Move the exit_qualification field that is used to track information about
in-flight nEPT violations from "struct kvm_vcpu_arch" to "x86_exception",
i.e. associate the information with the actual nEPT violation instead of
the vCPU. To handle bits that are pulled from vmcs.EXIT_QUALIFICATION,
i.e. that are propagated from the "original" EPT violation VM-Exit, simply
grab them from the VMCS on-demand when injecting a nEPT Violation or a PML
Full VM-exit.
Aside from being ugly, having an exit_qualification field in kvm_vcpu_arch
is outright dangerous, e.g. see commit d7f0a00e43 ("KVM: VMX: Report
up-to-date exit qualification to userspace").
Opportunstically add a comment to call out that PML Full and EPT Violation
VM-Exits use the same bit to report NMI blocking information.
Link: https://lore.kernel.org/r/20240209221700.393189-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
- Fix several bugs where KVM speciously prevents the guest from utilizing
fixed counters and architectural event encodings based on whether or not
guest CPUID reports support for the _architectural_ encoding.
- Fix a variety of bugs in KVM's emulation of RDPMC, e.g. for "fast" reads,
priority of VMX interception vs #GP, PMC types in architectural PMUs, etc.
- Add a selftest to verify KVM correctly emulates RDMPC, counter availability,
and a variety of other PMC-related behaviors that depend on guest CPUID,
i.e. are difficult to validate via KVM-Unit-Tests.
- Zero out PMU metadata on AMD if the virtual PMU is disabled to avoid wasting
cycles, e.g. when checking if a PMC event needs to be synthesized when
skipping an instruction.
- Optimize triggering of emulated events, e.g. for "count instructions" events
when skipping an instruction, which yields a ~10% performance improvement in
VM-Exit microbenchmarks when a vPMU is exposed to the guest.
- Tighten the check for "PMI in guest" to reduce false positives if an NMI
arrives in the host while KVM is handling an IRQ VM-Exit.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmXrUFQACgkQOlYIJqCj
N/11dhAAnr9e6mPmXvaH4YKcvOGgTmwIQdi5W4IBzGm27ErEb0Vyskx3UATRhRm+
gZyp3wNgEA9LeifICDNu4ypn7HZcl2VtRql6FYcB8Bcu8OiHfU8PhWL0/qrpY20e
zffUj2tDweq2ft9Iks1SQJD0sxFkcXIcSKOffP7pRZJHFTKLltGORXwxzd9HJHPY
nc4nERKegK2yH4A4gY6nZ0oV5L3OMUNHx815db5Y+HxXOIjBCjTQiNNd6mUdyX1N
C5sIiElXLdvRTSDvirHfA32LqNwnajDGox4QKZkB3wszCxJ3kRd4OCkTEKMYKHxd
KoKCJQnAdJFFW9xqbT8nNKXZ+hg2+ZQuoSaBuwKryf7jWi0e6a7jcV0OH+cQSZw7
UNudKhs3r4ambfvnFp2IVZlZREMDB+LAjo2So48Jn/JGCAzqte3XqwVKskn9pS9S
qeauXCdOLioZALYtTBl8RM1rEY5mbwQrpPv9CzbeU09qQ/hpXV14W9GmbyeOZcI1
T1cYgEqlLuifRluwT/hxrY321+4noF116gSK1yb07x/sJU8/lhRooEk9V562066E
qo6nIvc7Bv9gTGLwo6VReKSPcTT/6t3HwgPsRjqe+evso3EFN9f9hG+uPxtO6TUj
pdPm3mkj2KfxDdJLf+Ys16gyGdiwI0ZImIkA0uLdM0zftNsrb4Y=
=vayI
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-pmu-6.9' of https://github.com/kvm-x86/linux into HEAD
KVM x86 PMU changes for 6.9:
- Fix several bugs where KVM speciously prevents the guest from utilizing
fixed counters and architectural event encodings based on whether or not
guest CPUID reports support for the _architectural_ encoding.
- Fix a variety of bugs in KVM's emulation of RDPMC, e.g. for "fast" reads,
priority of VMX interception vs #GP, PMC types in architectural PMUs, etc.
- Add a selftest to verify KVM correctly emulates RDMPC, counter availability,
and a variety of other PMC-related behaviors that depend on guest CPUID,
i.e. are difficult to validate via KVM-Unit-Tests.
- Zero out PMU metadata on AMD if the virtual PMU is disabled to avoid wasting
cycles, e.g. when checking if a PMC event needs to be synthesized when
skipping an instruction.
- Optimize triggering of emulated events, e.g. for "count instructions" events
when skipping an instruction, which yields a ~10% performance improvement in
VM-Exit microbenchmarks when a vPMU is exposed to the guest.
- Tighten the check for "PMI in guest" to reduce false positives if an NMI
arrives in the host while KVM is handling an IRQ VM-Exit.
Convert kvm_get_dr()'s output parameter to a return value, and clean up
most of the mess that was created by forcing callers to provide a pointer.
No functional change intended.
Acked-by: Mathias Krause <minipli@grsecurity.net>
Reviewed-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20240209220752.388160-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Apply the pre-intercepts RDPMC validity check only to AMD, and rename all
relevant functions to make it as clear as possible that the check is not a
standard PMC index check. On Intel, the basic rule is that only invalid
opcodes and privilege/permission/mode checks have priority over VM-Exit,
i.e. RDPMC with an invalid index should VM-Exit, not #GP. While the SDM
doesn't explicitly call out RDPMC, it _does_ explicitly use RDMSR of a
non-existent MSR as an example where VM-Exit has priority over #GP, and
RDPMC is effectively just a variation of RDMSR.
Manually testing on various Intel CPUs confirms this behavior, and the
inverted priority was introduced for SVM compatibility, i.e. was not an
intentional change for Intel PMUs. On AMD, *all* exceptions on RDPMC have
priority over VM-Exit.
Check for a NULL kvm_pmu_ops.check_rdpmc_early instead of using a RET0
static call so as to provide a convenient location to document the
difference between Intel and AMD, and to again try to make it as obvious
as possible that the early check is a one-off thing, not a generic "is
this PMC valid?" helper.
Fixes: 8061252ee0 ("KVM: SVM: Add intercept checks for remaining twobyte instructions")
Cc: Jim Mattson <jmattson@google.com>
Tested-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240109230250.424295-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Introduce a new interface get_untagged_addr() to kvm_x86_ops to untag
the metadata from linear address. Call the interface in linearization
of instruction emulator for 64-bit mode.
When enabled feature like Intel Linear Address Masking (LAM) or AMD Upper
Address Ignore (UAI), linear addresses may be tagged with metadata that
needs to be dropped prior to canonicality checks, i.e. the metadata is
ignored.
Introduce get_untagged_addr() to kvm_x86_ops to hide the vendor specific
code, as sadly LAM and UAI have different semantics. Pass the emulator
flags to allow vendor specific implementation to precisely identify the
access type (LAM doesn't untag certain accesses).
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Tested-by: Xuelian Guo <xuelian.guo@intel.com>
Link: https://lore.kernel.org/r/20230913124227.12574-9-binbin.wu@linux.intel.com
[sean: massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add an emulation flag X86EMUL_F_INVLPG, which is used to identify an
instruction that does TLB invalidation without true memory access.
Only invlpg & invlpga implemented in emulator belong to this kind.
invlpga doesn't need additional information for emulation. Just pass
the flag to em_invlpg().
Linear Address Masking (LAM) and Linear Address Space Separation (LASS)
don't apply to addresses that are inputs to TLB invalidation. The flag
will be consumed to support LAM/LASS virtualization.
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Tested-by: Xuelian Guo <xuelian.guo@intel.com>
Link: https://lore.kernel.org/r/20230913124227.12574-5-binbin.wu@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add an emulation flag X86EMUL_F_IMPLICIT to identify implicit system access
in instruction emulation. Don't bother wiring up any usage at this point,
as Linear Address Space Separation (LASS) will be the first "real" consumer
of the flag and LASS support will require dedicated hooks, i.e. there
aren't any existing calls where passing X86EMUL_F_IMPLICIT is meaningful.
Add the IMPLICIT flag even though there's no imminent usage so that
Linear Address Masking (LAM) support can reference the flag to document
that addresses for implicit accesses aren't untagged.
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Tested-by: Xuelian Guo <xuelian.guo@intel.com>
Link: https://lore.kernel.org/r/20230913124227.12574-4-binbin.wu@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Consolidate @write and @fetch of __linearize() into a set of flags so that
additional flags can be added without needing more/new boolean parameters,
to precisely identify the access type.
No functional change intended.
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Tested-by: Xuelian Guo <xuelian.guo@intel.com>
Link: https://lore.kernel.org/r/20230913124227.12574-2-binbin.wu@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Remove x86_emulate_ops::guest_has_long_mode along with its implementation,
emulator_guest_has_long_mode(). It has been unused since commit
1d0da94cda ("KVM: x86: do not go through ctxt->ops when emulating rsm").
No functional change intended.
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Link: https://lore.kernel.org/r/20230718101809.1249769-1-mhal@rbox.co
Signed-off-by: Sean Christopherson <seanjc@google.com>
Instead of re-defining the "host flags" bits, just expose dedicated
helpers for each of the two remaining flags that are consumed by the
emulator. The emulator never consumes both "is guest" and "is SMM" in
close proximity, so there is no motivation to avoid additional indirect
branches.
Also while at it, garbage collect the recently removed host flags.
No functional change is intended.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Santosh Shukla <Santosh.Shukla@amd.com>
Link: https://lore.kernel.org/r/20221129193717.513824-6-mlevitsk@redhat.com
[sean: fix CONFIG_KVM_SMM=n builds, tweak names of wrappers]
Signed-off-by: Sean Christopherson <seanjc@google.com>
The hidden processor flags HF_SMM_MASK and HF_SMM_INSIDE_NMI_MASK
are not needed if CONFIG_KVM_SMM is turned off. Remove the
definitions altogether and the code that uses them.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that RSM is implemented in a single emulator callback, there is no
point in going through other callbacks for the sake of modifying
processor state. Just invoke KVM's own internal functions directly,
and remove the callbacks that were only used by em_rsm; the only
substantial difference is in the handling of the segment registers
and descriptor cache, which have to be parsed into a struct kvm_segment
instead of a struct desc_struct.
This also fixes a bug where emulator_set_segment was shifting the
limit left by 12 if the G bit is set, but the limit had not been
shifted right upon entry to SMM.
The emulator context is still used to restore EIP and the general
purpose registers.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-5-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Some users of KVM implement the UEFI variable store through a paravirtual
device that does not require the "SMM lockbox" component of edk2, and
would like to compile out system management mode. In preparation for
that, move the SMM exit code out of emulate.c and into a new file.
The code is still written as a series of invocations of the emulator
callbacks, but the two exiting_smm and leave_smm callbacks are merged
into one, and all the code from em_rsm is now part of the callback.
This removes all knowledge of the format of the SMM save state area
from the emulator. Further patches will clean up the code and
invoke KVM's own functions to access control registers, descriptor
caches, etc.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220929172016.319443-4-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Bug the VM, i.e. kill it, if the emulator accesses a non-existent GPR,
i.e. generates an out-of-bounds GPR index. Continuing on all but
gaurantees some form of data corruption in the guest, e.g. even if KVM
were to redirect to a dummy register, KVM would be incorrectly read zeros
and drop writes.
Note, bugging the VM doesn't completely prevent data corruption, e.g. the
current round of emulation will complete before the vCPU bails out to
userspace. But, the very act of killing the guest can also cause data
corruption, e.g. due to lack of file writeback before termination, so
taking on additional complexity to cleanly bail out of the emulator isn't
justified, the goal is purely to stem the bleeding and alert userspace
that something has gone horribly wrong, i.e. to avoid _silent_ data
corruption.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220526210817.3428868-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reduce the number of GPRs emulated by 32-bit KVM from 16 to 8. KVM does
not support emulating 64-bit mode on 32-bit host kernels, and so should
never generate accesses to R8-15.
Opportunistically use NR_EMULATOR_GPRS in rsm_load_state_{32,64}() now
that it is precise and accurate for both flavors.
Wrap the definition with full #ifdef ugliness; sadly, IS_ENABLED()
doesn't guarantee a compile-time constant as far as BUILD_BUG_ON() is
concerned.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Message-Id: <20220526210817.3428868-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use a u16 instead of a u32 to track the dirty/valid status of GPRs in the
emulator. Unlike struct kvm_vcpu_arch, x86_emulate_ctxt tracks only the
"true" GPRs, i.e. doesn't include RIP in its array, and so only needs to
track 16 registers.
Note, maxing out at 16 GPRs is a fundamental property of x86-64 and will
not change barring a massive architecture update. Legacy x86 ModRM and
SIB encodings use 3 bits for GPRs, i.e. support 8 registers. x86-64 uses
a single bit in the REX prefix for each possible reference type to double
the number of supported GPRs to 16 registers (4 bits).
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220526210817.3428868-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Omit RIP from the emulator's _regs array, which is used only for GPRs,
i.e. registers that can be referenced via ModRM and/or SIB bytes. The
emulator uses the dedicated _eip field for RIP, and manually reads from
_eip to handle RIP-relative addressing.
To avoid an even bigger, slightly more dangerous change, hardcode the
number of GPRs to 16 for the time being even though 32-bit KVM's emulator
technically should only have 8 GPRs. Add a TODO to address that in a
future commit.
See also the comments above the read_gpr() and write_gpr() declarations,
and obviously the handling in writeback_registers().
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Message-Id: <20220526210817.3428868-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Documentation improvements
* Prevent module exit until all VMs are freed
* PMU Virtualization fixes
* Fix for kvm_irq_delivery_to_apic_fast() NULL-pointer dereferences
* Other miscellaneous bugfixes
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmJIGV8UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroO5FQgAhls4+Nu+NqId/yvvyNxr3vXq0dHI
hLlHtvzgGzZisZ7y2bNeyIpJVBDT5LCbrptPD/5eTvchVswDh0+kCVC0Uni5ugGT
tLT/Pv9Oq9e0X7aGdHRyuHIivIFDC20zIZO2DV48Lrj/+r6DafB2Fghq2XQLlBxN
p8KislvuqAAos543BPC1+Lk3dhOLuZ8qcFD8wGRlcCwjNwYaitrQ16rO04cLfUur
OwIks1I6TdI2JpLBhm6oWYVG/YnRsoo4bQE8cjdQ6yNSbwWtRpV33q7X6onw8x8K
BEeESoTnMqfaxIF/6mPl6bnDblVHFp6Xhld/vJcgeWQTdajFtuFE/K4sCA==
=xnQ6
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
- Only do MSR filtering for MSRs accessed by rdmsr/wrmsr
- Documentation improvements
- Prevent module exit until all VMs are freed
- PMU Virtualization fixes
- Fix for kvm_irq_delivery_to_apic_fast() NULL-pointer dereferences
- Other miscellaneous bugfixes
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (42 commits)
KVM: x86: fix sending PV IPI
KVM: x86/mmu: do compare-and-exchange of gPTE via the user address
KVM: x86: Remove redundant vm_entry_controls_clearbit() call
KVM: x86: cleanup enter_rmode()
KVM: x86: SVM: fix tsc scaling when the host doesn't support it
kvm: x86: SVM: remove unused defines
KVM: x86: SVM: move tsc ratio definitions to svm.h
KVM: x86: SVM: fix avic spec based definitions again
KVM: MIPS: remove reference to trap&emulate virtualization
KVM: x86: document limitations of MSR filtering
KVM: x86: Only do MSR filtering when access MSR by rdmsr/wrmsr
KVM: x86/emulator: Emulate RDPID only if it is enabled in guest
KVM: x86/pmu: Fix and isolate TSX-specific performance event logic
KVM: x86: mmu: trace kvm_mmu_set_spte after the new SPTE was set
KVM: x86/svm: Clear reserved bits written to PerfEvtSeln MSRs
KVM: x86: Trace all APICv inhibit changes and capture overall status
KVM: x86: Add wrappers for setting/clearing APICv inhibits
KVM: x86: Make APICv inhibit reasons an enum and cleanup naming
KVM: X86: Handle implicit supervisor access with SMAP
KVM: X86: Rename variable smap to not_smap in permission_fault()
...
If MSR access is rejected by MSR filtering,
kvm_set_msr()/kvm_get_msr() would return KVM_MSR_RET_FILTERED,
and the return value is only handled well for rdmsr/wrmsr.
However, some instruction emulation and state transition also
use kvm_set_msr()/kvm_get_msr() to do msr access but may trigger
some unexpected results if MSR access is rejected, E.g. RDPID
emulation would inject a #UD but RDPID wouldn't cause a exit
when RDPID is supported in hardware and ENABLE_RDTSCP is set.
And it would also cause failure when load MSR at nested entry/exit.
Since msr filtering is based on MSR bitmap, it is better to only
do MSR filtering for rdmsr/wrmsr.
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Message-Id: <2b2774154f7532c96a6f04d71c82a8bec7d9e80b.1646655860.git.houwenlong.hwl@antgroup.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When RDTSCP is supported but RDPID is not supported in host,
RDPID emulation is available. However, __kvm_get_msr() would
only fail when RDTSCP/RDPID both are disabled in guest, so
the emulator wouldn't inject a #UD when RDPID is disabled but
RDTSCP is enabled in guest.
Fixes: fb6d4d340e ("KVM: x86: emulate RDPID")
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Message-Id: <1dfd46ae5b76d3ed87bde3154d51c64ea64c99c1.1646226788.git.houwenlong.hwl@antgroup.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly zero select fields in the emulator's decode cache instead of
zeroing the fields via a gross memset() that spans six fields. gcc and
clang are both clever enough to batch the first five fields into a single
quadword MOV, i.e. memset() and individually zeroing generate identical
code.
Removing the wart also prepares KVM for FORTIFY_SOURCE performing
compile-time and run-time field bounds checking for memset().
No functional change intended.
Reported-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/lkml/YR0jIEzEcUom/7rd@google.com
Signed-off-by: Kees Cook <keescook@chromium.org>
When KVM retires a guest branch instruction through emulation,
increment any vPMCs that are configured to monitor "branch
instructions retired," and update the sample period of those counters
so that they will overflow at the right time.
Signed-off-by: Eric Hankland <ehankland@google.com>
[jmattson:
- Split the code to increment "branch instructions retired" into a
separate commit.
- Moved/consolidated the calls to kvm_pmu_trigger_event() in the
emulation of VMLAUNCH/VMRESUME to accommodate the evolution of
that code.
]
Fixes: f5132b0138 ("KVM: Expose a version 2 architectural PMU to a guests")
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20211130074221.93635-7-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that .post_leave_smm() is gone, drop "pre_" from the remaining
helpers. The helpers aren't invoked purely before SMI/RSM processing,
e.g. both helpers are invoked after state is snapshotted (from regs or
SMRAM), and the RSM helper is invoked after some amount of register state
has been stuffed.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609185619.992058-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop the .post_leave_smm() emulator callback, which at this point is just
a wrapper to kvm_mmu_reset_context(). The manual context reset is
unnecessary, because unlike enter_smm() which calls vendor MSR/CR helpers
directly, em_rsm() bounces through the KVM helpers, e.g. kvm_set_cr4(),
which are responsible for processing side effects. em_rsm() is already
subtly relying on this behavior as it doesn't manually do
kvm_update_cpuid_runtime(), e.g. to recognize CR4.OSXSAVE changes.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609185619.992058-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace the .set_hflags() emulator hook with a dedicated .exiting_smm(),
moving the SMM and SMM_INSIDE_NMI flag handling out of the emulator in
the process. This is a step towards consolidating much of the logic in
kvm_smm_changed(), including the SMM hflags updates.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609185619.992058-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the recently introduced KVM_REQ_TRIPLE_FAULT to properly emulate
shutdown if RSM from SMM fails.
Note, entering shutdown after clearing the SMM flag and restoring NMI
blocking is architecturally correct with respect to AMD's APM, which KVM
also uses for SMRAM layout and RSM NMI blocking behavior. The APM says:
An RSM causes a processor shutdown if an invalid-state condition is
found in the SMRAM state-save area. Only an external reset, external
processor-initialization, or non-maskable external interrupt (NMI) can
cause the processor to leave the shutdown state.
Of note is processor-initialization (INIT) as a valid shutdown wake
event, as INIT is blocked by SMM, implying that entering shutdown also
forces the CPU out of SMM.
For recent Intel CPUs, restoring NMI blocking is technically wrong, but
so is restoring NMI blocking in the first place, and Intel's RSM
"architecture" is such a mess that just about anything is allowed and can
be justified as micro-architectural behavior.
Per the SDM:
On Pentium 4 and later processors, shutdown will inhibit INTR and A20M
but will not change any of the other inhibits. On these processors,
NMIs will be inhibited if no action is taken in the SMI handler to
uninhibit them (see Section 34.8).
where Section 34.8 says:
When the processor enters SMM while executing an NMI handler, the
processor saves the SMRAM state save map but does not save the
attribute to keep NMI interrupts disabled. Potentially, an NMI could be
latched (while in SMM or upon exit) and serviced upon exit of SMM even
though the previous NMI handler has still not completed.
I.e. RSM unconditionally unblocks NMI, but shutdown on RSM does not,
which is in direct contradiction of KVM's behavior. But, as mentioned
above, KVM follows AMD architecture and restores NMI blocking on RSM, so
that micro-architectural detail is already lost.
And for Pentium era CPUs, SMI# can break shutdown, meaning that at least
some Intel CPUs fully leave SMM when entering shutdown:
In the shutdown state, Intel processors stop executing instructions
until a RESET#, INIT# or NMI# is asserted. While Pentium family
processors recognize the SMI# signal in shutdown state, P6 family and
Intel486 processors do not.
In other words, the fact that Intel CPUs have implemented the two
extremes gives KVM carte blanche when it comes to honoring Intel's
architecture for handling shutdown during RSM.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609185619.992058-3-seanjc@google.com>
[Return X86EMUL_CONTINUE after triple fault. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hyper-v XMM fast hypercalls use XMM registers to pass input/output
parameters. To access these, hyperv.c can reuse some FPU register
accessors defined in emulator.c. Move them to a common location so both
can access them.
While at it, reorder the parameters of these accessor methods to make
them more readable.
Cc: Alexander Graf <graf@amazon.com>
Cc: Evgeny Iakovlev <eyakovl@amazon.de>
Signed-off-by: Siddharth Chandrasekaran <sidcha@amazon.de>
Message-Id: <01a85a6560714d4d3637d3d86e5eba65073318fa.1622019133.git.sidcha@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
ctxt->ud is consumed only by x86_decode_insn(), we can kill it off by
passing emulation_type to x86_decode_insn() and dropping ctxt->ud
altogether. Tracking that info in ctxt for literally one call is silly.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <1622160097-37633-2-git-send-email-wanpengli@tencent.com>
Add a dedicated intercept enum for RDPID instead of piggybacking RDTSCP.
Unlike VMX's ENABLE_RDTSCP, RDPID is not bound to SVM's RDTSCP intercept.
Fixes: fb6d4d340e ("KVM: x86: emulate RDPID")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-5-seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_get_dr and emulator_get_dr except an in-range value for the register
number so they cannot fail. Change the return type to void.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* GICv4.1 support
* 32bit host removal
PPC:
* secure (encrypted) using under the Protected Execution Framework
ultravisor
s390:
* allow disabling GISA (hardware interrupt injection) and protected
VMs/ultravisor support.
x86:
* New dirty bitmap flag that sets all bits in the bitmap when dirty
page logging is enabled; this is faster because it doesn't require bulk
modification of the page tables.
* Initial work on making nested SVM event injection more similar to VMX,
and less buggy.
* Various cleanups to MMU code (though the big ones and related
optimizations were delayed to 5.8). Instead of using cr3 in function
names which occasionally means eptp, KVM too has standardized on "pgd".
* A large refactoring of CPUID features, which now use an array that
parallels the core x86_features.
* Some removal of pointer chasing from kvm_x86_ops, which will also be
switched to static calls as soon as they are available.
* New Tigerlake CPUID features.
* More bugfixes, optimizations and cleanups.
Generic:
* selftests: cleanups, new MMU notifier stress test, steal-time test
* CSV output for kvm_stat.
KVM/MIPS has been broken since 5.5, it does not compile due to a patch committed
by MIPS maintainers. I had already prepared a fix, but the MIPS maintainers
prefer to fix it in generic code rather than KVM so they are taking care of it.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl6GOnIUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMfxwf/ZKLZiRoaovXCOG71M/eHtQb8ZIqU
3MPy+On3eC5Sk/aBxWUL9EFZsbYG6kYdbZ1VOvG9XPBoLlnkDSm/IR0kaELHtnjj
oGVda/tvGn46Ne39y8xBptmb91WDcWH0vFthT/CwlMxAw3xjr+gG7Qyo+8F2CW6m
SSSuLiHSBnyO1cQKruBTHZ8qnR8LlnfXEqtd6Y4LFLic0LbLIoIdRcT3wjQrcZrm
Djd7wbTEYZjUfoqZ72ekwEDUsONcDLDSKcguDO9pSMSCGhpxCVT5Vy68KRpoIMs2
nzNWDKjvqQo5zb2+GWxJgkd12Hv+n7PCXZMbVrWBu1pQsewUns9m4mkpGw==
=6fGt
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- GICv4.1 support
- 32bit host removal
PPC:
- secure (encrypted) using under the Protected Execution Framework
ultravisor
s390:
- allow disabling GISA (hardware interrupt injection) and protected
VMs/ultravisor support.
x86:
- New dirty bitmap flag that sets all bits in the bitmap when dirty
page logging is enabled; this is faster because it doesn't require
bulk modification of the page tables.
- Initial work on making nested SVM event injection more similar to
VMX, and less buggy.
- Various cleanups to MMU code (though the big ones and related
optimizations were delayed to 5.8). Instead of using cr3 in
function names which occasionally means eptp, KVM too has
standardized on "pgd".
- A large refactoring of CPUID features, which now use an array that
parallels the core x86_features.
- Some removal of pointer chasing from kvm_x86_ops, which will also
be switched to static calls as soon as they are available.
- New Tigerlake CPUID features.
- More bugfixes, optimizations and cleanups.
Generic:
- selftests: cleanups, new MMU notifier stress test, steal-time test
- CSV output for kvm_stat"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (277 commits)
x86/kvm: fix a missing-prototypes "vmread_error"
KVM: x86: Fix BUILD_BUG() in __cpuid_entry_get_reg() w/ CONFIG_UBSAN=y
KVM: VMX: Add a trampoline to fix VMREAD error handling
KVM: SVM: Annotate svm_x86_ops as __initdata
KVM: VMX: Annotate vmx_x86_ops as __initdata
KVM: x86: Drop __exit from kvm_x86_ops' hardware_unsetup()
KVM: x86: Copy kvm_x86_ops by value to eliminate layer of indirection
KVM: x86: Set kvm_x86_ops only after ->hardware_setup() completes
KVM: VMX: Configure runtime hooks using vmx_x86_ops
KVM: VMX: Move hardware_setup() definition below vmx_x86_ops
KVM: x86: Move init-only kvm_x86_ops to separate struct
KVM: Pass kvm_init()'s opaque param to additional arch funcs
s390/gmap: return proper error code on ksm unsharing
KVM: selftests: Fix cosmetic copy-paste error in vm_mem_region_move()
KVM: Fix out of range accesses to memslots
KVM: X86: Micro-optimize IPI fastpath delay
KVM: X86: Delay read msr data iff writes ICR MSR
KVM: PPC: Book3S HV: Add a capability for enabling secure guests
KVM: arm64: GICv4.1: Expose HW-based SGIs in debugfs
KVM: arm64: GICv4.1: Allow non-trapping WFI when using HW SGIs
...
Invert and rename the kvm_cpuid() param that controls out-of-range logic
to better reflect the semantics of the affected callers, i.e. callers
that bypass the out-of-range logic do so because they are looking up an
exact guest CPUID entry, e.g. to query the maxphyaddr.
Similarly, rename kvm_cpuid()'s internal "found" to "exact" to clarify
that it tracks whether or not the exact requested leaf was found, as
opposed to any usable leaf being found.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rework the masking in the out-of-range CPUID logic to handle the
Hypervisor sub-classes, as well as the Centaur class if the guest
virtual CPU vendor is Centaur.
Masking against 0x80000000 only handles basic and extended leafs, which
results in Hypervisor range checks being performed against the basic
CPUID class, and Centuar range checks being performed against the
Extended class. E.g. if CPUID.0x40000000.EAX returns 0x4000000A and
there is no entry for CPUID.0x40000006, then function 0x40000006 would
be incorrectly reported as out of bounds.
While there is no official definition of what constitutes a class, the
convention established for Hypervisor classes effectively uses bits 31:8
as the mask by virtue of checking for different bases in increments of
0x100, e.g. KVM advertises its CPUID functions starting at 0x40000100
when HyperV features are advertised at the default base of 0x40000000.
The bad range check doesn't cause functional problems for any known VMM
because out-of-range semantics only come into play if the exact entry
isn't found, and VMMs either support a very limited Hypervisor range,
e.g. the official KVM range is 0x40000000-0x40000001 (effectively no
room for undefined leafs) or explicitly defines gaps to be zero, e.g.
Qemu explicitly creates zeroed entries up to the Centaur and Hypervisor
limits (the latter comes into play when providing HyperV features).
The bad behavior can be visually confirmed by dumping CPUID output in
the guest when running Qemu with a stable TSC, as Qemu extends the limit
of range 0x40000000 to 0x40000010 to advertise VMware's cpuid_freq,
without defining zeroed entries for 0x40000002 - 0x4000000f.
Note, documentation of Centaur/VIA CPUs is hard to come by. Designating
0xc0000000 - 0xcfffffff as the Centaur class is a best guess as to the
behavior of a real Centaur/VIA CPU.
Fixes: 43561123ab ("kvm: x86: Improve emulation of CPUID leaves 0BH and 1FH")
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add helpers to provide CPUID-based guest vendor checks, i.e. to do the
ugly register comparisons. Use the new helpers to check for an AMD
guest vendor in guest_cpuid_is_amd() as well as in the existing emulator
flows.
Using the new helpers fixes a _very_ theoretical bug where
guest_cpuid_is_amd() would get a false positive on a non-AMD virtual CPU
with a vendor string beginning with "Auth" due to the previous logic
only checking EBX. It also fixes a marginally less theoretically bug
where guest_cpuid_is_amd() would incorrectly return false for a guest
CPU with "AMDisbetter!" as its vendor string.
Fixes: a0c0feb579 ("KVM: x86: reserve bit 8 of non-leaf PDPEs and PML4Es in 64-bit mode on AMD")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Shuffle a few operand structs to the end of struct x86_emulate_ctxt and
update the cache creation to whitelist only the region of the emulation
context that is expected to be copied to/from user memory, e.g. the
instruction operands, registers, and fetch/io/mem caches.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that the emulation context is dynamically allocated and not embedded
in struct kvm_vcpu, move its header, kvm_emulate.h, out of the public
asm directory and into KVM's private x86 directory.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>