CPU_FTRS_POWER9_DD2_2 is missing from CPU_FTRS_ALWAYS.
That doesn't cause any bug, because CPU_FTRS_POWER9_DD2_2 adds new bits
that don't appear in other values, so when anded with the other masks
the result is the same.
But for consistency we should have all values in the CPU_FTRS_ALWAYS
mask, so that the logic is robust against the values being changed in
future.
Fixes: b5af4f2793 ("powerpc: Add CPU feature bits for TM bug workarounds on POWER9 v2.2")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220519122205.746276-1-mpe@ellerman.id.au
powerpc is the only platform that do not rely on
cpu_up()->try_online_node() to bring up a numa node,
and special cases it, instead, deep in its own machinery:
dlpar_online_cpu
find_and_online_cpu_nid
try_online_node
This should not be needed, but the thing is that the try_online_node()
from cpu_up() will not apply on the right node, because cpu_to_node()
will return the old mapping numa<->cpu that gets set on boot stage
for all possible cpus.
That can be seen easily if we try to print out the numa node passed
to try_online_node() in cpu_up().
The thing is that the numa<->cpu mapping does not get updated till a much
later stage in start_secondary:
start_secondary:
set_numa_node(numa_cpu_lookup_table[cpu])
But we do not really care, as we already now the
CPU <-> NUMA associativity back in find_and_online_cpu_nid(),
so let us make use of that and set the proper numa<->cpu mapping,
so cpu_to_node() in cpu_up() returns the right node and
try_online_node() can do its work.
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Tested-by: Geetika Moolchandani <Geetika.Moolchandani1@ibm.com>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220411074934.4632-1-osalvador@suse.de
Implement a limited form of KASAN for Book3S 64-bit machines running under
the Radix MMU, supporting only outline mode.
- Enable the compiler instrumentation to check addresses and maintain the
shadow region. (This is the guts of KASAN which we can easily reuse.)
- Require kasan-vmalloc support to handle modules and anything else in
vmalloc space.
- KASAN needs to be able to validate all pointer accesses, but we can't
instrument all kernel addresses - only linear map and vmalloc. On boot,
set up a single page of read-only shadow that marks all iomap and
vmemmap accesses as valid.
- Document KASAN in powerpc docs.
Background
----------
KASAN support on Book3S is a bit tricky to get right:
- It would be good to support inline instrumentation so as to be able to
catch stack issues that cannot be caught with outline mode.
- Inline instrumentation requires a fixed offset.
- Book3S runs code with translations off ("real mode") during boot,
including a lot of generic device-tree parsing code which is used to
determine MMU features.
[ppc64 mm note: The kernel installs a linear mapping at effective
address c000...-c008.... This is a one-to-one mapping with physical
memory from 0000... onward. Because of how memory accesses work on
powerpc 64-bit Book3S, a kernel pointer in the linear map accesses the
same memory both with translations on (accessing as an 'effective
address'), and with translations off (accessing as a 'real
address'). This works in both guests and the hypervisor. For more
details, see s5.7 of Book III of version 3 of the ISA, in particular
the Storage Control Overview, s5.7.3, and s5.7.5 - noting that this
KASAN implementation currently only supports Radix.]
- Some code - most notably a lot of KVM code - also runs with translations
off after boot.
- Therefore any offset has to point to memory that is valid with
translations on or off.
One approach is just to give up on inline instrumentation. This way
boot-time checks can be delayed until after the MMU is set is up, and we
can just not instrument any code that runs with translations off after
booting. Take this approach for now and require outline instrumentation.
Previous attempts allowed inline instrumentation. However, they came with
some unfortunate restrictions: only physically contiguous memory could be
used and it had to be specified at compile time. Maybe we can do better in
the future.
[paulus@ozlabs.org - Rebased onto 5.17. Note that a kernel with
CONFIG_KASAN=y will crash during boot on a machine using HPT
translation because not all the entry points to the generic
KASAN code are protected with a call to kasan_arch_is_ready().]
Originally-by: Balbir Singh <bsingharora@gmail.com> # ppc64 out-of-line radix version
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
[mpe: Update copyright year and comment formatting]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/YoTE69OQwiG7z+Gu@cleo
Disable address sanitization for raw and non-maskable interrupt
handlers, because they can run in real mode, where we cannot access
the shadow memory. (Note that kasan_arch_is_ready() doesn't test for
real mode, since it is a static branch for speed, and in any case not
all the entry points to the generic KASAN code are protected by
kasan_arch_is_ready guards.)
The changes to interrupt_nmi_enter/exit_prepare() look larger than
they actually are. The changes are equivalent to adding
!IS_ENABLED(CONFIG_KASAN) to the conditions for calling nmi_enter() or
nmi_exit() in real mode. That is, the code is equivalent to using the
following condition for calling nmi_enter/exit:
if (((!IS_ENABLED(CONFIG_PPC_BOOK3S_64) ||
!firmware_has_feature(FW_FEATURE_LPAR) ||
radix_enabled()) &&
!IS_ENABLED(CONFIG_KASAN) ||
(mfmsr() & MSR_DR))
That unwieldy condition has been split into several statements with
comments, for easier reading.
The nmi_ipi_lock functions that call atomic functions (i.e.,
nmi_ipi_lock_start(), nmi_ipi_lock() and nmi_ipi_unlock()), besides
being marked noinstr, now call arch_atomic_* functions instead of
atomic_* functions because with KASAN enabled, the atomic_* functions
are wrappers which explicitly do address sanitization on their
arguments. Since we are trying to avoid address sanitization, we have
to use the lower-level arch_atomic_* versions.
In hv_nmi_check_nonrecoverable(), the regs_set_unrecoverable() call
has been open-coded so as to avoid having to either trust the inlining
or mark regs_set_unrecoverable() as noinstr.
[paulus@ozlabs.org: combined a few work-in-progress commits of
Daniel's and wrote the commit message.]
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/YoTFGaKM8Pd46PIK@cleo
We added checks to __pa() / __va() to ensure they're only called with
appropriate addresses. But using BUG_ON() is too strong, it means
virt_addr_valid() will BUG when DEBUG_VIRTUAL is enabled.
Instead switch them to warnings, arm64 does the same.
Fixes: 4dd7554a64 ("powerpc/64: Add VIRTUAL_BUG_ON checks for __va and __pa addresses")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220406145802.538416-5-mpe@ellerman.id.au
In init_winctx_regs(), __pa() is called on winctx->rx_fifo and this
function is called to initialize registers for receive and fault
windows. But the real address is passed in winctx->rx_fifo for
receive windows and the virtual address for fault windows which
causes errors with DEBUG_VIRTUAL enabled. Fixes this issue by
assigning only real address to rx_fifo in vas_rx_win_attr struct
for both receive and fault windows.
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Haren Myneni <haren@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/338e958c7ab8f3b266fa794a1f80f99b9671829e.camel@linux.ibm.com
On the same model as get_user() versus __get_user(),
introduce __copy_inst_from_kernel_nofault() which doesn't
check address.
To be used by callers that have already checked that the adress
is a kernel address.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1f3702890d6dbd64702b61834753bcc96851c18c.1652074503.git.christophe.leroy@csgroup.eu
create_branch() is a good candidate for inlining because:
- Flags can be folded in.
- Range tests are likely to be already done.
Hence reducing the create_branch() to only a set of instructions.
So inline it.
It improves ftrace activation by 10%.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/69851cc9a7bf8f03d025e6d29e165f2d0bd3bb6e.1652074503.git.christophe.leroy@csgroup.eu
Implement the AT_MINSIGSTKSZ AUXV entry, allowing userspace to
dynamically size stack allocations in a manner forward-compatible with
new processor state saved in the signal frame
For now these statically find the maximum signal frame size rather than
doing any runtime testing of features to minimise the size.
glibc 2.34 will take advantage of this, as will applications that use
use _SC_MINSIGSTKSZ and _SC_SIGSTKSZ.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
References: 94b07c1f8c ("arm64: signal: Report signal frame size to userspace via auxv")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220307182734.289289-2-npiggin@gmail.com
The sad tale of SIGSTKSZ and MINSIGSTKSZ is documented in glibc.git
commit f7c399cff5bd ("PowerPC SIGSTKSZ"), which explains why glibc
does not use the kernel defines for these constants.
Since then in fact there has been a further expansion of the signal
stack frame size on little-endian with linux commit
573ebfa660 ("powerpc: Increase stack redzone for 64-bit userspace to
512 bytes"), which has caused it to exceed even the glibc defines.
See kernel commit 63dee5df43 ("powerpc: Allow 4224 bytes of stack
expansion for the signal frame") for more details of the history of the
expansion.
Increase MINSIGSTKSZ to 8192 which is double the current glibc value and
fits the current stack frame with room to grow. SIGSTKSZ is set to 4x
the minimum as convention.
glibc will have to be updated as well.
Reviewed-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220307182734.289289-1-npiggin@gmail.com
Currently we have 2 sets of interrupt controller hypercalls handlers
for real and virtual modes, this is from POWER8 times when switching
MMU on was considered an expensive operation.
POWER9 however does not have dependent threads and MMU is enabled for
handling hcalls so the XIVE native or XICS-on-XIVE real mode handlers
never execute on real P9 and later CPUs.
This untemplate the handlers and only keeps the real mode handlers for
XICS native (up to POWER8) and remove the rest of dead code. Changes
in functions are mechanical except few missing empty lines to make
checkpatch.pl happy.
The default implemented hcalls list already contains XICS hcalls so
no change there.
This should not cause any behavioral change.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Acked-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220509071150.181250-1-aik@ozlabs.ru
LoPAPR defines guest visible IOMMU with hypercalls to use it -
H_PUT_TCE/etc. Implemented first on POWER7 where hypercalls would trap
in the KVM in the real mode (with MMU off). The problem with the real mode
is some memory is not available and some API usage crashed the host but
enabling MMU was an expensive operation.
The problems with the real mode handlers are:
1. Occasionally these cannot complete the request so the code is
copied+modified to work in the virtual mode, very little is shared;
2. The real mode handlers have to be linked into vmlinux to work;
3. An exception in real mode immediately reboots the machine.
If the small DMA window is used, the real mode handlers bring better
performance. However since POWER8, there has always been a bigger DMA
window which VMs use to map the entire VM memory to avoid calling
H_PUT_TCE. Such 1:1 mapping happens once and uses H_PUT_TCE_INDIRECT
(a bulk version of H_PUT_TCE) which virtual mode handler is even closer
to its real mode version.
On POWER9 hypercalls trap straight to the virtual mode so the real mode
handlers never execute on POWER9 and later CPUs.
So with the current use of the DMA windows and MMU improvements in
POWER9 and later, there is no point in duplicating the code.
The 32bit passed through devices may slow down but we do not have many
of these in practice. For example, with this applied, a 1Gbit ethernet
adapter still demostrates above 800Mbit/s of actual throughput.
This removes the real mode handlers from KVM and related code from
the powernv platform.
This updates the list of implemented hcalls in KVM-HV as the realmode
handlers are removed.
This changes ABI - kvmppc_h_get_tce() moves to the KVM module and
kvmppc_find_table() is static now.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220506053755.3820702-1-aik@ozlabs.ru
Move the cede abort logic out of xive escalation rearming and into
the caller to prepare for handling a similar case with nested guest
entry.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220303053315.1056880-4-npiggin@gmail.com
KVMPPC_NR_LPIDS no longer represents any size restriction on the
LPID space and can be removed. A CPU with more than 12 LPID bits
implemented will now be able to create more than 4095 guests.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220123120043.3586018-7-npiggin@gmail.com
Rather than tie this to KVMPPC_NR_LPIDS which is becoming more dynamic,
fix it to 4096 (12-bits) explicitly for now.
kvmhv_get_nested() does not have to check against KVM_MAX_NESTED_GUESTS
because the L1 partition table registration hcall already did that, and
it checks against the partition table size.
This patch also puts all the partition table size calculations into the
same form, using 12 for the architected size field shift and 4 for the
shift corresponding to the partition table entry size.
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-of-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220123120043.3586018-6-npiggin@gmail.com
The LPID allocator init is changed to:
- use mmu_lpid_bits rather than hard-coding;
- use KVM_MAX_NESTED_GUESTS for nested hypervisors;
- not reserve the top LPID on POWER9 and newer CPUs.
The reserved LPID is made a POWER7/8-specific detail.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220123120043.3586018-3-npiggin@gmail.com
Removing kvmppc_claim_lpid makes the lpid allocator API a bit simpler to
change the underlying implementation in a future patch.
The host LPID is always 0, so that can be a detail of the allocator. If
the allocator range is restricted, that can reserve LPIDs at the top of
the range. This allows kvmppc_claim_lpid to be removed.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220123120043.3586018-2-npiggin@gmail.com
This facility is controlled by FSCR only. Reserved bits should not be
set in the HFSCR register (although it's likely harmless as this
position would not be re-used, and the L0 is forgiving here too).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220122105639.3477407-1-npiggin@gmail.com
Move pci_device_from_OF_node() in pci64.c because it needs definition
of struct device_node and is not worth inlining.
ppc32.c already has it in pci32.c.
That way pci-bridge.h doesn't need linux/of.h (Brought by asm/prom.h
via asm/pci.h)
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/3c88286b55413730d7784133993a46ef4a3607ce.1646767214.git.christophe.leroy@csgroup.eu
Per the ISA, a Trace interrupt is not generated for:
- [h|u]rfi[d]
- rfscv
- sc, scv, and Trap instructions that trap
- Power-Saving Mode instructions
- other instructions that cause interrupts (other than Trace interrupts)
- the first instructions of any interrupt handler (applies to Branch and Single Step tracing;
CIABR matches may still occur)
- instructions that are emulated by software
Add a helper to check for instructions belonging to the first four
categories above and to reject kprobes, uprobes and xmon breakpoints on
such instructions. We reject probing on instructions belonging to these
categories across all ISA versions and across both BookS and BookE.
For trap instructions, we can't know in advance if they can cause a
trap, and there is no good reason to allow probing on those. Also,
uprobes already refuses to probe trap instructions and kprobes does not
allow probes on trap instructions used for kernel warnings and bugs. As
such, stop allowing any type of probes/breakpoints on trap instruction
across uprobes, kprobes and xmon.
For some of the fp/altivec instructions that can generate an interrupt
and which we emulate in the kernel (altivec assist, for example), we
check and turn off single stepping in emulate_single_step().
Instructions generating a DSI are restarted and single stepping normally
completes once the instruction is completed.
In uprobes, if a single stepped instruction results in a non-fatal
signal to be delivered to the task, such signals are "delayed" until
after the instruction completes. For fatal signals, single stepping is
cancelled and the instruction restarted in-place so that core dump
captures proper addresses.
In kprobes, we do not allow probes on instructions having an extable
entry and we also do not allow probing interrupt vectors.
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/f56ee979d50b8711fae350fc97870f3ca34acd75.1648648712.git.naveen.n.rao@linux.vnet.ibm.com
Select CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT and
remove arch/powerpc/mm/mmap.c
This change reuses the generic framework added by
commit 67f3977f80 ("arm64, mm: move generic mmap layout
functions to mm") without any functional change.
Comparison between powerpc implementation and the generic one:
- mmap_is_legacy() is identical.
- arch_mmap_rnd() does exactly the same allthough it's written
slightly differently.
- MIN_GAP and MAX_GAP are identical.
- mmap_base() does the same but uses STACK_RND_MASK which provides
the same values as stack_maxrandom_size().
- arch_pick_mmap_layout() is identical.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/518f9def87d3c889d5958103e7463cf45a2f673d.1649523076.git.christophe.leroy@csgroup.eu
hugetlb_get_unmapped_area() is now identical to the
generic version if only RADIX is enabled, so move it
to slice.c and let it fallback on the generic one
when HASH MMU is not compiled in.
Do the same with arch_get_unmapped_area() and
arch_get_unmapped_area_topdown().
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/b5d9c124e82889e0cb115c150915a0c0d84eb960.1649523076.git.christophe.leroy@csgroup.eu
Use the generic version of arch_get_unmapped_area() which
is now available at all time instead of its copy
radix__arch_get_unmapped_area()
To allow that for PPC64, add arch_get_mmap_base() and
arch_get_mmap_end() macros.
Instead of setting mm->get_unmapped_area() to either
arch_get_unmapped_area() or generic_get_unmapped_area(),
always set it to arch_get_unmapped_area() and call
generic_get_unmapped_area() from there when radix is enabled.
Do the same with radix__arch_get_unmapped_area_topdown()
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/393be1fa386446443682fdb74544d733f68ef3bb.1649523076.git.christophe.leroy@csgroup.eu
Since commit 555904d07e ("powerpc/8xx: MM_SLICE is not needed
anymore") only book3s/64 selects CONFIG_PPC_MM_SLICES.
Move slice.c into mm/book3s64/
Move necessary stuff in asm/book3s/64/slice.h and
remove asm/slice.h
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/4a0d74ef1966a5902b5fd4ac4b513a760a6d675a.1649523076.git.christophe.leroy@csgroup.eu
pseries_eeh_init_edev() is used exclusively in eeh_pseries.c, make it
static and remove unused inline function.
pseries_eeh_init_edev_recursive() is only called from files build wich
CONFIG_HOTPLUG_PCI_RPA which depends on CONFIG_PSERIES and CONFIG_EEH,
so can remove the unused inline version.
Suggested-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220316104239.26508-1-yuehaibing@huawei.com
commit 441c19c8a2 ("powerpc/kvm/book3s_hv: Rework the secondary
inhibit code") left behind this, so can remove it.
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210324140752.11320-1-yuehaibing@huawei.com