Commit Graph

37659 Commits

Author SHA1 Message Date
Waiman Long
48272aa48d tracing: Disable interrupt or preemption before acquiring arch_spinlock_t
commit c0a581d712 upstream.

It was found that some tracing functions in kernel/trace/trace.c acquire
an arch_spinlock_t with preemption and irqs enabled. An example is the
tracing_saved_cmdlines_size_read() function which intermittently causes
a "BUG: using smp_processor_id() in preemptible" warning when the LTP
read_all_proc test is run.

That can be problematic in case preemption happens after acquiring the
lock. Add the necessary preemption or interrupt disabling code in the
appropriate places before acquiring an arch_spinlock_t.

The convention here is to disable preemption for trace_cmdline_lock and
interupt for max_lock.

Link: https://lkml.kernel.org/r/20220922145622.1744826-1-longman@redhat.com

Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Will Deacon <will@kernel.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: stable@vger.kernel.org
Fixes: a35873a099 ("tracing: Add conditional snapshot")
Fixes: 939c7a4f04 ("tracing: Introduce saved_cmdlines_size file")
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 12:34:31 +02:00
Steven Rostedt (Google)
d4ab9bc5f5 ring-buffer: Fix race between reset page and reading page
commit a0fcaaed0c upstream.

The ring buffer is broken up into sub buffers (currently of page size).
Each sub buffer has a pointer to its "tail" (the last event written to the
sub buffer). When a new event is requested, the tail is locally
incremented to cover the size of the new event. This is done in a way that
there is no need for locking.

If the tail goes past the end of the sub buffer, the process of moving to
the next sub buffer takes place. After setting the current sub buffer to
the next one, the previous one that had the tail go passed the end of the
sub buffer needs to be reset back to the original tail location (before
the new event was requested) and the rest of the sub buffer needs to be
"padded".

The race happens when a reader takes control of the sub buffer. As readers
do a "swap" of sub buffers from the ring buffer to get exclusive access to
the sub buffer, it replaces the "head" sub buffer with an empty sub buffer
that goes back into the writable portion of the ring buffer. This swap can
happen as soon as the writer moves to the next sub buffer and before it
updates the last sub buffer with padding.

Because the sub buffer can be released to the reader while the writer is
still updating the padding, it is possible for the reader to see the event
that goes past the end of the sub buffer. This can cause obvious issues.

To fix this, add a few memory barriers so that the reader definitely sees
the updates to the sub buffer, and also waits until the writer has put
back the "tail" of the sub buffer back to the last event that was written
on it.

To be paranoid, it will only spin for 1 second, otherwise it will
warn and shutdown the ring buffer code. 1 second should be enough as
the writer does have preemption disabled. If the writer doesn't move
within 1 second (with preemption disabled) something is horribly
wrong. No interrupt should last 1 second!

Link: https://lore.kernel.org/all/20220830120854.7545-1-jiazi.li@transsion.com/
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216369
Link: https://lkml.kernel.org/r/20220929104909.0650a36c@gandalf.local.home

Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org
Fixes: c7b0930857 ("ring-buffer: prevent adding write in discarded area")
Reported-by: Jiazi.Li <jiazi.li@transsion.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 12:34:31 +02:00
Steven Rostedt (Google)
be60f698c2 ring-buffer: Add ring_buffer_wake_waiters()
commit 7e9fbbb1b7 upstream.

On closing of a file that represents a ring buffer or flushing the file,
there may be waiters on the ring buffer that needs to be woken up and exit
the ring_buffer_wait() function.

Add ring_buffer_wake_waiters() to wake up the waiters on the ring buffer
and allow them to exit the wait loop.

Link: https://lkml.kernel.org/r/20220928133938.28dc2c27@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 15693458c4 ("tracing/ring-buffer: Move poll wake ups into ring buffer code")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 12:34:31 +02:00
Steven Rostedt (Google)
5201dd81ae ring-buffer: Check pending waiters when doing wake ups as well
commit ec0bbc5ec5 upstream.

The wake up waiters only checks the "wakeup_full" variable and not the
"full_waiters_pending". The full_waiters_pending is set when a waiter is
added to the wait queue. The wakeup_full is only set when an event is
triggered, and it clears the full_waiters_pending to avoid multiple calls
to irq_work_queue().

The irq_work callback really needs to check both wakeup_full as well as
full_waiters_pending such that this code can be used to wake up waiters
when a file is closed that represents the ring buffer and the waiters need
to be woken up.

Link: https://lkml.kernel.org/r/20220927231824.209460321@goodmis.org

Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 15693458c4 ("tracing/ring-buffer: Move poll wake ups into ring buffer code")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 12:34:30 +02:00
Steven Rostedt (Google)
bc6d4e9d64 ring-buffer: Have the shortest_full queue be the shortest not longest
commit 3b19d614b6 upstream.

The logic to know when the shortest waiters on the ring buffer should be
woken up or not has uses a less than instead of a greater than compare,
which causes the shortest_full to actually be the longest.

Link: https://lkml.kernel.org/r/20220927231823.718039222@goodmis.org

Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 2c2b0a78b3 ("ring-buffer: Add percentage of ring buffer full to wake up reader")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 12:34:30 +02:00
Steven Rostedt (Google)
e8d1167385 ring-buffer: Allow splice to read previous partially read pages
commit fa8f4a8973 upstream.

If a page is partially read, and then the splice system call is run
against the ring buffer, it will always fail to read, no matter how much
is in the ring buffer. That's because the code path for a partial read of
the page does will fail if the "full" flag is set.

The splice system call wants full pages, so if the read of the ring buffer
is not yet full, it should return zero, and the splice will block. But if
a previous read was done, where the beginning has been consumed, it should
still be given to the splice caller if the rest of the page has been
written to.

This caused the splice command to never consume data in this scenario, and
let the ring buffer just fill up and lose events.

Link: https://lkml.kernel.org/r/20220927144317.46be6b80@gandalf.local.home

Cc: stable@vger.kernel.org
Fixes: 8789a9e7df ("ring-buffer: read page interface")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 12:34:30 +02:00
Zheng Yejian
fb96b7489f ftrace: Properly unset FTRACE_HASH_FL_MOD
commit 0ce0638edf upstream.

When executing following commands like what document said, but the log
"#### all functions enabled ####" was not shown as expect:
  1. Set a 'mod' filter:
    $ echo 'write*:mod:ext3' > /sys/kernel/tracing/set_ftrace_filter
  2. Invert above filter:
    $ echo '!write*:mod:ext3' >> /sys/kernel/tracing/set_ftrace_filter
  3. Read the file:
    $ cat /sys/kernel/tracing/set_ftrace_filter

By some debugging, I found that flag FTRACE_HASH_FL_MOD was not unset
after inversion like above step 2 and then result of ftrace_hash_empty()
is incorrect.

Link: https://lkml.kernel.org/r/20220926152008.2239274-1-zhengyejian1@huawei.com

Cc: <mingo@redhat.com>
Cc: stable@vger.kernel.org
Fixes: 8c08f0d5c6 ("ftrace: Have cached module filters be an active filter")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 12:34:30 +02:00
Rik van Riel
31dc1727c1 livepatch: fix race between fork and KLP transition
commit 747f7a2901 upstream.

The KLP transition code depends on the TIF_PATCH_PENDING and
the task->patch_state to stay in sync. On a normal (forward)
transition, TIF_PATCH_PENDING will be set on every task in
the system, while on a reverse transition (after a failed
forward one) first TIF_PATCH_PENDING will be cleared from
every task, followed by it being set on tasks that need to
be transitioned back to the original code.

However, the fork code copies over the TIF_PATCH_PENDING flag
from the parent to the child early on, in dup_task_struct and
setup_thread_stack. Much later, klp_copy_process will set
child->patch_state to match that of the parent.

However, the parent's patch_state may have been changed by KLP loading
or unloading since it was initially copied over into the child.

This results in the KLP code occasionally hitting this warning in
klp_complete_transition:

        for_each_process_thread(g, task) {
                WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
                task->patch_state = KLP_UNDEFINED;
        }

Set, or clear, the TIF_PATCH_PENDING flag in the child task
depending on whether or not it is needed at the time
klp_copy_process is called, at a point in copy_process where the
tasklist_lock is held exclusively, preventing races with the KLP
code.

The KLP code does have a few places where the state is changed
without the tasklist_lock held, but those should not cause
problems because klp_update_patch_state(current) cannot be
called while the current task is in the middle of fork,
klp_check_and_switch_task() which is called under the pi_lock,
which prevents rescheduling, and manipulation of the patch
state of idle tasks, which do not fork.

This should prevent this warning from triggering again in the
future, and close the race for both normal and reverse transitions.

Signed-off-by: Rik van Riel <riel@surriel.com>
Reported-by: Breno Leitao <leitao@debian.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Fixes: d83a7cb375 ("livepatch: change to a per-task consistency model")
Cc: stable@kernel.org
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20220808150019.03d6a67b@imladris.surriel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 12:34:30 +02:00
Tianyu Lan
bfe5dc2101 swiotlb: max mapping size takes min align mask into account
commit 82806744fd upstream.

swiotlb_find_slots() skips slots according to io tlb aligned mask
calculated from min aligned mask and original physical address
offset. This affects max mapping size. The mapping size can't
achieve the IO_TLB_SEGSIZE * IO_TLB_SIZE when original offset is
non-zero. This will cause system boot up failure in Hyper-V
Isolation VM where swiotlb force is enabled. Scsi layer use return
value of dma_max_mapping_size() to set max segment size and it
finally calls swiotlb_max_mapping_size(). Hyper-V storage driver
sets min align mask to 4k - 1. Scsi layer may pass 256k length of
request buffer with 0~4k offset and Hyper-V storage driver can't
get swiotlb bounce buffer via DMA API. Swiotlb_find_slots() can't
find 256k length bounce buffer with offset. Make swiotlb_max_mapping
_size() take min align mask into account.

Signed-off-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Rishabh Bhatnagar <risbhat@amazon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-05 10:39:40 +02:00
Ming Lei
8484a356ce cgroup: cgroup_get_from_id() must check the looked-up kn is a directory
[ Upstream commit df02452f3d ]

cgroup has to be one kernfs dir, otherwise kernel panic is caused,
especially cgroup id is provide from userspace.

Reported-by: Marco Patalano <mpatalan@redhat.com>
Fixes: 6b658c4863 ("scsi: cgroup: Add cgroup_get_from_id()")
Cc: Muneendra <muneendra.kumar@broadcom.com>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Acked-by: Mukesh Ojha <quic_mojha@quicinc.com>
Cc: stable@vger.kernel.org # v5.14+
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-05 10:39:36 +02:00
Shakeel Butt
ae04dd5ef1 cgroup: reduce dependency on cgroup_mutex
[ Upstream commit be28816971 ]

Currently cgroup_get_from_path() and cgroup_get_from_id() grab
cgroup_mutex before traversing the default hierarchy to find the
kernfs_node corresponding to the path/id and then extract the linked
cgroup. Since cgroup_mutex is still held, it is guaranteed that the
cgroup will be alive and the reference can be taken on it.

However similar guarantee can be provided without depending on the
cgroup_mutex and potentially reducing avenues of cgroup_mutex contentions.
The kernfs_node's priv pointer is RCU protected pointer and with just
rcu read lock we can grab the reference on the cgroup without
cgroup_mutex. So, remove cgroup_mutex from them.

Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Stable-dep-of: df02452f3d ("cgroup: cgroup_get_from_id() must check the looked-up kn is a directory")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-05 10:39:35 +02:00
Tetsuo Handa
c71ec39be4 workqueue: don't skip lockdep work dependency in cancel_work_sync()
[ Upstream commit c0feea594e ]

Like Hillf Danton mentioned

  syzbot should have been able to catch cancel_work_sync() in work context
  by checking lockdep_map in __flush_work() for both flush and cancel.

in [1], being unable to report an obvious deadlock scenario shown below is
broken. From locking dependency perspective, sync version of cancel request
should behave as if flush request, for it waits for completion of work if
that work has already started execution.

  ----------
  #include <linux/module.h>
  #include <linux/sched.h>
  static DEFINE_MUTEX(mutex);
  static void work_fn(struct work_struct *work)
  {
    schedule_timeout_uninterruptible(HZ / 5);
    mutex_lock(&mutex);
    mutex_unlock(&mutex);
  }
  static DECLARE_WORK(work, work_fn);
  static int __init test_init(void)
  {
    schedule_work(&work);
    schedule_timeout_uninterruptible(HZ / 10);
    mutex_lock(&mutex);
    cancel_work_sync(&work);
    mutex_unlock(&mutex);
    return -EINVAL;
  }
  module_init(test_init);
  MODULE_LICENSE("GPL");
  ----------

The check this patch restores was added by commit 0976dfc1d0
("workqueue: Catch more locking problems with flush_work()").

Then, lockdep's crossrelease feature was added by commit b09be676e0
("locking/lockdep: Implement the 'crossrelease' feature"). As a result,
this check was once removed by commit fd1a5b04df ("workqueue: Remove
now redundant lock acquisitions wrt. workqueue flushes").

But lockdep's crossrelease feature was removed by commit e966eaeeb6
("locking/lockdep: Remove the cross-release locking checks"). At this
point, this check should have been restored.

Then, commit d6e89786be ("workqueue: skip lockdep wq dependency in
cancel_work_sync()") introduced a boolean flag in order to distinguish
flush_work() and cancel_work_sync(), for checking "struct workqueue_struct"
dependency when called from cancel_work_sync() was causing false positives.

Then, commit 87915adc3f ("workqueue: re-add lockdep dependencies for
flushing") tried to restore "struct work_struct" dependency check, but by
error checked this boolean flag. Like an example shown above indicates,
"struct work_struct" dependency needs to be checked for both flush_work()
and cancel_work_sync().

Link: https://lkml.kernel.org/r/20220504044800.4966-1-hdanton@sina.com [1]
Reported-by: Hillf Danton <hdanton@sina.com>
Suggested-by: Lai Jiangshan <jiangshanlai@gmail.com>
Fixes: 87915adc3f ("workqueue: re-add lockdep dependencies for flushing")
Cc: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-09-28 11:11:56 +02:00
Tetsuo Handa
5db17805b6 cgroup: Add missing cpus_read_lock() to cgroup_attach_task_all()
commit 43626dade3 upstream.

syzbot is hitting percpu_rwsem_assert_held(&cpu_hotplug_lock) warning at
cpuset_attach() [1], for commit 4f7e723643 ("cgroup: Fix
threadgroup_rwsem <-> cpus_read_lock() deadlock") missed that
cpuset_attach() is also called from cgroup_attach_task_all().
Add cpus_read_lock() like what cgroup_procs_write_start() does.

Link: https://syzkaller.appspot.com/bug?extid=29d3a3b4d86c8136ad9e [1]
Reported-by: syzbot <syzbot+29d3a3b4d86c8136ad9e@syzkaller.appspotmail.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Fixes: 4f7e723643 ("cgroup: Fix threadgroup_rwsem <-> cpus_read_lock() deadlock")
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-09-23 14:15:52 +02:00
Yipeng Zou
3c90af5a77 tracing: hold caller_addr to hardirq_{enable,disable}_ip
[ Upstream commit 54c3931957 ]

Currently, The arguments passing to lockdep_hardirqs_{on,off} was fixed
in CALLER_ADDR0.
The function trace_hardirqs_on_caller should have been intended to use
caller_addr to represent the address that caller wants to be traced.

For example, lockdep log in riscv showing the last {enabled,disabled} at
__trace_hardirqs_{on,off} all the time(if called by):
[   57.853175] hardirqs last  enabled at (2519): __trace_hardirqs_on+0xc/0x14
[   57.853848] hardirqs last disabled at (2520): __trace_hardirqs_off+0xc/0x14

After use trace_hardirqs_xx_caller, we can get more effective information:
[   53.781428] hardirqs last  enabled at (2595): restore_all+0xe/0x66
[   53.782185] hardirqs last disabled at (2596): ret_from_exception+0xa/0x10

Link: https://lkml.kernel.org/r/20220901104515.135162-2-zouyipeng@huawei.com

Cc: stable@vger.kernel.org
Fixes: c3bc8fd637 ("tracing: Centralize preemptirq tracepoints and unify their usage")
Signed-off-by: Yipeng Zou <zouyipeng@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-09-20 12:39:43 +02:00
Nick Desaulniers
f9571a9699 lockdep: Fix -Wunused-parameter for _THIS_IP_
[ Upstream commit 8b023accc8 ]

While looking into a bug related to the compiler's handling of addresses
of labels, I noticed some uses of _THIS_IP_ seemed unused in lockdep.
Drive by cleanup.

-Wunused-parameter:
kernel/locking/lockdep.c:1383:22: warning: unused parameter 'ip'
kernel/locking/lockdep.c:4246:48: warning: unused parameter 'ip'
kernel/locking/lockdep.c:4844:19: warning: unused parameter 'ip'

Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Waiman Long <longman@redhat.com>
Link: https://lore.kernel.org/r/20220314221909.2027027-1-ndesaulniers@google.com
Stable-dep-of: 54c3931957 ("tracing: hold caller_addr to hardirq_{enable,disable}_ip")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-09-20 12:39:42 +02:00
Chao Gao
4f8d658848 swiotlb: avoid potential left shift overflow
[ Upstream commit 3f0461613e ]

The second operand passed to slot_addr() is declared as int or unsigned int
in all call sites. The left-shift to get the offset of a slot can overflow
if swiotlb size is larger than 4G.

Convert the macro to an inline function and declare the second argument as
phys_addr_t to avoid the potential overflow.

Fixes: 26a7e09478 ("swiotlb: refactor swiotlb_tbl_map_single")
Signed-off-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Dongli Zhang <dongli.zhang@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-09-15 11:30:07 +02:00
Yishai Hadas
819110054b IB/core: Fix a nested dead lock as part of ODP flow
[ Upstream commit 85eaeb5058 ]

Fix a nested dead lock as part of ODP flow by using mmput_async().

From the below call trace [1] can see that calling mmput() once we have
the umem_odp->umem_mutex locked as required by
ib_umem_odp_map_dma_and_lock() might trigger in the same task the
exit_mmap()->__mmu_notifier_release()->mlx5_ib_invalidate_range() which
may dead lock when trying to lock the same mutex.

Moving to use mmput_async() will solve the problem as the above
exit_mmap() flow will be called in other task and will be executed once
the lock will be available.

[1]
[64843.077665] task:kworker/u133:2  state:D stack:    0 pid:80906 ppid:
2 flags:0x00004000
[64843.077672] Workqueue: mlx5_ib_page_fault mlx5_ib_eqe_pf_action [mlx5_ib]
[64843.077719] Call Trace:
[64843.077722]  <TASK>
[64843.077724]  __schedule+0x23d/0x590
[64843.077729]  schedule+0x4e/0xb0
[64843.077735]  schedule_preempt_disabled+0xe/0x10
[64843.077740]  __mutex_lock.constprop.0+0x263/0x490
[64843.077747]  __mutex_lock_slowpath+0x13/0x20
[64843.077752]  mutex_lock+0x34/0x40
[64843.077758]  mlx5_ib_invalidate_range+0x48/0x270 [mlx5_ib]
[64843.077808]  __mmu_notifier_release+0x1a4/0x200
[64843.077816]  exit_mmap+0x1bc/0x200
[64843.077822]  ? walk_page_range+0x9c/0x120
[64843.077828]  ? __cond_resched+0x1a/0x50
[64843.077833]  ? mutex_lock+0x13/0x40
[64843.077839]  ? uprobe_clear_state+0xac/0x120
[64843.077860]  mmput+0x5f/0x140
[64843.077867]  ib_umem_odp_map_dma_and_lock+0x21b/0x580 [ib_core]
[64843.077931]  pagefault_real_mr+0x9a/0x140 [mlx5_ib]
[64843.077962]  pagefault_mr+0xb4/0x550 [mlx5_ib]
[64843.077992]  pagefault_single_data_segment.constprop.0+0x2ac/0x560
[mlx5_ib]
[64843.078022]  mlx5_ib_eqe_pf_action+0x528/0x780 [mlx5_ib]
[64843.078051]  process_one_work+0x22b/0x3d0
[64843.078059]  worker_thread+0x53/0x410
[64843.078065]  ? process_one_work+0x3d0/0x3d0
[64843.078073]  kthread+0x12a/0x150
[64843.078079]  ? set_kthread_struct+0x50/0x50
[64843.078085]  ret_from_fork+0x22/0x30
[64843.078093]  </TASK>

Fixes: 36f30e486d ("IB/core: Improve ODP to use hmm_range_fault()")
Reviewed-by: Maor Gottlieb <maorg@nvidia.com>
Signed-off-by: Yishai Hadas <yishaih@nvidia.com>
Link: https://lore.kernel.org/r/74d93541ea533ef7daec6f126deb1072500aeb16.1661251841.git.leonro@nvidia.com
Signed-off-by: Leon Romanovsky <leon@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-09-15 11:30:06 +02:00
Tejun Heo
3bf4bf5406 cgroup: Fix threadgroup_rwsem <-> cpus_read_lock() deadlock
[ Upstream commit 4f7e723643 ]

Bringing up a CPU may involve creating and destroying tasks which requires
read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
cpus_read_lock(). However, cpuset's ->attach(), which may be called with
thredagroup_rwsem write-locked, also wants to disable CPU hotplug and
acquires cpus_read_lock(), leading to a deadlock.

Fix it by guaranteeing that ->attach() is always called with CPU hotplug
disabled and removing cpus_read_lock() call from cpuset_attach().

Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-and-tested-by: Imran Khan <imran.f.khan@oracle.com>
Reported-and-tested-by: Xuewen Yan <xuewen.yan@unisoc.com>
Fixes: 05c7b7a92c ("cgroup/cpuset: Fix a race between cpuset_attach() and cpu hotplug")
Cc: stable@vger.kernel.org # v5.17+
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-09-15 11:30:03 +02:00
Tejun Heo
509e3456d3 cgroup: Elide write-locking threadgroup_rwsem when updating csses on an empty subtree
[ Upstream commit 671c11f061 ]

cgroup_update_dfl_csses() write-lock the threadgroup_rwsem as updating the
csses can trigger process migrations. However, if the subtree doesn't
contain any tasks, there aren't gonna be any cgroup migrations. This
condition can be trivially detected by testing whether
mgctx.preloaded_src_csets is empty. Elide write-locking threadgroup_rwsem if
the subtree is empty.

After this optimization, the usage pattern of creating a cgroup, enabling
the necessary controllers, and then seeding it with CLONE_INTO_CGROUP and
then removing the cgroup after it becomes empty doesn't need to write-lock
threadgroup_rwsem at all.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-09-15 11:30:03 +02:00
Greg Kroah-Hartman
26e9a1ded8 sched/debug: fix dentry leak in update_sched_domain_debugfs
commit c2e4065965 upstream.

Kuyo reports that the pattern of using debugfs_remove(debugfs_lookup())
leaks a dentry and with a hotplug stress test, the machine eventually
runs out of memory.

Fix this up by using the newly created debugfs_lookup_and_remove() call
instead which properly handles the dentry reference counting logic.

Cc: Major Chen <major.chen@samsung.com>
Cc: stable <stable@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Reported-by: Kuyo Chang <kuyo.chang@mediatek.com>
Tested-by: Kuyo Chang <kuyo.chang@mediatek.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220902123107.109274-2-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-09-15 11:30:02 +02:00
Christian A. Ehrhardt
8875d60676 kprobes: Prohibit probes in gate area
commit 1efda38d6f upstream.

The system call gate area counts as kernel text but trying
to install a kprobe in this area fails with an Oops later on.
To fix this explicitly disallow the gate area for kprobes.

Found by syzkaller with the following reproducer:
perf_event_open$cgroup(&(0x7f00000001c0)={0x6, 0x80, 0x0, 0x0, 0x0, 0x0, 0x80ffff, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, @perf_config_ext={0x0, 0xffffffffff600000}}, 0xffffffffffffffff, 0x0, 0xffffffffffffffff, 0x0)

Sample report:
BUG: unable to handle page fault for address: fffffbfff3ac6000
PGD 6dfcb067 P4D 6dfcb067 PUD 6df8f067 PMD 6de4d067 PTE 0
Oops: 0000 [#1] PREEMPT SMP KASAN NOPTI
CPU: 0 PID: 21978 Comm: syz-executor.2 Not tainted 6.0.0-rc3-00363-g7726d4c3e60b-dirty #6
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:__insn_get_emulate_prefix arch/x86/lib/insn.c:91 [inline]
RIP: 0010:insn_get_emulate_prefix arch/x86/lib/insn.c:106 [inline]
RIP: 0010:insn_get_prefixes.part.0+0xa8/0x1110 arch/x86/lib/insn.c:134
Code: 49 be 00 00 00 00 00 fc ff df 48 8b 40 60 48 89 44 24 08 e9 81 00 00 00 e8 e5 4b 39 ff 4c 89 fa 4c 89 f9 48 c1 ea 03 83 e1 07 <42> 0f b6 14 32 38 ca 7f 08 84 d2 0f 85 06 10 00 00 48 89 d8 48 89
RSP: 0018:ffffc900088bf860 EFLAGS: 00010246
RAX: 0000000000040000 RBX: ffffffff9b9bebc0 RCX: 0000000000000000
RDX: 1ffffffff3ac6000 RSI: ffffc90002d82000 RDI: ffffc900088bf9e8
RBP: ffffffff9d630001 R08: 0000000000000000 R09: ffffc900088bf9e8
R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000001
R13: ffffffff9d630000 R14: dffffc0000000000 R15: ffffffff9d630000
FS:  00007f63eef63640(0000) GS:ffff88806d000000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: fffffbfff3ac6000 CR3: 0000000029d90005 CR4: 0000000000770ef0
PKRU: 55555554
Call Trace:
 <TASK>
 insn_get_prefixes arch/x86/lib/insn.c:131 [inline]
 insn_get_opcode arch/x86/lib/insn.c:272 [inline]
 insn_get_modrm+0x64a/0x7b0 arch/x86/lib/insn.c:343
 insn_get_sib+0x29a/0x330 arch/x86/lib/insn.c:421
 insn_get_displacement+0x350/0x6b0 arch/x86/lib/insn.c:464
 insn_get_immediate arch/x86/lib/insn.c:632 [inline]
 insn_get_length arch/x86/lib/insn.c:707 [inline]
 insn_decode+0x43a/0x490 arch/x86/lib/insn.c:747
 can_probe+0xfc/0x1d0 arch/x86/kernel/kprobes/core.c:282
 arch_prepare_kprobe+0x79/0x1c0 arch/x86/kernel/kprobes/core.c:739
 prepare_kprobe kernel/kprobes.c:1160 [inline]
 register_kprobe kernel/kprobes.c:1641 [inline]
 register_kprobe+0xb6e/0x1690 kernel/kprobes.c:1603
 __register_trace_kprobe kernel/trace/trace_kprobe.c:509 [inline]
 __register_trace_kprobe+0x26a/0x2d0 kernel/trace/trace_kprobe.c:477
 create_local_trace_kprobe+0x1f7/0x350 kernel/trace/trace_kprobe.c:1833
 perf_kprobe_init+0x18c/0x280 kernel/trace/trace_event_perf.c:271
 perf_kprobe_event_init+0xf8/0x1c0 kernel/events/core.c:9888
 perf_try_init_event+0x12d/0x570 kernel/events/core.c:11261
 perf_init_event kernel/events/core.c:11325 [inline]
 perf_event_alloc.part.0+0xf7f/0x36a0 kernel/events/core.c:11619
 perf_event_alloc kernel/events/core.c:12059 [inline]
 __do_sys_perf_event_open+0x4a8/0x2a00 kernel/events/core.c:12157
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x38/0x90 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f63ef7efaed
Code: 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f63eef63028 EFLAGS: 00000246 ORIG_RAX: 000000000000012a
RAX: ffffffffffffffda RBX: 00007f63ef90ff80 RCX: 00007f63ef7efaed
RDX: 0000000000000000 RSI: ffffffffffffffff RDI: 00000000200001c0
RBP: 00007f63ef86019c R08: 0000000000000000 R09: 0000000000000000
R10: ffffffffffffffff R11: 0000000000000246 R12: 0000000000000000
R13: 0000000000000002 R14: 00007f63ef90ff80 R15: 00007f63eef43000
 </TASK>
Modules linked in:
CR2: fffffbfff3ac6000
---[ end trace 0000000000000000 ]---
RIP: 0010:__insn_get_emulate_prefix arch/x86/lib/insn.c:91 [inline]
RIP: 0010:insn_get_emulate_prefix arch/x86/lib/insn.c:106 [inline]
RIP: 0010:insn_get_prefixes.part.0+0xa8/0x1110 arch/x86/lib/insn.c:134
Code: 49 be 00 00 00 00 00 fc ff df 48 8b 40 60 48 89 44 24 08 e9 81 00 00 00 e8 e5 4b 39 ff 4c 89 fa 4c 89 f9 48 c1 ea 03 83 e1 07 <42> 0f b6 14 32 38 ca 7f 08 84 d2 0f 85 06 10 00 00 48 89 d8 48 89
RSP: 0018:ffffc900088bf860 EFLAGS: 00010246
RAX: 0000000000040000 RBX: ffffffff9b9bebc0 RCX: 0000000000000000
RDX: 1ffffffff3ac6000 RSI: ffffc90002d82000 RDI: ffffc900088bf9e8
RBP: ffffffff9d630001 R08: 0000000000000000 R09: ffffc900088bf9e8
R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000001
R13: ffffffff9d630000 R14: dffffc0000000000 R15: ffffffff9d630000
FS:  00007f63eef63640(0000) GS:ffff88806d000000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: fffffbfff3ac6000 CR3: 0000000029d90005 CR4: 0000000000770ef0
PKRU: 55555554
==================================================================

Link: https://lkml.kernel.org/r/20220907200917.654103-1-lk@c--e.de

cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
cc: "David S. Miller" <davem@davemloft.net>
Cc: stable@vger.kernel.org
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Christian A. Ehrhardt <lk@c--e.de>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-09-15 11:30:02 +02:00
Masami Hiramatsu (Google)
75082adeb4 tracing: Fix to check event_mutex is held while accessing trigger list
commit cecf8e128e upstream.

Since the check_user_trigger() is called outside of RCU
read lock, this list_for_each_entry_rcu() caused a suspicious
RCU usage warning.

 # echo hist:keys=pid > events/sched/sched_stat_runtime/trigger
 # cat events/sched/sched_stat_runtime/trigger
[   43.167032]
[   43.167418] =============================
[   43.167992] WARNING: suspicious RCU usage
[   43.168567] 5.19.0-rc5-00029-g19ebe4651abf #59 Not tainted
[   43.169283] -----------------------------
[   43.169863] kernel/trace/trace_events_trigger.c:145 RCU-list traversed in non-reader section!!
...

However, this file->triggers list is safe when it is accessed
under event_mutex is held.
To fix this warning, adds a lockdep_is_held check to the
list_for_each_entry_rcu().

Link: https://lkml.kernel.org/r/166226474977.223837.1992182913048377113.stgit@devnote2

Cc: stable@vger.kernel.org
Fixes: 7491e2c442 ("tracing: Add a probe that attaches to trace events")
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-09-15 11:30:02 +02:00
Pu Lehui
222bd95c89 bpf, cgroup: Fix kernel BUG in purge_effective_progs
[ Upstream commit 7d6620f107 ]

Syzkaller reported a triggered kernel BUG as follows:

  ------------[ cut here ]------------
  kernel BUG at kernel/bpf/cgroup.c:925!
  invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
  CPU: 1 PID: 194 Comm: detach Not tainted 5.19.0-14184-g69dac8e431af #8
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
  rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
  RIP: 0010:__cgroup_bpf_detach+0x1f2/0x2a0
  Code: 00 e8 92 60 30 00 84 c0 75 d8 4c 89 e0 31 f6 85 f6 74 19 42 f6 84
  28 48 05 00 00 02 75 0e 48 8b 80 c0 00 00 00 48 85 c0 75 e5 <0f> 0b 48
  8b 0c5
  RSP: 0018:ffffc9000055bdb0 EFLAGS: 00000246
  RAX: 0000000000000000 RBX: ffff888100ec0800 RCX: ffffc900000f1000
  RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff888100ec4578
  RBP: 0000000000000000 R08: ffff888100ec0800 R09: 0000000000000040
  R10: 0000000000000000 R11: 0000000000000000 R12: ffff888100ec4000
  R13: 000000000000000d R14: ffffc90000199000 R15: ffff888100effb00
  FS:  00007f68213d2b80(0000) GS:ffff88813bc80000(0000)
  knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 000055f74a0e5850 CR3: 0000000102836000 CR4: 00000000000006e0
  Call Trace:
   <TASK>
   cgroup_bpf_prog_detach+0xcc/0x100
   __sys_bpf+0x2273/0x2a00
   __x64_sys_bpf+0x17/0x20
   do_syscall_64+0x3b/0x90
   entry_SYSCALL_64_after_hwframe+0x63/0xcd
  RIP: 0033:0x7f68214dbcb9
  Code: 08 44 89 e0 5b 41 5c c3 66 0f 1f 84 00 00 00 00 00 48 89 f8 48 89
  f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01
  f0 ff8
  RSP: 002b:00007ffeb487db68 EFLAGS: 00000246 ORIG_RAX: 0000000000000141
  RAX: ffffffffffffffda RBX: 000000000000000b RCX: 00007f68214dbcb9
  RDX: 0000000000000090 RSI: 00007ffeb487db70 RDI: 0000000000000009
  RBP: 0000000000000003 R08: 0000000000000012 R09: 0000000b00000003
  R10: 00007ffeb487db70 R11: 0000000000000246 R12: 00007ffeb487dc20
  R13: 0000000000000004 R14: 0000000000000001 R15: 000055f74a1011b0
   </TASK>
  Modules linked in:
  ---[ end trace 0000000000000000 ]---

Repetition steps:

For the following cgroup tree,

  root
   |
  cg1
   |
  cg2

  1. attach prog2 to cg2, and then attach prog1 to cg1, both bpf progs
     attach type is NONE or OVERRIDE.
  2. write 1 to /proc/thread-self/fail-nth for failslab.
  3. detach prog1 for cg1, and then kernel BUG occur.

Failslab injection will cause kmalloc fail and fall back to
purge_effective_progs. The problem is that cg2 have attached another prog,
so when go through cg2 layer, iteration will add pos to 1, and subsequent
operations will be skipped by the following condition, and cg will meet
NULL in the end.

  `if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI))`

The NULL cg means no link or prog match, this is as expected, and it's not
a bug. So here just skip the no match situation.

Fixes: 4c46091ee9 ("bpf: Fix KASAN use-after-free Read in compute_effective_progs")
Signed-off-by: Pu Lehui <pulehui@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220813134030.1972696-1-pulehui@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-09-08 12:28:01 +02:00
YiFei Zhu
1c518476ce bpf: Restrict bpf_sys_bpf to CAP_PERFMON
[ Upstream commit 14b20b784f ]

The verifier cannot perform sufficient validation of any pointers passed
into bpf_attr and treats them as integers rather than pointers. The helper
will then read from arbitrary pointers passed into it. Restrict the helper
to CAP_PERFMON since the security model in BPF of arbitrary kernel read is
CAP_BPF + CAP_PERFMON.

Fixes: af2ac3e13e ("bpf: Prepare bpf syscall to be used from kernel and user space.")
Signed-off-by: YiFei Zhu <zhuyifei@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220816205517.682470-1-zhuyifei@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-09-08 12:28:01 +02:00
Kuniyuki Iwashima
55c7a91527 kprobes: don't call disarm_kprobe() for disabled kprobes
commit 9c80e79906 upstream.

The assumption in __disable_kprobe() is wrong, and it could try to disarm
an already disarmed kprobe and fire the WARN_ONCE() below. [0]  We can
easily reproduce this issue.

1. Write 0 to /sys/kernel/debug/kprobes/enabled.

  # echo 0 > /sys/kernel/debug/kprobes/enabled

2. Run execsnoop.  At this time, one kprobe is disabled.

  # /usr/share/bcc/tools/execsnoop &
  [1] 2460
  PCOMM            PID    PPID   RET ARGS

  # cat /sys/kernel/debug/kprobes/list
  ffffffff91345650  r  __x64_sys_execve+0x0    [FTRACE]
  ffffffff91345650  k  __x64_sys_execve+0x0    [DISABLED][FTRACE]

3. Write 1 to /sys/kernel/debug/kprobes/enabled, which changes
   kprobes_all_disarmed to false but does not arm the disabled kprobe.

  # echo 1 > /sys/kernel/debug/kprobes/enabled

  # cat /sys/kernel/debug/kprobes/list
  ffffffff91345650  r  __x64_sys_execve+0x0    [FTRACE]
  ffffffff91345650  k  __x64_sys_execve+0x0    [DISABLED][FTRACE]

4. Kill execsnoop, when __disable_kprobe() calls disarm_kprobe() for the
   disabled kprobe and hits the WARN_ONCE() in __disarm_kprobe_ftrace().

  # fg
  /usr/share/bcc/tools/execsnoop
  ^C

Actually, WARN_ONCE() is fired twice, and __unregister_kprobe_top() misses
some cleanups and leaves the aggregated kprobe in the hash table.  Then,
__unregister_trace_kprobe() initialises tk->rp.kp.list and creates an
infinite loop like this.

  aggregated kprobe.list -> kprobe.list -.
                                     ^    |
                                     '.__.'

In this situation, these commands fall into the infinite loop and result
in RCU stall or soft lockup.

  cat /sys/kernel/debug/kprobes/list : show_kprobe_addr() enters into the
                                       infinite loop with RCU.

  /usr/share/bcc/tools/execsnoop : warn_kprobe_rereg() holds kprobe_mutex,
                                   and __get_valid_kprobe() is stuck in
				   the loop.

To avoid the issue, make sure we don't call disarm_kprobe() for disabled
kprobes.

[0]
Failed to disarm kprobe-ftrace at __x64_sys_execve+0x0/0x40 (error -2)
WARNING: CPU: 6 PID: 2460 at kernel/kprobes.c:1130 __disarm_kprobe_ftrace.isra.19 (kernel/kprobes.c:1129)
Modules linked in: ena
CPU: 6 PID: 2460 Comm: execsnoop Not tainted 5.19.0+ #28
Hardware name: Amazon EC2 c5.2xlarge/, BIOS 1.0 10/16/2017
RIP: 0010:__disarm_kprobe_ftrace.isra.19 (kernel/kprobes.c:1129)
Code: 24 8b 02 eb c1 80 3d c4 83 f2 01 00 75 d4 48 8b 75 00 89 c2 48 c7 c7 90 fa 0f 92 89 04 24 c6 05 ab 83 01 e8 e4 94 f0 ff <0f> 0b 8b 04 24 eb b1 89 c6 48 c7 c7 60 fa 0f 92 89 04 24 e8 cc 94
RSP: 0018:ffff9e6ec154bd98 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffffffff930f7b00 RCX: 0000000000000001
RDX: 0000000080000001 RSI: ffffffff921461c5 RDI: 00000000ffffffff
RBP: ffff89c504286da8 R08: 0000000000000000 R09: c0000000fffeffff
R10: 0000000000000000 R11: ffff9e6ec154bc28 R12: ffff89c502394e40
R13: ffff89c502394c00 R14: ffff9e6ec154bc00 R15: 0000000000000000
FS:  00007fe800398740(0000) GS:ffff89c812d80000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000c00057f010 CR3: 0000000103b54006 CR4: 00000000007706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
 __disable_kprobe (kernel/kprobes.c:1716)
 disable_kprobe (kernel/kprobes.c:2392)
 __disable_trace_kprobe (kernel/trace/trace_kprobe.c:340)
 disable_trace_kprobe (kernel/trace/trace_kprobe.c:429)
 perf_trace_event_unreg.isra.2 (./include/linux/tracepoint.h:93 kernel/trace/trace_event_perf.c:168)
 perf_kprobe_destroy (kernel/trace/trace_event_perf.c:295)
 _free_event (kernel/events/core.c:4971)
 perf_event_release_kernel (kernel/events/core.c:5176)
 perf_release (kernel/events/core.c:5186)
 __fput (fs/file_table.c:321)
 task_work_run (./include/linux/sched.h:2056 (discriminator 1) kernel/task_work.c:179 (discriminator 1))
 exit_to_user_mode_prepare (./include/linux/resume_user_mode.h:49 kernel/entry/common.c:169 kernel/entry/common.c:201)
 syscall_exit_to_user_mode (./arch/x86/include/asm/jump_label.h:55 ./arch/x86/include/asm/nospec-branch.h:384 ./arch/x86/include/asm/entry-common.h:94 kernel/entry/common.c:133 kernel/entry/common.c:296)
 do_syscall_64 (arch/x86/entry/common.c:87)
 entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120)
RIP: 0033:0x7fe7ff210654
Code: 15 79 89 20 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb be 0f 1f 00 8b 05 9a cd 20 00 48 63 ff 85 c0 75 11 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 3a f3 c3 48 83 ec 18 48 89 7c 24 08 e8 34 fc
RSP: 002b:00007ffdbd1d3538 EFLAGS: 00000246 ORIG_RAX: 0000000000000003
RAX: 0000000000000000 RBX: 0000000000000008 RCX: 00007fe7ff210654
RDX: 0000000000000000 RSI: 0000000000002401 RDI: 0000000000000008
RBP: 0000000000000000 R08: 94ae31d6fda838a4 R0900007fe8001c9d30
R10: 00007ffdbd1d34b0 R11: 0000000000000246 R12: 00007ffdbd1d3600
R13: 0000000000000000 R14: fffffffffffffffc R15: 00007ffdbd1d3560
</TASK>

Link: https://lkml.kernel.org/r/20220813020509.90805-1-kuniyu@amazon.com
Fixes: 69d54b916d ("kprobes: makes kprobes/enabled works correctly for optimized kprobes.")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reported-by: Ayushman Dutta <ayudutta@amazon.com>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Wang Nan <wangnan0@huawei.com>
Cc: Kuniyuki Iwashima <kuniyu@amazon.com>
Cc: Kuniyuki Iwashima <kuni1840@gmail.com>
Cc: Ayushman Dutta <ayudutta@amazon.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-09-05 10:30:12 +02:00
Yang Jihong
e4ae972959 ftrace: Fix NULL pointer dereference in is_ftrace_trampoline when ftrace is dead
commit c3b0f72e80 upstream.

ftrace_startup does not remove ops from ftrace_ops_list when
ftrace_startup_enable fails:

register_ftrace_function
  ftrace_startup
    __register_ftrace_function
      ...
      add_ftrace_ops(&ftrace_ops_list, ops)
      ...
    ...
    ftrace_startup_enable // if ftrace failed to modify, ftrace_disabled is set to 1
    ...
  return 0 // ops is in the ftrace_ops_list.

When ftrace_disabled = 1, unregister_ftrace_function simply returns without doing anything:
unregister_ftrace_function
  ftrace_shutdown
    if (unlikely(ftrace_disabled))
            return -ENODEV;  // return here, __unregister_ftrace_function is not executed,
                             // as a result, ops is still in the ftrace_ops_list
    __unregister_ftrace_function
    ...

If ops is dynamically allocated, it will be free later, in this case,
is_ftrace_trampoline accesses NULL pointer:

is_ftrace_trampoline
  ftrace_ops_trampoline
    do_for_each_ftrace_op(op, ftrace_ops_list) // OOPS! op may be NULL!

Syzkaller reports as follows:
[ 1203.506103] BUG: kernel NULL pointer dereference, address: 000000000000010b
[ 1203.508039] #PF: supervisor read access in kernel mode
[ 1203.508798] #PF: error_code(0x0000) - not-present page
[ 1203.509558] PGD 800000011660b067 P4D 800000011660b067 PUD 130fb8067 PMD 0
[ 1203.510560] Oops: 0000 [#1] SMP KASAN PTI
[ 1203.511189] CPU: 6 PID: 29532 Comm: syz-executor.2 Tainted: G    B   W         5.10.0 #8
[ 1203.512324] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 1203.513895] RIP: 0010:is_ftrace_trampoline+0x26/0xb0
[ 1203.514644] Code: ff eb d3 90 41 55 41 54 49 89 fc 55 53 e8 f2 00 fd ff 48 8b 1d 3b 35 5d 03 e8 e6 00 fd ff 48 8d bb 90 00 00 00 e8 2a 81 26 00 <48> 8b ab 90 00 00 00 48 85 ed 74 1d e8 c9 00 fd ff 48 8d bb 98 00
[ 1203.518838] RSP: 0018:ffffc900012cf960 EFLAGS: 00010246
[ 1203.520092] RAX: 0000000000000000 RBX: 000000000000007b RCX: ffffffff8a331866
[ 1203.521469] RDX: 0000000000000000 RSI: 0000000000000008 RDI: 000000000000010b
[ 1203.522583] RBP: 0000000000000000 R08: 0000000000000000 R09: ffffffff8df18b07
[ 1203.523550] R10: fffffbfff1be3160 R11: 0000000000000001 R12: 0000000000478399
[ 1203.524596] R13: 0000000000000000 R14: ffff888145088000 R15: 0000000000000008
[ 1203.525634] FS:  00007f429f5f4700(0000) GS:ffff8881daf00000(0000) knlGS:0000000000000000
[ 1203.526801] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 1203.527626] CR2: 000000000000010b CR3: 0000000170e1e001 CR4: 00000000003706e0
[ 1203.528611] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 1203.529605] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400

Therefore, when ftrace_startup_enable fails, we need to rollback registration
process and remove ops from ftrace_ops_list.

Link: https://lkml.kernel.org/r/20220818032659.56209-1-yangjihong1@huawei.com

Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Yang Jihong <yangjihong1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-09-05 10:30:07 +02:00
Daniel Borkmann
4f672112f8 bpf: Don't use tnum_range on array range checking for poke descriptors
commit a657182a5c upstream.

Hsin-Wei reported a KASAN splat triggered by their BPF runtime fuzzer which
is based on a customized syzkaller:

  BUG: KASAN: slab-out-of-bounds in bpf_int_jit_compile+0x1257/0x13f0
  Read of size 8 at addr ffff888004e90b58 by task syz-executor.0/1489
  CPU: 1 PID: 1489 Comm: syz-executor.0 Not tainted 5.19.0 #1
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
  1.13.0-1ubuntu1.1 04/01/2014
  Call Trace:
   <TASK>
   dump_stack_lvl+0x9c/0xc9
   print_address_description.constprop.0+0x1f/0x1f0
   ? bpf_int_jit_compile+0x1257/0x13f0
   kasan_report.cold+0xeb/0x197
   ? kvmalloc_node+0x170/0x200
   ? bpf_int_jit_compile+0x1257/0x13f0
   bpf_int_jit_compile+0x1257/0x13f0
   ? arch_prepare_bpf_dispatcher+0xd0/0xd0
   ? rcu_read_lock_sched_held+0x43/0x70
   bpf_prog_select_runtime+0x3e8/0x640
   ? bpf_obj_name_cpy+0x149/0x1b0
   bpf_prog_load+0x102f/0x2220
   ? __bpf_prog_put.constprop.0+0x220/0x220
   ? find_held_lock+0x2c/0x110
   ? __might_fault+0xd6/0x180
   ? lock_downgrade+0x6e0/0x6e0
   ? lock_is_held_type+0xa6/0x120
   ? __might_fault+0x147/0x180
   __sys_bpf+0x137b/0x6070
   ? bpf_perf_link_attach+0x530/0x530
   ? new_sync_read+0x600/0x600
   ? __fget_files+0x255/0x450
   ? lock_downgrade+0x6e0/0x6e0
   ? fput+0x30/0x1a0
   ? ksys_write+0x1a8/0x260
   __x64_sys_bpf+0x7a/0xc0
   ? syscall_enter_from_user_mode+0x21/0x70
   do_syscall_64+0x3b/0x90
   entry_SYSCALL_64_after_hwframe+0x63/0xcd
  RIP: 0033:0x7f917c4e2c2d

The problem here is that a range of tnum_range(0, map->max_entries - 1) has
limited ability to represent the concrete tight range with the tnum as the
set of resulting states from value + mask can result in a superset of the
actual intended range, and as such a tnum_in(range, reg->var_off) check may
yield true when it shouldn't, for example tnum_range(0, 2) would result in
00XX -> v = 0000, m = 0011 such that the intended set of {0, 1, 2} is here
represented by a less precise superset of {0, 1, 2, 3}. As the register is
known const scalar, really just use the concrete reg->var_off.value for the
upper index check.

Fixes: d2e4c1e6c2 ("bpf: Constant map key tracking for prog array pokes")
Reported-by: Hsin-Wei Hung <hsinweih@uci.edu>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/r/984b37f9fdf7ac36831d2137415a4a915744c1b6.1661462653.git.daniel@iogearbox.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-31 17:16:51 +02:00
Randy Dunlap
108fb7e99b kernel/sys_ni: add compat entry for fadvise64_64
commit a8faed3a02 upstream.

When CONFIG_ADVISE_SYSCALLS is not set/enabled and CONFIG_COMPAT is
set/enabled, the riscv compat_syscall_table references
'compat_sys_fadvise64_64', which is not defined:

riscv64-linux-ld: arch/riscv/kernel/compat_syscall_table.o:(.rodata+0x6f8):
undefined reference to `compat_sys_fadvise64_64'

Add 'fadvise64_64' to kernel/sys_ni.c as a conditional COMPAT function so
that when CONFIG_ADVISE_SYSCALLS is not set, there is a fallback function
available.

Link: https://lkml.kernel.org/r/20220807220934.5689-1-rdunlap@infradead.org
Fixes: d3ac21cacc ("mm: Support compiling out madvise and fadvise")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-31 17:16:33 +02:00
Jing-Ting Wu
f49fd5fe23 cgroup: Fix race condition at rebind_subsystems()
commit 763f4fb76e upstream.

Root cause:
The rebind_subsystems() is no lock held when move css object from A
list to B list,then let B's head be treated as css node at
list_for_each_entry_rcu().

Solution:
Add grace period before invalidating the removed rstat_css_node.

Reported-by: Jing-Ting Wu <jing-ting.wu@mediatek.com>
Suggested-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Jing-Ting Wu <jing-ting.wu@mediatek.com>
Tested-by: Jing-Ting Wu <jing-ting.wu@mediatek.com>
Link: https://lore.kernel.org/linux-arm-kernel/d8f0bc5e2fb6ed259f9334c83279b4c011283c41.camel@mediatek.com/T/
Acked-by: Mukesh Ojha <quic_mojha@quicinc.com>
Fixes: a7df69b81a ("cgroup: rstat: support cgroup1")
Cc: stable@vger.kernel.org # v5.13+
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-31 17:16:33 +02:00
Gaosheng Cui
5c192867ae audit: fix potential double free on error path from fsnotify_add_inode_mark
commit ad982c3be4 upstream.

Audit_alloc_mark() assign pathname to audit_mark->path, on error path
from fsnotify_add_inode_mark(), fsnotify_put_mark will free memory
of audit_mark->path, but the caller of audit_alloc_mark will free
the pathname again, so there will be double free problem.

Fix this by resetting audit_mark->path to NULL pointer on error path
from fsnotify_add_inode_mark().

Cc: stable@vger.kernel.org
Fixes: 7b12932340 ("fsnotify: Add group pointer in fsnotify_init_mark()")
Signed-off-by: Gaosheng Cui <cuigaosheng1@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-31 17:16:33 +02:00
Laurent Dufour
6568e52b28 watchdog: export lockup_detector_reconfigure
[ Upstream commit 7c56a8733d ]

In some circumstances it may be interesting to reconfigure the watchdog
from inside the kernel.

On PowerPC, this may helpful before and after a LPAR migration (LPM) is
initiated, because it implies some latencies, watchdog, and especially NMI
watchdog is expected to be triggered during this operation. Reconfiguring
the watchdog with a factor, would prevent it to happen too frequently
during LPM.

Rename lockup_detector_reconfigure() as __lockup_detector_reconfigure() and
create a new function lockup_detector_reconfigure() calling
__lockup_detector_reconfigure() under the protection of watchdog_mutex.

Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
[mpe: Squash in build fix from Laurent, reported by Sachin]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220713154729.80789-3-ldufour@linux.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-25 11:40:43 +02:00
Steven Rostedt (Google)
1c7e569c0e tracing/eprobes: Fix reading of string fields
commit f04dec9346 upstream.

Currently when an event probe (eprobe) hooks to a string field, it does
not display it as a string, but instead as a number. This makes the field
rather useless. Handle the different kinds of strings, dynamic, static,
relational/dynamic etc.

Now when a string field is used, the ":string" type can be used to display
it:

  echo "e:sw sched/sched_switch comm=$next_comm:string" > dynamic_events

Link: https://lkml.kernel.org/r/20220820134400.959640191@goodmis.org

Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Fixes: 7491e2c442 ("tracing: Add a probe that attaches to trace events")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:40:28 +02:00
Hou Tao
2f56304a0c bpf: Acquire map uref in .init_seq_private for hash map iterator
commit ef1e93d2ee upstream.

bpf_iter_attach_map() acquires a map uref, and the uref may be released
before or in the middle of iterating map elements. For example, the uref
could be released in bpf_iter_detach_map() as part of
bpf_link_release(), or could be released in bpf_map_put_with_uref() as
part of bpf_map_release().

So acquiring an extra map uref in bpf_iter_init_hash_map() and
releasing it in bpf_iter_fini_hash_map().

Fixes: d6c4503cc2 ("bpf: Implement bpf iterator for hash maps")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220810080538.1845898-3-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:40:03 +02:00
Hou Tao
370805f0e7 bpf: Acquire map uref in .init_seq_private for array map iterator
commit f76fa6b338 upstream.

bpf_iter_attach_map() acquires a map uref, and the uref may be released
before or in the middle of iterating map elements. For example, the uref
could be released in bpf_iter_detach_map() as part of
bpf_link_release(), or could be released in bpf_map_put_with_uref() as
part of bpf_map_release().

Alternative fix is acquiring an extra bpf_link reference just like
a pinned map iterator does, but it introduces unnecessary dependency
on bpf_link instead of bpf_map.

So choose another fix: acquiring an extra map uref in .init_seq_private
for array map iterator.

Fixes: d3cc2ab546 ("bpf: Implement bpf iterator for array maps")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220810080538.1845898-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:40:03 +02:00
Kumar Kartikeya Dwivedi
18a994e066 bpf: Don't reinit map value in prealloc_lru_pop
commit 275c30bcee upstream.

The LRU map that is preallocated may have its elements reused while
another program holds a pointer to it from bpf_map_lookup_elem. Hence,
only check_and_free_fields is appropriate when the element is being
deleted, as it ensures proper synchronization against concurrent access
of the map value. After that, we cannot call check_and_init_map_value
again as it may rewrite bpf_spin_lock, bpf_timer, and kptr fields while
they can be concurrently accessed from a BPF program.

This is safe to do as when the map entry is deleted, concurrent access
is protected against by check_and_free_fields, i.e. an existing timer
would be freed, and any existing kptr will be released by it. The
program can create further timers and kptrs after check_and_free_fields,
but they will eventually be released once the preallocated items are
freed on map destruction, even if the item is never reused again. Hence,
the deleted item sitting in the free list can still have resources
attached to it, and they would never leak.

With spin_lock, we never touch the field at all on delete or update, as
we may end up modifying the state of the lock. Since the verifier
ensures that a bpf_spin_lock call is always paired with bpf_spin_unlock
call, the program will eventually release the lock so that on reuse the
new user of the value can take the lock.

Essentially, for the preallocated case, we must assume that the map
value may always be in use by the program, even when it is sitting in
the freelist, and handle things accordingly, i.e. use proper
synchronization inside check_and_free_fields, and never reinitialize the
special fields when it is reused on update.

Fixes: 68134668c1 ("bpf: Add map side support for bpf timers.")
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/r/20220809213033.24147-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:40:03 +02:00
Steven Rostedt (Google)
2fb8f62ee3 tracing: Have filter accept "common_cpu" to be consistent
commit b2380577d4 upstream.

Make filtering consistent with histograms. As "cpu" can be a field of an
event, allow for "common_cpu" to keep it from being confused with the
"cpu" field of the event.

Link: https://lkml.kernel.org/r/20220820134401.513062765@goodmis.org
Link: https://lore.kernel.org/all/20220820220920.e42fa32b70505b1904f0a0ad@kernel.org/

Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Fixes: 1e3bac71c5 ("tracing/histogram: Rename "cpu" to "common_cpu"")
Suggested-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:39:58 +02:00
Steven Rostedt (Google)
dac2b60345 tracing/probes: Have kprobes and uprobes use $COMM too
commit ab8384442e upstream.

Both $comm and $COMM can be used to get current->comm in eprobes and the
filtering and histogram logic. Make kprobes and uprobes consistent in this
regard and allow both $comm and $COMM as well. Currently kprobes and
uprobes only handle $comm, which is inconsistent with the other utilities,
and can be confusing to users.

Link: https://lkml.kernel.org/r/20220820134401.317014913@goodmis.org
Link: https://lore.kernel.org/all/20220820220442.776e1ddaf8836e82edb34d01@kernel.org/

Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Fixes: 533059281e ("tracing: probeevent: Introduce new argument fetching code")
Suggested-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:39:58 +02:00
Steven Rostedt (Google)
b489aca082 tracing/eprobes: Have event probes be consistent with kprobes and uprobes
commit 6a832ec3d6 upstream.

Currently, if a symbol "@" is attempted to be used with an event probe
(eprobes), it will cause a NULL pointer dereference crash.

Both kprobes and uprobes can reference data other than the main registers.
Such as immediate address, symbols and the current task name. Have eprobes
do the same thing.

For "comm", if "comm" is used and the event being attached to does not
have the "comm" field, then make it the "$comm" that kprobes has. This is
consistent to the way histograms and filters work.

Link: https://lkml.kernel.org/r/20220820134401.136924220@goodmis.org

Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Fixes: 7491e2c442 ("tracing: Add a probe that attaches to trace events")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:39:58 +02:00
Steven Rostedt (Google)
a11ce7bfbd tracing/eprobes: Do not hardcode $comm as a string
commit 02333de90e upstream.

The variable $comm is hard coded as a string, which is true for both
kprobes and uprobes, but for event probes (eprobes) it is a field name. In
most cases the "comm" field would be a string, but there's no guarantee of
that fact.

Do not assume that comm is a string. Not to mention, it currently forces
comm fields to fault, as string processing for event probes is currently
broken.

Link: https://lkml.kernel.org/r/20220820134400.756152112@goodmis.org

Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Fixes: 7491e2c442 ("tracing: Add a probe that attaches to trace events")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:39:57 +02:00
Steven Rostedt (Google)
ba53c21ce9 tracing/eprobes: Do not allow eprobes to use $stack, or % for regs
commit 2673c60ee6 upstream.

While playing with event probes (eprobes), I tried to see what would
happen if I attempted to retrieve the instruction pointer (%rip) knowing
that event probes do not use pt_regs. The result was:

 BUG: kernel NULL pointer dereference, address: 0000000000000024
 #PF: supervisor read access in kernel mode
 #PF: error_code(0x0000) - not-present page
 PGD 0 P4D 0
 Oops: 0000 [#1] PREEMPT SMP PTI
 CPU: 1 PID: 1847 Comm: trace-cmd Not tainted 5.19.0-rc5-test+ #309
 Hardware name: Hewlett-Packard HP Compaq Pro 6300 SFF/339A, BIOS K01
v03.03 07/14/2016
 RIP: 0010:get_event_field.isra.0+0x0/0x50
 Code: ff 48 c7 c7 c0 8f 74 a1 e8 3d 8b f5 ff e8 88 09 f6 ff 4c 89 e7 e8
50 6a 13 00 48 89 ef 5b 5d 41 5c 41 5d e9 42 6a 13 00 66 90 <48> 63 47 24
8b 57 2c 48 01 c6 8b 47 28 83 f8 02 74 0e 83 f8 04 74
 RSP: 0018:ffff916c394bbaf0 EFLAGS: 00010086
 RAX: ffff916c854041d8 RBX: ffff916c8d9fbf50 RCX: ffff916c255d2000
 RDX: 0000000000000000 RSI: ffff916c255d2008 RDI: 0000000000000000
 RBP: 0000000000000000 R08: ffff916c3a2a0c08 R09: ffff916c394bbda8
 R10: 0000000000000000 R11: 0000000000000000 R12: ffff916c854041d8
 R13: ffff916c854041b0 R14: 0000000000000000 R15: 0000000000000000
 FS:  0000000000000000(0000) GS:ffff916c9ea40000(0000)
knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 0000000000000024 CR3: 000000011b60a002 CR4: 00000000001706e0
 Call Trace:
  <TASK>
  get_eprobe_size+0xb4/0x640
  ? __mod_node_page_state+0x72/0xc0
  __eprobe_trace_func+0x59/0x1a0
  ? __mod_lruvec_page_state+0xaa/0x1b0
  ? page_remove_file_rmap+0x14/0x230
  ? page_remove_rmap+0xda/0x170
  event_triggers_call+0x52/0xe0
  trace_event_buffer_commit+0x18f/0x240
  trace_event_raw_event_sched_wakeup_template+0x7a/0xb0
  try_to_wake_up+0x260/0x4c0
  __wake_up_common+0x80/0x180
  __wake_up_common_lock+0x7c/0xc0
  do_notify_parent+0x1c9/0x2a0
  exit_notify+0x1a9/0x220
  do_exit+0x2ba/0x450
  do_group_exit+0x2d/0x90
  __x64_sys_exit_group+0x14/0x20
  do_syscall_64+0x3b/0x90
  entry_SYSCALL_64_after_hwframe+0x46/0xb0

Obviously this is not the desired result.

Move the testing for TPARG_FL_TPOINT which is only used for event probes
to the top of the "$" variable check, as all the other variables are not
used for event probes. Also add a check in the register parsing "%" to
fail if an event probe is used.

Link: https://lkml.kernel.org/r/20220820134400.564426983@goodmis.org

Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Fixes: 7491e2c442 ("tracing: Add a probe that attaches to trace events")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:39:57 +02:00
Steven Rostedt (Google)
0d7970e870 tracing/perf: Fix double put of trace event when init fails
commit 7249921d94 upstream.

If in perf_trace_event_init(), the perf_trace_event_open() fails, then it
will call perf_trace_event_unreg() which will not only unregister the perf
trace event, but will also call the put() function of the tp_event.

The problem here is that the trace_event_try_get_ref() is called by the
caller of perf_trace_event_init() and if perf_trace_event_init() returns a
failure, it will then call trace_event_put(). But since the
perf_trace_event_unreg() already called the trace_event_put() function, it
triggers a WARN_ON().

 WARNING: CPU: 1 PID: 30309 at kernel/trace/trace_dynevent.c:46 trace_event_dyn_put_ref+0x15/0x20

If perf_trace_event_reg() does not call the trace_event_try_get_ref() then
the perf_trace_event_unreg() should not be calling trace_event_put(). This
breaks symmetry and causes bugs like these.

Pull out the trace_event_put() from perf_trace_event_unreg() and call it
in the locations that perf_trace_event_unreg() is called. This not only
fixes this bug, but also brings back the proper symmetry of the reg/unreg
vs get/put logic.

Link: https://lore.kernel.org/all/cover.1660347763.git.kjlx@templeofstupid.com/
Link: https://lkml.kernel.org/r/20220816192817.43d5e17f@gandalf.local.home

Cc: stable@vger.kernel.org
Fixes: 1d18538e6a ("tracing: Have dynamic events have a ref counter")
Reported-by: Krister Johansen <kjlx@templeofstupid.com>
Reviewed-by: Krister Johansen <kjlx@templeofstupid.com>
Tested-by: Krister Johansen <kjlx@templeofstupid.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-25 11:39:57 +02:00
Masami Hiramatsu
994dea8549 tracing: Add '__rel_loc' using trace event macros
[ Upstream commit 55de2c0b56 ]

Add '__rel_loc' using trace event macros. These macros are usually
not used in the kernel, except for testing purpose.
This also add "rel_" variant of macros for dynamic_array string,
and bitmask.

Link: https://lkml.kernel.org/r/163757342119.510314.816029622439099016.stgit@devnote2

Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Tom Zanussi <zanussi@kernel.org>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:24:26 +02:00
Chen Zhongjin
d2cbdbe22b locking/csd_lock: Change csdlock_debug from early_param to __setup
[ Upstream commit 9c9b26b0df ]

The csdlock_debug kernel-boot parameter is parsed by the
early_param() function csdlock_debug().  If set, csdlock_debug()
invokes static_branch_enable() to enable csd_lock_wait feature, which
triggers a panic on arm64 for kernels built with CONFIG_SPARSEMEM=y and
CONFIG_SPARSEMEM_VMEMMAP=n.

With CONFIG_SPARSEMEM_VMEMMAP=n, __nr_to_section is called in
static_key_enable() and returns NULL, resulting in a NULL dereference
because mem_section is initialized only later in sparse_init().

This is also a problem for powerpc because early_param() functions
are invoked earlier than jump_label_init(), also resulting in
static_key_enable() failures.  These failures cause the warning "static
key 'xxx' used before call to jump_label_init()".

Thus, early_param is too early for csd_lock_wait to run
static_branch_enable(), so changes it to __setup to fix these.

Fixes: 8d0968cc6b ("locking/csd_lock: Add boot parameter for controlling CSD lock debugging")
Cc: stable@vger.kernel.org
Reported-by: Chen jingwen <chenjingwen6@huawei.com>
Signed-off-by: Chen Zhongjin <chenzhongjin@huawei.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:24:24 +02:00
Jason A. Donenfeld
96ba981f09 timekeeping: contribute wall clock to rng on time change
[ Upstream commit b8ac29b401 ]

The rng's random_init() function contributes the real time to the rng at
boot time, so that events can at least start in relation to something
particular in the real world. But this clock might not yet be set that
point in boot, so nothing is contributed. In addition, the relation
between minor clock changes from, say, NTP, and the cycle counter is
potentially useful entropic data.

This commit addresses this by mixing in a time stamp on calls to
settimeofday and adjtimex. No entropy is credited in doing so, so it
doesn't make initialization faster, but it is still useful input to
have.

Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Cc: stable@vger.kernel.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:24:24 +02:00
Mel Gorman
748d2e9585 sched/core: Do not requeue task on CPU excluded from cpus_mask
[ Upstream commit 751d4cbc43 ]

The following warning was triggered on a large machine early in boot on
a distribution kernel but the same problem should also affect mainline.

   WARNING: CPU: 439 PID: 10 at ../kernel/workqueue.c:2231 process_one_work+0x4d/0x440
   Call Trace:
    <TASK>
    rescuer_thread+0x1f6/0x360
    kthread+0x156/0x180
    ret_from_fork+0x22/0x30
    </TASK>

Commit c6e7bd7afa ("sched/core: Optimize ttwu() spinning on p->on_cpu")
optimises ttwu by queueing a task that is descheduling on the wakelist,
but does not check if the task descheduling is still allowed to run on that CPU.

In this warning, the problematic task is a workqueue rescue thread which
checks if the rescue is for a per-cpu workqueue and running on the wrong CPU.
While this is early in boot and it should be possible to create workers,
the rescue thread may still used if the MAYDAY_INITIAL_TIMEOUT is reached
or MAYDAY_INTERVAL and on a sufficiently large machine, the rescue
thread is being used frequently.

Tracing confirmed that the task should have migrated properly using the
stopper thread to handle the migration. However, a parallel wakeup from udev
running on another CPU that does not share CPU cache observes p->on_cpu and
uses task_cpu(p), queues the task on the old CPU and triggers the warning.

Check that the wakee task that is descheduling is still allowed to run
on its current CPU and if not, wait for the descheduling to complete
and select an allowed CPU.

Fixes: c6e7bd7afa ("sched/core: Optimize ttwu() spinning on p->on_cpu")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20220804092119.20137-1-mgorman@techsingularity.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:24:15 +02:00
Tianchen Ding
dd960a0ddd sched: Remove the limitation of WF_ON_CPU on wakelist if wakee cpu is idle
[ Upstream commit f3dd3f6745 ]

Wakelist can help avoid cache bouncing and offload the overhead of waker
cpu. So far, using wakelist within the same llc only happens on
WF_ON_CPU, and this limitation could be removed to further improve
wakeup performance.

The commit 518cd62341 ("sched: Only queue remote wakeups when
crossing cache boundaries") disabled queuing tasks on wakelist when
the cpus share llc. This is because, at that time, the scheduler must
send IPIs to do ttwu_queue_wakelist. Nowadays, ttwu_queue_wakelist also
supports TIF_POLLING, so this is not a problem now when the wakee cpu is
in idle polling.

Benefits:
  Queuing the task on idle cpu can help improving performance on waker cpu
  and utilization on wakee cpu, and further improve locality because
  the wakee cpu can handle its own rq. This patch helps improving rt on
  our real java workloads where wakeup happens frequently.

  Consider the normal condition (CPU0 and CPU1 share same llc)
  Before this patch:

         CPU0                                       CPU1

    select_task_rq()                                idle
    rq_lock(CPU1->rq)
    enqueue_task(CPU1->rq)
    notify CPU1 (by sending IPI or CPU1 polling)

                                                    resched()

  After this patch:

         CPU0                                       CPU1

    select_task_rq()                                idle
    add to wakelist of CPU1
    notify CPU1 (by sending IPI or CPU1 polling)

                                                    rq_lock(CPU1->rq)
                                                    enqueue_task(CPU1->rq)
                                                    resched()

  We see CPU0 can finish its work earlier. It only needs to put task to
  wakelist and return.
  While CPU1 is idle, so let itself handle its own runqueue data.

This patch brings no difference about IPI.
  This patch only takes effect when the wakee cpu is:
  1) idle polling
  2) idle not polling

  For 1), there will be no IPI with or without this patch.

  For 2), there will always be an IPI before or after this patch.
  Before this patch: waker cpu will enqueue task and check preempt. Since
  "idle" will be sure to be preempted, waker cpu must send a resched IPI.
  After this patch: waker cpu will put the task to the wakelist of wakee
  cpu, and send an IPI.

Benchmark:
We've tested schbench, unixbench, and hachbench on both x86 and arm64.

On x86 (Intel Xeon Platinum 8269CY):
  schbench -m 2 -t 8

    Latency percentiles (usec)              before        after
        50.0000th:                             8            6
        75.0000th:                            10            7
        90.0000th:                            11            8
        95.0000th:                            12            8
        *99.0000th:                           13           10
        99.5000th:                            15           11
        99.9000th:                            18           14

  Unixbench with full threads (104)
                                            before        after
    Dhrystone 2 using register variables  3011862938    3009935994  -0.06%
    Double-Precision Whetstone              617119.3      617298.5   0.03%
    Execl Throughput                         27667.3       27627.3  -0.14%
    File Copy 1024 bufsize 2000 maxblocks   785871.4      784906.2  -0.12%
    File Copy 256 bufsize 500 maxblocks     210113.6      212635.4   1.20%
    File Copy 4096 bufsize 8000 maxblocks  2328862.2     2320529.1  -0.36%
    Pipe Throughput                      145535622.8   145323033.2  -0.15%
    Pipe-based Context Switching           3221686.4     3583975.4  11.25%
    Process Creation                        101347.1      103345.4   1.97%
    Shell Scripts (1 concurrent)            120193.5      123977.8   3.15%
    Shell Scripts (8 concurrent)             17233.4       17138.4  -0.55%
    System Call Overhead                   5300604.8     5312213.6   0.22%

  hackbench -g 1 -l 100000
                                            before        after
    Time                                     3.246        2.251

On arm64 (Ampere Altra):
  schbench -m 2 -t 8

    Latency percentiles (usec)              before        after
        50.0000th:                            14           10
        75.0000th:                            19           14
        90.0000th:                            22           16
        95.0000th:                            23           16
        *99.0000th:                           24           17
        99.5000th:                            24           17
        99.9000th:                            28           25

  Unixbench with full threads (80)
                                            before        after
    Dhrystone 2 using register variables  3536194249    3537019613   0.02%
    Double-Precision Whetstone              629383.6      629431.6   0.01%
    Execl Throughput                         65920.5       65846.2  -0.11%
    File Copy 1024 bufsize 2000 maxblocks  1063722.8     1064026.8   0.03%
    File Copy 256 bufsize 500 maxblocks     322684.5      318724.5  -1.23%
    File Copy 4096 bufsize 8000 maxblocks  2348285.3     2328804.8  -0.83%
    Pipe Throughput                      133542875.3   131619389.8  -1.44%
    Pipe-based Context Switching           3215356.1     3576945.1  11.25%
    Process Creation                        108520.5      120184.6  10.75%
    Shell Scripts (1 concurrent)            122636.3        121888  -0.61%
    Shell Scripts (8 concurrent)             17462.1       17381.4  -0.46%
    System Call Overhead                   4429998.9     4435006.7   0.11%

  hackbench -g 1 -l 100000
                                            before        after
    Time                                     4.217        2.916

Our patch has improvement on schbench, hackbench
and Pipe-based Context Switching of unixbench
when there exists idle cpus,
and no obvious regression on other tests of unixbench.
This can help improve rt in scenes where wakeup happens frequently.

Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20220608233412.327341-3-dtcccc@linux.alibaba.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:24:15 +02:00
Tianchen Ding
f9ab9bcf53 sched: Fix the check of nr_running at queue wakelist
[ Upstream commit 28156108fe ]

The commit 2ebb177175 ("sched/core: Offload wakee task activation if it
the wakee is descheduling") checked rq->nr_running <= 1 to avoid task
stacking when WF_ON_CPU.

Per the ordering of writes to p->on_rq and p->on_cpu, observing p->on_cpu
(WF_ON_CPU) in ttwu_queue_cond() implies !p->on_rq, IOW p has gone through
the deactivate_task() in __schedule(), thus p has been accounted out of
rq->nr_running. As such, the task being the only runnable task on the rq
implies reading rq->nr_running == 0 at that point.

The benchmark result is in [1].

[1] https://lore.kernel.org/all/e34de686-4e85-bde1-9f3c-9bbc86b38627@linux.alibaba.com/

Suggested-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20220608233412.327341-2-dtcccc@linux.alibaba.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:24:15 +02:00
Waiman Long
147f66d22f sched, cpuset: Fix dl_cpu_busy() panic due to empty cs->cpus_allowed
[ Upstream commit b6e8d40d43 ]

With cgroup v2, the cpuset's cpus_allowed mask can be empty indicating
that the cpuset will just use the effective CPUs of its parent. So
cpuset_can_attach() can call task_can_attach() with an empty mask.
This can lead to cpumask_any_and() returns nr_cpu_ids causing the call
to dl_bw_of() to crash due to percpu value access of an out of bound
CPU value. For example:

	[80468.182258] BUG: unable to handle page fault for address: ffffffff8b6648b0
	  :
	[80468.191019] RIP: 0010:dl_cpu_busy+0x30/0x2b0
	  :
	[80468.207946] Call Trace:
	[80468.208947]  cpuset_can_attach+0xa0/0x140
	[80468.209953]  cgroup_migrate_execute+0x8c/0x490
	[80468.210931]  cgroup_update_dfl_csses+0x254/0x270
	[80468.211898]  cgroup_subtree_control_write+0x322/0x400
	[80468.212854]  kernfs_fop_write_iter+0x11c/0x1b0
	[80468.213777]  new_sync_write+0x11f/0x1b0
	[80468.214689]  vfs_write+0x1eb/0x280
	[80468.215592]  ksys_write+0x5f/0xe0
	[80468.216463]  do_syscall_64+0x5c/0x80
	[80468.224287]  entry_SYSCALL_64_after_hwframe+0x44/0xae

Fix that by using effective_cpus instead. For cgroup v1, effective_cpus
is the same as cpus_allowed. For v2, effective_cpus is the real cpumask
to be used by tasks within the cpuset anyway.

Also update task_can_attach()'s 2nd argument name to cs_effective_cpus to
reflect the change. In addition, a check is added to task_can_attach()
to guard against the possibility that cpumask_any_and() may return a
value >= nr_cpu_ids.

Fixes: 7f51412a41 ("sched/deadline: Fix bandwidth check/update when migrating tasks between exclusive cpusets")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220803015451.2219567-1-longman@redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:24:14 +02:00
Dietmar Eggemann
e51b981663 sched/deadline: Merge dl_task_can_attach() and dl_cpu_busy()
[ Upstream commit 772b6539fd ]

Both functions are doing almost the same, that is checking if admission
control is still respected.

With exclusive cpusets, dl_task_can_attach() checks if the destination
cpuset (i.e. its root domain) has enough CPU capacity to accommodate the
task.
dl_cpu_busy() checks if there is enough CPU capacity in the cpuset in
case the CPU is hot-plugged out.

dl_task_can_attach() is used to check if a task can be admitted while
dl_cpu_busy() is used to check if a CPU can be hotplugged out.

Make dl_cpu_busy() able to deal with a task and use it instead of
dl_task_can_attach() in task_can_attach().

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220302183433.333029-4-dietmar.eggemann@arm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:24:14 +02:00
Chen Zhongjin
a1edb85e60 kprobes: Forbid probing on trampoline and BPF code areas
[ Upstream commit 28f6c37a29 ]

kernel_text_address() treats ftrace_trampoline, kprobe_insn_slot
and bpf_text_address as valid kprobe addresses - which is not ideal.

These text areas are removable and changeable without any notification
to kprobes, and probing on them can trigger unexpected behavior:

  https://lkml.org/lkml/2022/7/26/1148

Considering that jump_label and static_call text are already
forbiden to probe, kernel_text_address() should be replaced with
core_kernel_text() and is_module_text_address() to check other text
areas which are unsafe to kprobe.

[ mingo: Rewrote the changelog. ]

Fixes: 5b485629ba ("kprobes, extable: Identify kprobes trampolines as kernel text area")
Fixes: 74451e66d5 ("bpf: make jited programs visible in traces")
Signed-off-by: Chen Zhongjin <chenzhongjin@huawei.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Link: https://lore.kernel.org/r/20220801033719.228248-1-chenzhongjin@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-17 14:24:13 +02:00