodes.

This makes compression significantly faster by reducing the amount of
data that needs to be checksummed.  It will also allow much faster
raid management code in general.

The checksums are indexed by a key with a fixed objectid (a magic value
in ctree.h) and offset set to the starting byte of the extent.  This
allows us to copy the checksum items into the fsync log tree directly (or
any other tree), without having to invent a second format for them.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-12-08 16:58:54 -05:00
Chris Mason
2a7108ad89 Btrfs: rev the disk format for the inode compat and csum selection changes
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-12-02 09:58:02 -05:00
Josef Bacik
607d432da0 Btrfs: add support for multiple csum algorithms
This patch gives us the space we will need in order to have different csum
algorithims at some point in the future.  We save the csum algorithim type
in the superblock, and use those instead of define's.

Signed-off-by: Josef Bacik <jbacik@redhat.com>
2008-12-02 07:17:45 -05:00
Josef Bacik
f2b636e80d Btrfs: add support for compat flags to btrfs
This adds the necessary disk format for handling compatibility flags
in the future to handle disk format changes.  We have a compat_flags,
compat_ro_flags and incompat_flags set for the super block.  Compat
flags will be to hold the features that are compatible with older
versions of btrfs, compat_ro flags have features that are compatible
with older versions of btrfs if the fs is mounted read only, and
incompat_flags has features that are incompatible with older versions
of btrfs.  This also axes the compat_flags field for the inode and
just makes the flags field a 64bit field, and changes the root item
flags field to 64bit.

Signed-off-by: Josef Bacik <jbacik@redhat.com>
2008-12-02 06:36:08 -05:00
Josef Bacik
ea6a478ed9 Btrfs: Fix for lockdep warnings with alloc_mutex and pinned_mutex
This the lockdep complaint by having a different mutex to gaurd caching the
block group, so you don't end up with this backwards dependancy.  Thank you,

Signed-off-by: Josef Bacik <jbacik@redhat.com>
2008-11-20 12:16:16 -05:00
Chris Mason
73e9f5beb1 Btrfs: Update the disk format for the seed device and new root code
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-11-18 11:50:33 -05:00
Chris Mason
ea9e8b11bd Btrfs: prevent loops in the directory tree when creating snapshots
For a directory tree:

/mnt/subvolA/subvolB

btrfsctl -s /mnt/subvolA/subvolB /mnt

Will create a directory loop with subvolA under subvolB.  This
commit uses the forward refs for each subvol and snapshot to error out
before creating the loop.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-11-17 21:14:24 -05:00
Chris Mason
0660b5af3f Btrfs: Add backrefs and forward refs for subvols and snapshots
Subvols and snapshots can now be referenced from any point in the directory
tree.  We need to maintain back refs for them so we can find lost
subvols.

Forward refs are added so that we know all of the subvols and
snapshots referenced anywhere in the directory tree of a single subvol.  This
can be used to do recursive snapshotting (but they aren't yet) and it is
also used to detect and prevent directory loops when creating new snapshots.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-11-17 20:37:39 -05:00
Chris Mason
3394e1607e Btrfs: Give each subvol and snapshot their own anonymous devid
Each subvolume has its own private inode number space, and so we need
to fill in different device numbers for each subvolume to avoid confusing
applications.

This commit puts a struct super_block into struct btrfs_root so it can
call set_anon_super() and get a different device number generated for
each root.

btrfs_rename is changed to prevent renames across subvols.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-11-17 20:42:26 -05:00
Chris Mason
3de4586c52 Btrfs: Allow subvolumes and snapshots anywhere in the directory tree
Before, all snapshots and subvolumes lived in a single flat directory.  This
was awkward and confusing because the single flat directory was only writable
with the ioctls.

This commit changes the ioctls to create subvols and snapshots at any
point in the directory tree.  This requires making separate ioctls for
snapshot and subvol creation instead of a combining them into one.

The subvol ioctl does:

btrfsctl -S subvol_name parent_dir

After the ioctl is done subvol_name lives inside parent_dir.

The snapshot ioctl does:

btrfsctl -s path_for_snapshot root_to_snapshot

path_for_snapshot can be an absolute or relative path.  btrfsctl breaks it up
into directory and basename components.

root_to_snapshot can be any file or directory in the FS.  The snapshot
is taken of the entire root where that file lives.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-11-17 21:02:50 -05:00
Yan Zheng
2b82032c34 Btrfs: Seed device support
Seed device is a special btrfs with SEEDING super flag
set and can only be mounted in read-only mode. Seed
devices allow people to create new btrfs on top of it.

The new FS contains the same contents as the seed device,
but it can be mounted in read-write mode.

This patch does the following:

1) split code in btrfs_alloc_chunk into two parts. The first part does makes
the newly allocated chunk usable, but does not do any operation that modifies
the chunk tree. The second part does the the chunk tree modifications. This
division is for the bootstrap step of adding storage to the seed device.

2) Update device management code to handle seed device.
The basic idea is: For an FS grown from seed devices, its
seed devices are put into a list. Seed devices are
opened on demand at mounting time. If any seed device is
missing or has been changed, btrfs kernel module will
refuse to mount the FS.

3) make btrfs_find_block_group not return NULL when all
block groups are read-only.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
2008-11-17 21:11:30 -05:00
Yan Zheng
c146afad2c Btrfs: mount ro and remount support
This patch adds mount ro and remount support. The main
changes in patch are: adding btrfs_remount and related
helper function; splitting the transaction related code
out of close_ctree into btrfs_commit_super; updating
allocator to properly handle read only block group.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
2008-11-12 14:34:12 -05:00
Josef Bacik
f3465ca44e Btrfs: batch extent inserts/updates/deletions on the extent root
While profiling the allocator I noticed a good amount of time was being spent in
finish_current_insert and del_pending_extents, and as the filesystem filled up
more and more time was being spent in those functions.  This patch aims to try
and reduce that problem.  This happens two ways

1) track if we tried to delete an extent that we are going to update or insert.
Once we get into finish_current_insert we discard any of the extents that were
marked for deletion.  This saves us from doing unnecessary work almost every
time finish_current_insert runs.

2) Batch insertion/updates/deletions.  Instead of doing a btrfs_search_slot for
each individual extent and doing the needed operation, we instead keep the leaf
around and see if there is anything else we can do on that leaf.  On the insert
case I introduced a btrfs_insert_some_items, which will take an array of keys
with an array of data_sizes and try and squeeze in as many of those keys as
possible, and then return how many keys it was able to insert.  In the update
case we search for an extent ref, update the ref and then loop through the leaf
to see if any of the other refs we are looking to update are on that leaf, and
then once we are done we release the path and search for the next ref we need to
update.  And finally for the deletion we try and delete the extent+ref in pairs,
so we will try to find extent+ref pairs next to the extent we are trying to free
and free them in bulk if possible.

This along with the other cluster fix that Chris pushed out a bit ago helps make
the allocator preform more uniformly as it fills up the disk.  There is still a
slight drop as we fill up the disk since we start having to stick new blocks in
odd places which results in more COW's than on a empty fs, but the drop is not
nearly as severe as it was before.

Signed-off-by: Josef Bacik <jbacik@redhat.com>
2008-11-12 14:19:50 -05:00
Chris Mason
771ed689d2 Btrfs: Optimize compressed writeback and reads
When reading compressed extents, try to put pages into the page cache
for any pages covered by the compressed extent that readpages didn't already
preload.

Add an async work queue to handle transformations at delayed allocation processing
time.  Right now this is just compression.  The workflow is:

1) Find offsets in the file marked for delayed allocation
2) Lock the pages
3) Lock the state bits
4) Call the async delalloc code

The async delalloc code clears the state lock bits and delalloc bits.  It is
important this happens before the range goes into the work queue because
otherwise it might deadlock with other work queue items that try to lock
those extent bits.

The file pages are compressed, and if the compression doesn't work the
pages are written back directly.

An ordered work queue is used to make sure the inodes are written in the same
order that pdflush or writepages sent them down.

This changes extent_write_cache_pages to let the writepage function
update the wbc nr_written count.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-11-06 22:02:51 -05:00
Chris Mason
537fb06715 Btrfs: rev the disk format for fallocate
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-10-31 12:54:14 -04:00
Yan Zheng
d899e05215 Btrfs: Add fallocate support v2
This patch updates btrfs-progs for fallocate support.

fallocate is a little different in Btrfs because we need to tell the
COW system that a given preallocated extent doesn't need to be
cow'd as long as there are no snapshots of it.  This leverages the
-o nodatacow checks.
 
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
2008-10-30 14:25:28 -04:00
Yan Zheng
80ff385665 Btrfs: update nodatacow code v2
This patch simplifies the nodatacow checker. If all references
were created after the latest snapshot, then we can avoid COW
safely. This patch also updates run_delalloc_nocow to do more
fine-grained checking.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
2008-10-30 14:20:02 -04:00
Yan Zheng
9036c10208 Btrfs: update hole handling v2
This patch splits the hole insertion code out of btrfs_setattr
into btrfs_cont_expand and updates btrfs_get_extent to properly
handle the case that file extent items are not continuous.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
2008-10-30 14:19:41 -04:00
Chris Mason
09fde3c9ba Btrfs: Rev the disk format for compression and root pointer generation fields 2008-10-29 14:49:04 -04:00
Yan Zheng
84234f3a1f Btrfs: Add root tree pointer transaction ids
This patch adds transaction IDs to root tree pointers.
Transaction IDs in tree pointers are compared with the
generation numbers in block headers when reading root
blocks of trees. This can detect some types of IO errors.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
2008-10-29 14:49:05 -04:00
Josef Bacik
2517920135 Btrfs: nuke fs wide allocation mutex V2
This patch removes the giant fs_info->alloc_mutex and replaces it with a bunch
of little locks.

There is now a pinned_mutex, which is used when messing with the pinned_extents
extent io tree, and the extent_ins_mutex which is used with the pending_del and
extent_ins extent io trees.

The locking for the extent tree stuff was inspired by a patch that Yan Zheng
wrote to fix a race condition, I cleaned it up some and changed the locking
around a little bit, but the idea remains the same.  Basically instead of
holding the extent_ins_mutex throughout the processing of an extent on the
extent_ins or pending_del trees, we just hold it while we're searching and when
we clear the bits on those trees, and lock the extent for the duration of the
operations on the extent.

Also to keep from getting hung up waiting to lock an extent, I've added a
try_lock_extent so if we cannot lock the extent, move on to the next one in the
tree and we'll come back to that one.  I have tested this heavily and it does
not appear to break anything.  This has to be applied on top of my
find_free_extent redo patch.

I tested this patch on top of Yan's space reblancing code and it worked fine.
The only thing that has changed since the last version is I pulled out all my
debugging stuff, apparently I forgot to run guilt refresh before I sent the
last patch out.  Thank you,

Signed-off-by: Josef Bacik <jbacik@redhat.com>
2008-10-29 14:49:05 -04:00
Josef Bacik
80eb234af0 Btrfs: fix enospc when there is plenty of space
So there is an odd case where we can possibly return -ENOSPC when there is in
fact space to be had.  It only happens with Metadata writes, and happens _very_
infrequently.  What has to happen is we have to allocate have allocated out of
the first logical byte on the disk, which would set last_alloc to
first_logical_byte(root, 0), so search_start == orig_search_start.  We then
need to allocate for normal metadata, so BTRFS_BLOCK_GROUP_METADATA |
BTRFS_BLOCK_GROUP_DUP.  We will do a block lookup for the given search_start,
block_group_bits() won't match and we'll go to choose another block group.
However because search_start matches orig_search_start we go to see if we can
allocate a chunk.

If we are in the situation that we cannot allocate a chunk, we fail and ENOSPC.
This is kind of a big flaw of the way find_free_extent works, as it along with
find_free_space loop through _all_ of the block groups, not just the ones that
we want to allocate out of.  This patch completely kills find_free_space and
rolls it into find_free_extent.  I've introduced a sort of state machine into
this, which will make it easier to get cache miss information out of the
allocator, and will work well with my locking changes.

The basic flow is this:  We have the variable loop which is 0, meaning we are
in the hint phase.  We lookup the block group for the hint, and lookup the
space_info for what we want to allocate out of.  If the block group we were
pointed at by the hint either isn't of the correct type, or just doesn't have
the space we need, we set head to space_info->block_groups, so we start at the
beginning of the block groups for this particular space info, and loop through.

This is also where we add the empty_cluster to total_needed.  At this point
loop is set to 1 and we just loop through all of the block groups for this
particular space_info looking for the space we need, just as find_free_space
would have done, except we only hit the block groups we want and not _all_ of
the block groups.  If we come full circle we see if we can allocate a chunk.
If we cannot of course we exit with -ENOSPC and we are good.  If not we start
over at space_info->block_groups and loop through again, with loop == 2.  If we
come full circle and haven't found what we need then we exit with -ENOSPC.
I've been running this for a couple of days now and it seems stable, and I
haven't yet hit a -ENOSPC when there was plenty of space left.

Also I've made a groups_sem to handle the group list for the space_info.  This
is part of my locking changes, but is relatively safe and seems better than
holding the space_info spinlock over that entire search time.  Thanks,

Signed-off-by: Josef Bacik <jbacik@redhat.com>
2008-10-29 14:49:05 -04:00
Yan Zheng
f82d02d9d8 Btrfs: Improve space balancing code
This patch improves the space balancing code to keep more sharing
of tree blocks. The only case that breaks sharing of tree blocks is
data extents get fragmented during balancing. The main changes in
this patch are:

Add a 'drop sub-tree' function. This solves the problem in old code
that BTRFS_HEADER_FLAG_WRITTEN check breaks sharing of tree block.

Remove relocation mapping tree. Relocation mappings are stored in
struct btrfs_ref_path and updated dynamically during walking up/down
the reference path. This reduces CPU usage and simplifies code.

This patch also fixes a bug. Root items for reloc trees should be
updated in btrfs_free_reloc_root.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
2008-10-29 14:49:05 -04:00
Chris Mason
c8b978188c Btrfs: Add zlib compression support
This is a large change for adding compression on reading and writing,
both for inline and regular extents.  It does some fairly large
surgery to the writeback paths.

Compression is off by default and enabled by mount -o compress.  Even
when the -o compress mount option is not used, it is possible to read
compressed extents off the disk.

If compression for a given set of pages fails to make them smaller, the
file is flagged to avoid future compression attempts later.

* While finding delalloc extents, the pages are locked before being sent down
to the delalloc handler.  This allows the delalloc handler to do complex things
such as cleaning the pages, marking them writeback and starting IO on their
behalf.

* Inline extents are inserted at delalloc time now.  This allows us to compress
the data before inserting the inline extent, and it allows us to insert
an inline extent that spans multiple pages.

* All of the in-memory extent representations (extent_map.c, ordered-data.c etc)
are changed to record both an in-memory size and an on disk size, as well
as a flag for compression.

From a disk format point of view, the extent pointers in the file are changed
to record the on disk size of a given extent and some encoding flags.
Space in the disk format is allocated for compression encoding, as well
as encryption and a generic 'other' field.  Neither the encryption or the
'other' field are currently used.

In order to limit the amount of data read for a single random read in the
file, the size of a compressed extent is limited to 128k.  This is a
software only limit, the disk format supports u64 sized compressed extents.

In order to limit the ram consumed while processing extents, the uncompressed
size of a compressed extent is limited to 256k.  This is a software only limit
and will be subject to tuning later.

Checksumming is still done on compressed extents, and it is done on the
uncompressed version of the data.  This way additional encodings can be
layered on without having to figure out which encoding to checksum.

Compression happens at delalloc time, which is basically singled threaded because
it is usually done by a single pdflush thread.  This makes it tricky to
spread the compression load across all the cpus on the box.  We'll have to
look at parallel pdflush walks of dirty inodes at a later time.

Decompression is hooked into readpages and it does spread across CPUs nicely.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-10-29 14:49:59 -04:00
Christoph Hellwig
cb8e70901d Btrfs: Fix subvolume creation locking rules
Creating a subvolume is in many ways like a normal VFS ->mkdir, and we
really need to play with the VFS topology locking rules.  So instead of
just creating the snapshot on disk and then later getting rid of
confliting aliases do it correctly from the start.  This will become
especially important once we allow for subvolumes anywhere in the tree,
and not just below a hidden root.

Note that snapshots will need the same treatment, but do to the delay
in creating them we can't do it currently.  Chris promised to fix that
issue, so I'll wait on that.

Signed-off-by: Christoph Hellwig <hch@lst.de>
2008-10-09 13:39:39 -04:00
Chris Mason
833023e46c Btrfs: Rev the disk format for the new back reference format
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-10-09 11:55:03 -04:00
Yan Zheng
3bb1a1bc42 Btrfs: Remove offset field from struct btrfs_extent_ref
The offset field in struct btrfs_extent_ref records the position
inside file that file extent is referenced by. In the new back
reference system, tree leaves holding references to file extent
are recorded explicitly. We can scan these tree leaves very quickly, so the
offset field is not required.

This patch also makes the back reference system check the objectid
when extents are in deleting.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
2008-10-09 11:46:24 -04:00
Yan Zheng
a76a3cd40c Btrfs: Count space allocated to file in bytes
This patch makes btrfs count space allocated to file in bytes instead
of 512 byte sectors.

Everything else in btrfs uses a byte count instead of sector sizes or
blocks sizes, so this fits better.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
2008-10-09 11:46:29 -04:00
Chris Mason
30c43e2444 Btrfs: remove last_log_alloc allocator optimization
The tree logging code was trying to separate tree log allocations
from normal metadata allocations to improve writeback patterns during
an fsync.

But, the code was not effective and ended up just mixing tree log
blocks with regular metadata.  That seems to be working fairly well,
so the last_log_alloc code can be removed.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-10-03 12:24:01 -04:00
Chris Mason
323ac95bce Btrfs: don't read leaf blocks containing only checksums during truncate
Checksum items take up a significant portion of the metadata for large files.
It is possible to avoid reading them during truncates by checking the keys in
the higher level nodes.

If a given leaf is followed by another leaf where the lowest key is a checksum
item from the same file, we know we can safely delete the leaf without
reading it.

For a 32GB file on a 6 drive raid0 array, Btrfs needs 8s to delete
the file with a cold cache.  It is read bound during the run.

With this change, Btrfs is able to delete the file in 0.5s

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-10-01 19:05:46 -04:00
Chris Mason
d352ac6814 Btrfs: add and improve comments
This improves the comments at the top of many functions.  It didn't
dive into the guts of functions because I was trying to
avoid merging problems with the new allocator and back reference work.

extent-tree.c and volumes.c were both skipped, and there is definitely
more work todo in cleaning and commenting the code.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-29 15:18:18 -04:00
Chris Mason
8c8bee1d7c Btrfs: Wait for IO on the block device inodes of newly added devices
btrfs-vol -a /dev/xxx will zero the first and last two MB of the device.
The kernel code needs to wait for this IO to finish before it adds
the device.

btrfs metadata IO does not happen through the block device inode.  A
separate address space is used, allowing the zero filled buffer heads in
the block device inode to be written to disk after FS metadata starts
going down to the disk via the btrfs metadata inode.

The end result is zero filled metadata blocks after adding new devices
into the filesystem.

The fix is a simple filemap_write_and_wait on the block device inode
before actually inserting it into the pool of available devices.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-29 11:19:10 -04:00
Zheng Yan
1a40e23b95 Btrfs: update space balancing code
This patch updates the space balancing code to utilize the new
backref format.  Before, btrfs-vol -b would break any COW links
on data blocks or metadata.  This was slow and caused the amount
of space used to explode if a large number of snapshots were present.

The new code can keeps the sharing of all data extents and
most of the tree blocks.

To maintain the sharing of data extents, the space balance code uses
a seperate inode hold data extent pointers, then updates the references
to point to the new location.

To maintain the sharing of tree blocks, the space balance code uses
reloc trees to relocate tree blocks in reference counted roots.
There is one reloc tree for each subvol, and all reloc trees share
same root key objectid. Reloc trees are snapshots of the latest
committed roots of subvols (root->commit_root).

To relocate a tree block referenced by a subvol, there are two steps.
COW the block through subvol's reloc tree, then update block pointer in
the subvol to point to the new block. Since all reloc trees share
same root key objectid, doing special handing for tree blocks
owned by them is easy. Once a tree block has been COWed in one
reloc tree, we can use the resulting new block directly when the
same block is required to COW again through other reloc trees.
In this way, relocated tree blocks are shared between reloc trees,
so they are also shared between subvols.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-26 10:09:34 -04:00
Zheng Yan
5b21f2ed3f Btrfs: extent_map and data=ordered fixes for space balancing
* Add an EXTENT_BOUNDARY state bit to keep the writepage code
from merging data extents that are in the process of being
relocated.  This allows us to do accounting for them properly.

* The balancing code relocates data extents indepdent of the underlying
inode.  The extent_map code was modified to properly account for
things moving around (invalidating extent_map caches in the inode).

* Don't take the drop_mutex in the create_subvol ioctl.  It isn't
required.

* Fix walking of the ordered extent list to avoid races with sys_unlink

* Change the lock ordering rules.  Transaction start goes outside
the drop_mutex.  This allows btrfs_commit_transaction to directly
drop the relocation trees.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-26 10:05:38 -04:00
Zheng Yan
e465768938 Btrfs: Add shared reference cache
Btrfs has a cache of reference counts in leaves, allowing it to
avoid reading tree leaves while deleting snapshots.  To reduce
contention with multiple subvolumes, this cache is private to each
subvolume.

This patch adds shared reference cache support. The new space
balancing code plays with multiple subvols at the same time, So
the old per-subvol reference cache is not well suited.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-26 10:04:53 -04:00
Zheng Yan
e856981384 Btrfs: allocator fixes for space balancing update
* Reserved extent accounting:  reserved extents have been
allocated in the rbtrees that track free space but have not
been allocated on disk.  They were never properly accounted for
in the past, making it hard to know how much space was really free.

* btrfs_find_block_group used to return NULL for block groups that
had been removed by the space balancing code.  This made it hard
to account for space during the final stages of a balance run.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-26 10:05:48 -04:00
Chris Mason
2b1f55b0f0 Remove Btrfs compat code for older kernels
Btrfs had compatibility code for kernels back to 2.6.18.  These have
been removed, and will be maintained in a separate backport
git tree from now on.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 15:41:59 -04:00
Zheng Yan
31840ae1a6 Btrfs: Full back reference support
This patch makes the back reference system to explicit record the
location of parent node for all types of extents. The location of
parent node is placed into the offset field of backref key. Every
time a tree block is balanced, the back references for the affected
lower level extents are updated.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:07 -04:00
Josef Bacik
0f9dd46cda Btrfs: free space accounting redo
1) replace the per fs_info extent_io_tree that tracked free space with two
rb-trees per block group to track free space areas via offset and size.  The
reason to do this is because most allocations come with a hint byte where to
start, so we can usually find a chunk of free space at that hint byte to satisfy
the allocation and get good space packing.  If we cannot find free space at or
after the given offset we fall back on looking for a chunk of the given size as
close to that given offset as possible.  When we fall back on the size search we
also try to find a slot as close to the size we want as possible, to avoid
breaking small chunks off of huge areas if possible.

2) remove the extent_io_tree that tracked the block group cache from fs_info and
replaced it with an rb-tree thats tracks block group cache via offset.  also
added a per space_info list that tracks the block group cache for the particular
space so we can lookup related block groups easily.

3) cleaned up the allocation code to make it a little easier to read and a
little less complicated.  Basically there are 3 steps, first look from our
provided hint.  If we couldn't find from that given hint, start back at our
original search start and look for space from there.  If that fails try to
allocate space if we can and start looking again.  If not we're screwed and need
to start over again.

4) small fixes.  there were some issues in volumes.c where we wouldn't allocate
the rest of the disk.  fixed cow_file_range to actually pass the alloc_hint,
which has helped a good bit in making the fs_mark test I run have semi-normal
results as we run out of space.  Generally with data allocations we don't track
where we last allocated from, so everytime we did a data allocation we'd search
through every block group that we have looking for free space.  Now searching a
block group with no free space isn't terribly time consuming, it was causing a
slight degradation as we got more data block groups.  The alloc_hint has fixed
this slight degredation and made things semi-normal.

There is still one nagging problem I'm working on where we will get ENOSPC when
there is definitely plenty of space.  This only happens with metadata
allocations, and only when we are almost full.  So you generally hit the 85%
mark first, but sometimes you'll hit the BUG before you hit the 85% wall.  I'm
still tracking it down, but until then this seems to be pretty stable and make a
significant performance gain.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:07 -04:00
Chris Mason
d0c803c404 Btrfs: Record dirty pages tree-log pages in an extent_io tree
This is the same way the transaction code makes sure that all the
other tree blocks are safely on disk.  There's an extent_io tree
for each root, and any blocks allocated to the tree logs are
recorded in that tree.

At tree-log sync, the extent_io tree is walked to flush down the
dirty pages and wait for them.

The main benefit is less time spent walking the tree log and skipping
clean pages, and getting sequential IO down to the drive.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:07 -04:00
Zheng Yan
6527cdbe68 Btrfs: Update find free objectid function for orphan cleanup code
Orphan items use BTRFS_ORPHAN_OBJECTID (-5UUL) as key objectid. This
affects the find free objectid functions, inode objectid can easily
overflow after orphan file cleanup.

---

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:07 -04:00
Christoph Hellwig
a237d2a2bd remove unused function btrfs_ilookup
btrfs_ilookup is unused, which is good because a normal filesystem
should never have to use ilookup anyway.  Remove it.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:07 -04:00
Chris Mason
91c0827de2 Btrfs: Rev the disk format
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:07 -04:00
Chris Mason
e02119d5a7 Btrfs: Add a write ahead tree log to optimize synchronous operations
File syncs and directory syncs are optimized by copying their
items into a special (copy-on-write) log tree.  There is one log tree per
subvolume and the btrfs super block points to a tree of log tree roots.

After a crash, items are copied out of the log tree and back into the
subvolume.  See tree-log.c for all the details.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:07 -04:00