* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes/pci-2.6: (21 commits)
x86/PCI: use dev_printk when possible
PCI: add D3 power state avoidance quirk
PCI: fix bogus "'device' may be used uninitialized" warning in pci_slot
PCI: add an option to allow ASPM enabled forcibly
PCI: disable ASPM on pre-1.1 PCIe devices
PCI: disable ASPM per ACPI FADT setting
PCI MSI: Don't disable MSIs if the mask bit isn't supported
PCI: handle 64-bit resources better on 32-bit machines
PCI: rewrite PCI BAR reading code
PCI: document pci_target_state
PCI hotplug: fix typo in pcie hotplug output
x86 gart: replace to_pages macro with iommu_num_pages
x86, AMD IOMMU: replace to_pages macro with iommu_num_pages
iommu: add iommu_num_pages helper function
dma-coherent: add documentation to new interfaces
Cris: convert to using generic dma-coherent mem allocator
Sh: use generic per-device coherent dma allocator
ARM: support generic per-device coherent dma mem
Generic dma-coherent: fix DMA_MEMORY_EXCLUSIVE
x86: use generic per-device dma coherent allocator
...
Alexey Dobriyan reported trouble with LTP with the new fast-gup code,
and Johannes Weiner debugged it to non-page-aligned addresses, where the
new get_user_pages_fast() code would do all the wrong things, including
just traversing past the end of the requested area due to 'addr' never
matching 'end' exactly.
This is not a pretty fix, and we may actually want to move the alignment
into generic code, leaving just the core code per-arch, but Alexey
verified that the vmsplice01 LTP test doesn't crash with this.
Reported-and-tested-by: Alexey Dobriyan <adobriyan@gmail.com>
Debugged-by: Johannes Weiner <hannes@saeurebad.de>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
6af61a7614 'x86: clean up max_pfn_mapped
usage - 32-bit' makes the following comment:
XEN PV and lguest may need to assign max_pfn_mapped too.
But no CC. Yinghai, wasting fellow developers' time is a VERY bad
habit. If you do it again, I will hunt you down and try to extract
the three hours of my life I just lost :)
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Yinghai Lu <yhlu.kernel@gmail.com>
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert printks to use dev_printk().
I converted DBG() to dev_dbg(). This DBG() is from arch/x86/pci/pci.h and
requires source-code modification to enable, so dev_dbg() seems roughly
equivalent.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Clean up and optimize cpumask_of_cpu(), by sharing all the zero words.
Instead of stupidly generating all possible i=0...NR_CPUS 2^i patterns
creating a huge array of constant bitmasks, realize that the zero words
can be shared.
In other words, on a 64-bit architecture, we only ever need 64 of these
arrays - with a different bit set in one single world (with enough zero
words around it so that we can create any bitmask by just offsetting in
that big array). And then we just put enough zeroes around it that we
can point every single cpumask to be one of those things.
So when we have 4k CPU's, instead of having 4k arrays (of 4k bits each,
with one bit set in each array - 2MB memory total), we have exactly 64
arrays instead, each 8k bits in size (64kB total).
And then we just point cpumask(n) to the right position (which we can
calculate dynamically). Once we have the right arrays, getting
"cpumask(n)" ends up being:
static inline const cpumask_t *get_cpu_mask(unsigned int cpu)
{
const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG];
p -= cpu / BITS_PER_LONG;
return (const cpumask_t *)p;
}
This brings other advantages and simplifications as well:
- we are not wasting memory that is just filled with a single bit in
various different places
- we don't need all those games to re-create the arrays in some dense
format, because they're already going to be dense enough.
if we compile a kernel for up to 4k CPU's, "wasting" that 64kB of memory
is a non-issue (especially since by doing this "overlapping" trick we
probably get better cache behaviour anyway).
[ mingo@elte.hu:
Converted Linus's mails into a commit. See:
http://lkml.org/lkml/2008/7/27/156http://lkml.org/lkml/2008/7/28/320
Also applied a family filter - which also has the side-effect of leaving
out the bits where Linus calls me an idio... Oh, never mind ;-)
]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
commit 3e9704739d ("x86: boot secondary
cpus through initial_code") causes the kernel to crash when a CPU is
brought online after the read only sections have been write
protected. The write to initial_code in do_boot_cpu() fails.
Move inital_code to .cpuinit.data section.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: H. Peter Anvin <hpa@zytor.com>
When an event (such as an interrupt) is injected, and the stack is
shadowed (and therefore write protected), the guest will exit. The
current code will see that the stack is shadowed and emulate a few
instructions, each time postponing the injection. Eventually the
injection may succeed, but at that time the guest may be unwilling
to accept the interrupt (for example, the TPR may have changed).
This occurs every once in a while during a Windows 2008 boot.
Fix by unshadowing the fault address if the fault was due to an event
injection.
Signed-off-by: Avi Kivity <avi@qumranet.com>
There is no guarantee that the old TSS descriptor in the GDT contains
the proper base address. This is the case for Windows installation's
reboot-via-triplefault.
Use guest registers instead. Also translate the address properly.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
The segment base is always a linear address, so translate before
accessing guest memory.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
If NPT is enabled after loading both KVM modules on AMD and it should be
disabled, both KVM modules must be reloaded. If only the architecture module is
reloaded the behavior is undefined. With this patch it is possible to disable
NPT only by reloading the kvm_amd module.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, AMD IOMMU: include amd_iommu_last_bdf in device initialization
x86: fix IBM Summit based systems' phys_cpu_present_map on 32-bit kernels
x86, RDC321x: remove gpio.h complications
x86, RDC321x: add to mach-default
crashdump: fix undefined reference to `elfcorehdr_addr'
flag parameters: fix compile error of sys_epoll_create1
Remove arch-specific show_mem() in favor of the generic version.
This also removes the following redundant information display:
- pages in swapcache, printed by show_swap_cache_info()
- dirty pages, writeback pages, mapped pages, slab pages,
pagetable pages, printed by show_free_areas()
where show_mem() calls show_free_areas(), which calls
show_swap_cache_info().
Signed-off-by: Johannes Weiner <hannes@saeurebad.de>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This moves all the ptrace hooks related to exec into tracehook.h inlines.
This also lifts the calls for tracing out of the binfmt load_binary hooks
into search_binary_handler() after it calls into the binfmt module. This
change has no effect, since all the binfmt modules' load_binary functions
did the call at the end on success, and now search_binary_handler() does
it immediately after return if successful. We consolidate the repeated
code, and binfmt modules no longer need to import ptrace_notify().
Signed-off-by: Roland McGrath <roland@redhat.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement get_user_pages_fast without locking in the fastpath on x86.
Do an optimistic lockless pagetable walk, without taking mmap_sem or any
page table locks or even mmap_sem. Page table existence is guaranteed by
turning interrupts off (combined with the fact that we're always looking
up the current mm, means we can do the lockless page table walk within the
constraints of the TLB shootdown design). Basically we can do this
lockless pagetable walk in a similar manner to the way the CPU's pagetable
walker does not have to take any locks to find present ptes.
This patch (combined with the subsequent ones to convert direct IO to use
it) was found to give about 10% performance improvement on a 2 socket 8
core Intel Xeon system running an OLTP workload on DB2 v9.5
"To test the effects of the patch, an OLTP workload was run on an IBM
x3850 M2 server with 2 processors (quad-core Intel Xeon processors at
2.93 GHz) using IBM DB2 v9.5 running Linux 2.6.24rc7 kernel. Comparing
runs with and without the patch resulted in an overall performance
benefit of ~9.8%. Correspondingly, oprofiles showed that samples from
__up_read and __down_read routines that is seen during thread contention
for system resources was reduced from 2.8% down to .05%. Monitoring the
/proc/vmstat output from the patched run showed that the counter for
fast_gup contained a very high number while the fast_gup_slow value was
zero."
(fast_gup is the old name for get_user_pages_fast, fast_gup_slow is a
counter we had for the number of times the slowpath was invoked).
The main reason for the improvement is that DB2 has multiple threads each
issuing direct-IO. Direct-IO uses get_user_pages, and thus the threads
contend the mmap_sem cacheline, and can also contend on page table locks.
I would anticipate larger performance gains on larger systems, however I
think DB2 uses an adaptive mix of threads and processes, so it could be
that thread contention remains pretty constant as machine size increases.
In which case, we stuck with "only" a 10% gain.
The downside of using get_user_pages_fast is that if there is not a pte
with the correct permissions for the access, we end up falling back to
get_user_pages and so the get_user_pages_fast is a bit of extra work.
However this should not be the common case in most performance critical
code.
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: Kconfig fix]
[akpm@linux-foundation.org: Makefile fix/cleanup]
[akpm@linux-foundation.org: warning fix]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Dave Kleikamp <shaggy@austin.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Dave Kleikamp <shaggy@austin.ibm.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Zach Brown <zach.brown@oracle.com>
Cc: Jens Axboe <jens.axboe@oracle.com>
Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch implements devices state save/restore before after kexec.
This patch together with features in kexec_jump patch can be used for
following:
- A simple hibernation implementation without ACPI support. You can kexec a
hibernating kernel, save the memory image of original system and shutdown
the system. When resuming, you restore the memory image of original system
via ordinary kexec load then jump back.
- Kernel/system debug through making system snapshot. You can make system
snapshot, jump back, do some thing and make another system snapshot.
- Cooperative multi-kernel/system. With kexec jump, you can switch between
several kernels/systems quickly without boot process except the first time.
This appears like swap a whole kernel/system out/in.
- A general method to call program in physical mode (paging turning
off). This can be used to invoke BIOS code under Linux.
The following user-space tools can be used with kexec jump:
- kexec-tools needs to be patched to support kexec jump. The patches
and the precompiled kexec can be download from the following URL:
source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2
patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2
binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10
- makedumpfile with patches are used as memory image saving tool, it
can exclude free pages from original kernel memory image file. The
patches and the precompiled makedumpfile can be download from the
following URL:
source: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-src_cvs_kh10.tar.bz2
patches: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-patches_cvs_kh10.tar.bz2
binary: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile_cvs_kh10
- An initramfs image can be used as the root file system of kexeced
kernel. An initramfs image built with "BuildRoot" can be downloaded
from the following URL:
initramfs image: http://khibernation.sourceforge.net/download/release_v10/initramfs/rootfs_cvs_kh10.gz
All user space tools above are included in the initramfs image.
Usage example of simple hibernation:
1. Compile and install patched kernel with following options selected:
CONFIG_X86_32=y
CONFIG_RELOCATABLE=y
CONFIG_KEXEC=y
CONFIG_CRASH_DUMP=y
CONFIG_PM=y
CONFIG_HIBERNATION=y
CONFIG_KEXEC_JUMP=y
2. Build an initramfs image contains kexec-tool and makedumpfile, or
download the pre-built initramfs image, called rootfs.gz in
following text.
3. Prepare a partition to save memory image of original kernel, called
hibernating partition in following text.
4. Boot kernel compiled in step 1 (kernel A).
5. In the kernel A, load kernel compiled in step 1 (kernel B) with
/sbin/kexec. The shell command line can be as follow:
/sbin/kexec --load-preserve-context /boot/bzImage --mem-min=0x100000
--mem-max=0xffffff --initrd=rootfs.gz
6. Boot the kernel B with following shell command line:
/sbin/kexec -e
7. The kernel B will boot as normal kexec. In kernel B the memory
image of kernel A can be saved into hibernating partition as
follow:
jump_back_entry=`cat /proc/cmdline | tr ' ' '\n' | grep kexec_jump_back_entry | cut -d '='`
echo $jump_back_entry > kexec_jump_back_entry
cp /proc/vmcore dump.elf
Then you can shutdown the machine as normal.
8. Boot kernel compiled in step 1 (kernel C). Use the rootfs.gz as
root file system.
9. In kernel C, load the memory image of kernel A as follow:
/sbin/kexec -l --args-none --entry=`cat kexec_jump_back_entry` dump.elf
10. Jump back to the kernel A as follow:
/sbin/kexec -e
Then, kernel A is resumed.
Implementation point:
To support jumping between two kernels, before jumping to (executing)
the new kernel and jumping back to the original kernel, the devices
are put into quiescent state, and the state of devices and CPU is
saved. After jumping back from kexeced kernel and jumping to the new
kernel, the state of devices and CPU are restored accordingly. The
devices/CPU state save/restore code of software suspend is called to
implement corresponding function.
Known issues:
- Because the segment number supported by sys_kexec_load is limited,
hibernation image with many segments may not be load. This is
planned to be eliminated by adding a new flag to sys_kexec_load to
make a image can be loaded with multiple sys_kexec_load invoking.
Now, only the i386 architecture is supported.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Nigel Cunningham <nigel@nigel.suspend2.net>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch provides an enhancement to kexec/kdump. It implements the
following features:
- Backup/restore memory used by the original kernel before/after
kexec.
- Save/restore CPU state before/after kexec.
The features of this patch can be used as a general method to call program in
physical mode (paging turning off). This can be used to call BIOS code under
Linux.
kexec-tools needs to be patched to support kexec jump. The patches and
the precompiled kexec can be download from the following URL:
source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2
patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2
binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10
Usage example of calling some physical mode code and return:
1. Compile and install patched kernel with following options selected:
CONFIG_X86_32=y
CONFIG_KEXEC=y
CONFIG_PM=y
CONFIG_KEXEC_JUMP=y
2. Build patched kexec-tool or download the pre-built one.
3. Build some physical mode executable named such as "phy_mode"
4. Boot kernel compiled in step 1.
5. Load physical mode executable with /sbin/kexec. The shell command
line can be as follow:
/sbin/kexec --load-preserve-context --args-none phy_mode
6. Call physical mode executable with following shell command line:
/sbin/kexec -e
Implementation point:
To support jumping without reserving memory. One shadow backup page (source
page) is allocated for each page used by kexeced code image (destination
page). When do kexec_load, the image of kexeced code is loaded into source
pages, and before executing, the destination pages and the source pages are
swapped, so the contents of destination pages are backupped. Before jumping
to the kexeced code image and after jumping back to the original kernel, the
destination pages and the source pages are swapped too.
C ABI (calling convention) is used as communication protocol between
kernel and called code.
A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to
indicate that the loaded kernel image is used for jumping back.
Now, only the i386 architecture is supported.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Nigel Cunningham <nigel@nigel.suspend2.net>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The calgary code can give drivers addresses above 4GB which is very bad
for hardware that is only 32bit DMA addressable.
With this patch, the calgary code sets the global dma_ops to swiotlb or
nommu properly, and the dma_ops of devices behind the Calgary/CalIOC2
to calgary_dma_ops. So the calgary code can handle devices safely that
aren't behind the Calgary/CalIOC2.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Alexis Bruemmer <alexisb@us.ibm.com>
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: Muli Ben-Yehuda <muli@il.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add per-device dma_mapping_ops support for CONFIG_X86_64 as POWER
architecture does:
This enables us to cleanly fix the Calgary IOMMU issue that some devices
are not behind the IOMMU (http://lkml.org/lkml/2008/5/8/423).
I think that per-device dma_mapping_ops support would be also helpful for
KVM people to support PCI passthrough but Andi thinks that this makes it
difficult to support the PCI passthrough (see the above thread). So I
CC'ed this to KVM camp. Comments are appreciated.
A pointer to dma_mapping_ops to struct dev_archdata is added. If the
pointer is non NULL, DMA operations in asm/dma-mapping.h use it. If it's
NULL, the system-wide dma_ops pointer is used as before.
If it's useful for KVM people, I plan to implement a mechanism to register
a hook called when a new pci (or dma capable) device is created (it works
with hot plugging). It enables IOMMUs to set up an appropriate
dma_mapping_ops per device.
The major obstacle is that dma_mapping_error doesn't take a pointer to the
device unlike other DMA operations. So x86 can't have dma_mapping_ops per
device. Note all the POWER IOMMUs use the same dma_mapping_error function
so this is not a problem for POWER but x86 IOMMUs use different
dma_mapping_error functions.
The first patch adds the device argument to dma_mapping_error. The patch
is trivial but large since it touches lots of drivers and dma-mapping.h in
all the architecture.
This patch:
dma_mapping_error() doesn't take a pointer to the device unlike other DMA
operations. So we can't have dma_mapping_ops per device.
Note that POWER already has dma_mapping_ops per device but all the POWER
IOMMUs use the same dma_mapping_error function. x86 IOMMUs use device
argument.
[akpm@linux-foundation.org: fix sge]
[akpm@linux-foundation.org: fix svc_rdma]
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: fix bnx2x]
[akpm@linux-foundation.org: fix s2io]
[akpm@linux-foundation.org: fix pasemi_mac]
[akpm@linux-foundation.org: fix sdhci]
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: fix sparc]
[akpm@linux-foundation.org: fix ibmvscsi]
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: Muli Ben-Yehuda <muli@il.ibm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Avi Kivity <avi@qumranet.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Replace previous instances of the cpumask_of_cpu_ptr* macros
with a the new (lvalue capable) generic cpumask_of_cpu().
Signed-off-by: Mike Travis <travis@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* Create the cpumask_of_cpu_map statically in the init data section
using NR_CPUS but replace it during boot up with one sized by
nr_cpu_ids (num possible cpus).
Signed-off-by: Mike Travis <travis@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On Thu, Jul 24, 2008 at 03:43:44PM -0700, Linus Torvalds wrote:
> So how about this patch as a starting point? This is the RightThing(tm) to
> do regardless, and if it then makes it easier to do some other cleanups,
> we should do it first. What do you think?
restore_fpu_checking() calls init_fpu() in error conditions.
While this is wrong(as our main intention is to clear the fpu state of
the thread), this was benign before commit 92d140e21f ("x86: fix taking
DNA during 64bit sigreturn").
Post commit 92d140e21f, live FPU registers may not belong to this
process at this error scenario.
In the error condition for restore_fpu_checking() (especially during the
64bit signal return), we are doing init_fpu(), which saves the live FPU
register state (possibly belonging to some other process context) into
the thread struct (through unlazy_fpu() in init_fpu()). This is wrong
and can leak the FPU data.
For the signal handler restore error condition in restore_i387(), clear
the fpu state present in the thread struct(before ultimately sending a
SIGSEGV for badframe).
For the paranoid error condition check in math_state_restore(), send a
SIGSEGV, if we fail to restore the state.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: <stable@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
All the values read while searching for amd_iommu_last_bdf are defined as
inclusive. Let the code handle this value as such. Found by Wei Wang. Thanks
Wei.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Cc: iommu@lists.linux-foundation.org
Cc: bhavna.sarathy@amd.com
Cc: robert.richter@amd.com
Cc: Wei Wang <wei.wang2@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The new code in commit 5cbf1565f2
has a bug in the version supporting the AMD 'syscall' instruction.
It clobbers the user's %ecx register value (with the %ebp value).
This change fixes it.
Signed-off-by: Roland McGrath <roland@redhat.com>
kdump kernel fails to boot with calgary iommu and aacraid driver on a x366
box. The ongoing dma's of aacraid from the first kernel continue to exist
until the driver is loaded in the kdump kernel. Calgary is initialized
prior to aacraid and creation of new tce tables causes wrong dma's to
occur. Here we try to get the tce tables of the first kernel in kdump
kernel and use them. While in the kdump kernel we do not allocate new tce
tables but instead read the base address register contents of calgary
iommu and use the tables that the registers point to. With these changes
the kdump kernel and hence aacraid now boots normally.
Signed-off-by: Chandru Siddalingappa <chandru@in.ibm.com>
Acked-by: Muli Ben-Yehuda <muli@il.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds functionality to the gpio-lib subsystem to make it
possible to enable the gpio-lib code even if the architecture code didn't
request to get it built in.
The archtitecture code does still need to implement the gpiolib accessor
functions in its asm/gpio.h file. This patch adds the implementations for
x86 and PPC.
With these changes it is possible to run generic GPIO expansion cards on
every architecture that implements the trivial wrapper functions. Support
for more architectures can easily be added.
Signed-off-by: Michael Buesch <mb@bu3sch.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: David Brownell <david-b@pacbell.net>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Haavard Skinnemoen <hskinnemoen@atmel.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Jean Delvare <khali@linux-fr.org>
Cc: Samuel Ortiz <sameo@openedhand.com>
Cc: Kumar Gala <galak@gate.crashing.org>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently list of kretprobe instances are stored in kretprobe object (as
used_instances,free_instances) and in kretprobe hash table. We have one
global kretprobe lock to serialise the access to these lists. This causes
only one kretprobe handler to execute at a time. Hence affects system
performance, particularly on SMP systems and when return probe is set on
lot of functions (like on all systemcalls).
Solution proposed here gives fine-grain locks that performs better on SMP
system compared to present kretprobe implementation.
Solution:
1) Instead of having one global lock to protect kretprobe instances
present in kretprobe object and kretprobe hash table. We will have
two locks, one lock for protecting kretprobe hash table and another
lock for kretporbe object.
2) We hold lock present in kretprobe object while we modify kretprobe
instance in kretprobe object and we hold per-hash-list lock while
modifying kretprobe instances present in that hash list. To prevent
deadlock, we never grab a per-hash-list lock while holding a kretprobe
lock.
3) We can remove used_instances from struct kretprobe, as we can
track used instances of kretprobe instances using kretprobe hash
table.
Time duration for kernel compilation ("make -j 8") on a 8-way ppc64 system
with return probes set on all systemcalls looks like this.
cacheline non-cacheline Un-patched kernel
aligned patch aligned patch
===============================================================================
real 9m46.784s 9m54.412s 10m2.450s
user 40m5.715s 40m7.142s 40m4.273s
sys 2m57.754s 2m58.583s 3m17.430s
===========================================================
Time duration for kernel compilation ("make -j 8) on the same system, when
kernel is not probed.
=========================
real 9m26.389s
user 40m8.775s
sys 2m7.283s
=========================
Signed-off-by: Srinivasa DS <srinivasa@in.ibm.com>
Signed-off-by: Jim Keniston <jkenisto@us.ibm.com>
Acked-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Inflate requires some dynamic memory allocation very early in the boot
process and this is provided with a set of four functions:
malloc/free/gzip_mark/gzip_release.
The old inflate code used a mark/release strategy rather than implement
free. This new version instead keeps a count on the number of outstanding
allocations and when it hits zero, it resets the malloc arena.
This allows removing all the mark and release implementations and unifying
all the malloc/free implementations.
The architecture-dependent code must define two addresses:
- free_mem_ptr, the address of the beginning of the area in which
allocations should be made
- free_mem_end_ptr, the address of the end of the area in which
allocations should be made. If set to 0, then no check is made on
the number of allocations, it just grows as much as needed
The architecture-dependent code can also provide an arch_decomp_wdog()
function call. This function will be called several times during the
decompression process, and allow to notify the watchdog that the system is
still running. If an architecture provides such a call, then it must
define ARCH_HAS_DECOMP_WDOG so that the generic inflate code calls
arch_decomp_wdog().
Work initially done by Matt Mackall, updated to a recent version of the
kernel and improved by me.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Mikael Starvik <mikael.starvik@axis.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Haavard Skinnemoen <hskinnemoen@atmel.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In many cases, especially in networking, it can be beneficial to know at
compile time whether the architecture can do unaligned accesses efficiently.
This patch introduces a new Kconfig symbol
HAVE_EFFICIENT_UNALIGNED_ACCESS
for that purpose and adds it to the powerpc and x86 architectures. Also add
some documentation about alignment and networking, and especially one intended
use of this symbol.
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Acked-by: Sam Ravnborg <sam@ravnborg.org>
Acked-by: Ingo Molnar <mingo@elte.hu> [x86 architecture part]
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
..otherwise oprofile will fall back on that poor timer interrupt.
Also replace the unreadable chain of if-statements with a "switch()"
statement instead. It generates better code, and is a lot clearer.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Suresh Siddha wants to fix a possible FPU leakage in error conditions,
but the fact that save/restore_i387() are inlines in a header file makes
that harder to do than necessary. So start off with an obvious cleanup.
This just moves the x86-64 version of save/restore_i387() out of the
header file, and moves it to the only file that it is actually used in:
arch/x86/kernel/signal_64.c. So exposing it in a header file was wrong
to begin with.
[ Side note: I'd like to fix up some of the games we play with the
32-bit version of these functions too, but that's a separate
matter. The 32-bit versions are shared - under different names
at that! - by both the native x86-32 code and the x86-64 32-bit
compatibility code ]
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
nohz: adjust tick_nohz_stop_sched_tick() call of s390 as well
nohz: prevent tick stop outside of the idle loop
Commit 9d25d4db81 ("x86: BUILD_IRQ say
.text to avoid .data.percpu") added a ".text" specifier to make sure
that BUILD_IRQ() builds the irq trampoline in the text segment rather
than in some random left-over segment that the compiler happened to
leave the asm in.
However, we should also make sure that we switch back by adding a
".previous" at the end, so that there are no subtle issues with
subsequent compiler-generated code.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: fix header export, asm-x86/processor-flags.h, CONFIG_* leaks
x86: BUILD_IRQ say .text to avoid .data.percpu
xen: don't use sysret for sysexit32
x86: call early_cpu_init at the same point
This fixes kernel http://bugzilla.kernel.org/show_bug.cgi?id=11112 (bogus
RTC update IRQs reported) for rtc-cmos, in two ways:
- When HPET is stealing the IRQs, use the first IRQ to grab
the seconds counter which will be monitored (instead of
using whatever was previously in that memory);
- In sane IRQ handling modes, scrub out old IRQ status before
enabling IRQs.
That latter is done by tightening up IRQ handling for rtc-cmos everywhere,
also ensuring that when HPET is used it's the only thing triggering IRQ
reports to userspace; net object shrink.
Also fix a bogus HPET message related to its RTC emulation.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Report-by: W Unruh <unruh@physics.ubc.ca>
Cc: Andrew Victor <avictor.za@gmail.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch introduces the new syscall inotify_init1 (note: the 1 stands for
the one parameter the syscall takes, as opposed to no parameter before). The
values accepted for this parameter are function-specific and defined in the
inotify.h header. Here the values must match the O_* flags, though. In this
patch CLOEXEC support is introduced.
The following test must be adjusted for architectures other than x86 and
x86-64 and in case the syscall numbers changed.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/syscall.h>
#ifndef __NR_inotify_init1
# ifdef __x86_64__
# define __NR_inotify_init1 294
# elif defined __i386__
# define __NR_inotify_init1 332
# else
# error "need __NR_inotify_init1"
# endif
#endif
#define IN_CLOEXEC O_CLOEXEC
int
main (void)
{
int fd;
fd = syscall (__NR_inotify_init1, 0);
if (fd == -1)
{
puts ("inotify_init1(0) failed");
return 1;
}
int coe = fcntl (fd, F_GETFD);
if (coe == -1)
{
puts ("fcntl failed");
return 1;
}
if (coe & FD_CLOEXEC)
{
puts ("inotify_init1(0) set close-on-exit");
return 1;
}
close (fd);
fd = syscall (__NR_inotify_init1, IN_CLOEXEC);
if (fd == -1)
{
puts ("inotify_init1(IN_CLOEXEC) failed");
return 1;
}
coe = fcntl (fd, F_GETFD);
if (coe == -1)
{
puts ("fcntl failed");
return 1;
}
if ((coe & FD_CLOEXEC) == 0)
{
puts ("inotify_init1(O_CLOEXEC) does not set close-on-exit");
return 1;
}
close (fd);
puts ("OK");
return 0;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[akpm@linux-foundation.org: add sys_ni stub]
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Acked-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch introduces the new syscall pipe2 which is like pipe but it also
takes an additional parameter which takes a flag value. This patch implements
the handling of O_CLOEXEC for the flag. I did not add support for the new
syscall for the architectures which have a special sys_pipe implementation. I
think the maintainers of those archs have the chance to go with the unified
implementation but that's up to them.
The implementation introduces do_pipe_flags. I did that instead of changing
all callers of do_pipe because some of the callers are written in assembler.
I would probably screw up changing the assembly code. To avoid breaking code
do_pipe is now a small wrapper around do_pipe_flags. Once all callers are
changed over to do_pipe_flags the old do_pipe function can be removed.
The following test must be adjusted for architectures other than x86 and
x86-64 and in case the syscall numbers changed.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/syscall.h>
#ifndef __NR_pipe2
# ifdef __x86_64__
# define __NR_pipe2 293
# elif defined __i386__
# define __NR_pipe2 331
# else
# error "need __NR_pipe2"
# endif
#endif
int
main (void)
{
int fd[2];
if (syscall (__NR_pipe2, fd, 0) != 0)
{
puts ("pipe2(0) failed");
return 1;
}
for (int i = 0; i < 2; ++i)
{
int coe = fcntl (fd[i], F_GETFD);
if (coe == -1)
{
puts ("fcntl failed");
return 1;
}
if (coe & FD_CLOEXEC)
{
printf ("pipe2(0) set close-on-exit for fd[%d]\n", i);
return 1;
}
}
close (fd[0]);
close (fd[1]);
if (syscall (__NR_pipe2, fd, O_CLOEXEC) != 0)
{
puts ("pipe2(O_CLOEXEC) failed");
return 1;
}
for (int i = 0; i < 2; ++i)
{
int coe = fcntl (fd[i], F_GETFD);
if (coe == -1)
{
puts ("fcntl failed");
return 1;
}
if ((coe & FD_CLOEXEC) == 0)
{
printf ("pipe2(O_CLOEXEC) does not set close-on-exit for fd[%d]\n", i);
return 1;
}
}
close (fd[0]);
close (fd[1]);
puts ("OK");
return 0;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Acked-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds the new dup3 syscall. It extends the old dup2 syscall by one
parameter which is meant to hold a flag value. Support for the O_CLOEXEC flag
is added in this patch.
The following test must be adjusted for architectures other than x86 and
x86-64 and in case the syscall numbers changed.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include <fcntl.h>
#include <stdio.h>
#include <time.h>
#include <unistd.h>
#include <sys/syscall.h>
#ifndef __NR_dup3
# ifdef __x86_64__
# define __NR_dup3 292
# elif defined __i386__
# define __NR_dup3 330
# else
# error "need __NR_dup3"
# endif
#endif
int
main (void)
{
int fd = syscall (__NR_dup3, 1, 4, 0);
if (fd == -1)
{
puts ("dup3(0) failed");
return 1;
}
int coe = fcntl (fd, F_GETFD);
if (coe == -1)
{
puts ("fcntl failed");
return 1;
}
if (coe & FD_CLOEXEC)
{
puts ("dup3(0) set close-on-exec flag");
return 1;
}
close (fd);
fd = syscall (__NR_dup3, 1, 4, O_CLOEXEC);
if (fd == -1)
{
puts ("dup3(O_CLOEXEC) failed");
return 1;
}
coe = fcntl (fd, F_GETFD);
if (coe == -1)
{
puts ("fcntl failed");
return 1;
}
if ((coe & FD_CLOEXEC) == 0)
{
puts ("dup3(O_CLOEXEC) set close-on-exec flag");
return 1;
}
close (fd);
puts ("OK");
return 0;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Acked-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds the new epoll_create2 syscall. It extends the old epoll_create
syscall by one parameter which is meant to hold a flag value. In this
patch the only flag support is EPOLL_CLOEXEC which causes the close-on-exec
flag for the returned file descriptor to be set.
A new name EPOLL_CLOEXEC is introduced which in this implementation must
have the same value as O_CLOEXEC.
The following test must be adjusted for architectures other than x86 and
x86-64 and in case the syscall numbers changed.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include <fcntl.h>
#include <stdio.h>
#include <time.h>
#include <unistd.h>
#include <sys/syscall.h>
#ifndef __NR_epoll_create2
# ifdef __x86_64__
# define __NR_epoll_create2 291
# elif defined __i386__
# define __NR_epoll_create2 329
# else
# error "need __NR_epoll_create2"
# endif
#endif
#define EPOLL_CLOEXEC O_CLOEXEC
int
main (void)
{
int fd = syscall (__NR_epoll_create2, 1, 0);
if (fd == -1)
{
puts ("epoll_create2(0) failed");
return 1;
}
int coe = fcntl (fd, F_GETFD);
if (coe == -1)
{
puts ("fcntl failed");
return 1;
}
if (coe & FD_CLOEXEC)
{
puts ("epoll_create2(0) set close-on-exec flag");
return 1;
}
close (fd);
fd = syscall (__NR_epoll_create2, 1, EPOLL_CLOEXEC);
if (fd == -1)
{
puts ("epoll_create2(EPOLL_CLOEXEC) failed");
return 1;
}
coe = fcntl (fd, F_GETFD);
if (coe == -1)
{
puts ("fcntl failed");
return 1;
}
if ((coe & FD_CLOEXEC) == 0)
{
puts ("epoll_create2(EPOLL_CLOEXEC) set close-on-exec flag");
return 1;
}
close (fd);
puts ("OK");
return 0;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Acked-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds the new eventfd2 syscall. It extends the old eventfd
syscall by one parameter which is meant to hold a flag value. In this
patch the only flag support is EFD_CLOEXEC which causes the close-on-exec
flag for the returned file descriptor to be set.
A new name EFD_CLOEXEC is introduced which in this implementation must
have the same value as O_CLOEXEC.
The following test must be adjusted for architectures other than x86 and
x86-64 and in case the syscall numbers changed.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/syscall.h>
#ifndef __NR_eventfd2
# ifdef __x86_64__
# define __NR_eventfd2 290
# elif defined __i386__
# define __NR_eventfd2 328
# else
# error "need __NR_eventfd2"
# endif
#endif
#define EFD_CLOEXEC O_CLOEXEC
int
main (void)
{
int fd = syscall (__NR_eventfd2, 1, 0);
if (fd == -1)
{
puts ("eventfd2(0) failed");
return 1;
}
int coe = fcntl (fd, F_GETFD);
if (coe == -1)
{
puts ("fcntl failed");
return 1;
}
if (coe & FD_CLOEXEC)
{
puts ("eventfd2(0) sets close-on-exec flag");
return 1;
}
close (fd);
fd = syscall (__NR_eventfd2, 1, EFD_CLOEXEC);
if (fd == -1)
{
puts ("eventfd2(EFD_CLOEXEC) failed");
return 1;
}
coe = fcntl (fd, F_GETFD);
if (coe == -1)
{
puts ("fcntl failed");
return 1;
}
if ((coe & FD_CLOEXEC) == 0)
{
puts ("eventfd2(EFD_CLOEXEC) does not set close-on-exec flag");
return 1;
}
close (fd);
puts ("OK");
return 0;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[akpm@linux-foundation.org: add sys_ni stub]
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Acked-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds the new signalfd4 syscall. It extends the old signalfd
syscall by one parameter which is meant to hold a flag value. In this
patch the only flag support is SFD_CLOEXEC which causes the close-on-exec
flag for the returned file descriptor to be set.
A new name SFD_CLOEXEC is introduced which in this implementation must
have the same value as O_CLOEXEC.
The following test must be adjusted for architectures other than x86 and
x86-64 and in case the syscall numbers changed.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include <fcntl.h>
#include <signal.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/syscall.h>
#ifndef __NR_signalfd4
# ifdef __x86_64__
# define __NR_signalfd4 289
# elif defined __i386__
# define __NR_signalfd4 327
# else
# error "need __NR_signalfd4"
# endif
#endif
#define SFD_CLOEXEC O_CLOEXEC
int
main (void)
{
sigset_t ss;
sigemptyset (&ss);
sigaddset (&ss, SIGUSR1);
int fd = syscall (__NR_signalfd4, -1, &ss, 8, 0);
if (fd == -1)
{
puts ("signalfd4(0) failed");
return 1;
}
int coe = fcntl (fd, F_GETFD);
if (coe == -1)
{
puts ("fcntl failed");
return 1;
}
if (coe & FD_CLOEXEC)
{
puts ("signalfd4(0) set close-on-exec flag");
return 1;
}
close (fd);
fd = syscall (__NR_signalfd4, -1, &ss, 8, SFD_CLOEXEC);
if (fd == -1)
{
puts ("signalfd4(SFD_CLOEXEC) failed");
return 1;
}
coe = fcntl (fd, F_GETFD);
if (coe == -1)
{
puts ("fcntl failed");
return 1;
}
if ((coe & FD_CLOEXEC) == 0)
{
puts ("signalfd4(SFD_CLOEXEC) does not set close-on-exec flag");
return 1;
}
close (fd);
puts ("OK");
return 0;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[akpm@linux-foundation.org: add sys_ni stub]
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Acked-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ACPI defines a hardware signature. BIOS calculates the signature according to
hardware configure and if hardware changes while hibernated, the signature
will change. In that case, S4 resume should fail.
Still, there may be systems on which this mechanism does not work correctly,
so it is better to provide a workaround for them. For this reason, add a new
switch to the acpi_sleep= command line argument allowing one to disable
hardware signature checking.
[shaohua.li@intel.com: build fix]
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Len Brown <lenb@kernel.org>
Acked-by: Pavel Machek <pavel@ucw.cz>
Cc: <Valdis.Kletnieks@vt.edu>
Cc: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the obsolete and no longer used include/linux/pm_legacy.h
Reviewed-by: Robert P. J. Day <rpjday@crashcourse.ca>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Cc: Pavel Machek <pavel@suse.cz>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On 32-bit architectures PAGE_ALIGN() truncates 64-bit values to the 32-bit
boundary. For example:
u64 val = PAGE_ALIGN(size);
always returns a value < 4GB even if size is greater than 4GB.
The problem resides in PAGE_MASK definition (from include/asm-x86/page.h for
example):
#define PAGE_SHIFT 12
#define PAGE_SIZE (_AC(1,UL) << PAGE_SHIFT)
#define PAGE_MASK (~(PAGE_SIZE-1))
...
#define PAGE_ALIGN(addr) (((addr)+PAGE_SIZE-1)&PAGE_MASK)
The "~" is performed on a 32-bit value, so everything in "and" with
PAGE_MASK greater than 4GB will be truncated to the 32-bit boundary.
Using the ALIGN() macro seems to be the right way, because it uses
typeof(addr) for the mask.
Also move the PAGE_ALIGN() definitions out of include/asm-*/page.h in
include/linux/mm.h.
See also lkml discussion: http://lkml.org/lkml/2008/6/11/237
[akpm@linux-foundation.org: fix drivers/media/video/uvc/uvc_queue.c]
[akpm@linux-foundation.org: fix v850]
[akpm@linux-foundation.org: fix powerpc]
[akpm@linux-foundation.org: fix arm]
[akpm@linux-foundation.org: fix mips]
[akpm@linux-foundation.org: fix drivers/media/video/pvrusb2/pvrusb2-dvb.c]
[akpm@linux-foundation.org: fix drivers/mtd/maps/uclinux.c]
[akpm@linux-foundation.org: fix powerpc]
Signed-off-by: Andrea Righi <righi.andrea@gmail.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add an hugepagesz=... option similar to IA64, PPC etc. to x86-64.
This finally allows to select GB pages for hugetlbfs in x86 now that all
the infrastructure is in place.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Straight forward extensions for huge pages located in the PUD instead of
PMDs.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The goal of this patchset is to support multiple hugetlb page sizes. This
is achieved by introducing a new struct hstate structure, which
encapsulates the important hugetlb state and constants (eg. huge page
size, number of huge pages currently allocated, etc).
The hstate structure is then passed around the code which requires these
fields, they will do the right thing regardless of the exact hstate they
are operating on.
This patch adds the hstate structure, with a single global instance of it
(default_hstate), and does the basic work of converting hugetlb to use the
hstate.
Future patches will add more hstate structures to allow for different
hugetlbfs mounts to have different page sizes.
[akpm@linux-foundation.org: coding-style fixes]
Acked-by: Adam Litke <agl@us.ibm.com>
Acked-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use generic_access_phys as the access_process_vm access function for
/dev/mem mappings. This makes it possible to debug the X server.
[akpm@linux-foundation.org: repair all the architectures which broke]
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Benjamin Herrensmidt <benh@kernel.crashing.org>
Cc: Dave Airlie <airlied@linux.ie>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In order to be able to debug things like the X server and programs using
the PPC Cell SPUs, the debugger needs to be able to access device memory
through ptrace and /proc/pid/mem.
This patch:
Add the generic_access_phys access function and put the hooks in place
to allow access_process_vm to access device or PPC Cell SPU memory.
[riel@redhat.com: Add documentation for the vm_ops->access function]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Benjamin Herrensmidt <benh@kernel.crashing.org>
Cc: Dave Airlie <airlied@linux.ie>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are a lot of places that define either a single bootmem descriptor or an
array of them. Use only one central array with MAX_NUMNODES items instead.
Signed-off-by: Johannes Weiner <hannes@saeurebad.de>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Kyle McMartin <kyle@parisc-linux.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Yinghai Lu <yhlu.kernel@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When I edit the x86_64 Makefile to -fno-unit-at-a-time, bootup panics
on 0xCCs in IRQ0x3e_interrupt(): IRQ0x20_interrupt etc. have got linked
into .data.percpu. Perhaps there are other ways of triggering that:
specify ".text" in the BUILD_IRQ() macro for safety.
I've been using -fno-unit-at-a-time (to lessen inlining, for easier
debugging) for a long time.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When implementing sysexit32, don't let Xen use sysret to return to
userspace. That results in usermode register state being trashed.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Mark McLoughlin <markmc@redhat.com>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Call early_cpu_init() at the same (early) point in setup_arch().
The x86_64 code was calling it relatively late, after when other arch
code need to do cpu-related setup which depends on it.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Mark McLoughlin <markmc@redhat.com>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'sched/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
sched: hrtick_enabled() should use cpu_active()
sched, x86: clean up hrtick implementation
sched: fix build error, provide partition_sched_domains() unconditionally
sched: fix warning in inc_rt_tasks() to not declare variable 'rq' if it's not needed
cpu hotplug: Make cpu_active_map synchronization dependency clear
cpu hotplug, sched: Introduce cpu_active_map and redo sched domain managment (take 2)
sched: rework of "prioritize non-migratable tasks over migratable ones"
sched: reduce stack size in isolated_cpu_setup()
Revert parts of "ftrace: do not trace scheduler functions"
Fixed up conflicts in include/asm-x86/thread_info.h (due to the
TIF_SINGLESTEP unification vs TIF_HRTICK_RESCHED removal) and
kernel/sched_fair.c (due to cpu_active_map vs for_each_cpu_mask_nr()
introduction).
* 'cpus4096-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (31 commits)
NR_CPUS: Replace NR_CPUS in speedstep-centrino.c
cpumask: Provide a generic set of CPUMASK_ALLOC macros, FIXUP
NR_CPUS: Replace NR_CPUS in cpufreq userspace routines
NR_CPUS: Replace per_cpu(..., smp_processor_id()) with __get_cpu_var
NR_CPUS: Replace NR_CPUS in arch/x86/kernel/genapic_flat_64.c
NR_CPUS: Replace NR_CPUS in arch/x86/kernel/genx2apic_uv_x.c
NR_CPUS: Replace NR_CPUS in arch/x86/kernel/cpu/proc.c
NR_CPUS: Replace NR_CPUS in arch/x86/kernel/cpu/mcheck/mce_64.c
cpumask: Optimize cpumask_of_cpu in lib/smp_processor_id.c, fix
cpumask: Use optimized CPUMASK_ALLOC macros in the centrino_target
cpumask: Provide a generic set of CPUMASK_ALLOC macros
cpumask: Optimize cpumask_of_cpu in lib/smp_processor_id.c
cpumask: Optimize cpumask_of_cpu in kernel/time/tick-common.c
cpumask: Optimize cpumask_of_cpu in drivers/misc/sgi-xp/xpc_main.c
cpumask: Optimize cpumask_of_cpu in arch/x86/kernel/ldt.c
cpumask: Optimize cpumask_of_cpu in arch/x86/kernel/io_apic_64.c
cpumask: Replace cpumask_of_cpu with cpumask_of_cpu_ptr
Revert "cpumask: introduce new APIs"
cpumask: make for_each_cpu_mask a bit smaller
net: Pass reference to cpumask variable in net/sunrpc/svc.c
...
Fix up trivial conflicts in drivers/cpufreq/cpufreq.c manually
This adds fast paths for 32-bit syscall entry and exit when
TIF_SYSCALL_AUDIT is set, but no other kind of syscall tracing.
These paths does not need to save and restore all registers as
the general case of tracing does. Avoiding the iret return path
when syscall audit is enabled helps performance a lot.
Signed-off-by: Roland McGrath <roland@redhat.com>
This adds fast paths for 32-bit syscall entry and exit when
TIF_SYSCALL_AUDIT is set, but no other kind of syscall tracing.
These paths does not need to save and restore all registers as
the general case of tracing does. Avoiding the iret return path
when syscall audit is enabled helps performance a lot.
Signed-off-by: Roland McGrath <roland@redhat.com>
This adds a fast path for 64-bit syscall entry and exit when
TIF_SYSCALL_AUDIT is set, but no other kind of syscall tracing.
This path does not need to save and restore all registers as
the general case of tracing does. Avoiding the iret return path
when syscall audit is enabled helps performance a lot.
Signed-off-by: Roland McGrath <roland@redhat.com>
This short-circuit path in sysret_signal looks wrong to me.
AFAICT, in practice the branch is never taken--and if it were,
it would go wrong. To wit, try loading a module whose init
function does set_thread_flag(TIF_IRET), and see insmod crash
(presumably with a wrong user stack pointer).
This is because the FIXUP_TOP_OF_STACK work hasn't been done yet
when we jump around the call to ptregscall_common and get to
int_with_check--where it expects the user RSP,SS,CS and EFLAGS to
have been stored by FIXUP_TOP_OF_STACK.
I don't think it's normally possible to get to sysret_signal with no
_TIF_DO_NOTIFY_MASK bits set anyway, so these two instructions are
already superfluous. If it ever did happen, it is harmless to call
do_notify_resume with nothing for it to do.
Signed-off-by: Roland McGrath <roland@redhat.com>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: fix crash due to missing debugctlmsr on AMD K6-3
x86: add PTE_FLAGS_MASK
x86: rename PTE_MASK to PTE_PFN_MASK
x86: fix pte_flags() to only return flags, fix lguest (updated)
x86: use setup_clear_cpu_cap with disable_apic, fix
x86: move the last Dprintk instance to pr_debug()
currently if you use PTRACE_SINGLEBLOCK on AMD K6-3 (i586) it will crash.
Kernel now wrongly assumes existing DEBUGCTLMSR MSR register there.
Removed the assumption also for some other non-K6 CPUs but I am not sure there
(but it can only bring small inefficiency there if my assumption is wrong).
Based on info from Roland McGrath, Chuck Ebbert and Mikulas Patocka.
More info at:
https://bugzilla.redhat.com/show_bug.cgi?id=456175
Signed-off-by: Jan Kratochvil <jan.kratochvil@redhat.com>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
PTE_PFN_MASK was getting lonely, so I made it a friend.
Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Rusty, in his peevish way, complained that macros defining constants
should have a name which somewhat accurately reflects the actual
purpose of the constant.
Aside from the fact that PTE_MASK gives no clue as to what's actually
being masked, and is misleadingly similar to the functionally entirely
different PMD_MASK, PUD_MASK and PGD_MASK, I don't really see what the
problem is.
But if this patch silences the incessent noise, then it will have
achieved its goal (TODO: write test-case).
Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
(Jeremy said:
rusty: use PTE_MASK
rusty: use PTE_MASK
rusty: use PTE_MASK
When I asked:
jsgf: does that include the NX flag?
He responded eloquently:
rusty: use PTE_MASK
rusty: use PTE_MASK
yes, it's the official constant of masking flags out of ptes
)
Change a15af1c9ea 'x86/paravirt: add
pte_flags to just get pte flags' removed lguest's private pte_flags()
in favor of a generic one.
Unfortunately, the generic one doesn't filter out the non-flags bits:
this results in lguest creating corrupt shadow page tables and blowing
up host memory.
Since noone is supposed to use the pfn part of pte_flags(), it seems
safest to always do the filtering.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Acked-by: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-and-morning-tea-spilled-by: Ingo Molnar <mingo@elte.hu>
beauty fix: /proc/cpuinfo will still show apic feature even if
we booted up with it disabled.
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use the new generic int attribute accessors for the x86 mce tolerant
attribute. Simple example to illustrate the new macros.
There are much more places all over the tree that could be converted
like this.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This allow to dynamically generate attributes and share show/store
functions between attributes. Right now most attributes are generated
by special macros and lots of duplicated code. With the attribute
passed it's instead possible to attach some data to the attribute
and then use that in shared low level functions to do different things.
I need this for the dynamically generated bank attributes in the x86
machine check code, but it'll allow some further cleanups.
I converted all users in tree to the new show/store prototype. It's a single
huge patch to avoid unbisectable sections.
Runtime tested: x86-32, x86-64
Compiled only: ia64, powerpc
Not compile tested/only grep converted: sh, arm, avr32
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
We have the dev_printk() variants for this kind of thing, use them
instead of directly trying to access the bus_id field of struct device.
This is done in order to remove bus_id entirely.
Cc: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
device_create() is race-prone, so use the race-free
device_create_drvdata() instead as device_create() is going away.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
There are a couple of places where (P)Dprintk is used which is an old
compile time enabled printk wrapper. Convert it to the generic
pr_debug().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
... so don't need to call clear_cpu_cap again in early_identify_cpu,
and could use cleared_cpu_caps like other places.
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The direct mapped shadow code (used for real mode and two dimensional paging)
sets upper-level ptes using direct assignment rather than calling
set_shadow_pte(). A nonpae host will split this into two writes, which opens
up a race if another vcpu accesses the same memory area.
Fix by calling set_shadow_pte() instead of assigning directly.
Noticed by Izik Eidus.
Signed-off-by: Avi Kivity <avi@qumranet.com>
If the guest issues a clflush in a mmio address, the instruction
can trap into the hypervisor. Currently, we do not decode clflush
properly, causing the guest to hang. This patch fixes this emulating
clflush (opcode 0f ae).
Signed-off-by: Glauber Costa <gcosta@redhat.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Harden kvm_mmu_zap_page() against invalid root pages that
had been shadowed from memslots that are gone.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Flush the shadow mmu before removing regions to avoid stale entries.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
This patch fixes issue encountered with HLT instruction
under FreeDOS's HIMEM XMS Driver.
The HLT instruction jumped directly to the done label and
skips updating the EIP value, therefore causing the guest
to spin endlessly on the same instruction.
The patch changes the instruction so that it writes back
the updated EIP value.
Signed-off-by: Mohammed Gamal <m.gamal005@gmail.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Fix a potention issue caused by kvm_mmu_slot_remove_write_access(). The
old behavior don't sync EPT TLB with modified EPT entry, which result
in inconsistent content of EPT TLB and EPT table.
Signed-off-by: Sheng Yang <sheng.yang@intel.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
kvm_mmu_zap_page() needs slots lock held (rmap_remove->gfn_to_memslot,
for example).
Since kvm_lock spinlock is held in mmu_shrink(), do a non-blocking
down_read_trylock().
Untested.
Signed-off-by: Avi Kivity <avi@qumranet.com>
This patch makes the needlessly global kvm_smp_prepare_boot_cpu() static.
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Avi Kivity <avi@qumranet.com>
On suspend the svm_hardware_disable function is called which frees all svm_data
variables. On resume they are not re-allocated. This patch removes the
deallocation of svm_data from the hardware_disable function to the
hardware_unsetup function which is not called on suspend.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
There is no need to grab slots_lock if the vapic_page will not
be touched.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Older linux guests (in this case, 2.6.9) can attempt to
access the performance counter MSRs without a fixup section, and injecting
a GPF kills the guest. Work around by allowing the guest to write those MSRs.
Tested by me on RHEL-4 i386 and x86_64 guests, as well as F-9 guests.
Signed-off-by: Chris Lalancette <clalance@redhat.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
The function ept_update_paging_mode_cr0() write to
CPU_BASED_VM_EXEC_CONTROL based on vmcs_config.cpu_based_exec_ctrl. That's
wrong because the variable may not consistent with the content in the
CPU_BASE_VM_EXEC_CONTROL MSR.
Signed-off-by: Sheng Yang <sheng.yang@intel.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Instead of prefetching all segment bases before emulation, read them at the
last moment. Since most of them are unneeded, we save some cycles on
Intel machines where this is a bit expensive.
Signed-off-by: Avi Kivity <avi@qumranet.com>
rip relative decoding is relative to the instruction pointer of the next
instruction; by moving address adjustment until after decoding is complete,
we remove the need to determine the instruction size.
Signed-off-by: Avi Kivity <avi@qumranet.com>
If we're not gonna do anything (case in which failure is already
reported), we do not need to even bother with calculating the linear rip.
Signed-off-by: Glauber Costa <gcosta@redhat.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Only abort guest entry if the timer count went from 0->1, since for 1->2
or larger the bit will either be set already or a timer irq will have
been injected.
Using atomic_inc_and_test() for it also introduces an SMP barrier
to the LAPIC version (thought it was unecessary because of timer
migration, but guest can be scheduled to a different pCPU between exit
and kvm_vcpu_block(), so there is the possibility for a race).
Noticed by Avi.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
This patch enables coalesced MMIO for x86 architecture.
It defines KVM_MMIO_PAGE_OFFSET and KVM_CAP_COALESCED_MMIO.
It enables the compilation of coalesced_mmio.c.
Signed-off-by: Laurent Vivier <Laurent.Vivier@bull.net>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Modify member in_range() of structure kvm_io_device to pass length and the type
of the I/O (write or read).
This modification allows to use kvm_io_device with coalesced MMIO.
Signed-off-by: Laurent Vivier <Laurent.Vivier@bull.net>
Signed-off-by: Avi Kivity <avi@qumranet.com>
SVM cannot benefit from page prefetching since guest page fault bypass
cannot by made to work there. Avoid accessing the guest page table in
this case.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Encountered in FC6 boot sequence, now that we don't force ss.rpl = 0 during
the protected mode transition. Not really necessary, but nice to have.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Add support for mov r, sreg (0x8c) instruction.
[avi: drop the sreg decoding table in favor of 1:1 encoding]
Signed-off-by: Guillaume Thouvenin <guillaume.thouvenin@ext.bull.net>
Signed-off-by: Laurent Vivier <laurent.vivier@bull.net>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Add support for jmp far (opcode 0xea) instruction.
Signed-off-by: Guillaume Thouvenin <guillaume.thouvenin@ext.bull.net>
Signed-off-by: Laurent Vivier <laurent.vivier@bull.net>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Update c->dst.bytes in decode instruction instead of instruction
itself. It's needed because if c->dst.bytes is equal to 0, the
instruction is not emulated.
Signed-off-by: Guillaume Thouvenin <guillaume.thouvenin@ext.bull.net>
Signed-off-by: Laurent Vivier <laurent.vivier@bull.net>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Prefixes functions that will be exported with kvm_.
We also prefixed set_segment() even if it still static
to be coherent.
signed-off-by: Guillaume Thouvenin <guillaume.thouvenin@ext.bull.net>
Signed-off-by: Laurent Vivier <laurent.vivier@bull.net>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Add emulation for the memory type range registers, needed by VMware esx 3.5,
and by pci device assignment.
Signed-off-by: Avi Kivity <avi@qumranet.com>
VMX hardware can cache the contents of a vcpu's vmcs. This cache needs
to be flushed when migrating a vcpu to another cpu, or (which is the case
that interests us here) when disabling hardware virtualization on a cpu.
The current implementation of decaching iterates over the list of all vcpus,
picks the ones that are potentially cached on the cpu that is being offlined,
and flushes the cache. The problem is that it uses mutex_trylock() to gain
exclusive access to the vcpu, which fires off a (benign) warning about using
the mutex in an interrupt context.
To avoid this, and to make things generally nicer, add a new per-cpu list
of potentially cached vcus. This makes the decaching code much simpler. The
list is vmx-specific since other hardware doesn't have this issue.
[andrea: fix crash on suspend/resume]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
KVM turns off hardware virtualization extensions during reboot, in order
to disassociate the memory used by the virtualization extensions from the
processor, and in order to have the system in a consistent state.
Unfortunately virtual machines may still be running while this goes on,
and once virtualization extensions are turned off, any virtulization
instruction will #UD on execution.
Fix by adding an exception handler to virtualization instructions; if we get
an exception during reboot, we simply spin waiting for the reset to complete.
If it's a true exception, BUG() so we can have our stack trace.
Signed-off-by: Avi Kivity <avi@qumranet.com>
The KVM MMU tries to detect when a speculative pte update is not actually
used by demand fault, by checking the accessed bit of the shadow pte. If
the shadow pte has not been accessed, we deem that page table flooded and
remove the shadow page table, allowing further pte updates to proceed
without emulation.
However, if the pte itself points at a page table and only used for write
operations, the accessed bit will never be set since all access will happen
through the emulator.
This is exactly what happens with kscand on old (2.4.x) HIGHMEM kernels.
The kernel points a kmap_atomic() pte at a page table, and then
proceeds with read-modify-write operations to look at the dirty and accessed
bits. We get a false flood trigger on the kmap ptes, which results in the
mmu spending all its time setting up and tearing down shadows.
Fix by setting the shadow accessed bit on emulated accesses.
Signed-off-by: Avi Kivity <avi@qumranet.com>
Attached is a patch that fixes a guest crash when booting older Linux kernels.
The problem stems from the fact that we are currently emulating
MSR_K7_EVNTSEL[0-3], but not emulating MSR_K7_PERFCTR[0-3]. Because of this,
setup_k7_watchdog() in the Linux kernel receives a GPF when it attempts to
write into MSR_K7_PERFCTR, which causes an OOPs.
The patch fixes it by just "fake" emulating the appropriate MSRs, throwing
away the data in the process. This causes the NMI watchdog to not actually
work, but it's not such a big deal in a virtualized environment.
When we get a write to one of these counters, we printk_ratelimit() a warning.
I decided to print it out for all writes, even if the data is 0; it doesn't
seem to make sense to me to special case when data == 0.
Tested by myself on a RHEL-4 guest, and Joerg Roedel on a Windows XP 64-bit
guest.
Signed-off-by: Chris Lalancette <clalance@redhat.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
The in-kernel PIT emulation ignores pending timers if operating
under mode 3, which for example Hurd uses.
This mode should output a square wave, high for (N+1)/2 counts and low
for (N-1)/2 counts. As we only care about the resulting interrupts, the
period is N, and mode 3 is the same as mode 2 with regard to
interrupts.
Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
Signed-off-by: Avi Kivity <avi@qumranet.com>
To distinguish between real page faults and nested page faults they should be
traced as different events. This is implemented by this patch.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
This patch adds the missing kvmtrace markers to the svm
module of kvm.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>