kernel_unmap_pages_in_pgd() is dangerous: if a PGD entry in
init_mm.pgd were to be cleared, callers would need to ensure that
the pgd entry hadn't been propagated to any other pgd.
Its only caller was efi_cleanup_page_tables(), and that, in turn,
was unused, so just delete both functions. This leaves a couple of
other helpers unused, so delete them, too.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/77ff20fdde3b75cd393be5559ad8218870520248.1468527351.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This avoids pointless races in which another CPU or task might see a
partially populated global PGD entry. These races should normally
be harmless, but, if another CPU propagates the entry via
vmalloc_fault() and then populate_pgd() fails (due to memory allocation
failure, for example), this prevents a use-after-free of the PGD
entry.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/bf99df27eac6835f687005364bd1fbd89130946c.1468527351.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So when memory hotplug removes a piece of physical memory from pagetable
mappings, it also frees the underlying PGD entry.
This complicates PGD management, so don't do this. We can keep the
PGD mapped and the PUD table all clear - it's only a single 4K page
per 512 GB of memory hotplugged.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <Waiman.Long@hp.com>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/064ff6c7275734537f969e876f6cd0baa954d2cc.1468527351.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Dell Optiplex 7450 AIO works with BOOT_ACPI; however, the quirk for
"OptiPlex 745" changes its boot method to BOOT_BIOS and causes 7450 AIO
hangs when rebooting; as a result, 7450 AIO is appended to overwrite
BOOT_BIOS by BOOT_ACPI in order not to break the original 745 series
Signed-off-by: Alex Hung <alex.hung@canonical.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When freeing the nested resources of a vcpu, there is an assumption that
the vcpu's vmcs01 is the current VMCS on the CPU that executes
nested_release_vmcs12(). If this assumption is violated, the vcpu's
vmcs01 may be made active on multiple CPUs at the same time, in
violation of Intel's specification. Moreover, since the vcpu's vmcs01 is
not VMCLEARed on every CPU on which it is active, it can linger in a
CPU's VMCS cache after it has been freed and potentially
repurposed. Subsequent eviction from the CPU's VMCS cache on a capacity
miss can result in memory corruption.
It is not sufficient for vmx_free_vcpu() to call vmx_load_vmcs01(). If
the vcpu in question was last loaded on a different CPU, it must be
migrated to the current CPU before calling vmx_load_vmcs01().
Signed-off-by: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Between loading the new VMCS and enabling PML, the CPU was unpinned.
If the vCPU thread were migrated to another CPU in the interim (e.g.,
due to preemption or sleeping alloc_page), then the VMWRITEs to enable
PML would target the wrong VMCS -- or no VMCS at all:
[ 2087.266950] vmwrite error: reg 200e value 3fe1d52000 (err -506126336)
[ 2087.267062] vmwrite error: reg 812 value 1ff (err 511)
[ 2087.267125] vmwrite error: reg 401e value 12229c00 (err 304258048)
This patch ensures that the VMCS remains current while enabling PML by
doing the VMWRITEs while the CPU is pinned. Allocation of the PML buffer
is hoisted out of the critical section.
Signed-off-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
I don't know what I was thinking when I wrote commit 46896c73c1 ("KVM:
svm: add support for RDTSCP", 2015-11-12); I missed write_rdtscp_aux which
obviously uses MSR_TSC_AUX.
Therefore we do need to save/restore MSR_TSC_AUX in svm_vcpu_run.
Cc: stable@vger.kernel.org
Cc: Borislav Petkov <bp@alien8.de>
Fixes: 46896c73c1 ("KVM: svm: add support for RDTSCP")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Historically a lot of these existed because we did not have
a distinction between what was modular code and what was providing
support to modules via EXPORT_SYMBOL and friends. That changed
when we forked out support for the latter into the export.h file.
This means we should be able to reduce the usage of module.h
in code that is obj-y Makefile or bool Kconfig. In the case of
some of these which are modular, we can extend that to also include
files that are building basic support functionality but not related
to loading or registering the final module; such files also have
no need whatsoever for module.h
The advantage in removing such instances is that module.h itself
sources about 15 other headers; adding significantly to what we feed
cpp, and it can obscure what headers we are effectively using.
Since module.h was the source for init.h (for __init) and for
export.h (for EXPORT_SYMBOL) we consider each instance for the
presence of either and replace as needed.
In the case of crypto/glue_helper.c we delete a redundant instance
of MODULE_LICENSE in order to delete module.h -- the license info
is already present at the top of the file.
The uncore change warrants a mention too; it is uncore.c that uses
module.h and not uncore.h; hence the relocation done there.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160714001901.31603-9-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Historically a lot of these existed because we did not have
a distinction between what was modular code and what was providing
support to modules via EXPORT_SYMBOL and friends. That changed
when we forked out support for the latter into the export.h file.
This means we should be able to reduce the usage of module.h
in code that is obj-y Makefile or bool Kconfig. In the case of
kvm where it is modular, we can extend that to also include files
that are building basic support functionality but not related
to loading or registering the final module; such files also have
no need whatsoever for module.h
The advantage in removing such instances is that module.h itself
sources about 15 other headers; adding significantly to what we feed
cpp, and it can obscure what headers we are effectively using.
Since module.h was the source for init.h (for __init) and for
export.h (for EXPORT_SYMBOL) we consider each instance for the
presence of either and replace as needed.
Several instances got replaced with moduleparam.h since that was
really all that was required for those particular files.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm@vger.kernel.org
Link: http://lkml.kernel.org/r/20160714001901.31603-8-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Historically a lot of these existed because we did not have
a distinction between what was modular code and what was providing
support to modules via EXPORT_SYMBOL and friends. That changed
when we forked out support for the latter into the export.h file.
This means we should be able to reduce the usage of module.h
in code that is obj-y Makefile or bool Kconfig. The advantage
in doing so is that module.h itself sources about 15 other headers;
adding significantly to what we feed cpp, and it can obscure what
headers we are effectively using.
Since module.h was the source for init.h (for __init) and for
export.h (for EXPORT_SYMBOL) we consider each obj-y/bool instance
for the presence of either and replace as needed.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/20160714001901.31603-7-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Historically a lot of these existed because we did not have
a distinction between what was modular code and what was providing
support to modules via EXPORT_SYMBOL and friends. That changed
when we forked out support for the latter into the export.h file.
This means we should be able to reduce the usage of module.h
in code that is obj-y Makefile or bool Kconfig. The advantage
in doing so is that module.h itself sources about 15 other headers;
adding significantly to what we feed cpp, and it can obscure what
headers we are effectively using.
Since module.h was the source for init.h (for __init) and for
export.h (for EXPORT_SYMBOL) we consider each obj-y/bool instance
for the presence of either and replace as needed.
One module.h was converted to moduleparam.h since the file had
multiple module_param() in it, and another file had an instance of
MODULE_DEVICE_TABLE deleted, since that is a no-op when builtin.
Finally, the 32 bit build coverage of olpc_ofw revealed a couple
implicit includes, which were pretty self evident to fix based on
what gcc was complaining about.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160714001901.31603-6-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Historically a lot of these existed because we did not have
a distinction between what was modular code and what was providing
support to modules via EXPORT_SYMBOL and friends. That changed
when we forked out support for the latter into the export.h file.
This means we should be able to reduce the usage of module.h
in code that is obj-y Makefile or bool Kconfig. The advantage
in doing so is that module.h itself sources about 15 other headers;
adding significantly to what we feed cpp, and it can obscure what
headers we are effectively using.
Since module.h was the source for init.h (for __init) and for
export.h (for EXPORT_SYMBOL) we consider each obj-y/bool instance
for the presence of either and replace as needed. Build testing
revealed a couple implicit header usage issues that were fixed.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160714001901.31603-5-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Historically a lot of these existed because we did not have
a distinction between what was modular code and what was providing
support to modules via EXPORT_SYMBOL and friends. That changed
when we forked out support for the latter into the export.h file.
This means we should be able to reduce the usage of module.h
in code that is obj-y Makefile or bool Kconfig. The advantage
in doing so is that module.h itself sources about 15 other headers;
adding significantly to what we feed cpp, and it can obscure what
headers we are effectively using.
Since module.h was the source for init.h (for __init) and for
export.h (for EXPORT_SYMBOL) we consider each obj-y/bool instance
for the presence of either and replace as needed. Build testing
revealed some implicit header usage that was fixed up accordingly.
Note that some bool/obj-y instances remain since module.h is
the header for some exception table entry stuff, and for things
like __init_or_module (code that is tossed when MODULES=n).
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160714001901.31603-4-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Historically a lot of these existed because we did not have
a distinction between what was modular code and what was providing
support to modules via EXPORT_SYMBOL and friends. That changed
when we forked out support for the latter into the export.h file.
This means we should be able to reduce the usage of module.h
in code that is obj-y Makefile or bool Kconfig. The advantage
in doing so is that module.h itself sources about 15 other headers;
adding significantly to what we feed cpp, and it can obscure what
headers we are effectively using.
Since module.h was the source for init.h (for __init) and for
export.h (for EXPORT_SYMBOL) we consider each obj-y/bool instance
for the presence of either and replace accordingly where needed.
Note that some bool/obj-y instances remain since module.h is
the header for some exception table entry stuff, and for things
like __init_or_module (code that is tossed when MODULES=n).
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160714001901.31603-3-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The Kconfig controlling compilation of these files are:
arch/x86/Kconfig.debug:config DEBUG_RODATA_TEST
arch/x86/Kconfig.debug: bool "Testcase for the marking rodata read-only"
arch/x86/Kconfig.debug:config X86_PTDUMP_CORE
arch/x86/Kconfig.debug: def_bool n
...meaning that it currently is not being built as a module by anyone.
Lets remove the couple traces of modular infrastructure use, so that
when reading the driver there is no doubt it is builtin-only.
We delete the MODULE_LICENSE tag etc. since all that information
is already contained at the top of the file in the comments.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Acked-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160714001901.31603-2-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Install the callbacks via the state machine and let the core invoke
the callbacks on the already online CPUs.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160713153335.279718463@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
To simplify the hotplug mechanism move the starting callback to
online. There is no functional requirement that the cpumask bit has to
be set in the starting callback.
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Huang Rui <ray.huang@amd.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160713153334.944849172@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Install the callbacks via the state machine and let the core invoke
the callbacks on the already online CPUs.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: kbuild test robot <fengguang.wu@intel.com>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160713153334.184061086@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Install the callbacks via the state machine and let the core invoke
the callbacks on the already online CPUs.
Signed-off-by: Richard Cochran <rcochran@linutronix.de>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt.fleming@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160713153334.096956222@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Install the callbacks via the state machine and let the core invoke
the callbacks on the already online CPUs.
Signed-off-by: Richard Cochran <rcochran@linutronix.de>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Huang Rui <ray.huang@amd.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160713153334.008808086@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Install the callbacks via the state machine and let the core invoke
the callbacks on the already online CPUs.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160713153333.921401190@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Install the callbacks via the state machine and let the core invoke
the callbacks on the already online CPUs.
Signed-off-by: Richard Cochran <rcochran@linutronix.de>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160713153333.839150380@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Convert the notifiers to state machine states and let the core code do the
setup for the already online CPUs. This notifier has a completely undocumented
ordering requirement versus perf hardcoded in the notifier priority. This
odering is only required for CPU down, so that hardware migration happens
before the core is notified about the outgoing CPU.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160713153333.752695801@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Replace the perf_notifier() install mechanism, which invokes magically
the callback on the current CPU. Convert the hardware specific
callbacks which are invoked from the x86 perf core to return proper
error codes instead of totally pointless NOTIFY_BAD return values.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Adam Borowski <kilobyte@angband.pl>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160713153333.670720553@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Install the callbacks via the state machine and let the core invoke
the callbacks on the already online CPUs.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160713153332.987560239@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
kzalloc was replaced with kvm_kvzalloc to allow non-contiguous areas and
rcu had to be modified to cope with it.
The practical limit for KVM_MAX_VCPU_ID right now is INT_MAX, but lower
value was chosen in case there were bugs. 1023 is sufficient maximum
APIC ID for 288 VCPUs.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
288 is in high demand because of Knights Landing CPU.
We cannot set the limit to 640k, because that would be wasting space.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK as a feature flag to
KVM_CAP_X2APIC_API.
The quirk made KVM interpret 0xff as a broadcast even in x2APIC mode.
The enableable capability is needed in order to support standard x2APIC and
remain backward compatible.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
[Expand kvm_apic_mda comment. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_CAP_X2APIC_API is a capability for features related to x2APIC
enablement. KVM_X2APIC_API_32BIT_FORMAT feature can be enabled to
extend APIC ID in get/set ioctl and MSI addresses to 32 bits.
Both are needed to support x2APIC.
The feature has to be enableable and disabled by default, because
get/set ioctl shifted and truncated APIC ID to 8 bits by using a
non-standard protocol inspired by xAPIC and the change is not
backward-compatible.
Changes to MSI addresses follow the format used by interrupt remapping
unit. The upper address word, that used to be 0, contains upper 24 bits
of the LAPIC address in its upper 24 bits. Lower 8 bits are reserved as
0. Using the upper address word is not backward-compatible either as we
didn't check that userspace zeroed the word. Reserved bits are still
not explicitly checked, but non-zero data will affect LAPIC addresses,
which will cause a bug.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
LAPIC is reset in xAPIC mode and the surrounding code expects that.
KVM never resets after initialization. This patch is just for sanity.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The register is in hardware-compatible format now, so there is not need
to intercept.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
APIC ID should be set to the initial APIC ID when enabling LAPIC.
This only matters if the guest changes APIC ID. No sane OS does that.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We currently always shift APIC ID as if APIC was in xAPIC mode.
x2APIC mode wants to use more bits and storing a hardware-compabible
value is the the sanest option.
KVM API to set the lapic expects that bottom 8 bits of APIC ID are in
top 8 bits of APIC_ID register, so the register needs to be shifted in
x2APIC mode.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
x2APIC supports up to 2^32-1 LAPICs, but most guest in coming years will
probably has fewer VCPUs. Dynamic size saves memory at the cost of
turning one constant into a variable.
apic_map mutex had to be moved before allocation to avoid races with cpu
hotplug.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Logical x2APIC IDs map injectively to physical x2APIC IDs, so we can
reuse the physical array for them. This allows us to save space by
sizing the logical maps according to the needs of xAPIC.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_irq_delivery_to_apic_fast and kvm_intr_is_single_vcpu_fast both
compute the interrupt destination. Factor the code.
'struct kvm_lapic **dst = NULL' had to be added to silence GCC.
GCC might complain about potential NULL access in the future, because it
missed conditions that avoided uninitialized uses of dst.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
240 has been well tested by Red Hat.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MMU now knows about execute only mappings, so
advertise the feature to L1 hypervisors
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To support execute only mappings on behalf of L1 hypervisors,
reuse ACC_USER_MASK to signify if the L1 hypervisor has the R bit
set.
For the nested EPT case, we assumed that the U bit was always set
since there was no equivalent in EPT page tables. Strictly
speaking, this was not necessary because handle_ept_violation
never set PFERR_USER_MASK in the error code (uf=0 in the
parlance of update_permission_bitmask). We now have to set
both U and UF correctly, respectively in FNAME(gpte_access)
and in handle_ept_violation.
Also in handle_ept_violation bit 3 of the exit qualification is
not enough to detect a present PTE; all three bits 3-5 have to
be checked.
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To support execute only mappings on behalf of L1
hypervisors, we need to teach set_spte() to honor all three of
L1's XWR bits. As a start, add a new variable "shadow_present_mask"
that will be set for non-EPT shadow paging and clear for EPT.
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We have two versions of the above function.
To prevent confusion and bugs in the future, remove
the non-FNAME version entirely and replace all calls
with the actual check.
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is safe because this function is called
on host controlled page table and non-present/non-MMIO
sptes never use bits 1..31. For the EPT case, this
ensures that cases where only the execute bit is set
is marked valid.
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull perf and timer fixes from Ingo Molnar:
"A fix for a posix CPU timers bug, and a perf printk message fix"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86: Fix bogus kernel printk, again
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
posix_cpu_timer: Exit early when process has been reaped
The page table manipulation code seems to have grown a couple of
sites that are looking for empty PTEs. Just in case one of these
entries got a stray bit set, use pte_none() instead of checking
for a zero pte_val().
The use pte_same() makes me a bit nervous. If we were doing a
pte_same() check against two cleared entries and one of them had
a stray bit set, it might fail the pte_same() check. But, I
don't think we ever _do_ pte_same() for cleared entries. It is
almost entirely used for checking for races in fault-in paths.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: dave.hansen@intel.com
Cc: linux-mm@kvack.org
Cc: mhocko@suse.com
Link: http://lkml.kernel.org/r/20160708001915.813703D9@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The Intel(R) Xeon Phi(TM) Processor x200 Family (codename: Knights
Landing) has an erratum where a processor thread setting the Accessed
or Dirty bits may not do so atomically against its checks for the
Present bit. This may cause a thread (which is about to page fault)
to set A and/or D, even though the Present bit had already been
atomically cleared.
These bits are truly "stray". In the case of the Dirty bit, the
thread associated with the stray set was *not* allowed to write to
the page. This means that we do not have to launder the bit(s); we
can simply ignore them.
If the PTE is used for storing a swap index or a NUMA migration index,
the A bit could be misinterpreted as part of the swap type. The stray
bits being set cause a software-cleared PTE to be interpreted as a
swap entry. In some cases (like when the swap index ends up being
for a non-existent swapfile), the kernel detects the stray value
and WARN()s about it, but there is no guarantee that the kernel can
always detect it.
When we have 64-bit PTEs (64-bit mode or 32-bit PAE), we were able
to move the swap PTE format around to avoid these troublesome bits.
But, 32-bit non-PAE is tight on bits. So, disallow it from running
on this hardware. I can't imagine anyone wanting to run 32-bit
non-highmem kernels on this hardware, but disallowing them from
running entirely is surely the safe thing to do.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: dave.hansen@intel.com
Cc: linux-mm@kvack.org
Cc: mhocko@suse.com
Link: http://lkml.kernel.org/r/20160708001914.D0B50110@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The erratum we are fixing here can lead to stray setting of the
A and D bits. That means that a pte that we cleared might
suddenly have A/D set. So, stop considering those bits when
determining if a pte is pte_none(). The same goes for the
other pmd_none() and pud_none(). pgd_none() can be skipped
because it is not affected; we do not use PGD entries for
anything other than pagetables on affected configurations.
This adds a tiny amount of overhead to all pte_none() checks.
I doubt we'll be able to measure it anywhere.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: dave.hansen@intel.com
Cc: linux-mm@kvack.org
Cc: mhocko@suse.com
Link: http://lkml.kernel.org/r/20160708001912.5216F89C@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This erratum can result in Accessed/Dirty getting set by the hardware
when we do not expect them to be (on !Present PTEs).
Instead of trying to fix them up after this happens, we just
allow the bits to get set and try to ignore them. We do this by
shifting the layout of the bits we use for swap offset/type in
our 64-bit PTEs.
It looks like this:
bitnrs: | ... | 11| 10| 9|8|7|6|5| 4| 3|2|1|0|
names: | ... |SW3|SW2|SW1|G|L|D|A|CD|WT|U|W|P|
before: | OFFSET (9-63) |0|X|X| TYPE(1-5) |0|
after: | OFFSET (14-63) | TYPE (9-13) |0|X|X|X| X| X|X|X|0|
Note that D was already a don't care (X) even before. We just
move TYPE up and turn its old spot (which could be hit by the
A bit) into all don't cares.
We take 5 bits away from the offset, but that still leaves us
with 50 bits which lets us index into a 62-bit swapfile (4 EiB).
I think that's probably fine for the moment. We could
theoretically reclaim 5 of the bits (1, 2, 3, 4, 7) but it
doesn't gain us anything.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: dave.hansen@intel.com
Cc: linux-mm@kvack.org
Cc: mhocko@suse.com
Link: http://lkml.kernel.org/r/20160708001911.9A3FD2B6@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
SFI specification v0.8.2 defines type of devices which are connected to
SD bus. In particularly WiFi dongle is a such.
Add a callback to enumerate the devices connected to SD bus.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1468322192-62080-1-git-send-email-andriy.shevchenko@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Everywhere in the kernel the MRFLD is used as abbreviation of Intel Merrifield.
Do the same in intel_mid_pci.c module.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1468321462-136016-1-git-send-email-andriy.shevchenko@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The __pmem address space was meant to annotate codepaths that touch
persistent memory and need to coordinate a call to wmb_pmem(). Now that
wmb_pmem() is gone, there is little need to keep this annotation.
Cc: Christoph Hellwig <hch@lst.de>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
All users have been replaced with flushing in the pmem driver.
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
for condition comparison and cleanup multiline comment style
In sha*_ctx_mgr_submit, we currently use the | operator instead of ||
((ctx->partial_block_buffer_length) | (len < SHA1_BLOCK_SIZE))
Switching it to || and remove extraneous paranthesis to
adhere to coding style.
Also cleanup inconsistent multiline comment style.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Hard code the BXT crystal clock (aka ART - Always Running Timer)
to 19.200 MHz, and use CPUID leaf 0x15 to determine the BXT TSC frequency.
Use tsc_khz to sanity check BXT cpu_khz,
which can be erroneous in some configurations.
(I simplified the original patch from Bin Gao.)
Original-From: Bin Gao <bin.gao@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/bf4e7c175acd6d09719c47c319b10ff1f0627ff8.1466138954.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Skylake CPU base-frequency and TSC frequency may differ
by up to 2%.
Enumerate CPU and TSC frequencies separately, allowing
cpu_khz and tsc_khz to differ.
The existing CPU frequency calibration mechanism is unchanged.
However, CPUID extensions are preferred, when available.
CPUID.0x16 is preferred over MSR and timer calibration
for CPU frequency discovery.
CPUID.0x15 takes precedence over CPU-frequency
for TSC frequency discovery.
Signed-off-by: Len Brown <len.brown@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/b27ec289fd005833b27d694d9c2dbb716c5cdff7.1466138954.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Remove the irqoff/irqon around MSR-based TSC enumeration,
as it is not necessary.
Also rename: try_msr_calibrate_tsc() to cpu_khz_from_msr(),
as that better describes what the routine does.
Signed-off-by: Len Brown <len.brown@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/a6b5c3ecd3b068175d2309599ab28163fc34215e.1466138954.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We did not handle XSAVES instructions correctly. There were issues in
converting between standard and compacted format when interfacing with
user-space. These issues have been corrected.
Add a WARN_ONCE() to make it clear that XSAVES supervisor states are not
yet implemented.
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <h.peter.anvin@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi V Shankar <ravi.v.shankar@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1468253937-40008-5-git-send-email-fenghua.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In XSAVES mode if fpstate_init() is used to initialize a
task's extended state area, xsave.header.xcomp_bv[63] must
be set. Otherwise, when the task is scheduled, a warning is
triggered from copy_kernel_to_xregs().
One such test case is: setting an invalid extended state
through PTRACE. When xstateregs_set() rejects the syscall
and re-initializes the task's extended state area. This triggers
the warning mentioned above.
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <h.peter.anvin@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi V Shankar <ravi.v.shankar@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1468253937-40008-4-git-send-email-fenghua.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is an error to request a disabled XSAVE/XSAVES component address.
For that case, make __raw_xsave_addr() return a NULL and issue a
warning.
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <h.peter.anvin@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi V Shankar <ravi.v.shankar@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1468253937-40008-3-git-send-email-fenghua.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When the kernel is using XSAVES compacted format, we cannot do
__copy_from_user() from a signal frame, which has standard-format data.
Fix it by using copyin_to_xsaves(), which converts between formats and
filters out all supervisor states that we do not allow userspace to
write.
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <h.peter.anvin@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi V Shankar <ravi.v.shankar@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1468253937-40008-2-git-send-email-fenghua.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is no reason to read the entry/exit control fields of the
VMCS and immediately write back the same value.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Because the vmcs12 preemption timer is emulated through a separate hrtimer,
we can keep on using the preemption timer in the vmcs02 to emulare L1's
TSC deadline timer.
However, the corresponding bit in the pin-based execution control field
must be kept consistent between vmcs01 and vmcs02. On vmentry we copy
it into the vmcs02; on vmexit the preemption timer must be disabled in
the vmcs01 if a preemption timer vmexit happened while in guest mode.
The preemption timer value in the vmcs02 is set by vmx_vcpu_run, so it
need not be considered in prepare_vmcs02.
Cc: Yunhong Jiang <yunhong.jiang@intel.com>
Cc: Haozhong Zhang <haozhong.zhang@intel.com>
Tested-by: Wanpeng Li <kernellwp@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The preemption timer for nested VMX is emulated by hrtimer which is started on L2
entry, stopped on L2 exit and evaluated via the check_nested_events hook. However,
nested_vmx_exit_handled is always returning true for preemption timer vmexit. Then,
the L1 preemption timer vmexit is captured and be treated as a L2 preemption
timer vmexit, causing NULL pointer dereferences or worse in the L1 guest's
vmexit handler:
BUG: unable to handle kernel NULL pointer dereference at (null)
IP: [< (null)>] (null)
PGD 0
Oops: 0010 [#1] SMP
Call Trace:
? kvm_lapic_expired_hv_timer+0x47/0x90 [kvm]
handle_preemption_timer+0xe/0x20 [kvm_intel]
vmx_handle_exit+0x169/0x15a0 [kvm_intel]
? kvm_arch_vcpu_ioctl_run+0xd5d/0x19d0 [kvm]
kvm_arch_vcpu_ioctl_run+0xdee/0x19d0 [kvm]
? kvm_arch_vcpu_ioctl_run+0xd5d/0x19d0 [kvm]
? vcpu_load+0x1c/0x60 [kvm]
? kvm_arch_vcpu_load+0x57/0x260 [kvm]
kvm_vcpu_ioctl+0x2d3/0x7c0 [kvm]
do_vfs_ioctl+0x96/0x6a0
? __fget_light+0x2a/0x90
SyS_ioctl+0x79/0x90
do_syscall_64+0x68/0x180
entry_SYSCALL64_slow_path+0x25/0x25
Code: Bad RIP value.
RIP [< (null)>] (null)
RSP <ffff8800b5263c48>
CR2: 0000000000000000
---[ end trace 9c70c48b1a2bc66e ]---
This can be reproduced readily by preemption timer enabled on L0 and disabled
on L1.
Return false since preemption timer vmexits must never be reflected to L2.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Yunhong Jiang <yunhong.jiang@intel.com>
Cc: Jan Kiszka <jan.kiszka@siemens.com>
Cc: Haozhong Zhang <haozhong.zhang@intel.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Simplify cpu_has_vmx_preemption_timer. This is consistent with the
rest of setup_vmcs_config and preparatory for the next patch.
Tested-by: Wanpeng Li <kernellwp@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit 2c95afc1e8.
Stephane reported the following regression:
> Since Andi added:
>
> commit 2c95afc1e8
> Author: Andi Kleen <ak@linux.intel.com>
> Date: Thu Jun 9 06:14:38 2016 -0700
>
> perf/x86/intel, watchdog: Switch NMI watchdog to ref cycles on x86
>
> $ perf stat -e ref-cycles ls
> <not counted> ....
>
> fails systematically because the ref-cycles is now used by the
> watchdog and given this is a system-wide pinned event, it monopolizes
> the fixed counter 2 which is the only counter able to measure this event.
Since the next merge window is near, fix the regression for now
by reverting the commit.
Reported-by: Stephane Eranian <eranian@google.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The EFI firmware on Macs contains a full-fledged network stack for
downloading OS X images from osrecovery.apple.com. Unfortunately
on Macs introduced 2011 and 2012, EFI brings up the Broadcom 4331
wireless card on every boot and leaves it enabled even after
ExitBootServices has been called. The card continues to assert its IRQ
line, causing spurious interrupts if the IRQ is shared. It also corrupts
memory by DMAing received packets, allowing for remote code execution
over the air. This only stops when a driver is loaded for the wireless
card, which may be never if the driver is not installed or blacklisted.
The issue seems to be constrained to the Broadcom 4331. Chris Milsted
has verified that the newer Broadcom 4360 built into the MacBookPro11,3
(2013/2014) does not exhibit this behaviour. The chances that Apple will
ever supply a firmware fix for the older machines appear to be zero.
The solution is to reset the card on boot by writing to a reset bit in
its mmio space. This must be done as an early quirk and not as a plain
vanilla PCI quirk to successfully combat memory corruption by DMAed
packets: Matthew Garrett found out in 2012 that the packets are written
to EfiBootServicesData memory (http://mjg59.dreamwidth.org/11235.html).
This type of memory is made available to the page allocator by
efi_free_boot_services(). Plain vanilla PCI quirks run much later, in
subsys initcall level. In-between a time window would be open for memory
corruption. Random crashes occurring in this time window and attributed
to DMAed packets have indeed been observed in the wild by Chris
Bainbridge.
When Matthew Garrett analyzed the memory corruption issue in 2012, he
sought to fix it with a grub quirk which transitions the card to D3hot:
http://git.savannah.gnu.org/cgit/grub.git/commit/?id=9d34bb85da56
This approach does not help users with other bootloaders and while it
may prevent DMAed packets, it does not cure the spurious interrupts
emanating from the card. Unfortunately the card's mmio space is
inaccessible in D3hot, so to reset it, we have to undo the effect of
Matthew's grub patch and transition the card back to D0.
Note that the quirk takes a few shortcuts to reduce the amount of code:
The size of BAR 0 and the location of the PM capability is identical
on all affected machines and therefore hardcoded. Only the address of
BAR 0 differs between models. Also, it is assumed that the BCMA core
currently mapped is the 802.11 core. The EFI driver seems to always take
care of this.
Michael Büsch, Bjorn Helgaas and Matt Fleming contributed feedback
towards finding the best solution to this problem.
The following should be a comprehensive list of affected models:
iMac13,1 2012 21.5" [Root Port 00:1c.3 = 8086:1e16]
iMac13,2 2012 27" [Root Port 00:1c.3 = 8086:1e16]
Macmini5,1 2011 i5 2.3 GHz [Root Port 00:1c.1 = 8086:1c12]
Macmini5,2 2011 i5 2.5 GHz [Root Port 00:1c.1 = 8086:1c12]
Macmini5,3 2011 i7 2.0 GHz [Root Port 00:1c.1 = 8086:1c12]
Macmini6,1 2012 i5 2.5 GHz [Root Port 00:1c.1 = 8086:1e12]
Macmini6,2 2012 i7 2.3 GHz [Root Port 00:1c.1 = 8086:1e12]
MacBookPro8,1 2011 13" [Root Port 00:1c.1 = 8086:1c12]
MacBookPro8,2 2011 15" [Root Port 00:1c.1 = 8086:1c12]
MacBookPro8,3 2011 17" [Root Port 00:1c.1 = 8086:1c12]
MacBookPro9,1 2012 15" [Root Port 00:1c.1 = 8086:1e12]
MacBookPro9,2 2012 13" [Root Port 00:1c.1 = 8086:1e12]
MacBookPro10,1 2012 15" [Root Port 00:1c.1 = 8086:1e12]
MacBookPro10,2 2012 13" [Root Port 00:1c.1 = 8086:1e12]
For posterity, spurious interrupts caused by the Broadcom 4331 wireless
card resulted in splats like this (stacktrace omitted):
irq 17: nobody cared (try booting with the "irqpoll" option)
handlers:
[<ffffffff81374370>] pcie_isr
[<ffffffffc0704550>] sdhci_irq [sdhci] threaded [<ffffffffc07013c0>] sdhci_thread_irq [sdhci]
[<ffffffffc0a0b960>] azx_interrupt [snd_hda_codec]
Disabling IRQ #17
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=79301
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=111781
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=728916
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=895951#c16
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1009819
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1098621
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1149632#c5
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1279130
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1332732
Tested-by: Konstantin Simanov <k.simanov@stlk.ru> # [MacBookPro8,1]
Tested-by: Lukas Wunner <lukas@wunner.de> # [MacBookPro9,1]
Tested-by: Bryan Paradis <bryan.paradis@gmail.com> # [MacBookPro9,2]
Tested-by: Andrew Worsley <amworsley@gmail.com> # [MacBookPro10,1]
Tested-by: Chris Bainbridge <chris.bainbridge@gmail.com> # [MacBookPro10,2]
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Acked-by: Rafał Miłecki <zajec5@gmail.com>
Acked-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Chris Milsted <cmilsted@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Michael Buesch <m@bues.ch>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: b43-dev@lists.infradead.org
Cc: linux-pci@vger.kernel.org
Cc: linux-wireless@vger.kernel.org
Cc: stable@vger.kernel.org
Cc: stable@vger.kernel.org # 123456789abc: x86/quirks: Apply nvidia_bugs quirk only on root bus
Cc: stable@vger.kernel.org # 123456789abc: x86/quirks: Reintroduce scanning of secondary buses
Link: http://lkml.kernel.org/r/48d0972ac82a53d460e5fce77a07b2560db95203.1465690253.git.lukas@wunner.de
[ Did minor readability edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We used to scan secondary buses until the following commit that
was applied in 2009:
8659c406ad ("x86: only scan the root bus in early PCI quirks")
which commit constrained early quirks to the root bus only. Its
motivation was to prevent application of the nvidia_bugs quirk
on secondary buses.
We're about to add a quirk to reset the Broadcom 4331 wireless card on
2011/2012 Macs, which is located on a secondary bus behind a PCIe root
port. To facilitate that, reintroduce scanning of secondary buses.
The commit message of 8659c406ad notes that scanning only the root bus
"saves quite some unnecessary scanning work". The algorithm used prior
to 8659c406ad was particularly time consuming because it scanned
buses 0 to 31 brute force. To avoid lengthening boot time, employ a
recursive strategy which only scans buses that are actually reachable
from the root bus.
Yinghai Lu pointed out that the secondary bus number read from a
bridge's config space may be invalid, in particular a value of 0 would
cause an infinite loop. The PCI core goes beyond that and recurses to a
child bus only if its bus number is greater than the parent bus number
(see pci_scan_bridge()). Since the root bus is numbered 0, this implies
that secondary buses may not be 0. Do the same on early scanning.
If this algorithm is found to significantly impact boot time or cause
infinite loops on broken hardware, it would be possible to limit its
recursion depth: The Broadcom 4331 quirk applies at depth 1, all others
at depth 0, so the bus need not be scanned deeper than that for now. An
alternative approach would be to revert to scanning only the root bus,
and apply the Broadcom 4331 quirk to the root ports 8086:1c12, 8086:1e12
and 8086:1e16. Apple always positioned the card behind either of these
three ports. The quirk would then check presence of the card in slot 0
below the root port and do its deed.
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-pci@vger.kernel.org
Link: http://lkml.kernel.org/r/f0daa70dac1a9b2483abdb31887173eb6ab77bdf.1465690253.git.lukas@wunner.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since the following commit:
8659c406ad ("x86: only scan the root bus in early PCI quirks")
... early quirks are only applied to devices on the root bus.
The motivation was to prevent application of the nvidia_bugs quirk on
secondary buses.
We're about to reintroduce scanning of secondary buses for a quirk to
reset the Broadcom 4331 wireless card on 2011/2012 Macs. To prevent
regressions, open code the requirement to apply nvidia_bugs only on the
root bus.
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/4d5477c1d76b2f0387a780f2142bbcdd9fee869b.1465690253.git.lukas@wunner.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The vertical indentation is kinda chaotic in intel-mid.h. Let's be
consistent with it.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1465992260-29897-1-git-send-email-andriy.shevchenko@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The new physical address randomized KASLR implementation can cause the
kernel to be aligned close to the end of physical memory. In this case,
_brk_end aligned to PMD will go beyond what is expected safe and hit
the assert in __phys_addr_symbol():
VIRTUAL_BUG_ON(y >= KERNEL_IMAGE_SIZE);
Instead, perform an inclusive range check to avoid incorrectly triggering
the assert:
kernel BUG at arch/x86/mm/physaddr.c:38!
invalid opcode: 0000 [#1] SMP
...
RIP: 0010:[<ffffffffbe055721>] __phys_addr_symbol+0x41/0x50
...
Call Trace:
[<ffffffffbe052eb9>] cpa_process_alias+0xa9/0x210
[<ffffffffbe109011>] ? do_raw_spin_unlock+0xc1/0x100
[<ffffffffbe051eef>] __change_page_attr_set_clr+0x8cf/0xbd0
[<ffffffffbe201a4d>] ? vm_unmap_aliases+0x7d/0x210
[<ffffffffbe05237c>] change_page_attr_set_clr+0x18c/0x4e0
[<ffffffffbe0534ec>] set_memory_4k+0x2c/0x40
[<ffffffffbefb08b3>] check_bugs+0x28/0x2a
[<ffffffffbefa4f52>] start_kernel+0x49d/0x4b9
[<ffffffffbefa4120>] ? early_idt_handler_array+0x120/0x120
[<ffffffffbefa4423>] x86_64_start_reservations+0x29/0x2b
[<ffffffffbefa4568>] x86_64_start_kernel+0x143/0x152
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dexuan Cui <decui@microsoft.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sai Praneeth <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Link: http://lkml.kernel.org/r/20160615190545.GA26071@www.outflux.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The arrays xstate_offsets[] and xstate_sizes[] record XSAVE standard-
format offsets and sizes. Values for non-extended state components
fpu and xmm's were not initialized or used. Ptrace format conversion
needs them. Fix it.
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Ravi V. Shankar <ravi.v.shankar@intel.com>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/cf3ea36cf30e2a99e37da6483e65446d018ff0a7.1466179491.git.yu-cheng.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Component offset print out was incorrect for XSAVES. Correct it and move
to a separate function.
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Ravi V. Shankar <ravi.v.shankar@intel.com>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/86602a8ac400626c6eca7125c3e15934866fc38e.1466179491.git.yu-cheng.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
XSAVES uses compacted format and is a kernel instruction. The kernel
should use standard-format, non-supervisor state data for PTRACE.
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
[ Edited away artificial linebreaks. ]
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Ravi V. Shankar <ravi.v.shankar@intel.com>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/de3d80949001305fe389799973b675cab055c457.1466179491.git.yu-cheng.yu@intel.com
[ Made various readability edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
CPUID function 0x0d, sub function (i, i > 1) returns in ebx the offset of
xstate component i. Zero is returned for a supervisor state. A supervisor
state can only be saved by XSAVES and XSAVES uses a compacted format.
There is no fixed offset for a supervisor state. This patch checks and
makes sure a supervisor state offset is not recorded or mis-used. This has
no effect in practice as we currently use no supervisor states, but it
would be good to fix.
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Ravi V. Shankar <ravi.v.shankar@intel.com>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/81b29e40d35d4cec9f2511a856fe769f34935a3f.1466179491.git.yu-cheng.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
CPUID function 0x0d, sub function (i, i > 1) returns in ecx[1] the
alignment requirement of component 'i' when the compacted format is used.
If ecx[1] is 0, component 'i' is located immediately following the preceding
component. If ecx[1] is 1, component 'i' is located on the next 64-byte
boundary following the preceding component.
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Ravi V. Shankar <ravi.v.shankar@intel.com>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/331e2bef1a0a7a584f06adde095b6bbfbe166472.1466179491.git.yu-cheng.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
per the Intel 64 and IA-32 Architecture Software Developer's Manual...
Add the reference clock for Intel Atom Processors
Based on the Airmont Microarchitecture.
Reported-by: Stephane Gasparini <stephane.gasparini@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/abc6a0f4b18281410da1a3f26e2819d8e03e144f.1466138954.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Atom processors use a 19.2 MHz crystal oscillator.
Early processors generate 100 MHz via 19.2 MHz * 26 / 5 = 99.84 MHz.
Later preocessor generate 100 MHz via 19.2 MHz * 125 / 24 = 100 MHz.
Update the Silvermont-based tables accordingly,
matching the Software Developers Manual.
Also, correct a 166 MHz entry that should have been 116 MHz,
and add a missing 80 MHz entry.
Reported-by: Stephane Gasparini <stephane.gasparini@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5d7561655dfb066ff10801b423405bae4d1cfbe2.1466138954.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Debugging messages are not necessary after all of the
possible hardware failures that never occur.
Instead, this code can simply return 0.
This code also doesn't need to print in the success case.
tsc_init() already prints the TSC frequency,
and apic=debug is available if anybody really is
interested in printing the LAPIC frequency.
Signed-off-by: Len Brown <len.brown@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/cf03279a125b95dfa9b8d3d5b4a66de09cd04050.1466138954.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
try_msr_calibrate_tsc() is currently Intel-specific,
and should not execute on any other vendor's parts.
Signed-off-by: Len Brown <len.brown@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1fe23c052826bdcfeb3d45045aa02246078cb5a7.1466138954.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This reverts commit:
e2724e9d96 ("x86/tsc: Add missing Cherrytrail frequency to the table")
... as it is incomplete, and is replaced by a more complete patch
later in this series.
Signed-off-by: Len Brown <len.brown@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/2199d0e959f7f71a18827268b5d060f8d3831639.1466138954.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This matches what is already done for prepare_exit_to_usermode(),
and saves about 60 clock cycles (4% speedup) with the benchmark
in the previous commit message.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm@vger.kernel.org
Link: http://lkml.kernel.org/r/1466434712-31440-3-git-send-email-pbonzini@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Thanks to all the work that was done by Andy Lutomirski and others,
enter_from_user_mode() and prepare_exit_to_usermode() are now called only with
interrupts disabled. Let's provide them a version of user_enter()/user_exit()
that skips saving and restoring the interrupt flag.
On an AMD-based machine I tested this patch on, with force-enabled
context tracking, the speed-up in system calls was 90 clock cycles or 6%,
measured with the following simple benchmark:
#include <sys/signal.h>
#include <time.h>
#include <unistd.h>
#include <stdio.h>
unsigned long rdtsc()
{
unsigned long result;
asm volatile("rdtsc; shl $32, %%rdx; mov %%eax, %%eax\n"
"or %%rdx, %%rax" : "=a" (result) : : "rdx");
return result;
}
int main()
{
unsigned long tsc1, tsc2;
int pid = getpid();
int i;
tsc1 = rdtsc();
for (i = 0; i < 100000000; i++)
kill(pid, SIGWINCH);
tsc2 = rdtsc();
printf("%ld\n", tsc2 - tsc1);
}
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm@vger.kernel.org
Link: http://lkml.kernel.org/r/1466434712-31440-2-git-send-email-pbonzini@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Intel MID platforms are using explicitly defined regulators.
Let the regulator core know that we do not have any additional
regulators left. This lets it substitute unprovided regulators with
dummy ones.
Without this change when CONFIG_REGULATOR=y the USB driver fails on getting
"vbus" regulator and SDHCI can't get "vmmc" and "vqmmc" regulators either.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1468071929-77383-1-git-send-email-andriy.shevchenko@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cpufeatures.h currently defines X86_BUG(9) twice on 32-bit:
#define X86_BUG_NULL_SEG X86_BUG(9) /* Nulling a selector preserves the base */
...
#ifdef CONFIG_X86_32
#define X86_BUG_ESPFIX X86_BUG(9) /* "" IRET to 16-bit SS corrupts ESP/RSP high bits */
#endif
I think what happened was that this added the X86_BUG_ESPFIX, but
in an #ifdef below most of the bugs:
58a5aac533 x86/entry/32: Introduce and use X86_BUG_ESPFIX instead of paravirt_enabled
Then this came along and added X86_BUG_NULL_SEG, but collided
with the earlier one that did the bug below the main block
defining all the X86_BUG()s.
7a5d670487 x86/cpu: Probe the behavior of nulling out a segment at boot time
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20160618001503.CEE1B141@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use mrfld as an abbreviation of Merrifield to be consistent with the rest of
the code.
In the future we are going to add more files here prefixed with 'mrfld'.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1466265094-146113-1-git-send-email-andriy.shevchenko@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Ingo Molnar:
"Three fixes:
- A boot crash fix with certain configs
- a MAINTAINERS entry update
- Documentation typo fixes"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/Documentation: Fix various typos in Documentation/x86/ files
x86/amd_nb: Fix boot crash on non-AMD systems
MAINTAINERS: Update the Calgary IOMMU entry
Pull perf fixes from Ingo Molnar:
"Various fixes:
- 32-bit callgraph bug fix
- suboptimal event group scheduling bug fix
- event constraint fixes for Broadwell/Skylake
- RAPL module name collision fix"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/core: Fix pmu::filter_match for SW-led groups
x86/perf/intel/rapl: Fix module name collision with powercap intel-rapl
perf/x86: Fix 32-bit perf user callgraph collection
perf/x86/intel: Update event constraints when HT is off
Add a new option (CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING) to define
the padding used for the physical memory mapping section when KASLR
memory is enabled. It ensures there is enough virtual address space when
CONFIG_MEMORY_HOTPLUG is used. The default value is 10 terabytes. If
CONFIG_MEMORY_HOTPLUG is not used, no space is reserved increasing the
entropy available.
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: Alexander Popov <alpopov@ptsecurity.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lv Zheng <lv.zheng@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: kernel-hardening@lists.openwall.com
Cc: linux-doc@vger.kernel.org
Link: http://lkml.kernel.org/r/1466556426-32664-10-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add vmalloc to the list of randomized memory regions.
The vmalloc memory region contains the allocation made through the vmalloc()
API. The allocations are done sequentially to prevent fragmentation and
each allocation address can easily be deduced especially from boot.
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: Alexander Popov <alpopov@ptsecurity.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lv Zheng <lv.zheng@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: kernel-hardening@lists.openwall.com
Cc: linux-doc@vger.kernel.org
Link: http://lkml.kernel.org/r/1466556426-32664-8-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add the physical mapping in the list of randomized memory regions.
The physical memory mapping holds most allocations from boot and heap
allocators. Knowing the base address and physical memory size, an attacker
can deduce the PDE virtual address for the vDSO memory page. This attack
was demonstrated at CanSecWest 2016, in the following presentation:
"Getting Physical: Extreme Abuse of Intel Based Paged Systems":
https://github.com/n3k/CansecWest2016_Getting_Physical_Extreme_Abuse_of_Intel_Based_Paging_Systems/blob/master/Presentation/CanSec2016_Presentation.pdf
(See second part of the presentation).
The exploits used against Linux worked successfully against 4.6+ but
fail with KASLR memory enabled:
https://github.com/n3k/CansecWest2016_Getting_Physical_Extreme_Abuse_of_Intel_Based_Paging_Systems/tree/master/Demos/Linux/exploits
Similar research was done at Google leading to this patch proposal.
Variants exists to overwrite /proc or /sys objects ACLs leading to
elevation of privileges. These variants were tested against 4.6+.
The page offset used by the compressed kernel retains the static value
since it is not yet randomized during this boot stage.
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: Alexander Popov <alpopov@ptsecurity.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lv Zheng <lv.zheng@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: kernel-hardening@lists.openwall.com
Cc: linux-doc@vger.kernel.org
Link: http://lkml.kernel.org/r/1466556426-32664-7-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Randomizes the virtual address space of kernel memory regions for
x86_64. This first patch adds the infrastructure and does not randomize
any region. The following patches will randomize the physical memory
mapping, vmalloc and vmemmap regions.
This security feature mitigates exploits relying on predictable kernel
addresses. These addresses can be used to disclose the kernel modules
base addresses or corrupt specific structures to elevate privileges
bypassing the current implementation of KASLR. This feature can be
enabled with the CONFIG_RANDOMIZE_MEMORY option.
The order of each memory region is not changed. The feature looks at the
available space for the regions based on different configuration options
and randomizes the base and space between each. The size of the physical
memory mapping is the available physical memory. No performance impact
was detected while testing the feature.
Entropy is generated using the KASLR early boot functions now shared in
the lib directory (originally written by Kees Cook). Randomization is
done on PGD & PUD page table levels to increase possible addresses. The
physical memory mapping code was adapted to support PUD level virtual
addresses. This implementation on the best configuration provides 30,000
possible virtual addresses in average for each memory region. An
additional low memory page is used to ensure each CPU can start with a
PGD aligned virtual address (for realmode).
x86/dump_pagetable was updated to correctly display each region.
Updated documentation on x86_64 memory layout accordingly.
Performance data, after all patches in the series:
Kernbench shows almost no difference (-+ less than 1%):
Before:
Average Optimal load -j 12 Run (std deviation): Elapsed Time 102.63 (1.2695)
User Time 1034.89 (1.18115) System Time 87.056 (0.456416) Percent CPU 1092.9
(13.892) Context Switches 199805 (3455.33) Sleeps 97907.8 (900.636)
After:
Average Optimal load -j 12 Run (std deviation): Elapsed Time 102.489 (1.10636)
User Time 1034.86 (1.36053) System Time 87.764 (0.49345) Percent CPU 1095
(12.7715) Context Switches 199036 (4298.1) Sleeps 97681.6 (1031.11)
Hackbench shows 0% difference on average (hackbench 90 repeated 10 times):
attemp,before,after 1,0.076,0.069 2,0.072,0.069 3,0.066,0.066 4,0.066,0.068
5,0.066,0.067 6,0.066,0.069 7,0.067,0.066 8,0.063,0.067 9,0.067,0.065
10,0.068,0.071 average,0.0677,0.0677
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: Alexander Popov <alpopov@ptsecurity.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lv Zheng <lv.zheng@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: kernel-hardening@lists.openwall.com
Cc: linux-doc@vger.kernel.org
Link: http://lkml.kernel.org/r/1466556426-32664-6-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use a separate global variable to define the trampoline PGD used to
start other processors. This change will allow KALSR memory
randomization to change the trampoline PGD to be correctly aligned with
physical memory.
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: Alexander Popov <alpopov@ptsecurity.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lv Zheng <lv.zheng@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: kernel-hardening@lists.openwall.com
Cc: linux-doc@vger.kernel.org
Link: http://lkml.kernel.org/r/1466556426-32664-5-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Minor change that allows early boot physical mapping of PUD level virtual
addresses. The current implementation expects the virtual address to be
PUD aligned. For KASLR memory randomization, we need to be able to
randomize the offset used on the PUD table.
It has no impact on current usage.
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: Alexander Popov <alpopov@ptsecurity.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lv Zheng <lv.zheng@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: kernel-hardening@lists.openwall.com
Cc: linux-doc@vger.kernel.org
Link: http://lkml.kernel.org/r/1466556426-32664-4-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Change the variable names in kernel_physical_mapping_init() and related
functions to correctly reflect physical and virtual memory addresses.
Also add comments on each function to describe usage and alignment
constraints.
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: Alexander Popov <alpopov@ptsecurity.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lv Zheng <lv.zheng@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: kernel-hardening@lists.openwall.com
Cc: linux-doc@vger.kernel.org
Link: http://lkml.kernel.org/r/1466556426-32664-3-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
No need to have it appear in objdump output.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160708141016.GH3808@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ye Xiaolong reported this boot crash:
|
| XZ-compressed data is corrupt
|
| -- System halted
|
Fix the bug in mem_avoid_overlap() of finding the earliest overlap.
Reported-and-tested-by: Ye Xiaolong <xiaolong.ye@intel.com>
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add possibility for 32-bit user-space applications to move
the vDSO mapping.
Previously, when a user-space app called mremap() for the vDSO
address, in the syscall return path it would land on the previous
address of the vDSOpage, resulting in segmentation violation.
Now it lands fine and returns to userspace with a remapped vDSO.
This will also fix the context.vdso pointer for 64-bit, which does
not affect the user of vDSO after mremap() currently, but this
may change in the future.
As suggested by Andy, return -EINVAL for mremap() that would
split the vDSO image: that operation cannot possibly result in
a working system so reject it.
Renamed and moved the text_mapping structure declaration inside
map_vdso(), as it used only there and now it complements the
vvar_mapping variable.
There is still a problem for remapping the vDSO in glibc
applications: the linker relocates addresses for syscalls
on the vDSO page, so you need to relink with the new
addresses.
Without that the next syscall through glibc may fail:
Program received signal SIGSEGV, Segmentation fault.
#0 0xf7fd9b80 in __kernel_vsyscall ()
#1 0xf7ec8238 in _exit () from /usr/lib32/libc.so.6
Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: 0x7f454c46@gmail.com
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20160628113539.13606-2-dsafonov@virtuozzo.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently it's possible for broken (or malicious) userspace to flood a
kernel log indefinitely with messages a-la
Program dmidecode tried to access /dev/mem between f0000->100000
because range_is_allowed() is case of CONFIG_STRICT_DEVMEM being turned on
dumps this information each and every time devmem_is_allowed() fails.
Reportedly userspace that is able to trigger contignuous flow of these
messages exists.
It would be possible to rate limit this message, but that'd have a
questionable value; the administrator wouldn't get information about all
the failing accessess, so then the information would be both superfluous
and incomplete at the same time :)
Returning EPERM (which is what is actually happening) is enough indication
for userspace what has happened; no need to log this particular error as
some sort of special condition.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Link: http://lkml.kernel.org/r/alpine.LNX.2.00.1607081137020.24757@cbobk.fhfr.pm
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a helper to dump supplied pt_regs and use it in the MSR exception
handling code to have precise stack traces pointing to the actual
function causing the MSR access exception and not the stack frame of the
exception handler itself.
The new output looks like this:
unchecked MSR access error: RDMSR from 0xdeadbeef at rIP: 0xffffffff8102ddb6 (early_init_intel+0x16/0x3a0)
00000000756e6547 ffffffff81c03f68 ffffffff81dd0940 ffffffff81c03f10
ffffffff81d42e65 0000000001000000 ffffffff81c03f58 ffffffff81d3e5a3
0000800000000000 ffffffff81800080 ffffffffffffffff 0000000000000000
Call Trace:
[<ffffffff81d42e65>] early_cpu_init+0xe7/0x136
[<ffffffff81d3e5a3>] setup_arch+0xa5/0x9df
[<ffffffff81d38bb9>] start_kernel+0x9f/0x43a
[<ffffffff81d38294>] x86_64_start_reservations+0x2f/0x31
[<ffffffff81d383fe>] x86_64_start_kernel+0x168/0x176
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1467671487-10344-4-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The comment suggests that show_stack(NULL, NULL) should backtrace the
current context, but the code doesn't match the comment. If regs are
given, start the "Stack:" hexdump at regs->sp.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1467671487-10344-2-git-send-email-bp@alien8.de
Link: http://lkml.kernel.org/r/efcd79bf4106d61f1cd258c2caa87f3a0618eeac.1466036668.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is not a module anymore and those can be retracted.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160704170551.GC7261@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We currently use wrmsr_on_cpu() 4 times when prepping for an error
injection. This will generate 4 IPIs for each MSR write. We can reduce
the number of IPIs to 1 by grouping the MSR writes and executing them
serially on the appropriate CPU.
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1467968983-4874-3-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Change bank_map type from 'char' to 'int' since we now have more than eight
banks in a system.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1467968983-4874-2-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Intel Edison board provides one of the SPI bus for user's connected devices.
Append platform data to get spidev enumerated over it.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Dan O'Donovan <dan@emutex.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1467677690-90007-1-git-send-email-andriy.shevchenko@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Intel Penwell is one of the first SoCs in Intel MID series. It has slightly
older version of PWRMU IP, though it is compatible with one found on Intel
Tangier. Since we are not using (yet) any advanced stuff in the driver we may
safely re-use what it's done for Intel Tangier for now.
Extend PWRMU driver to support Intel Penwell by adding PCI ID and re-using
existing ->set_initial_state() function.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1467749348-100518-2-git-send-email-andriy.shevchenko@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Intel MID platforms (Moorestown, Medfield, Clovertrail, Merrifield) are
sharing the code in the intel_mid_pci.c module. There is no need to
power off specific Moorestown devices after the following commit:
5823d0893e ("x86/platform/intel-mid: Add Power Management Unit driver")
... because the condition in mrfld_power_off_dev() is true for any platform
from the above list.
Remove duplicate power off certain devices on Intel Moorestown and rename
the affected functions to show that they are applied to any of Intel MID
platforms.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1467749348-100518-1-git-send-email-andriy.shevchenko@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- Fix a lock ordering issue in ACPICA introduced by a recent commit
that attempted to fix a deadlock in the dynamic table loading code
which in turn appeared after changes related to the handling of
module-level AML also made in this cycle (Lv Zheng).
- Fix a recent regression in the ACPI IRQ management code that may
cause PCI drivers to be unable to register an IRQ if that IRQ
happens to be shared with a device on the ISA bus, like the
parallel port, by reverting one commit entirely and restoring the
previous behavior in two other places (Sinan Kaya).
- Fix a recent regression in the ACPI AML debugger introduced by
the commit that removed incorrect usage of IS_ERR_VALUE() from
multiple places (Lv Zheng).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJXfuIeAAoJEILEb/54YlRxWbIP/iLT8J15RhFOoRYX4HXyULym
UxeqEHVySKaqQLYhkBRz0opclW6sJQ7GaKYpVR31V4eeoll1+iQeYBYWdyuezjwp
em3LvtLXTiLWWfRVNHg9AUOv4wc4q41m98MZ5ZScgTsUcexv2R1tt0KzLE/HNy1T
NU/7JyWBEF4AiFsfYBuqtknWudV7JF3/siJO+Q1o+HSA9DW5cdqR0K9oM+Sl9pTD
3yLpVY8DNJGLSA/7MyJlyLmZ6eJmTQbxcLO7oCQliqJ9jjBKkC4r3fgfQcOcoltT
S6O7ODcJwvqCA1sv271VyOckkhJmyT7zJi/L/yJOgiGRU1//0Vfyg6iRVou9OZmE
VcQT79W+6W6saWucoNDX1CLm6GzLIHP2e6leooL710nNmtTUgrSc6C4FT1KGGs0R
UTNPYKYtiaK54krsa48XonSCdGFIszeK8sa3DIjf6C/5AYX/eGBuGFm5dZlU/qzs
BNv+GyT/Vt/Cu3cNJUrsMugwDL5sp31u44mfM1c99LMXmnwzkPylRGR1aaO4TYOy
jE5LDwMryi5gpAF8/Es0AiU4Xa8O3p+AlD7PjZIUSEyMd9zr3fdpvF6dZwaiHP26
FX6paRbXi10mkXYGnRCbTOBV8i3PuNiplaZUT+XotHlEXOvAyMhVCVSM2XCAo1Wm
3IWSGzc5gwq1Pl4fihWi
=vKn9
-----END PGP SIGNATURE-----
Merge tag 'acpi-4.7-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI fixes from Rafael Wysocki:
"All of these fix recent regressions in ACPICA, in the ACPI PCI IRQ
management code and in the ACPI AML debugger.
Specifics:
- Fix a lock ordering issue in ACPICA introduced by a recent commit
that attempted to fix a deadlock in the dynamic table loading code
which in turn appeared after changes related to the handling of
module-level AML also made in this cycle (Lv Zheng).
- Fix a recent regression in the ACPI IRQ management code that may
cause PCI drivers to be unable to register an IRQ if that IRQ
happens to be shared with a device on the ISA bus, like the
parallel port, by reverting one commit entirely and restoring the
previous behavior in two other places (Sinan Kaya).
- Fix a recent regression in the ACPI AML debugger introduced by the
commit that removed incorrect usage of IS_ERR_VALUE() from multiple
places (Lv Zheng)"
* tag 'acpi-4.7-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
ACPI / debugger: Fix regression introduced by IS_ERR_VALUE() removal
ACPICA: Namespace: Fix namespace/interpreter lock ordering
ACPI,PCI,IRQ: separate ISA penalty calculation
Revert "ACPI, PCI, IRQ: remove redundant code in acpi_irq_penalty_init()"
ACPI,PCI,IRQ: factor in PCI possible
Track generated header files which aren't already in genhdr-y, alongside
generic-y wrappers in the */include/generated/[uapi/]asm/ directories.
Currently only x86 generates extra headers in these directories, for the
purposes of enumerating system calls for different ABIs, and xen
hypercalls.
This will allow the asm-generic wrapper handling code to remove stale
wrappers when files are removed from generic-y, without also removing
these headers which are generated separately.
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-kbuild@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Cc: Michal Marek <mmarek@suse.com>
Link: http://lkml.kernel.org/r/1466808144-23209-2-git-send-email-james.hogan@imgtec.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Remove MSR_NHM_TURBO_RATIO_LIMIT and MSR_IVT_TURBO_RATIO_LIMIT as
they are duplicate.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Pinned timers must carry the pinned attribute in the timer structure
itself, so convert the code to the new API.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Chris Mason <clm@fb.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: George Spelvin <linux@sciencehorizons.net>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160704094341.215783439@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pinned timers must carry the pinned attribute in the timer structure
itself, so convert the code to the new API.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Chris Mason <clm@fb.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: George Spelvin <linux@sciencehorizons.net>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160704094341.133837204@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch adds full support for Intel SKL client uncore PMU:
- Add support for SKL client CPU uncore PMU, which is similar to the
BDW client PMU driver. (There are some differences in CBOX numbering
and uncore control MSR.)
- Add new support for SkyLake Mobile uncore PMUs, for both CPU and PCI
uncore functionality.
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1467208912-8179-1-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since commit 4b6e2571bf the rapl perf module calls itself intel-rapl. That
name was already in use by the rapl powercap driver, which now fails to load
if the perf module is loaded. Fix the problem by renaming the perf module to
intel-rapl-perf, so that both modules can coexist.
Fixes: 4b6e2571bf ("x86/perf/intel/rapl: Make the Intel RAPL PMU driver modular")
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/1466694409-3620-1-git-send-email-ville.syrjala@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The kernel.h macro DIV_ROUND_UP performs the computation
(((n) + (d) - 1) /(d)) but is perhaps more readable.
The Coccinelle script used to make this change is as follows:
@haskernel@
@@
#include <linux/kernel.h>
@depends on haskernel@
expression n,d;
@@
(
- (n + d - 1) / d
+ DIV_ROUND_UP(n,d)
|
- (n + (d - 1)) / d
+ DIV_ROUND_UP(n,d)
)
Signed-off-by: Amitoj Kaur Chawla <amitoj1606@gmail.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
This will match how PMU errors are reported at check_hw_exists()'s
msr_fail label, which is reached when VPMU initialzation fails.
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
The pv_time_ops structure contains a function pointer for the
"steal_clock" functionality used only by KVM and Xen on ARM. Xen on x86
uses its own mechanism to account for the "stolen" time a thread wasn't
able to run due to hypervisor scheduling.
Add support in Xen arch independent time handling for this feature by
moving it out of the arm arch into drivers/xen and remove the x86 Xen
hack.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Stefano Stabellini <sstabellini@kernel.org>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Move x86 specific codes to architecture directory and export those EFI
runtime service functions. This will be useful for initializing runtime
service on ARM later.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Tested-by: Julien Grall <julien.grall@arm.com>
Signed-off-by: Stefano Stabellini <sstabellini@kernel.org>
Move xlated_setup_gnttab_pages to common place, so it can be reused by
ARM to setup grant table.
Rename it to xen_xlate_map_ballooned_pages.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Reviewed-by: Julien Grall <julien.grall@arm.com>
Tested-by: Julien Grall <julien.grall@arm.com>
Use ARRAY_SIZE instead of dividing sizeof array with sizeof an element
Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch updates the event constraints for non-PEBS mode for
Intel Broadwell and Skylake processors. When HT is off, each
CPU gets 8 generic counters. However, not all events can be
programmed on any of the 8 counters. This patch adds the
constraints for the MEM_* events which can only be measured on the
bottom 4 counters. The constraints are also valid when HT is off
because, then, there are only 4 generic counters and they are the
bottom counters.
Signed-off-by: Stephane Eranian <eranian@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: kan.liang@intel.com
Link: http://lkml.kernel.org/r/1467411742-13245-1-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJXcHi9AAoJEHm+PkMAQRiGSJ0H/2o4t9VWYmhyPC1sdIHoCExJ
P4tBrcZYBmKcsOmIfnJDa5g/+IdhouEUM0v0fHPogS2UUWT9eRuJWYD3sY+HpEQ+
heKTli8X73gsFB25odeIbIt0jAoSiiMYWDrWqLNsuUV1tjEYVA8rH0SM94FiOC/5
7WVWXLTuH+Rm7JHP18BnKxmMMbzrTFmwisLMqFKyfZRRSlS+/ix7iLUNO9AFa39B
YHxNPihLrZ0oONyCOAQoHTIXXrw0cQbxV2utg3vnMcCZdme2xOn+iXMntTSKfZ39
iC9/T0vsO3R6OrRo2aDZAnCPUAniXnMEIhrKG37WMyXpj6cucZ/2QiNXcXviGV4=
=iLte
-----END PGP SIGNATURE-----
Back-merge tag 'v4.7-rc5' into drm-next
Linux 4.7-rc5
The fsl-dcu pull needs -rc3 so go to -rc5 for now.
Trying to make the ISA and PCI init functionality common turned out
to be a bad idea, because the ISA path depends on external
functionality.
Restore the previous behavior and limit the refactoring to PCI
interrupts only.
Fixes: 1fcb6a813c "ACPI,PCI,IRQ: remove redundant code in acpi_irq_penalty_init()"
Signed-off-by: Sinan Kaya <okaya@codeaurora.org>
Tested-by: Wim Osterholt <wim@djo.tudelft.nl>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Currently aesni uses an async ctr(aes) to derive the rfc4106
subkey, which was presumably copied over from the generic rfc4106
code. Over there it's done that way because we already have a
ctr(aes) spawn. But it is simply overkill for aesni since we
have to go get a ctr(aes) from scratch anyway.
This patch simplifies the subkey derivation by using a straight
aes cipher instead.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
INFO: rcu_sched detected stalls on CPUs/tasks:
1-...: (11800 GPs behind) idle=45d/140000000000000/0 softirq=0/0 fqs=21663
(detected by 0, t=65016 jiffies, g=11500, c=11499, q=719)
Task dump for CPU 1:
qemu-system-x86 R running task 0 3529 3525 0x00080808
ffff8802021791a0 ffff880212895040 0000000000000001 00007f1c2c00db40
ffff8801dd20fcd3 ffffc90002b98000 ffff8801dd20fc88 ffff8801dd20fcf8
0000000000000286 ffff8801dd2ac538 ffff8801dd20fcc0 ffffffffc06949c9
Call Trace:
? kvm_write_guest_cached+0xb9/0x160 [kvm]
? __delay+0xf/0x20
? wait_lapic_expire+0x14a/0x200 [kvm]
? kvm_arch_vcpu_ioctl_run+0xcbe/0x1b00 [kvm]
? kvm_arch_vcpu_ioctl_run+0xe34/0x1b00 [kvm]
? kvm_vcpu_ioctl+0x2d3/0x7c0 [kvm]
? __fget+0x5/0x210
? do_vfs_ioctl+0x96/0x6a0
? __fget_light+0x2a/0x90
? SyS_ioctl+0x79/0x90
? do_syscall_64+0x7c/0x1e0
? entry_SYSCALL64_slow_path+0x25/0x25
This can be reproduced readily by running a full dynticks guest(since hrtimer
in guest is heavily used) w/ lapic_timer_advance disabled.
If fail to program hardware preemption timer, we will fallback to hrtimer based
method, however, a previous programmed preemption timer miss to cancel in this
scenario which results in one hardware preemption timer and one hrtimer emulated
tsc deadline timer run simultaneously. So sometimes the target guest deadline
tsc is earlier than guest tsc, which leads to the computation in vmx_set_hv_timer
can underflow and cause delta_tsc to be set a huge value, then host soft lockup
as above.
This patch fix it by cancelling the previous programmed preemption timer if there
is once we failed to program the new preemption timer and fallback to hrtimer
based method.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Yunhong Jiang <yunhong.jiang@intel.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the TSC deadline timer is programmed really close to the deadline or
even in the past, the computation in vmx_set_hv_timer can underflow and
cause delta_tsc to be set to a huge value. This generally results
in vmx_set_hv_timer returning -ERANGE, but we can fix it by limiting
delta_tsc to be positive or zero.
Reported-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This gains a few clock cycles per vmexit. On Intel there is no need
anymore to enable the interrupts in vmx_handle_external_intr, since
we are using the "acknowledge interrupt on exit" feature. AMD
needs to do that, and must be careful to avoid the interrupt shadow.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the functions from context_tracking.h directly.
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel Merrifield uses a special address space reserved for Family-Level
Interface Shim (FLIS) that allows consumers to mux and configure pins.
Create a platform device for it.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1467226894-107109-1-git-send-email-andriy.shevchenko@linux.intel.com
[ Fixed typo. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Len Brown noticed something was amiss in our INTEL_FAM6_*
definitions. It seems like model 0x1F was a Nehalem part,
marketed as "Intel Core i7 and i5 Processors" (according to the
SDM). But, although it was a Nehalem 0x1F had some uncore events
which were shared with Westmere.
Len also mentioned he thought it was called "Havendale", which
Wikipedia says was graphics-oriented and canceled:
https://en.wikipedia.org/wiki/Nehalem_(microarchitecture)
So either way, it's probably not imporant what we call it, but
call it Nehalem to be accurate, and add a "G" since it seems
graphics-related. If it were canceled that would be a good reason
why it's so sparsely and inconsistently referred to in the code.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160629192737.949C41A8@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The initcall had unnecessary pr_notice() messages which are useless
noise on distro kernels.
Also, push the GART init error message where it belongs, *after* the
check whether the current hw we're loaded on, supports GART at all.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Battersby <tonyb@cybernetics.com>
Link: http://lkml.kernel.org/r/1466097230-5333-3-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix boot crash that triggers if this driver is built into a kernel and
run on non-AMD systems.
AMD northbridges users call amd_cache_northbridges() and it returns
a negative value to signal that we weren't able to cache/detect any
northbridges on the system.
At least, it should do so as all its callers expect it to do so. But it
does return a negative value only when kmalloc() fails.
Fix it to return -ENODEV if there are no NBs cached as otherwise, amd_nb
users like amd64_edac, for example, which relies on it to know whether
it should load or not, gets loaded on systems like Intel Xeons where it
shouldn't.
Reported-and-tested-by: Tony Battersby <tonyb@cybernetics.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1466097230-5333-2-git-send-email-bp@alien8.de
Link: https://lkml.kernel.org/r/5761BEB0.9000807@cybernetics.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Logan Gunthorpe reports that hibernation stopped working reliably for
him after commit ab76f7b4ab (x86/mm: Set NX on gap between __ex_table
and rodata).
That turns out to be a consequence of a long-standing issue with the
64-bit image restoration code on x86, which is that the temporary
page tables set up by it to avoid page tables corruption when the
last bits of the image kernel's memory contents are copied into
their original page frames re-use the boot kernel's text mapping,
but that mapping may very well get corrupted just like any other
part of the page tables. Of course, if that happens, the final
jump to the image kernel's entry point will go to nowhere.
The exact reason why commit ab76f7b4ab matters here is that it
sometimes causes a PMD of a large page to be split into PTEs
that are allocated dynamically and get corrupted during image
restoration as described above.
To fix that issue note that the code copying the last bits of the
image kernel's memory contents to the page frames occupied by them
previoulsy doesn't use the kernel text mapping, because it runs from
a special page covered by the identity mapping set up for that code
from scratch. Hence, the kernel text mapping is only needed before
that code starts to run and then it will only be used just for the
final jump to the image kernel's entry point.
Accordingly, the temporary page tables set up in swsusp_arch_resume()
on x86-64 need to contain the kernel text mapping too. That mapping
is only going to be used for the final jump to the image kernel, so
it only needs to cover the image kernel's entry point, because the
first thing the image kernel does after getting control back is to
switch over to its own original page tables. Moreover, the virtual
address of the image kernel's entry point in that mapping has to be
the same as the one mapped by the image kernel's page tables.
With that in mind, modify the x86-64's arch_hibernation_header_save()
and arch_hibernation_header_restore() routines to pass the physical
address of the image kernel's entry point (in addition to its virtual
address) to the boot kernel (a small piece of assembly code involved
in passing the entry point's virtual address to the image kernel is
not necessary any more after that, so drop it). Update RESTORE_MAGIC
too to reflect the image header format change.
Next, in set_up_temporary_mappings(), use the physical and virtual
addresses of the image kernel's entry point passed in the image
header to set up a minimum kernel text mapping (using memory pages
that won't be overwritten by the image kernel's memory contents) that
will map those addresses to each other as appropriate.
This makes the concern about the possible corruption of the original
boot kernel text mapping go away and if the the minimum kernel text
mapping used for the final jump marks the image kernel's entry point
memory as executable, the jump to it is guaraneed to succeed.
Fixes: ab76f7b4ab (x86/mm: Set NX on gap between __ex_table and rodata)
Link: http://marc.info/?l=linux-pm&m=146372852823760&w=2
Reported-by: Logan Gunthorpe <logang@deltatee.com>
Reported-and-tested-by: Borislav Petkov <bp@suse.de>
Tested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Every time we add a word to our cpu features, we need to add
something like this in two places:
(((bit)>>5)==16 && (1UL<<((bit)&31) & REQUIRED_MASK16))
The trick is getting the "16" in this case in both places. I've
now screwed this up twice, so as pennance, I've come up with
this patch to keep me and other poor souls from doing the same.
I also commented the logic behind the bit manipulation showcased
above.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160629200110.1BA8949E@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
x86 has two macros which allow us to evaluate some CPUID-based
features at compile time:
REQUIRED_MASK_BIT_SET()
DISABLED_MASK_BIT_SET()
They're both defined by having the compiler check the bit
argument against some constant masks of features.
But, when adding new CPUID leaves, we need to check new words
for these macros. So make sure that those macros and the
REQUIRED_MASK* and DISABLED_MASK* get updated when necessary.
This looks kinda silly to have an open-coded value ("18" in
this case) open-coded in 5 places in the code. But, we really do
need 5 places updated when NCAPINTS gets bumped, so now we just
force the issue.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160629200108.92466F6F@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We had a new CPUID "NCAPINT" word added, but the REQUIRED_MASK and
DISABLED_MASK macros did not get updated. Update them.
None of the features was needed in these masks, so there was no
harm, but we should keep them updated anyway.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160629200107.8D3C9A31@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch introduces the assembly routines to do SHA512 computation on
buffers belonging to several jobs at once. The assembly routines are
optimized with AVX2 instructions that have 4 data lanes and using AVX2
registers.
Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch introduces the data structures and prototypes of functions
needed for computing SHA512 hash using multi-buffer. Included are the
structures of the multi-buffer SHA512 job, job scheduler in C and x86
assembly.
Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch introduces the routines used to submit and flush buffers
belonging to SHA512 crypto jobs to the SHA512 multibuffer algorithm.
It is implemented mostly in assembly optimized with AVX2 instructions.
Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch introduces the multi-buffer job manager which is responsible
for submitting scatter-gather buffers from several SHA512 jobs to the
multi-buffer algorithm. It also contains the flush routine that's called
by the crypto daemon to complete the job when no new jobs arrive before
the deadline of maximum latency of a SHA512 crypto job.
The SHA512 multi-buffer crypto algorithm is defined and initialized in this
patch.
Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
I couldn't get Xen to boot a L2 HVM when it was nested under KVM - it was
getting a GP(0) on a rather unspecial vmread from Xen:
(XEN) ----[ Xen-4.7.0-rc x86_64 debug=n Not tainted ]----
(XEN) CPU: 1
(XEN) RIP: e008:[<ffff82d0801e629e>] vmx_get_segment_register+0x14e/0x450
(XEN) RFLAGS: 0000000000010202 CONTEXT: hypervisor (d1v0)
(XEN) rax: ffff82d0801e6288 rbx: ffff83003ffbfb7c rcx: fffffffffffab928
(XEN) rdx: 0000000000000000 rsi: 0000000000000000 rdi: ffff83000bdd0000
(XEN) rbp: ffff83000bdd0000 rsp: ffff83003ffbfab0 r8: ffff830038813910
(XEN) r9: ffff83003faf3958 r10: 0000000a3b9f7640 r11: ffff83003f82d418
(XEN) r12: 0000000000000000 r13: ffff83003ffbffff r14: 0000000000004802
(XEN) r15: 0000000000000008 cr0: 0000000080050033 cr4: 00000000001526e0
(XEN) cr3: 000000003fc79000 cr2: 0000000000000000
(XEN) ds: 0000 es: 0000 fs: 0000 gs: 0000 ss: 0000 cs: e008
(XEN) Xen code around <ffff82d0801e629e> (vmx_get_segment_register+0x14e/0x450):
(XEN) 00 00 41 be 02 48 00 00 <44> 0f 78 74 24 08 0f 86 38 56 00 00 b8 08 68 00
(XEN) Xen stack trace from rsp=ffff83003ffbfab0:
...
(XEN) Xen call trace:
(XEN) [<ffff82d0801e629e>] vmx_get_segment_register+0x14e/0x450
(XEN) [<ffff82d0801f3695>] get_page_from_gfn_p2m+0x165/0x300
(XEN) [<ffff82d0801bfe32>] hvmemul_get_seg_reg+0x52/0x60
(XEN) [<ffff82d0801bfe93>] hvm_emulate_prepare+0x53/0x70
(XEN) [<ffff82d0801ccacb>] handle_mmio+0x2b/0xd0
(XEN) [<ffff82d0801be591>] emulate.c#_hvm_emulate_one+0x111/0x2c0
(XEN) [<ffff82d0801cd6a4>] handle_hvm_io_completion+0x274/0x2a0
(XEN) [<ffff82d0801f334a>] __get_gfn_type_access+0xfa/0x270
(XEN) [<ffff82d08012f3bb>] timer.c#add_entry+0x4b/0xb0
(XEN) [<ffff82d08012f80c>] timer.c#remove_entry+0x7c/0x90
(XEN) [<ffff82d0801c8433>] hvm_do_resume+0x23/0x140
(XEN) [<ffff82d0801e4fe7>] vmx_do_resume+0xa7/0x140
(XEN) [<ffff82d080164aeb>] context_switch+0x13b/0xe40
(XEN) [<ffff82d080128e6e>] schedule.c#schedule+0x22e/0x570
(XEN) [<ffff82d08012c0cc>] softirq.c#__do_softirq+0x5c/0x90
(XEN) [<ffff82d0801602c5>] domain.c#idle_loop+0x25/0x50
(XEN)
(XEN)
(XEN) ****************************************
(XEN) Panic on CPU 1:
(XEN) GENERAL PROTECTION FAULT
(XEN) [error_code=0000]
(XEN) ****************************************
Tracing my host KVM showed it was the one injecting the GP(0) when
emulating the VMREAD and checking the destination segment permissions in
get_vmx_mem_address():
3) | vmx_handle_exit() {
3) | handle_vmread() {
3) | nested_vmx_check_permission() {
3) | vmx_get_segment() {
3) 0.074 us | vmx_read_guest_seg_base();
3) 0.065 us | vmx_read_guest_seg_selector();
3) 0.066 us | vmx_read_guest_seg_ar();
3) 1.636 us | }
3) 0.058 us | vmx_get_rflags();
3) 0.062 us | vmx_read_guest_seg_ar();
3) 3.469 us | }
3) | vmx_get_cs_db_l_bits() {
3) 0.058 us | vmx_read_guest_seg_ar();
3) 0.662 us | }
3) | get_vmx_mem_address() {
3) 0.068 us | vmx_cache_reg();
3) | vmx_get_segment() {
3) 0.074 us | vmx_read_guest_seg_base();
3) 0.068 us | vmx_read_guest_seg_selector();
3) 0.071 us | vmx_read_guest_seg_ar();
3) 1.756 us | }
3) | kvm_queue_exception_e() {
3) 0.066 us | kvm_multiple_exception();
3) 0.684 us | }
3) 4.085 us | }
3) 9.833 us | }
3) + 10.366 us | }
Cross-checking the KVM/VMX VMREAD emulation code with the Intel Software
Developper Manual Volume 3C - "VMREAD - Read Field from Virtual-Machine
Control Structure", I found that we're enforcing that the destination
operand is NOT located in a read-only data segment or any code segment when
the L1 is in long mode - BUT that check should only happen when it is in
protected mode.
Shuffling the code a bit to make our emulation follow the specification
allows me to boot a Xen dom0 in a nested KVM and start HVM L2 guests
without problems.
Fixes: f9eb4af67c ("KVM: nVMX: VMX instructions: add checks for #GP/#SS exceptions")
Signed-off-by: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Eugene Korenevsky <ekorenevsky@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: linux-stable <stable@vger.kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The host timer which emulates the guest LAPIC TSC deadline
timer has its expiration diminished by lapic_timer_advance_ns
nanoseconds. Therefore if, at wait_lapic_expire, a difference
larger than lapic_timer_advance_ns is encountered, delay at most
lapic_timer_advance_ns.
This fixes a problem where the guest can cause the host
to delay for large amounts of time.
Reported-by: Alan Jenkins <alan.christopher.jenkins@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the inline function nsec_to_cycles from x86.c to x86.h, as
the next patch uses it from lapic.c.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There is a generic function __pvclock_read_cycles to be used to get both
flags and cycles. For function pvclock_read_flags, it's useless to get
cycles value. To make this function be more effective, get this variable
flags directly in function.
Signed-off-by: Minfei Huang <mnghuan@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Function __pvclock_read_cycles is short enough, so there is no need to
have another function pvclock_get_nsec_offset to calculate tsc delta.
It's better to combine it into function __pvclock_read_cycles.
Remove useless variables in function __pvclock_read_cycles.
Signed-off-by: Minfei Huang <mnghuan@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Protocol for the "version" fields is: hypervisor raises it (making it
uneven) before it starts updating the fields and raises it again (making
it even) when it is done. Thus the guest can make sure the time values
it got are consistent by checking the version before and after reading
them.
Add CPU barries after getting version value just like what function
vread_pvclock does, because all of callees in this function is inline.
Fixes: 502dfeff23
Cc: stable@vger.kernel.org
Signed-off-by: Minfei Huang <mnghuan@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Nothing calls the efi_get_time() function on x86, but it does suffer
from the 32-bit time_t overflow in 2038.
This removes the function, we can always put it back in case we need
it later.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1466839230-12781-8-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, the efi_thunk macro has some semi-duplicated code in it that
can be replaced with the arch_efi_call_virt_setup/teardown macros. This
commit simply replaces the duplicated code with those macros.
Suggested-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Alex Thorlton <athorlton@sgi.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roy Franz <roy.franz@linaro.org>
Cc: Russ Anderson <rja@sgi.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1466839230-12781-7-git-send-email-matt@codeblueprint.co.uk
[ Renamed variables to the standard __ prefix. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that the efi_call_virt() macro has been generalized to be able to
use EFI system tables besides efi.systab, we are able to convert our
uv_bios_call() wrapper to use this standard EFI callback mechanism.
This simple change is part of a much larger effort to recover from some
issues with the way we were mapping in some of our MMRs, and the way
that we were doing our BIOS callbacks, which were uncovered by commit
67a9108ed4 ("x86/efi: Build our own page table structures").
The first issue that this uncovered was that we were relying on the EFI
memory mapping mechanism to map in our MMR space for us, which, while
reliable, was technically a bug, as it relied on "undefined" behavior in
the mapping code.
The reason we were able to piggyback on the EFI memory mapping code to
map in our MMRs was because, previously, EFI code used the
trampoline_pgd, which shares a few entries with the main kernel pgd. It
just so happened, that the memory range containing our MMRs was inside
one of those shared regions, which kept our code working without issue
for quite a while.
Anyways, once we discovered this problem, we brought back our original
code to map in the MMRs with commit:
08914f436b ("x86/platform/UV: Bring back the call to map_low_mmrs in uv_system_init")
This got our systems a little further along, but we were still running
into trouble with our EFI callbacks, which prevented us from booting
all the way up.
Our first step towards fixing the BIOS callbacks was to get our
uv_bios_call() wrapper updated to use efi_call_virt() instead of the plain
efi_call(). The previous patch took care of the effort needed to make
that possible. Along the way, we hit a major issue with some confusion
about how to properly pull arguments higher than number 6 off the stack
in the efi_call() code, which resulted in the following commit from Linus:
683ad8092c ("x86/efi: Fix 7-parameter efi_call()s")
Now that all of those issues are out of the way, we're able to make this
simple change to use the new efi_call_virt_pointer() in uv_bios_call()
which gets our machines booting, running properly, and able to execute our
callbacks with 6+ arguments.
Note that, since we are now using the EFI page table when we make our
function call, we are no longer able to make the call using the __va()
of our function pointer, since the memory range containing that address
isn't mapped into the EFI page table. For now, we will use the physical
address of the function directly, since that is mapped into the EFI page
table. In the near future, we're going to get some code added in to
properly update our function pointer to its virtual address during
SetVirtualAddressMap.
Signed-off-by: Alex Thorlton <athorlton@sgi.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roy Franz <roy.franz@linaro.org>
Cc: Russ Anderson <rja@sgi.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1466839230-12781-6-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit makes a few slight modifications to the efi_call_virt() macro
to get it to work with function pointers that are stored in locations
other than efi.systab->runtime, and renames the macro to
efi_call_virt_pointer(). The majority of the changes here are to pull
these macros up into header files so that they can be accessed from
outside of drivers/firmware/efi/runtime-wrappers.c.
The most significant change not directly related to the code move is to
add an extra "p" argument into the appropriate efi_call macros, and use
that new argument in place of the, formerly hard-coded,
efi.systab->runtime pointer.
The last piece of the puzzle was to add an efi_call_virt() macro back into
drivers/firmware/efi/runtime-wrappers.c to wrap around the new
efi_call_virt_pointer() macro - this was mainly to keep the code from
looking too cluttered by adding a bunch of extra references to
efi.systab->runtime everywhere.
Note that I also broke up the code in the efi_call_virt_pointer() macro a
bit in the process of moving it.
Signed-off-by: Alex Thorlton <athorlton@sgi.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roy Franz <roy.franz@linaro.org>
Cc: Russ Anderson <rja@sgi.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1466839230-12781-5-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Remove unused variable 'efi', it is never used. This fixes the following
clang build warning:
arch/x86/boot/compressed/eboot.c:803:2: warning: Value stored to 'efi' is never read
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1466839230-12781-4-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The whole rdmsr()/wrmsr() for lbr_from got a little unweildy with the
sign extension quirk, provide a few simple wrappers to clean things up.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Carrillo-Cisneros <davidcc@google.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add quirk for context switch to save/restore the value of
MSR_LAST_BRANCH_FROM_x when LBR is enabled and there is potential for
kernel addresses to be in the lbr_from register.
To test this patch, use a perf tool and kernel with the patch
next in this series. That patch removes the work around that masked
the hw bug:
$ ./lbr_perf record --call-graph lbr -e cycles:k sleep 1
where lbr_perf is the patched perf tool, that allows to specify :k
on lbr mode. The above command will trigger a #GPF :
WARNING: CPU: 28 PID: 14096 at arch/x86/mm/extable.c:65 ex_handler_wrmsr_unsafe+0x70/0x80
unchecked MSR access error: WRMSR to 0x681 (tried to write 0x1fffffff81010794)
...
Call Trace:
[<ffffffff8167af49>] dump_stack+0x4d/0x63
[<ffffffff810b9b15>] __warn+0xe5/0x100
[<ffffffff810b9be9>] warn_slowpath_fmt+0x49/0x50
[<ffffffff810abb40>] ex_handler_wrmsr_unsafe+0x70/0x80
[<ffffffff810abc42>] fixup_exception+0x42/0x50
[<ffffffff81079d1a>] do_general_protection+0x8a/0x160
[<ffffffff81684ec2>] general_protection+0x22/0x30
[<ffffffff810101b9>] ? intel_pmu_lbr_sched_task+0xc9/0x380
[<ffffffff81009d7c>] intel_pmu_sched_task+0x3c/0x60
[<ffffffff81003a2b>] x86_pmu_sched_task+0x1b/0x20
[<ffffffff81192a5b>] perf_pmu_sched_task+0x6b/0xb0
[<ffffffff8119746d>] __perf_event_task_sched_in+0x7d/0x150
[<ffffffff810dd9dc>] finish_task_switch+0x15c/0x200
[<ffffffff8167f894>] __schedule+0x274/0x6cc
[<ffffffff8167fdd9>] schedule+0x39/0x90
[<ffffffff81675398>] exit_to_usermode_loop+0x39/0x89
[<ffffffff810028ce>] prepare_exit_to_usermode+0x2e/0x30
[<ffffffff81683c1b>] retint_user+0x8/0x10
Signed-off-by: David Carrillo-Cisneros <davidcc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Stephane Eranian <eranian@google.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1466533874-52003-5-git-send-email-davidcc@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Intel's SDM states that bits 61:62 in MSR_LAST_BRANCH_FROM_x are the
TSX flags for formats with LBR_TSX flags (i.e. LBR_FORMAT_EIP_EFLAGS2).
However, when the CPU has TSX support deactivated, bits 61:62 actually
behave as follows:
- For wrmsr(), bits 61:62 are considered part of the sign extension.
- When capturing branches, the LBR hw will always clear bits 61:62.
regardless of the sign extension.
Therefore, if:
1) LBR has TSX format.
2) CPU has no TSX support enabled.
... then any value passed to wrmsr() must be sign extended to 63 bits
and any value from rdmsr() must be converted to have a sign extension
of 61 bits, ignoring the values at TSX flags.
This bug was masked by the work-around to the Intel's CPU bug:
BJ94. "LBR May Contain Incorrect Information When Using FREEZE_LBRS_ON_PMI"
in Document Number: 324643-037US.
The aforementioned work-around uses hw flags to filter out all kernel
branches, limiting LBR callstack to user level execution only.
Since user addresses are not sign extended, they do not trigger the wrmsr()
bug in MSR_LAST_BRANCH_FROM_x when saved/restored at context switch.
To verify the hw bug:
$ perf record -b -e cycles sleep 1
$ rdmsr -p 0 0x680
0x1fffffffb0b9b0cc
$ wrmsr -p 0 0x680 0x1fffffffb0b9b0cc
write(): Input/output error
The quirk for LBR_FROM_ MSRs is required before calls to wrmsrl() and
after rdmsrl().
This patch introduces it for wrmsrl()'s done for testing LBR support.
Future patch in series adds the quirk for context switch, that would
be required if LBR callstack is to be enabled for ring 0.
Signed-off-by: David Carrillo-Cisneros <davidcc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Stephane Eranian <eranian@google.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1466533874-52003-3-git-send-email-davidcc@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following commit:
338b522ca4 ("perf/x86/intel: Protect LBR and extra_regs against KVM lying")
added an additional test to LBR support detection that is performed after
printing the LBR support statement to dmesg.
Move the LBR support output after the very last test, to make sure we
print the true status of LBR support.
Signed-off-by: David Carrillo-Cisneros <davidcc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Stephane Eranian <eranian@google.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1466533874-52003-2-git-send-email-davidcc@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Until now, there was only support for the SHA1 multibuffer algorithm.
Hence, there was just one sha-mb folder. Now, with the introduction of
the SHA256 multi-buffer algorithm , it is logical to name the existing
folder as sha1-mb.
Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch introduces the assembly routines to do SHA256 computation
on buffers belonging to several jobs at once. The assembly routines
are optimized with AVX2 instructions that have 8 data lanes and using
AVX2 registers.
Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch introduces the data structures and prototypes of
functions needed for computing SHA256 hash using multi-buffer.
Included are the structures of the multi-buffer SHA256 job,
job scheduler in C and x86 assembly.
Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch introduces the routines used to submit and flush buffers
belonging to SHA256 crypto jobs to the SHA256 multibuffer algorithm. It
is implemented mostly in assembly optimized with AVX2 instructions.
Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch introduces the multi-buffer job manager which is responsible for
submitting scatter-gather buffers from several SHA256 jobs to the
multi-buffer algorithm. It also contains the flush routine to that's
called by the crypto daemon to complete the job when no new jobs arrive
before the deadline of maximum latency of a SHA256 crypto job.
The SHA256 multi-buffer crypto algorithm is defined and initialized in
this patch.
Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Currently the kernel image physical address randomization's lower
boundary is the original kernel load address.
For bootloaders that load kernels into very high memory (e.g. kexec),
this means randomization takes place in a very small window at the
top of memory, ignoring the large region of physical memory below
the load address.
Since mem_avoid[] is already correctly tracking the regions that must be
avoided, this patch changes the minimum address to whatever is less:
512M (to conservatively avoid unknown things in lower memory) or the
load address. Now, for example, if the kernel is loaded at 8G, [512M,
8G) will be added to the list of possible physical memory positions.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
[ Rewrote the changelog, refactored the code to use min(). ]
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1464216334-17200-6-git-send-email-keescook@chromium.org
[ Edited the changelog some more, plus the code comment as well. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We want the physical address to be randomized anywhere between
16MB and the top of physical memory (up to 64TB).
This patch exchanges the prior slots[] array for the new slot_areas[]
array, and lifts the limitation of KERNEL_IMAGE_SIZE on the physical
address offset for 64-bit. As before, process_e820_entry() walks
memory and populates slot_areas[], splitting on any detected mem_avoid
collisions.
Finally, since the slots[] array and its associated functions are not
needed any more, so they are removed.
Based on earlier patches by Baoquan He.
Originally-from: Baoquan He <bhe@redhat.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1464216334-17200-5-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current KASLR implementation randomizes the physical and virtual
addresses of the kernel together (both are offset by the same amount). It
calculates the delta of the physical address where vmlinux was linked
to load and where it is finally loaded. If the delta is not equal to 0
(i.e. the kernel was relocated), relocation handling needs be done.
On 64-bit, this patch randomizes both the physical address where kernel
is decompressed and the virtual address where kernel text is mapped and
will execute from. We now have two values being chosen, so the function
arguments are reorganized to pass by pointer so they can be directly
updated. Since relocation handling only depends on the virtual address,
we must check the virtual delta, not the physical delta for processing
kernel relocations. This also populates the page table for the new
virtual address range. 32-bit does not support a separate virtual address,
so it continues to use the physical offset for its virtual offset.
Additionally updates the sanity checks done on the resulting kernel
addresses since they are potentially separate now.
[kees: rewrote changelog, limited virtual split to 64-bit only, update checks]
[kees: fix CONFIG_RANDOMIZE_BASE=n boot failure]
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1464216334-17200-4-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This extracts the call to prepare_level4() into a top-level function
that the user of the pagetable.c interface must call to initialize
the new page tables. For clarity and to match the "finalize" function,
it has been renamed to initialize_identity_maps(). This function also
gains the initialization of mapping_info so we don't have to do it each
time in add_identity_map().
Additionally add copyright notice to the top, to make it clear that the
bulk of the pagetable.c code was written by Yinghai, and that I just
added bugs later. :)
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1464216334-17200-3-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The compressed kernel is built with -fPIC/-fPIE so that it can run in any
location a bootloader happens to put it. However, since ELF relocation
processing is not happening (and all the relocation information has
already been stripped at link time), none of the code can use data
relocations (e.g. static assignments of pointers). This is already noted
in a warning comment at the top of misc.c, but this adds an explicit
check for the condition during the linking stage to block any such bugs
from appearing.
If this was in place with the earlier bug in pagetable.c, the build
would fail like this:
...
CC arch/x86/boot/compressed/pagetable.o
DATAREL arch/x86/boot/compressed/vmlinux
error: arch/x86/boot/compressed/pagetable.o has data relocations!
make[2]: *** [arch/x86/boot/compressed/vmlinux] Error 1
...
A clean build shows:
...
CC arch/x86/boot/compressed/pagetable.o
DATAREL arch/x86/boot/compressed/vmlinux
LD arch/x86/boot/compressed/vmlinux
...
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1464216334-17200-2-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With the following fix:
70595b479ce1 ("x86/power/64: Fix crash whan the hibernation code passes control to the image kernel")
... there is no longer a problem with hibernation resuming a
KASLR-booted kernel image, so remove the restriction.
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Len Brown <len.brown@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Linux PM list <linux-pm@vger.kernel.org>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-doc@vger.kernel.org
Link: http://lkml.kernel.org/r/20160613221002.GA29719@www.outflux.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The mc146818_get_time/mc146818_set_time functions are rather large
inline functions in a global header file and are used in several
drivers and in x86 specific code.
Here we move them into a separate .c file that is compiled whenever
any of the users require it. This also lets us remove the linux/acpi.h
header inclusion from mc146818rtc.h, which in turn avoids some
warnings about duplicate definition of the TRUE/FALSE macros.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Alexandre Belloni <alexandre.belloni@free-electrons.com>
Pull x86 kprobe fix from Thomas Gleixner:
"A single fix clearing the TF bit when a fault is single stepped"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
kprobes/x86: Clear TF bit in fault on single-stepping
Merge misc fixes from Andrew Morton:
"Two weeks worth of fixes here"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (41 commits)
init/main.c: fix initcall_blacklisted on ia64, ppc64 and parisc64
autofs: don't get stuck in a loop if vfs_write() returns an error
mm/page_owner: avoid null pointer dereference
tools/vm/slabinfo: fix spelling mistake: "Ocurrences" -> "Occurrences"
fs/nilfs2: fix potential underflow in call to crc32_le
oom, suspend: fix oom_reaper vs. oom_killer_disable race
ocfs2: disable BUG assertions in reading blocks
mm, compaction: abort free scanner if split fails
mm: prevent KASAN false positives in kmemleak
mm/hugetlb: clear compound_mapcount when freeing gigantic pages
mm/swap.c: flush lru pvecs on compound page arrival
memcg: css_alloc should return an ERR_PTR value on error
memcg: mem_cgroup_migrate() may be called with irq disabled
hugetlb: fix nr_pmds accounting with shared page tables
Revert "mm: disable fault around on emulated access bit architecture"
Revert "mm: make faultaround produce old ptes"
mailmap: add Boris Brezillon's email
mailmap: add Antoine Tenart's email
mm, sl[au]b: add __GFP_ATOMIC to the GFP reclaim mask
mm: mempool: kasan: don't poot mempool objects in quarantine
...
- Fix x86 PV dom0 crash during early boot on some hardware.
- Fix two pciback bugs affects certain devices.
- Fix potential overflow when clearing page tables in x86 PV.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJXbTwWAAoJEFxbo/MsZsTRu7IH/1sAn6KFHfP2Px/Sydh/pxZH
0oOW+2aZLVqu8BRiHj6YeQVRuhzdIgSoU9wMmCFX7rz1m6gq4c60cJF/lKYmlbxp
0lyxbf+4451rh/qNVV3pm5J+w6R818Y2hoIOu2BK3ppJ4W8nXbW5kHHvtYQCXu0A
mApSgMHBbWv6kkAxEuUMa5wOipENiAIYg+pFqwo+y9V8sS8zAqqHivct3T6ucNyV
u/WB076QAnL8abcwKELXsyV5hmcfJv/CoMS9Qv6GwIv1z9d0UVS2+qoo1Qox2sAP
79AoJn2E6p7rkb/HdhdSYjja22oct1ahrfSgCSBEwLNZCMc5srKdwK6Zspe5y+0=
=qqrC
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.7b-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen bug fixes from David Vrabel:
- fix x86 PV dom0 crash during early boot on some hardware
- fix two pciback bugs affects certain devices
- fix potential overflow when clearing page tables in x86 PV
* tag 'for-linus-4.7b-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen-pciback: return proper values during BAR sizing
x86/xen: avoid m2p lookup when setting early page table entries
xen/pciback: Fix conf_space read/write overlap check.
x86/xen: fix upper bound of pmd loop in xen_cleanhighmap()
xen/balloon: Fix declared-but-not-defined warning
__GFP_REPEAT has a rather weak semantic but since it has been introduced
around 2.6.12 it has been ignored for low order allocations.
efi_alloc_page_tables uses __GFP_REPEAT but it allocates an order-0
page. This means that this flag has never been actually useful here
because it has always been used only for PAGE_ALLOC_COSTLY requests.
Link: http://lkml.kernel.org/r/1464599699-30131-4-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__GFP_REPEAT has a rather weak semantic but since it has been introduced
around 2.6.12 it has been ignored for low order allocations.
PGALLOC_GFP uses __GFP_REPEAT but none of the allocation which uses this
flag is for more than order-0. This means that this flag has never been
actually useful here because it has always been used only for
PAGE_ALLOC_COSTLY requests.
Link: http://lkml.kernel.org/r/1464599699-30131-3-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the third version of the patchset previously sent [1]. I have
basically only rebased it on top of 4.7-rc1 tree and dropped "dm: get
rid of superfluous gfp flags" which went through dm tree. I am sending
it now because it is tree wide and chances for conflicts are reduced
considerably when we want to target rc2. I plan to send the next step
and rename the flag and move to a better semantic later during this
release cycle so we will have a new semantic ready for 4.8 merge window
hopefully.
Motivation:
While working on something unrelated I've checked the current usage of
__GFP_REPEAT in the tree. It seems that a majority of the usage is and
always has been bogus because __GFP_REPEAT has always been about costly
high order allocations while we are using it for order-0 or very small
orders very often. It seems that a big pile of them is just a
copy&paste when a code has been adopted from one arch to another.
I think it makes some sense to get rid of them because they are just
making the semantic more unclear. Please note that GFP_REPEAT is
documented as
* __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt
* _might_ fail. This depends upon the particular VM implementation.
while !costly requests have basically nofail semantic. So one could
reasonably expect that order-0 request with __GFP_REPEAT will not loop
for ever. This is not implemented right now though.
I would like to move on with __GFP_REPEAT and define a better semantic
for it.
$ git grep __GFP_REPEAT origin/master | wc -l
111
$ git grep __GFP_REPEAT | wc -l
36
So we are down to the third after this patch series. The remaining
places really seem to be relying on __GFP_REPEAT due to large allocation
requests. This still needs some double checking which I will do later
after all the simple ones are sorted out.
I am touching a lot of arch specific code here and I hope I got it right
but as a matter of fact I even didn't compile test for some archs as I
do not have cross compiler for them. Patches should be quite trivial to
review for stupid compile mistakes though. The tricky parts are usually
hidden by macro definitions and thats where I would appreciate help from
arch maintainers.
[1] http://lkml.kernel.org/r/1461849846-27209-1-git-send-email-mhocko@kernel.org
This patch (of 19):
__GFP_REPEAT has a rather weak semantic but since it has been introduced
around 2.6.12 it has been ignored for low order allocations. Yet we
have the full kernel tree with its usage for apparently order-0
allocations. This is really confusing because __GFP_REPEAT is
explicitly documented to allow allocation failures which is a weaker
semantic than the current order-0 has (basically nofail).
Let's simply drop __GFP_REPEAT from those places. This would allow to
identify place which really need allocator to retry harder and formulate
a more specific semantic for what the flag is supposed to do actually.
Link: http://lkml.kernel.org/r/1464599699-30131-2-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen Liqin <liqin.linux@gmail.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com> [for tile]
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: John Crispin <blogic@openwrt.org>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As the actual pointer value is the same for the thread stack allocation
and the thread_info, code that confused the two worked fine, but will
break when the thread info is moved away from the stack allocation. It
also looks very confusing.
For example, the kprobe code wanted to know the current top of stack.
To do that, it used this:
(unsigned long)current_thread_info() + THREAD_SIZE
which did indeed give the correct value. But it's not only a fairly
nonsensical expression, it's also rather complex, especially since we
actually have this:
static inline unsigned long current_top_of_stack(void)
which not only gives us the value we are interested in, but happens to
be how "current_thread_info()" is currently defined as:
(struct thread_info *)(current_top_of_stack() - THREAD_SIZE);
so using current_thread_info() to figure out the top of the stack really
is a very round-about thing to do.
The other cases are just simpler confusion about task_thread_info() vs
task_stack_page(), which currently return the same pointer - but if you
want the stack page, you really should be using the latter one.
And there was one entirely unused assignment of the current stack to a
thread_info pointer.
All cleaned up to make more sense today, and make it easier to move the
thread_info away from the stack in the future.
No semantic changes.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
None of the code actually wants a thread_info, it all wants a
task_struct, and it's just converting to a thread_info pointer much too
early.
No semantic change.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KVM reads the current boottime value as a struct timespec in order to
calculate the guest wallclock time, resulting in an overflow in 2038
on 32-bit systems.
The data then gets passed as an unsigned 32-bit number to the guest,
and that in turn overflows in 2106.
We cannot do much about the second overflow, which affects both 32-bit
and 64-bit hosts, but we can ensure that they both behave the same
way and don't overflow until 2106, by using getboottime64() to read
a timespec64 value.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On Intel platforms, this patch adds LMCE to KVM MCE supported
capabilities and handles guest access to LMCE related MSRs.
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
[Haozhong: macro KVM_MCE_CAP_SUPPORTED => variable kvm_mce_cap_supported
Only enable LMCE on Intel platform
Check MSR_IA32_FEATURE_CONTROL when handling guest
access to MSR_IA32_MCG_EXT_CTL]
Signed-off-by: Haozhong Zhang <haozhong.zhang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM currently does not check the value written to guest
MSR_IA32_FEATURE_CONTROL, though bits corresponding to disabled features
may be set. This patch makes KVM to validate individual bits written to
guest MSR_IA32_FEATURE_CONTROL according to enabled features.
Signed-off-by: Haozhong Zhang <haozhong.zhang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
msr_ia32_feature_control will be used for LMCE and not depend only on
nested anymore, so move it from struct nested_vmx to struct vcpu_vmx.
Signed-off-by: Haozhong Zhang <haozhong.zhang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When page tables entries are set using xen_set_pte_init() during early
boot there is no page fault handler that could handle a fault when
performing an M2P lookup.
In 64 bit guests (usually dom0) early_ioremap() would fault in
xen_set_pte_init() because an M2P lookup faults because the MFN is in
MMIO space and not mapped in the M2P. This lookup is done to see if
the PFN in in the range used for the initial page table pages, so that
the PTE may be set as read-only.
The M2P lookup can be avoided by moving the check (and clear of RW)
earlier when the PFN is still available.
Reported-by: Kevin Moraga <kmoragas@riseup.net>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
xen_cleanhighmap() is operating on level2_kernel_pgt only. The upper
bound of the loop setting non-kernel-image entries to zero should not
exceed the size of level2_kernel_pgt.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Herbert wants the sha1-mb algorithm to have an async implementation:
https://lkml.org/lkml/2016/4/5/286.
Currently, sha1-mb uses an async interface for the outer algorithm
and a sync interface for the inner algorithm. This patch introduces
a async interface for even the inner algorithm.
Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch fixes an old bug where requests can be reordered because
some are processed by cryptd while others are processed directly
in softirq context.
The fix is to always postpone to cryptd if there are currently
requests outstanding from the same tfm.
This patch also removes the redundant use of cryptd in the async
init function as init never touches the FPU.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch fixes an old bug where gcm requests can be reordered
because some are processed by cryptd while others are processed
directly in softirq context.
The fix is to always postpone to cryptd if there are currently
requests outstanding from the same tfm.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
On 16-byte requests the optimised version is actually slower than
the generic code, so we should simply use that instead.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Cheers,
We want to use the table upgrade feature in ARM64.
Introduce a new configuration option that allows that.
Signed-off-by: Aleksey Makarov <aleksey.makarov@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The constant that defines max phys address where the new upgraded
ACPI table should be allocated is arch-specific. Move it to
<asm/acpi.h>
Signed-off-by: Aleksey Makarov <aleksey.makarov@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Refer initrd_start, initrd_end directly from drivers/acpi/tables.c.
This allows to use the table upgrade feature in architectures
other than x86. Also this simplifies header files.
The patch renames acpi_table_initrd_init() to acpi_table_upgrade()
(what reflects the purpose of the function) and removes the unneeded
wraps early_acpi_table_init() and early_initrd_acpi_init().
Signed-off-by: Aleksey Makarov <aleksey.makarov@linaro.org>
Acked-by: Lv Zheng <lv.zheng@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Child devices in a VMD domain that want to use MSI are slowing down MSI-X
using devices sharing the same vectors. Move all MSI usage to a single VMD
vector, and MSI-X devices can share the rest.
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Jon Derrick <jonathan.derrick@intel.com>
Otherwise APIC code assumes VMD's IRQ domain can be managed by the APIC,
resulting in an invalid cast of irq_data during irq_force_complete_move().
Signed-off-by: Jon Derrick <jonathan.derrick@intel.com>
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Enabling interrupts may result in an interrupt raised and serviced while
VMD holds a lock, resulting in contention with the spin lock held while
enabling interrupts.
The solution is to disable preemption and save/restore the state during
interrupt enable and disable.
Fixes lockdep:
======================================================
[ INFO: HARDIRQ-safe -> HARDIRQ-unsafe lock order detected ]
4.6.0-2016-06-16-lockdep+ #47 Tainted: G E
------------------------------------------------------
kworker/0:1/447 [HC0[0]:SC0[0]:HE0:SE1] is trying to acquire:
(list_lock){+.+...}, at: [<ffffffffa04eb8fc>] vmd_irq_enable+0x3c/0x70 [vmd]
and this task is already holding:
(&irq_desc_lock_class){-.-...}, at: [<ffffffff810e1ff6>] __setup_irq+0xa6/0x610
which would create a new lock dependency:
(&irq_desc_lock_class){-.-...} -> (list_lock){+.+...}
but this new dependency connects a HARDIRQ-irq-safe lock:
(&irq_desc_lock_class){-.-...}
... which became HARDIRQ-irq-safe at:
[<ffffffff810c9f21>] __lock_acquire+0x981/0xe00
[<ffffffff810cb039>] lock_acquire+0x119/0x220
[<ffffffff8167294d>] _raw_spin_lock+0x3d/0x80
[<ffffffff810e36d4>] handle_level_irq+0x24/0x110
[<ffffffff8101f20a>] handle_irq+0x1a/0x30
[<ffffffff81675fc1>] do_IRQ+0x61/0x120
[<ffffffff8167404c>] ret_from_intr+0x0/0x20
[<ffffffff81672e30>] _raw_spin_unlock_irqrestore+0x40/0x60
[<ffffffff810e21ee>] __setup_irq+0x29e/0x610
[<ffffffff810e25a1>] setup_irq+0x41/0x90
[<ffffffff81f5777f>] setup_default_timer_irq+0x1e/0x20
[<ffffffff81f57798>] hpet_time_init+0x17/0x19
[<ffffffff81f5775a>] x86_late_time_init+0xa/0x11
[<ffffffff81f51e9b>] start_kernel+0x382/0x436
[<ffffffff81f51308>] x86_64_start_reservations+0x2a/0x2c
[<ffffffff81f51445>] x86_64_start_kernel+0x13b/0x14a
to a HARDIRQ-irq-unsafe lock:
(list_lock){+.+...}
... which became HARDIRQ-irq-unsafe at:
... [<ffffffff810c9d8e>] __lock_acquire+0x7ee/0xe00
[<ffffffff810cb039>] lock_acquire+0x119/0x220
[<ffffffff8167294d>] _raw_spin_lock+0x3d/0x80
[<ffffffffa04eba42>] vmd_msi_init+0x72/0x150 [vmd]
[<ffffffff810e8597>] msi_domain_alloc+0xb7/0x140
[<ffffffff810e6b10>] irq_domain_alloc_irqs_recursive+0x40/0xa0
[<ffffffff810e6cea>] __irq_domain_alloc_irqs+0x14a/0x330
[<ffffffff810e8a8c>] msi_domain_alloc_irqs+0x8c/0x1d0
[<ffffffff813ca4e3>] pci_msi_setup_msi_irqs+0x43/0x70
[<ffffffff813cada1>] pci_enable_msi_range+0x131/0x280
[<ffffffff813bf5e0>] pcie_port_device_register+0x320/0x4e0
[<ffffffff813bf9a4>] pcie_portdrv_probe+0x34/0x60
[<ffffffff813b0e85>] local_pci_probe+0x45/0xa0
[<ffffffff813b226b>] pci_device_probe+0xdb/0x130
[<ffffffff8149e3cc>] driver_probe_device+0x22c/0x440
[<ffffffff8149e774>] __device_attach_driver+0x94/0x110
[<ffffffff8149bfad>] bus_for_each_drv+0x5d/0x90
[<ffffffff8149e030>] __device_attach+0xc0/0x140
[<ffffffff8149e0c0>] device_attach+0x10/0x20
[<ffffffff813a77f7>] pci_bus_add_device+0x47/0x90
[<ffffffff813a7879>] pci_bus_add_devices+0x39/0x70
[<ffffffff813aaba7>] pci_rescan_bus+0x27/0x30
[<ffffffffa04ec1af>] vmd_probe+0x68f/0x76c [vmd]
[<ffffffff813b0e85>] local_pci_probe+0x45/0xa0
[<ffffffff81088064>] work_for_cpu_fn+0x14/0x20
[<ffffffff8108c244>] process_one_work+0x1f4/0x740
[<ffffffff8108c9c6>] worker_thread+0x236/0x4f0
[<ffffffff810935c2>] kthread+0xf2/0x110
[<ffffffff816738f2>] ret_from_fork+0x22/0x50
other info that might help us debug this:
Possible interrupt unsafe locking scenario:
CPU0 CPU1
---- ----
lock(list_lock);
local_irq_disable();
lock(&irq_desc_lock_class);
lock(list_lock);
<Interrupt>
lock(&irq_desc_lock_class);
*** DEADLOCK ***
Signed-off-by: Jon Derrick <jonathan.derrick@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Keith Busch <keith.busch@intel.com>
Here are a small number of debugfs, ISA, and one driver core fix for 4.7-rc4.
All of these resolve reported issues. The ISA ones have spent the least
amount of time in linux-next, sorry about that, I didn't realize they
were regressions that needed to get in now (thanks to Thorsten for the
prodding!) but they do all pass the 0-day bot tests. The others have
been in linux-next for a while now.
Full details about them are in the shortlog below.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iEYEABECAAYFAldlbeQACgkQMUfUDdst+ymnFACfaWhEKA/84jwNNHiim92diJrY
zYsAoLOmpBw68yL6qTSZbcWJF4Flb6Xk
=N8M2
-----END PGP SIGNATURE-----
Merge tag 'driver-core-4.7-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core fixes from Greg KH:
"Here are a small number of debugfs, ISA, and one driver core fix for
4.7-rc4.
All of these resolve reported issues. The ISA ones have spent the
least amount of time in linux-next, sorry about that, I didn't realize
they were regressions that needed to get in now (thanks to Thorsten
for the prodding!) but they do all pass the 0-day bot tests. The
others have been in linux-next for a while now.
Full details about them are in the shortlog below"
* tag 'driver-core-4.7-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core:
isa: Dummy isa_register_driver should return error code
isa: Call isa_bus_init before dependent ISA bus drivers register
watchdog: ebc-c384_wdt: Allow build for X86_64
iio: stx104: Allow build for X86_64
gpio: Allow PC/104 devices on X86_64
isa: Allow ISA-style drivers on modern systems
base: make module_create_drivers_dir race-free
debugfs: open_proxy_open(): avoid double fops release
debugfs: full_proxy_open(): free proxy on ->open() failure
kernel/kcov: unproxify debugfs file's fops
XSAVES is a kernel instruction and uses a compacted format. When working
with user space, the kernel should provide standard-format, non-supervisor
state data. We cannot do __copy_to_user() from a compacted-format kernel
xstate area to a signal frame.
Dave Hansen proposes this method to simplify copy xstate directly to user.
This patch is based on an earlier patch from Fenghua Yu <fenghua.yu@intel.com>
Originally-from: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Ravi V. Shankar <ravi.v.shankar@intel.com>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/c36f419d525517d04209a28dd8e1e5af9000036e.1463760376.git.yu-cheng.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Keep init_fpstate.xsave.header.xfeatures as zero for init optimization.
This is important for init optimization that is implemented in processor.
If a bit corresponding to an xstate in xstate_bv is 0, it means the
xstate is in init status and will not be read from memory to the processor
during XRSTOR/XRSTORS instruction. This largely impacts context switch
performance.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Ravi V. Shankar <ravi.v.shankar@intel.com>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/2fb4ec7f18b76e8cda057a8c0038def74a9b8044.1463760376.git.yu-cheng.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
User space uses standard format xsave area. fpstate in signal frame
should have standard format size.
To explicitly distinguish between xstate size in kernel space and the
one in user space, we rename 'xstate_size' to 'fpu_kernel_xstate_size'.
Cleanup only, no change in functionality.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
[ Rebased the patch and cleaned up the naming. ]
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Ravi V. Shankar <ravi.v.shankar@intel.com>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/2ecbae347a5152d94be52adf7d0f3b7305d90d99.1463760376.git.yu-cheng.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The kernel xstate area can be in standard or compacted format;
it is always in standard format for user mode. When XSAVES is
enabled, the kernel uses the compacted format and it is necessary
to use a separate fpu_user_xstate_size for signal/ptrace frames.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
[ Rebased the patch and cleaned up the naming. ]
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Ravi V. Shankar <ravi.v.shankar@intel.com>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/8756ec34dabddfc727cda5743195eb81e8caf91c.1463760376.git.yu-cheng.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is no way to know which device in a VMD triggered an interrupt
without invoking every registered driver's actions. This uses the
untracked irq handler so that a less used device does not trigger
spurious interrupt.
We have been previously recommending users to enable "noirqdebug", but do
not want to force a system setting just to keep this domain functional.
Signed-off-by: Keith Busch <keith.busch@intel.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: linux-pci@vger.kernel.org
Cc: Jon Derrick <jonathan.derrick@intel.com>
Link: http://lkml.kernel.org/r/1466200821-29159-2-git-send-email-keith.busch@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Several modern devices, such as PC/104 cards, are expected to run on
modern systems via an ISA bus interface. Since ISA is a legacy interface
for most modern architectures, ISA support should remain disabled in
general. Support for ISA-style drivers should be enabled on a per driver
basis.
To allow ISA-style drivers on modern systems, this patch introduces the
ISA_BUS_API and ISA_BUS Kconfig options. The ISA bus driver will now
build conditionally on the ISA_BUS_API Kconfig option, which defaults to
the legacy ISA Kconfig option. The ISA_BUS Kconfig option allows the
ISA_BUS_API Kconfig option to be selected on architectures which do not
enable ISA (e.g. X86_64).
The ISA_BUS Kconfig option is currently only implemented for X86
architectures. Other architectures may have their own ISA_BUS Kconfig
options added as required.
Reviewed-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
- One new kvm_stat for s390
- Correctly disable VT-d posted interrupts with the rest of posted interrupts
- "make randconfig" fix for x86 AMD
- Off-by-one in irq route check (the "good" kind that errors out a bit too
early!)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJXYrXKAAoJEL/70l94x66D1MUH/i9kPqfDq+XveHyiY4ovI2Vl
lD1P0dJoXPRjrJJ/LRulr3TiGDVsW6QZ8SnA5QNQvxDdlc7CzS8ZgqaiLPUh8TKJ
OofVUaFgm77MDvGJuJOOJ159ghO+7KwPsq1P05xpO2HRxAD+q1/u1yjfOz7fIEqC
iMne68rfv0OeiMlBOo8G2e1Xmtk1GKNBhmRItUgOF/jVtP2RSvV5o+2rcQ5LS3g6
KV/fpWtRumd3R+TdRvacjADgvWrSokDfph+Ha9qp7sBjkVGLLZ/hdHzTzIimXKF6
x4muv1HYzKSGaCJB2yMLYuy/KJ8zbsk7co0bjn1SmzrSweJxMkDGwLp1Ffau6iM=
=N4kr
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
- miscellaneous fixes for MIPS and s390
- one new kvm_stat for s390
- correctly disable VT-d posted interrupts with the rest of posted
interrupts
- "make randconfig" fix for x86 AMD
- off-by-one in irq route check (the "good" kind that errors out a bit
too early!)
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvm: vmx: check apicv is active before using VT-d posted interrupt
kvm: Fix irq route entries exceeding KVM_MAX_IRQ_ROUTES
kvm: svm: Do not support AVIC if not CONFIG_X86_LOCAL_APIC
kvm: svm: Fix implicit declaration for __default_cpu_present_to_apicid()
MIPS: KVM: Fix CACHE triggered exception emulation
MIPS: KVM: Don't unwind PC when emulating CACHE
MIPS: KVM: Include bit 31 in segment matches
MIPS: KVM: Fix modular KVM under QEMU
KVM: s390: Add stats for PEI events
KVM: s390: ignore IBC if zero
Since all architectures have this implemented now natively, remove this
dead code.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Implement FETCH-OP atomic primitives, these are very similar to the
existing OP-RETURN primitives we already have, except they return the
value of the atomic variable _before_ modification.
This is especially useful for irreversible operations -- such as
bitops (because it becomes impossible to reconstruct the state prior
to modification).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Hook the VMX preemption timer to the "hv timer" functionality added
by the previous patch. This includes: checking if the feature is
supported, if the feature is broken on the CPU, the hooks to
setup/clean the VMX preemption timer, arming the timer on vmentry
and handling the vmexit.
A module parameter states if the VMX preemption timer should be
utilized.
Signed-off-by: Yunhong Jiang <yunhong.jiang@intel.com>
[Move hv_deadline_tsc to struct vcpu_vmx, use -1 as the "unset" value.
Put all VMX bits here. Enable it by default #yolo. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Prepare to switch from preemption timer to hrtimer in the
vmx_pre/post_block. Current functions are only for posted interrupt,
rename them accordingly.
Signed-off-by: Yunhong Jiang <yunhong.jiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The VMX preemption timer can be used to virtualize the TSC deadline timer.
The VMX preemption timer is armed when the vCPU is running, and a VMExit
will happen if the virtual TSC deadline timer expires.
When the vCPU thread is blocked because of HLT, KVM will switch to use
an hrtimer, and then go back to the VMX preemption timer when the vCPU
thread is unblocked.
This solution avoids the complex OS's hrtimer system, and the host
timer interrupt handling cost, replacing them with a little math
(for guest->host TSC and host TSC->preemption timer conversion)
and a cheaper VMexit. This benefits latency for isolated pCPUs.
[A word about performance... Yunhong reported a 30% reduction in average
latency from cyclictest. I made a similar test with tscdeadline_latency
from kvm-unit-tests, and measured
- ~20 clock cycles loss (out of ~3200, so less than 1% but still
statistically significant) in the worst case where the test halts
just after programming the TSC deadline timer
- ~800 clock cycles gain (25% reduction in latency) in the best case
where the test busy waits.
I removed the VMX bits from Yunhong's patch, to concentrate them in the
next patch - Paolo]
Signed-off-by: Yunhong Jiang <yunhong.jiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The function to start the tsc deadline timer virtualization will be used
also by the pre_block hook when we use the preemption timer; change it
to a separate function. No logic changes.
Signed-off-by: Yunhong Jiang <yunhong.jiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VT-d posted interrupt is relying on the CPU side's posted interrupt.
Need to check whether VCPU's APICv is active before enabing VT-d
posted interrupt.
Fixes: d62caabb41
Cc: stable@vger.kernel.org
Signed-off-by: Yang Zhang <yang.zhang.wz@gmail.com>
Signed-off-by: Shengge Ding <shengge.dsg@alibaba-inc.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The commit 8221c13700 ("svm: Manage vcpu load/unload when enable AVIC")
introduces a build error due to implicit function declaration
when #ifdef CONFIG_X86_32 and #ifndef CONFIG_X86_LOCAL_APIC
(as reported by Kbuild test robot i386-randconfig-x0-06121009).
So, this patch introduces kvm_cpu_get_apicid() wrapper
around __default_cpu_present_to_apicid() with additional
handling if CONFIG_X86_LOCAL_APIC is not defined.
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Fixes: commit 8221c13700 ("svm: Manage vcpu load/unload when enable AVIC")
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The new created_vcpus field makes it possible to avoid the race between
irqchip and VCPU creation in a much nicer way; just check under kvm->lock
whether a VCPU has already been created.
We can then remove KVM_APIC_ARCHITECTURE too, because at this point the
symbol is only governing the default definition of kvm_vcpu_compatible.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add Power Management Unit driver to handle power states of South Complex
devices on Intel Tangier. In the future it might be expanded to cover North
Complex devices as well.
With this driver the power state of the host controllers such as SPI, I2C,
UART, eMMC, and DMA would be managed.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: David Cohen <david.a.cohen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mika Westerberg <mika.westerberg@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-pci@vger.kernel.org
Link: http://lkml.kernel.org/r/1465928985-12113-1-git-send-email-andriy.shevchenko@linux.intel.com
[ Minor readability edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This moves seccomp after ptrace on x86 to that seccomp can catch changes
made by ptrace. Emulation should skip the rest of processing too.
We can get rid of test_thread_flag because there's no longer any
opportunity for seccomp to mess with ptrace state before invoking
ptrace.
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: x86@kernel.org
Cc: Andy Lutomirski <luto@kernel.org>
I added two-phase syscall entry work back when the entry slow path
was very slow. Nowadays, the entry slow path is fast and two-phase
entry work serves no purpose. Remove it.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Currently, if arch code wants to supply seccomp_data directly to
seccomp (which is generally much faster than having seccomp do it
using the syscall_get_xyz() API), it has to use the two-phase
seccomp hooks. Add it to the easy hooks, too.
Cc: linux-arch@vger.kernel.org
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Intel Merrifield platform has Punit generation that somehow compatible to what
is already supported by punit_atom_debug driver.
Add necessary bits to enable that support.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1465842481-136852-2-git-send-email-andriy.shevchenko@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On Intel Merrifield platform several PCI devices have a bogus configuration,
i.e. the IRQ0 had been assigned to few of them. These are PCI root bridge,
eMMC0, HS UART common registers, PWM, and HDMI. The actual interrupt line can
be allocated to one device exclusively, in our case to eMMC0, the rest should
cope without it and basically known drivers for them are not using interrupt
line at all.
Rework IRQ0 workaround, which was previously done to avoid conflict between
eMMC0 and HS UART common registers, to behave differently based on the device
in question, i.e. allocate interrupt line to eMMC0, but silently skip interrupt
allocation for the rest except HS UART common registers which are not used
anyway. With this rework IOSF MBI driver in particular would be used.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Fixes: 39d9b77b8d ("x86/pci/intel_mid_pci: Work around for IRQ0 assignment")
Link: http://lkml.kernel.org/r/1465842481-136852-1-git-send-email-andriy.shevchenko@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>