This patch leverages the alternative mechanism to dynamically optimize
bitops (including __ffs, __fls, ffs, fls) with Zbb instructions. When
Zbb ext is not supported by the runtime CPU, legacy implementation is
used. If Zbb is supported, then the optimized variants will be selected
via alternative patching.
The legacy bitops support is taken from the generic C implementation as
fallback.
If the parameter is a build-time constant, we leverage compiler builtin to
calculate the result directly, this approach is inspired by x86 bitops
implementation.
EFI stub runs before the kernel, so alternative mechanism should not be
used there, this patch introduces a macro NO_ALTERNATIVE for this purpose.
Signed-off-by: Xiao Wang <xiao.w.wang@intel.com>
Reviewed-by: Charlie Jenkins <charlie@rivosinc.com>
Link: https://lore.kernel.org/r/20231031064553.2319688-3-xiao.w.wang@intel.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Now hwcap.h and cpufeature.h are mutually including each other, and most of
the variable/API declarations in hwcap.h are implemented in cpufeature.c,
so, it's better to move them into cpufeature.h and leave only macros for
ISA extension logical IDs in hwcap.h.
BTW, the riscv_isa_extension_mask macro is not used now, so this patch
removes it.
Suggested-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Xiao Wang <xiao.w.wang@intel.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Link: https://lore.kernel.org/r/20231031064553.2319688-2-xiao.w.wang@intel.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
This is really just a single patch, but since the offending fix hasn't
yet made it to my for-next I'm merging it here.
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
These two ended up in the AIA series, but they're really independent
improvements.
* b4-shazam-merge:
of: property: Add fw_devlink support for msi-parent
RISC-V: Don't fail in riscv_of_parent_hartid() for disabled HARTs
Link: https://lore.kernel.org/r/20231027154254.355853-1-apatel@ventanamicro.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
This allows fw_devlink to create device links between consumers of
a MSI and the supplier of the MSI.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Acked-by: Rob Herring <robh@kernel.org>
Reviewed-by: Saravana Kannan <saravanak@google.com>
Link: https://lore.kernel.org/r/20231027154254.355853-3-apatel@ventanamicro.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
The riscv_of_processor_hartid() used by riscv_of_parent_hartid() fails
for HARTs disabled in the DT. This results in the following warning
thrown by the RISC-V INTC driver for the E-core on SiFive boards:
[ 0.000000] riscv-intc: unable to find hart id for /cpus/cpu@0/interrupt-controller
The riscv_of_parent_hartid() is only expected to read the hartid
from the DT so we directly call of_get_cpu_hwid() instead of calling
riscv_of_processor_hartid().
Fixes: ad635e723e ("riscv: cpu: Add 64bit hartid support on RV64")
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Link: https://lore.kernel.org/r/20231027154254.355853-2-apatel@ventanamicro.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Alexandre Ghiti <alexghiti@rivosinc.com> says:
Those 2 patches fix the set_memory_XX() and set_direct_map_XX() APIs, which
in turn fix STRICT_KERNEL_RWX and memfd_secret(). Those were broken since the
permission changes were not applied to the linear mapping because the linear
mapping is mapped using hugepages and walk_page_range_novma() does not split
such mappings.
To fix that, patch 1 disables PGD mappings in the linear mapping as it is
hard to propagate changes at this level in *all* the page tables, this has the
downside of disabling PMD mapping for sv32 and PUD (1GB) mapping for sv39 in
the linear mapping (for specific kernels, we could add a Kconfig to enable
ARCH_HAS_SET_DIRECT_MAP and STRICT_KERNEL_RWX if needed, I'm pretty sure we'll
discuss that).
patch 2 implements the split of the huge linear mappings so that
walk_page_range_novma() can properly apply the permissions. The whole split is
protected with mmap_sem in write mode, but I'm wondering if that's enough,
any opinion on that is appreciated.
* b4-shazam-merge:
riscv: Fix set_memory_XX() and set_direct_map_XX() by splitting huge linear mappings
riscv: Don't use PGD entries for the linear mapping
Link: https://lore.kernel.org/r/20231108075930.7157-1-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
When STRICT_KERNEL_RWX is set, any change of permissions on any kernel
mapping (vmalloc/modules/kernel text...etc) should be applied on its
linear mapping alias. The problem is that the riscv kernel uses huge
mappings for the linear mapping and walk_page_range_novma() does not
split those huge mappings.
So this patchset implements such split in order to apply fine-grained
permissions on the linear mapping.
Below is the difference before and after (the first PUD mapping is split
into PTE/PMD mappings):
Before:
---[ Linear mapping ]---
0xffffaf8000080000-0xffffaf8000200000 0x0000000080080000 1536K PTE D A G . . W R V
0xffffaf8000200000-0xffffaf8077c00000 0x0000000080200000 1914M PMD D A G . . W R V
0xffffaf8077c00000-0xffffaf8078800000 0x00000000f7c00000 12M PMD D A G . . . R V
0xffffaf8078800000-0xffffaf8078c00000 0x00000000f8800000 4M PMD D A G . . W R V
0xffffaf8078c00000-0xffffaf8079200000 0x00000000f8c00000 6M PMD D A G . . . R V
0xffffaf8079200000-0xffffaf807e600000 0x00000000f9200000 84M PMD D A G . . W R V
0xffffaf807e600000-0xffffaf807e716000 0x00000000fe600000 1112K PTE D A G . . W R V
0xffffaf807e717000-0xffffaf807e71a000 0x00000000fe717000 12K PTE D A G . . W R V
0xffffaf807e71d000-0xffffaf807e71e000 0x00000000fe71d000 4K PTE D A G . . W R V
0xffffaf807e722000-0xffffaf807e800000 0x00000000fe722000 888K PTE D A G . . W R V
0xffffaf807e800000-0xffffaf807fe00000 0x00000000fe800000 22M PMD D A G . . W R V
0xffffaf807fe00000-0xffffaf807ff54000 0x00000000ffe00000 1360K PTE D A G . . W R V
0xffffaf807ff55000-0xffffaf8080000000 0x00000000fff55000 684K PTE D A G . . W R V
0xffffaf8080000000-0xffffaf8400000000 0x0000000100000000 14G PUD D A G . . W R V
After:
---[ Linear mapping ]---
0xffffaf8000080000-0xffffaf8000200000 0x0000000080080000 1536K PTE D A G . . W R V
0xffffaf8000200000-0xffffaf8077c00000 0x0000000080200000 1914M PMD D A G . . W R V
0xffffaf8077c00000-0xffffaf8078800000 0x00000000f7c00000 12M PMD D A G . . . R V
0xffffaf8078800000-0xffffaf8078a00000 0x00000000f8800000 2M PMD D A G . . W R V
0xffffaf8078a00000-0xffffaf8078c00000 0x00000000f8a00000 2M PTE D A G . . W R V
0xffffaf8078c00000-0xffffaf8079200000 0x00000000f8c00000 6M PMD D A G . . . R V
0xffffaf8079200000-0xffffaf807e600000 0x00000000f9200000 84M PMD D A G . . W R V
0xffffaf807e600000-0xffffaf807e716000 0x00000000fe600000 1112K PTE D A G . . W R V
0xffffaf807e717000-0xffffaf807e71a000 0x00000000fe717000 12K PTE D A G . . W R V
0xffffaf807e71d000-0xffffaf807e71e000 0x00000000fe71d000 4K PTE D A G . . W R V
0xffffaf807e722000-0xffffaf807e800000 0x00000000fe722000 888K PTE D A G . . W R V
0xffffaf807e800000-0xffffaf807fe00000 0x00000000fe800000 22M PMD D A G . . W R V
0xffffaf807fe00000-0xffffaf807ff54000 0x00000000ffe00000 1360K PTE D A G . . W R V
0xffffaf807ff55000-0xffffaf8080000000 0x00000000fff55000 684K PTE D A G . . W R V
0xffffaf8080000000-0xffffaf8080800000 0x0000000100000000 8M PMD D A G . . W R V
0xffffaf8080800000-0xffffaf8080af6000 0x0000000100800000 3032K PTE D A G . . W R V
0xffffaf8080af6000-0xffffaf8080af8000 0x0000000100af6000 8K PTE D A G . X . R V
0xffffaf8080af8000-0xffffaf8080c00000 0x0000000100af8000 1056K PTE D A G . . W R V
0xffffaf8080c00000-0xffffaf8081a00000 0x0000000100c00000 14M PMD D A G . . W R V
0xffffaf8081a00000-0xffffaf8081a40000 0x0000000101a00000 256K PTE D A G . . W R V
0xffffaf8081a40000-0xffffaf8081a44000 0x0000000101a40000 16K PTE D A G . X . R V
0xffffaf8081a44000-0xffffaf8081a52000 0x0000000101a44000 56K PTE D A G . . W R V
0xffffaf8081a52000-0xffffaf8081a54000 0x0000000101a52000 8K PTE D A G . X . R V
...
0xffffaf809e800000-0xffffaf80c0000000 0x000000011e800000 536M PMD D A G . . W R V
0xffffaf80c0000000-0xffffaf8400000000 0x0000000140000000 13G PUD D A G . . W R V
Note that this also fixes memfd_secret() syscall which uses
set_direct_map_invalid_noflush() and set_direct_map_default_noflush() to
remove the pages from the linear mapping. Below is the kernel page table
while a memfd_secret() syscall is running, you can see all the !valid
page table entries in the linear mapping:
...
0xffffaf8082240000-0xffffaf8082241000 0x0000000102240000 4K PTE D A G . . W R .
0xffffaf8082241000-0xffffaf8082250000 0x0000000102241000 60K PTE D A G . . W R V
0xffffaf8082250000-0xffffaf8082252000 0x0000000102250000 8K PTE D A G . . W R .
0xffffaf8082252000-0xffffaf8082256000 0x0000000102252000 16K PTE D A G . . W R V
0xffffaf8082256000-0xffffaf8082257000 0x0000000102256000 4K PTE D A G . . W R .
0xffffaf8082257000-0xffffaf8082258000 0x0000000102257000 4K PTE D A G . . W R V
0xffffaf8082258000-0xffffaf8082259000 0x0000000102258000 4K PTE D A G . . W R .
0xffffaf8082259000-0xffffaf808225a000 0x0000000102259000 4K PTE D A G . . W R V
0xffffaf808225a000-0xffffaf808225c000 0x000000010225a000 8K PTE D A G . . W R .
0xffffaf808225c000-0xffffaf8082266000 0x000000010225c000 40K PTE D A G . . W R V
0xffffaf8082266000-0xffffaf8082268000 0x0000000102266000 8K PTE D A G . . W R .
0xffffaf8082268000-0xffffaf8082284000 0x0000000102268000 112K PTE D A G . . W R V
0xffffaf8082284000-0xffffaf8082288000 0x0000000102284000 16K PTE D A G . . W R .
0xffffaf8082288000-0xffffaf808229c000 0x0000000102288000 80K PTE D A G . . W R V
0xffffaf808229c000-0xffffaf80822a0000 0x000000010229c000 16K PTE D A G . . W R .
0xffffaf80822a0000-0xffffaf80822a5000 0x00000001022a0000 20K PTE D A G . . W R V
0xffffaf80822a5000-0xffffaf80822a6000 0x00000001022a5000 4K PTE D A G . . . R V
0xffffaf80822a6000-0xffffaf80822ab000 0x00000001022a6000 20K PTE D A G . . W R V
...
And when the memfd_secret() fd is released, the linear mapping is
correctly reset:
...
0xffffaf8082240000-0xffffaf80822a5000 0x0000000102240000 404K PTE D A G . . W R V
0xffffaf80822a5000-0xffffaf80822a6000 0x00000001022a5000 4K PTE D A G . . . R V
0xffffaf80822a6000-0xffffaf80822af000 0x00000001022a6000 36K PTE D A G . . W R V
...
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20231108075930.7157-3-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Propagating changes at this level is cumbersome as we need to go through
all the page tables when that happens (either when changing the
permissions or when splitting the mapping).
Note that this prevents the use of 4MB mapping for sv32 and 1GB mapping for
sv39 in the linear mapping.
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20231108075930.7157-2-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Probing for misaligned access speed takes about 0.06 seconds. On a
system with 64 cores, doing this in smp_callin() means it's done
serially, extending boot time by 3.8 seconds. That's a lot of boot time.
Instead of measuring each CPU serially, let's do the measurements on
all CPUs in parallel. If we disable preemption on all CPUs, the
jiffies stop ticking, so we can do this in stages of 1) everybody
except core 0, then 2) core 0. The allocations are all done outside of
on_each_cpu() to avoid calling alloc_pages() with interrupts disabled.
For hotplugged CPUs that come in after the boot time measurement,
register CPU hotplug callbacks, and do the measurement there. Interrupts
are enabled in those callbacks, so they're fine to do alloc_pages() in.
Reported-by: Jisheng Zhang <jszhang@kernel.org>
Closes: https://lore.kernel.org/all/mhng-9359993d-6872-4134-83ce-c97debe1cf9a@palmer-ri-x1c9/T/#mae9b8f40016f9df428829d33360144dc5026bcbf
Fixes: 584ea6564b ("RISC-V: Probe for unaligned access speed")
Signed-off-by: Evan Green <evan@rivosinc.com>
Link: https://lore.kernel.org/r/20231106225855.3121724-1-evan@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
This function shouldn't be __init, since it's called during hotplug. The
warning says it well enough:
WARNING: modpost: vmlinux: section mismatch in reference:
check_unaligned_access_all_cpus+0x13a (section: .text) ->
unaligned_emulation_finish (section: .init.text)
Signed-off-by: Evan Green <evan@rivosinc.com>
Fixes: 71c54b3d16 ("riscv: report misaligned accesses emulation to hwprobe")
Link: https://lore.kernel.org/r/20231106231105.3141413-1-evan@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
In /proc/cpuinfo, most of the information we show for each processor is
specific to that hart: marchid, mvendorid, mimpid, processor, hart,
compatible, and the mmu size. But the ISA string gets filtered through a
lowest common denominator mask, so that if one CPU is missing an ISA
extension, no CPUs will show it.
Now that we track the ISA extensions for each hart, let's report ISA
extension info accurately per-hart in /proc/cpuinfo. We cannot change
the "isa:" line, as usermode may be relying on that line to show only
the common set of extensions supported across all harts. Add a new "hart
isa" line instead, which reports the true set of extensions for that
hart.
Signed-off-by: Evan Green <evan@rivosinc.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Reviewed-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20231106232439.3176268-1-evan@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Without this I get a bunch of warnings along the lines of
arch/riscv/kernel/module.c:535:26: error: positional initialization of field in 'struct' declared with 'designated_init' attribute [-Werror=designated-init]
535 | [R_RISCV_32] = { apply_r_riscv_32_rela },
This just mades the member initializers explicit instead of positional.
I also aligned some of the table, but mostly just to make the batch
editing go faster.
Fixes: b51fc88cb3 ("Merge patch series "riscv: Add remaining module relocations and tests"")
Reviewed-by: Charlie Jenkins <charlie@rivosinc.com>
Link: https://lore.kernel.org/r/20231107155529.8368-1-palmer@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Charlie Jenkins <charlie@rivosinc.com> says:
A handful of module relocations were missing, this patch includes the
remaining ones. I also wrote some test cases to ensure that module
loading works properly. Some relocations cannot be supported in the
kernel, these include the ones that rely on thread local storage and
dynamic linking.
This patch also overhauls the implementation of ADD/SUB/SET/ULEB128
relocations to handle overflow. "Overflow" is different for ULEB128
since it is a variable-length encoding that the compiler can be expected
to generate enough space for. Instead of overflowing, ULEB128 will
expand into the next 8-bit segment of the location.
A psABI proposal [1] was merged that mandates that SET_ULEB128 and
SUB_ULEB128 are paired, however the discussion following the merging of
the pull request revealed that while the pull request was valid, it
would be better for linkers to properly handle this overflow. This patch
proactively implements this methodology for future compatibility.
This can be tested by enabling KUNIT, RUNTIME_KERNEL_TESTING_MENU, and
RISCV_MODULE_LINKING_KUNIT.
[1] https://github.com/riscv-non-isa/riscv-elf-psabi-doc/pull/403
* b4-shazam-merge:
riscv: Add tests for riscv module loading
riscv: Add remaining module relocations
riscv: Avoid unaligned access when relocating modules
Link: https://lore.kernel.org/r/20231101-module_relocations-v9-0-8dfa3483c400@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Add all final module relocations and add error logs explaining the ones
that are not supported. Implement overflow checks for
ADD/SUB/SET/ULEB128 relocations.
Signed-off-by: Charlie Jenkins <charlie@rivosinc.com>
Link: https://lore.kernel.org/r/20231101-module_relocations-v9-2-8dfa3483c400@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
With the C-extension regular 32bit instructions are not
necessarily aligned on 4-byte boundaries. RISC-V instructions
are in fact an ordered list of 16bit little-endian
"parcels", so access the instruction as such.
This should also make the code work in case someone builds
a big-endian RISC-V machine.
Signed-off-by: Emil Renner Berthing <kernel@esmil.dk>
Signed-off-by: Charlie Jenkins <charlie@rivosinc.com>
Link: https://lore.kernel.org/r/20231101-module_relocations-v9-1-8dfa3483c400@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
The cache ops are also used by the pmem code which is unconditionally
built into the kernel. Move them into a separate file that is built
based on the correct config option.
Fixes: fd96278127 ("riscv: RISCV_NONSTANDARD_CACHE_OPS shouldn't depend on RISCV_DMA_NONCOHERENT")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Conor Dooley <conor.dooley@microchip.com>
Tested-by: Conor Dooley <conor.dooley@microchip.com>
Reviewed-by: Lad Prabhakar <prabhakar.mahadev-lad.rj@bp.renesas.com>
Tested-by: Lad Prabhakar <prabhakar.mahadev-lad.rj@bp.renesas.com> #
Link: https://lore.kernel.org/r/20231028155101.1039049-1-hch@lst.de
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Alexandre Ghiti <alexghiti@rivosinc.com> says:
This series optimizes the tlb flushes on riscv which used to simply
flush the whole tlb whatever the size of the range to flush or the size
of the stride.
Patch 3 introduces a threshold that is microarchitecture specific and
will very likely be modified by vendors, not sure though which mechanism
we'll use to do that (dt? alternatives? vendor initialization code?).
* b4-shazam-merge:
riscv: Improve flush_tlb_kernel_range()
riscv: Make __flush_tlb_range() loop over pte instead of flushing the whole tlb
riscv: Improve flush_tlb_range() for hugetlb pages
riscv: Improve tlb_flush()
Link: https://lore.kernel.org/r/20231030133027.19542-1-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
This function used to simply flush the whole tlb of all harts, be more
subtile and try to only flush the range.
The problem is that we can only use PAGE_SIZE as stride since we don't know
the size of the underlying mapping and then this function will be improved
only if the size of the region to flush is < threshold * PAGE_SIZE.
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Tested-by: Lad Prabhakar <prabhakar.mahadev-lad.rj@bp.renesas.com> # On RZ/Five SMARC
Reviewed-by: Samuel Holland <samuel.holland@sifive.com>
Tested-by: Samuel Holland <samuel.holland@sifive.com>
Link: https://lore.kernel.org/r/20231030133027.19542-5-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Currently, when the range to flush covers more than one page (a 4K page or
a hugepage), __flush_tlb_range() flushes the whole tlb. Flushing the whole
tlb comes with a greater cost than flushing a single entry so we should
flush single entries up to a certain threshold so that:
threshold * cost of flushing a single entry < cost of flushing the whole
tlb.
Co-developed-by: Mayuresh Chitale <mchitale@ventanamicro.com>
Signed-off-by: Mayuresh Chitale <mchitale@ventanamicro.com>
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Tested-by: Lad Prabhakar <prabhakar.mahadev-lad.rj@bp.renesas.com> # On RZ/Five SMARC
Reviewed-by: Samuel Holland <samuel.holland@sifive.com>
Tested-by: Samuel Holland <samuel.holland@sifive.com>
Link: https://lore.kernel.org/r/20231030133027.19542-4-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
flush_tlb_range() uses a fixed stride of PAGE_SIZE and in its current form,
when a hugetlb mapping needs to be flushed, flush_tlb_range() flushes the
whole tlb: so set a stride of the size of the hugetlb mapping in order to
only flush the hugetlb mapping. However, if the hugepage is a NAPOT region,
all PTEs that constitute this mapping must be invalidated, so the stride
size must actually be the size of the PTE.
Note that THPs are directly handled by flush_pmd_tlb_range().
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Reviewed-by: Samuel Holland <samuel.holland@sifive.com>
Tested-by: Lad Prabhakar <prabhakar.mahadev-lad.rj@bp.renesas.com> # On RZ/Five SMARC
Link: https://lore.kernel.org/r/20231030133027.19542-3-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
For now, tlb_flush() simply calls flush_tlb_mm() which results in a
flush of the whole TLB. So let's use mmu_gather fields to provide a more
fine-grained flush of the TLB.
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Reviewed-by: Samuel Holland <samuel.holland@sifive.com>
Tested-by: Lad Prabhakar <prabhakar.mahadev-lad.rj@bp.renesas.com> # On RZ/Five SMARC
Link: https://lore.kernel.org/r/20231030133027.19542-2-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
This adds a separate segment for kernel text in /proc/kcore, which has a
different address than the direct linear map.
Signed-off-by: Andreas Schwab <schwab@suse.de>
Link: https://lore.kernel.org/r/mvmh6m758ao.fsf@suse.de
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Some data were incorrectly annotated with SYM_FUNC_*() instead of
SYM_DATA_*() ones. Use the correct ones.
Signed-off-by: Clément Léger <cleger@rivosinc.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Link: https://lore.kernel.org/r/20231024132655.730417-4-cleger@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
ENTRY()/END()/WEAK() macros are deprecated and we should make use of the
new SYM_*() macros [1] for better annotation of symbols. Replace the
deprecated ones with the new ones and fix wrong usage of END()/ENDPROC()
to correctly describe the symbols.
[1] https://docs.kernel.org/core-api/asm-annotations.html
Signed-off-by: Clément Léger <cleger@rivosinc.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Link: https://lore.kernel.org/r/20231024132655.730417-3-cleger@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
For the sake of coherency, use local labels in assembly when
applicable. This also avoid kprobes being confused when applying a
kprobe since the size of function is computed by checking where the
next visible symbol is located. This might end up in computing some
function size to be way shorter than expected and thus failing to apply
kprobes to the specified offset.
Signed-off-by: Clément Léger <cleger@rivosinc.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Link: https://lore.kernel.org/r/20231024132655.730417-2-cleger@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
When flashing loader.bin for K210 using kflash:
[ERROR] This is an ELF file and cannot be programmed to flash directly: arch/riscv/boot/loader.bin
Before, loader.bin relied on "OBJCOPYFLAGS := -O binary" in the main
RISC-V Makefile to create a boot image with the right format. With this
removed, the image is now created in the wrong (ELF) format.
Fix this by adding an explicit rule.
Fixes: 505b02957e ("riscv: Remove duplicate objcopy flag")
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Damien Le Moal <dlemoal@kernel.org>
Link: https://lore.kernel.org/r/1086025809583809538dfecaa899892218f44e7e.1698159066.git.geert+renesas@glider.be
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Alexandre Ghiti <alexghiti@rivosinc.com> says:
This series optimizes the tlb flushes on riscv which used to simply
flush the whole tlb whatever the size of the range to flush or the size
of the stride.
Patch 3 introduces a threshold that is microarchitecture specific and
will very likely be modified by vendors, not sure though which mechanism
we'll use to do that (dt? alternatives? vendor initialization code?).
* b4-shazam-merge:
riscv: Improve flush_tlb_kernel_range()
riscv: Make __flush_tlb_range() loop over pte instead of flushing the whole tlb
riscv: Improve flush_tlb_range() for hugetlb pages
riscv: Improve tlb_flush()
Link: https://lore.kernel.org/r/20231030133027.19542-1-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
This function used to simply flush the whole tlb of all harts, be more
subtile and try to only flush the range.
The problem is that we can only use PAGE_SIZE as stride since we don't know
the size of the underlying mapping and then this function will be improved
only if the size of the region to flush is < threshold * PAGE_SIZE.
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Tested-by: Lad Prabhakar <prabhakar.mahadev-lad.rj@bp.renesas.com> # On RZ/Five SMARC
Reviewed-by: Samuel Holland <samuel.holland@sifive.com>
Tested-by: Samuel Holland <samuel.holland@sifive.com>
Link: https://lore.kernel.org/r/20231030133027.19542-5-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Currently, when the range to flush covers more than one page (a 4K page or
a hugepage), __flush_tlb_range() flushes the whole tlb. Flushing the whole
tlb comes with a greater cost than flushing a single entry so we should
flush single entries up to a certain threshold so that:
threshold * cost of flushing a single entry < cost of flushing the whole
tlb.
Co-developed-by: Mayuresh Chitale <mchitale@ventanamicro.com>
Signed-off-by: Mayuresh Chitale <mchitale@ventanamicro.com>
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Tested-by: Lad Prabhakar <prabhakar.mahadev-lad.rj@bp.renesas.com> # On RZ/Five SMARC
Reviewed-by: Samuel Holland <samuel.holland@sifive.com>
Tested-by: Samuel Holland <samuel.holland@sifive.com>
Link: https://lore.kernel.org/r/20231030133027.19542-4-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
flush_tlb_range() uses a fixed stride of PAGE_SIZE and in its current form,
when a hugetlb mapping needs to be flushed, flush_tlb_range() flushes the
whole tlb: so set a stride of the size of the hugetlb mapping in order to
only flush the hugetlb mapping. However, if the hugepage is a NAPOT region,
all PTEs that constitute this mapping must be invalidated, so the stride
size must actually be the size of the PTE.
Note that THPs are directly handled by flush_pmd_tlb_range().
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Reviewed-by: Samuel Holland <samuel.holland@sifive.com>
Tested-by: Lad Prabhakar <prabhakar.mahadev-lad.rj@bp.renesas.com> # On RZ/Five SMARC
Link: https://lore.kernel.org/r/20231030133027.19542-3-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
For now, tlb_flush() simply calls flush_tlb_mm() which results in a
flush of the whole TLB. So let's use mmu_gather fields to provide a more
fine-grained flush of the TLB.
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Reviewed-by: Samuel Holland <samuel.holland@sifive.com>
Tested-by: Lad Prabhakar <prabhakar.mahadev-lad.rj@bp.renesas.com> # On RZ/Five SMARC
Link: https://lore.kernel.org/r/20231030133027.19542-2-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Update T-Head memory type definitions according to C910 doc [1]
For NC and IO, SH property isn't configurable, hardcoded as SH,
so set SH for NOCACHE and IO.
And also set bit[61](Bufferable) for NOCACHE according to the
table 6.1 in the doc [1].
Link: https://github.com/T-head-Semi/openc910 [1]
Signed-off-by: Jisheng Zhang <jszhang@kernel.org>
Reviewed-by: Guo Ren <guoren@kernel.org>
Tested-by: Drew Fustini <dfustini@baylibre.com>
Link: https://lore.kernel.org/r/20230912072510.2510-1-jszhang@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Jisheng Zhang <jszhang@kernel.org> says:
This series renews one of my last year RFC patch[1], tries to improve
the vdso layout a bit.
patch1 removes useless symbols
patch2 merges .data section of vdso into .rodata because they are
readonly
patch3 is the real renew patch, it removes hardcoded 0x800 .text start
addr. But I rewrite the commit msg per Andrew's suggestions and move
move .note, .eh_frame_hdr, and .eh_frame between .rodata and .text to
keep the actual code well away from the non-instruction data.
* b4-shazam-merge:
riscv: vdso.lds.S: remove hardcoded 0x800 .text start addr
riscv: vdso.lds.S: merge .data section into .rodata section
riscv: vdso.lds.S: drop __alt_start and __alt_end symbols
Link: https://lore.kernel.org/linux-riscv/20221123161805.1579-1-jszhang@kernel.org/ [1]
Link: https://lore.kernel.org/r/20230912072015.2424-1-jszhang@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
I believe the hardcoded 0x800 and related comments come from the long
history VDSO_TEXT_OFFSET in x86 vdso code, but commit 5b93049337
("x86 vDSO: generate vdso-syms.lds") and commit f6b46ebf90 ("x86
vDSO: new layout") removes the comment and hard coding for x86.
Similar as x86 and other arch, riscv doesn't need the rigid layout
using VDSO_TEXT_OFFSET since it "no longer matters to the kernel".
so we could remove the hard coding now, and removing it brings a
small vdso.so and aligns with other architectures.
Also, having enough separation between data and text is important for
I-cache, so similar as x86, move .note, .eh_frame_hdr, and .eh_frame
between .rodata and .text.
Signed-off-by: Jisheng Zhang <jszhang@kernel.org>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Tested-by: Emil Renner Berthing <emil.renner.berthing@canonical.com>
Link: https://lore.kernel.org/r/20230912072015.2424-4-jszhang@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
The .data section doesn't need to be separate from .rodata section,
they are both readonly.
Signed-off-by: Jisheng Zhang <jszhang@kernel.org>
Tested-by: Emil Renner Berthing <emil.renner.berthing@canonical.com>
Link: https://lore.kernel.org/r/20230912072015.2424-3-jszhang@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
These two symbols are not used, remove them.
Signed-off-by: Jisheng Zhang <jszhang@kernel.org>
Tested-by: Emil Renner Berthing <emil.renner.berthing@canonical.com>
Link: https://lore.kernel.org/r/20230912072015.2424-2-jszhang@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Instructions can write to x0, so we should simulate these instructions
normally.
Currently, the kernel hangs if an instruction who writes to x0 is
simulated.
Fixes: c22b0bcb1d ("riscv: Add kprobes supported")
Cc: stable@vger.kernel.org
Signed-off-by: Nam Cao <namcaov@gmail.com>
Reviewed-by: Charlie Jenkins <charlie@rivosinc.com>
Acked-by: Guo Ren <guoren@kernel.org>
Link: https://lore.kernel.org/r/20230829182500.61875-1-namcaov@gmail.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
uprobes expects is_trap_insn() to return true for any trap instructions,
not just the one used for installing uprobe. The current default
implementation only returns true for 16-bit c.ebreak if C extension is
enabled. This can confuse uprobes if a 32-bit ebreak generates a trap
exception from userspace: uprobes asks is_trap_insn() who says there is no
trap, so uprobes assume a probe was there before but has been removed, and
return to the trap instruction. This causes an infinite loop of entering
and exiting trap handler.
Instead of using the default implementation, implement this function
speficially for riscv with checks for both ebreak and c.ebreak.
Fixes: 74784081aa ("riscv: Add uprobes supported")
Signed-off-by: Nam Cao <namcaov@gmail.com>
Tested-by: Björn Töpel <bjorn@rivosinc.com>
Reviewed-by: Guo Ren <guoren@kernel.org>
Link: https://lore.kernel.org/r/20230829083614.117748-1-namcaov@gmail.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Yu Chien Peter Lin <peterlin@andestech.com> says:
This patchset enhances PTDUMP by providing additional information
from pagetable entries.
The first patch fixes the RSW field, while the second and third
patches introduce the PBMT and NAPOT fields, respectively, for
RV64 systems.
* b4-shazam-merge:
riscv: Introduce NAPOT field to PTDUMP
riscv: Introduce PBMT field to PTDUMP
riscv: Improve PTDUMP to show RSW with non-zero value
Link: https://lore.kernel.org/r/20230921025022.3989723-1-peterlin@andestech.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
This patch introduces the NAPOT field to PTDUMP, allowing it
to display the letter "N" for pages that have the 63rd bit set.
Signed-off-by: Yu Chien Peter Lin <peterlin@andestech.com>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Tested-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20230921025022.3989723-4-peterlin@andestech.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
This patch introduces the PBMT field to the PTDUMP, so it can
display the memory attributes for NC or IO.
Signed-off-by: Yu Chien Peter Lin <peterlin@andestech.com>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Tested-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20230921025022.3989723-3-peterlin@andestech.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
RSW field can be used to encode 2 bits of software
defined information. Currently, PTDUMP only prints
"RSW" when its value is 1 or 3.
To fix this issue and improve the debugging experience
with PTDUMP, we redefine _PAGE_SPECIAL to its original
value and use _PAGE_SOFT as the RSW mask, allow it to
print the RSW with any non-zero value.
This patch also removes the val from the struct prot_bits
as it is no longer needed.
Signed-off-by: Yu Chien Peter Lin <peterlin@andestech.com>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Tested-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20230921025022.3989723-2-peterlin@andestech.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
The CMO op macros initially used lower case, as the original iteration
of the ALT_CMO_OP alternative stringified the first parameter to
finalise the assembly for the standard variant.
As a knock-on, the T-Head versions of these CMOs had to use mixed case
defines. Commit dd23e95358 ("RISC-V: replace cbom instructions with
an insn-def") removed the asm construction with stringify, replacing it
an insn-def macro, rending the lower-case surplus to requirements.
As far as I can tell from a brief check, CBO_zero does not see similar
use and didn't require the mixed case define in the first place.
Replace the lower case characters now for consistency with other
insn-def macros in the standard and T-Head forms, and adjust the
callsites.
Suggested-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Link: https://lore.kernel.org/r/20230915-aloe-dollar-994937477776@spud
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
If misaligned_access_speed percpu var isn't so called "HWPROBE
MISALIGNED UNKNOWN", it means the probe has happened(this is possible
for example, hotplug off then hotplug on one cpu), and the percpu var
has been set, don't probe again in this case.
Signed-off-by: Jisheng Zhang <jszhang@kernel.org>
Fixes: 584ea6564b ("RISC-V: Probe for unaligned access speed")
Reviewed-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230912154040.3306-1-jszhang@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
If these config not set, mmc can't run for jh7110, rootfs can't
be found when using SD card. So set CONFIG_MMC_DW=y like arm64
defconfig, and set CONFIG_MMC_DW_STARFIVE=y for starfive. Then
starfive vf2 board can start SD card rootfs with mainline defconfig
and dtb.
Signed-off-by: Jinyu Tang <tangjinyu@tinylab.org>
Reviewed-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230912133128.5247-1-tangjinyu@tinylab.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>