Intel MKTME KeyID bits (including Intel TDX private KeyID bits) should
never be set to SPTE. Set shadow_me_value to 0 and shadow_me_mask to
include all MKTME KeyID bits to include them to shadow_zero_check.
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <27bc10e97a3c0b58a4105ff9107448c190328239.1650363789.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel Multi-Key Total Memory Encryption (MKTME) repurposes couple of
high bits of physical address bits as 'KeyID' bits. Intel Trust Domain
Extentions (TDX) further steals part of MKTME KeyID bits as TDX private
KeyID bits. TDX private KeyID bits cannot be set in any mapping in the
host kernel since they can only be accessed by software running inside a
new CPU isolated mode. And unlike to AMD's SME, host kernel doesn't set
any legacy MKTME KeyID bits to any mapping either. Therefore, it's not
legitimate for KVM to set any KeyID bits in SPTE which maps guest
memory.
KVM maintains shadow_zero_check bits to represent which bits must be
zero for SPTE which maps guest memory. MKTME KeyID bits should be set
to shadow_zero_check. Currently, shadow_me_mask is used by AMD to set
the sme_me_mask to SPTE, and shadow_me_shadow is excluded from
shadow_zero_check. So initializing shadow_me_mask to represent all
MKTME keyID bits doesn't work for VMX (as oppositely, they must be set
to shadow_zero_check).
Introduce a new 'shadow_me_value' to replace existing shadow_me_mask,
and repurpose shadow_me_mask as 'all possible memory encryption bits'.
The new schematic of them will be:
- shadow_me_value: the memory encryption bit(s) that will be set to the
SPTE (the original shadow_me_mask).
- shadow_me_mask: all possible memory encryption bits (which is a super
set of shadow_me_value).
- For now, shadow_me_value is supposed to be set by SVM and VMX
respectively, and it is a constant during KVM's life time. This
perhaps doesn't fit MKTME but for now host kernel doesn't support it
(and perhaps will never do).
- Bits in shadow_me_mask are set to shadow_zero_check, except the bits
in shadow_me_value.
Introduce a new helper kvm_mmu_set_me_spte_mask() to initialize them.
Replace shadow_me_mask with shadow_me_value in almost all code paths,
except the one in PT64_PERM_MASK, which is used by need_remote_flush()
to determine whether remote TLB flush is needed. This should still use
shadow_me_mask as any encryption bit change should need a TLB flush.
And for AMD, move initializing shadow_me_value/shadow_me_mask from
kvm_mmu_reset_all_pte_masks() to svm_hardware_setup().
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <f90964b93a3398b1cf1c56f510f3281e0709e2ab.1650363789.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename reset_rsvds_bits_mask() to reset_guest_rsvds_bits_mask() to make
it clearer that it resets the reserved bits check for guest's page table
entries.
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <efdc174b85d55598880064b8bf09245d3791031d.1650363789.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Expand and clean up the page fault stats. The current stats are at best
incomplete, and at worst misleading. Differentiate between faults that
are actually fixed vs those that result in an MMIO SPTE being created,
track faults that are spurious, faults that trigger emulation, faults
that that are fixed in the fast path, and last but not least, track the
number of faults that are taken.
Note, the number of faults that require emulation for write-protected
shadow pages can roughly be calculated by subtracting the number of MMIO
SPTEs created from the overall number of faults that trigger emulation.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use IS_ENABLED() instead of an #ifdef to activate the anti-RETPOLINE fast
path for TDP page faults. The generated code is identical, and the #ifdef
makes it dangerously difficult to extend the logic (guess who forgot to
add an "else" inside the #ifdef and ran through the page fault handler
twice).
No functional or binary change intented.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move kvm_arch_async_page_ready() to mmu.c where it belongs, and move all
of the page fault handling collateral that was in mmu.h purely for the
async #PF handler into mmu_internal.h, where it belongs. This will allow
kvm_mmu_do_page_fault() to act on the RET_PF_* return without having to
expose those enums outside of the MMU.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add RET_PF_CONTINUE and use it in handle_abnormal_pfn() and
kvm_faultin_pfn() to signal that the page fault handler should continue
doing its thing. Aside from being gross and inefficient, using a boolean
return to signal continue vs. stop makes it extremely difficult to add
more helpers and/or move existing code to a helper.
E.g. hypothetically, if nested MMUs were to gain a separate page fault
handler in the future, everything up to the "is self-modifying PTE" check
can be shared by all shadow MMUs, but communicating up the stack whether
to continue on or stop becomes a nightmare.
More concretely, proposed support for private guest memory ran into a
similar issue, where it'll be forced to forego a helper in order to yield
sane code: https://lore.kernel.org/all/YkJbxiL%2FAz7olWlq@google.com.
No functional change intended.
Cc: David Matlack <dmatlack@google.com>
Cc: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Tweak the "page fault can be fast" logic to explicitly check for !PRESENT
faults in the access tracking case, and drop the exec/NX check that
becomes redundant as a result. No sane hardware will generate an access
that is both an instruct fetch and a write, i.e. it's a waste of cycles.
If hardware goes off the rails, or KVM runs under a misguided hypervisor,
spuriously running throught fast path is benign (KVM has been uknowingly
being doing exactly that for years).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Check for A/D bits being disabled instead of the access tracking mask
being non-zero when deciding whether or not to attempt to fix a page
fault vian the fast path. Originally, the access tracking mask was
non-zero if and only if A/D bits were disabled by _KVM_ (including not
being supported by hardware), but that hasn't been true since nVMX was
fixed to honor EPTP12's A/D enabling, i.e. since KVM allowed L1 to cause
KVM to not use A/D bits while running L2 despite KVM using them while
running L1.
In other words, don't attempt the fast path just because EPT is enabled.
Note, attempting the fast path for all !PRESENT faults can "fix" a very,
_VERY_ tiny percentage of faults out of mmu_lock by detecting that the
fault is spurious, i.e. has been fixed by a different vCPU, but again the
odds of that happening are vanishingly small. E.g. booting an 8-vCPU VM
gets less than 10 successes out of 30k+ faults, and that's likely one of
the more favorable scenarios. Disabling dirty logging can likely lead to
a rash of collisions between vCPUs for some workloads that operate on a
common set of pages, but penalizing _all_ !PRESENT faults for that one
case is unlikely to be a net positive, not to mention that that problem
is best solved by not zapping in the first place.
The number of spurious faults does scale with the number of vCPUs, e.g. a
255-vCPU VM using TDP "jumps" to ~60 spurious faults detected in the fast
path (again out of 30k), but that's all of 0.2% of faults. Using legacy
shadow paging does get more spurious faults, and a few more detected out
of mmu_lock, but the percentage goes _down_ to 0.08% (and that's ignoring
faults that are reflected into the guest), i.e. the extra detections are
purely due to the sheer number of faults observed.
On the other hand, getting a "negative" in the fast path takes in the
neighborhood of 150-250 cycles. So while it is tempting to keep/extend
the current behavior, such a change needs to come with hard numbers
showing that it's actually a win in the grand scheme, or any scheme for
that matter.
Fixes: 995f00a619 ("x86: kvm: mmu: use ept a/d in vmcs02 iff used in vmcs12")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Passing per_cpu() to list_for_each_entry() causes the macro to be
evaluated N+1 times for N sleeping vCPUs. This is a very small
inefficiency, and the code is cleaner if the address of the per-CPU
variable is loaded earlier. Do this for both the list and the spinlock.
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Message-Id: <1649244302-6777-1-git-send-email-lirongqing@baidu.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This shows up as a TDP MMU leak when running nested. Non-working cmpxchg on L0
relies makes L1 install two different shadow pages under same spte, and one of
them is leaked.
Fixes: 1c2361f667 ("KVM: x86: Use __try_cmpxchg_user() to emulate atomic accesses")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220512101420.306759-1-mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On some x86 processors, CPUID leaf 0xA provides information
on Architectural Performance Monitoring features. It
advertises a PMU version which Qemu uses to determine the
availability of additional MSRs to manage the PMCs.
Upon receiving a KVM_GET_SUPPORTED_CPUID ioctl request for
the same, the kernel constructs return values based on the
x86_pmu_capability irrespective of the vendor.
This leaf and the additional MSRs are not supported on AMD
and Hygon processors. If AMD PerfMonV2 is detected, the PMU
version is set to 2 and guest startup breaks because of an
attempt to access a non-existent MSR. Return zeros to avoid
this.
Fixes: a6c06ed1a6 ("KVM: Expose the architectural performance monitoring CPUID leaf")
Reported-by: Vasant Hegde <vasant.hegde@amd.com>
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Message-Id: <3fef83d9c2b2f7516e8ff50d60851f29a4bcb716.1651058600.git.sandipan.das@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Zen renumbered some of the performance counters that correspond to the
well known events in perf_hw_id. This code in KVM was never updated for
that, so guest that attempt to use counters on Zen that correspond to the
pre-Zen perf_hw_id values will silently receive the wrong values.
This has been observed in the wild with rr[0] when running in Zen 3
guests. rr uses the retired conditional branch counter 00d1 which is
incorrectly recognized by KVM as PERF_COUNT_HW_STALLED_CYCLES_BACKEND.
[0] https://rr-project.org/
Signed-off-by: Kyle Huey <me@kylehuey.com>
Message-Id: <20220503050136.86298-1-khuey@kylehuey.com>
Cc: stable@vger.kernel.org
[Check guest family, not host. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We are dropping A/D bits (and W bits) in the TDP MMU. Even if mmu_lock
is held for write, as volatile SPTEs can be written by other tasks/vCPUs
outside of mmu_lock.
Attempting to prove that bug exposed another notable goof, which has been
lurking for a decade, give or take: KVM treats _all_ MMU-writable SPTEs
as volatile, even though KVM never clears WRITABLE outside of MMU lock.
As a result, the legacy MMU (and the TDP MMU if not fixed) uses XCHG to
update writable SPTEs.
The fix does not seem to have an easily-measurable affect on performance;
page faults are so slow that wasting even a few hundred cycles is dwarfed
by the base cost.
Use an atomic XCHG to write TDP MMU SPTEs that have volatile bits, even
if mmu_lock is held for write, as volatile SPTEs can be written by other
tasks/vCPUs outside of mmu_lock. If a vCPU uses the to-be-modified SPTE
to write a page, the CPU can cache the translation as WRITABLE in the TLB
despite it being seen by KVM as !WRITABLE, and/or KVM can clobber the
Accessed/Dirty bits and not properly tag the backing page.
Exempt non-leaf SPTEs from atomic updates as KVM itself doesn't modify
non-leaf SPTEs without holding mmu_lock, they do not have Dirty bits, and
KVM doesn't consume the Accessed bit of non-leaf SPTEs.
Dropping the Dirty and/or Writable bits is most problematic for dirty
logging, as doing so can result in a missed TLB flush and eventually a
missed dirty page. In the unlikely event that the only dirty page(s) is
a clobbered SPTE, clear_dirty_gfn_range() will see the SPTE as not dirty
(based on the Dirty or Writable bit depending on the method) and so not
update the SPTE and ultimately not flush. If the SPTE is cached in the
TLB as writable before it is clobbered, the guest can continue writing
the associated page without ever taking a write-protect fault.
For most (all?) file back memory, dropping the Dirty bit is a non-issue.
The primary MMU write-protects its PTEs on writeback, i.e. KVM's dirty
bit is effectively ignored because the primary MMU will mark that page
dirty when the write-protection is lifted, e.g. when KVM faults the page
back in for write.
The Accessed bit is a complete non-issue. Aside from being unused for
non-leaf SPTEs, KVM doesn't do a TLB flush when aging SPTEs, i.e. the
Accessed bit may be dropped anyways.
Lastly, the Writable bit is also problematic as an extension of the Dirty
bit, as KVM (correctly) treats the Dirty bit as volatile iff the SPTE is
!DIRTY && WRITABLE. If KVM fixes an MMU-writable, but !WRITABLE, SPTE
out of mmu_lock, then it can allow the CPU to set the Dirty bit despite
the SPTE being !WRITABLE when it is checked by KVM. But that all depends
on the Dirty bit being problematic in the first place.
Fixes: 2f2fad0897 ("kvm: x86/mmu: Add functions to handle changed TDP SPTEs")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Cc: David Matlack <dmatlack@google.com>
Cc: Venkatesh Srinivas <venkateshs@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the is_shadow_present_pte() check out of spte_has_volatile_bits()
and into its callers. Well, caller, since only one of its two callers
doesn't already do the shadow-present check.
Opportunistically move the helper to spte.c/h so that it can be used by
the TDP MMU, which is also the primary motivation for the shadow-present
change. Unlike the legacy MMU, the TDP MMU uses a single path for clear
leaf and non-leaf SPTEs, and to avoid unnecessary atomic updates, the TDP
MMU will need to check is_last_spte() prior to calling
spte_has_volatile_bits(), and calling is_last_spte() without first
calling is_shadow_present_spte() is at best odd, and at worst a violation
of KVM's loosely defines SPTE rules.
Note, mmu_spte_clear_track_bits() could likely skip the write entirely
for SPTEs that are not shadow-present. Leave that cleanup for a future
patch to avoid introducing a functional change, and because the
shadow-present check can likely be moved further up the stack, e.g.
drop_large_spte() appears to be the only path that doesn't already
explicitly check for a shadow-present SPTE.
No functional change intended.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't treat SPTEs that are truly writable, i.e. writable in hardware, as
being volatile (unless they're volatile for other reasons, e.g. A/D bits).
KVM _sets_ the WRITABLE bit out of mmu_lock, but never _clears_ the bit
out of mmu_lock, so if the WRITABLE bit is set, it cannot magically get
cleared just because the SPTE is MMU-writable.
Rename the wrapper of MMU-writable to be more literal, the previous name
of spte_can_locklessly_be_made_writable() is wrong and misleading.
Fixes: c7ba5b48cc ("KVM: MMU: fast path of handling guest page fault")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The helper function, vcpu_to_pi_desc(), is defined to get the posted
interrupt descriptor from vcpu. There is one place that doesn't use
it, and instead references vmx_vcpu->pi_desc directly. Remove the
inconsistency.
Signed-off-by: Yuan Yao <yuan.yao@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Message-Id: <ee7be7832bc424546fd4f05015a844a0205b5ba2.1646422845.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For TDX guests, the maximum number of vcpus needs to be specified when the
TDX guest VM is initialized (creating the TDX data corresponding to TDX
guest) before creating vcpu. It needs to record the maximum number of
vcpus on VM creation (KVM_CREATE_VM) and return error if the number of
vcpus exceeds it
Because there is already max_vcpu member in arm64 struct kvm_arch, move it
to common struct kvm and initialize it to KVM_MAX_VCPUS before
kvm_arch_init_vm() instead of adding it to x86 struct kvm_arch.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Message-Id: <e53234cdee6a92357d06c80c03d77c19cdefb804.1646422845.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This can cause various unexpected issues, since VM is partially
destroyed at that point.
For example when AVIC is enabled, this causes avic_vcpu_load to
access physical id page entry which is already freed by .vm_destroy.
Fixes: 8221c13700 ("svm: Manage vcpu load/unload when enable AVIC")
Cc: stable@vger.kernel.org
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220322172449.235575-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When shadowing 5-level NPT for 4-level NPT L1 guest, the root_sp is
allocated with role.level = 5 and the guest pagetable's root gfn.
And root_sp->spt[0] is also allocated with the same gfn and the same
role except role.level = 4. Luckily that they are different shadow
pages, but only root_sp->spt[0] is the real translation of the guest
pagetable.
Here comes a problem:
If the guest switches from gCR4_LA57=0 to gCR4_LA57=1 (or vice verse)
and uses the same gfn as the root page for nested NPT before and after
switching gCR4_LA57. The host (hCR4_LA57=1) might use the same root_sp
for the guest even the guest switches gCR4_LA57. The guest will see
unexpected page mapped and L2 may exploit the bug and hurt L1. It is
lucky that the problem can't hurt L0.
And three special cases need to be handled:
The root_sp should be like role.direct=1 sometimes: its contents are
not backed by gptes, root_sp->gfns is meaningless. (For a normal high
level sp in shadow paging, sp->gfns is often unused and kept zero, but
it could be relevant and meaningful if sp->gfns is used because they
are backed by concrete gptes.)
For such root_sp in the case, root_sp is just a portal to contribute
root_sp->spt[0], and root_sp->gfns should not be used and
root_sp->spt[0] should not be dropped if gpte[0] of the guest root
pagetable is changed.
Such root_sp should not be accounted too.
So add role.passthrough to distinguish the shadow pages in the hash
when gCR4_LA57 is toggled and fix above special cases by using it in
kvm_mmu_page_{get|set}_gfn() and sp_has_gptes().
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220420131204.2850-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add sp_has_gptes() which equals to !sp->role.direct currently.
Shadow page having gptes needs to be write-protected, accounted and
responded to kvm_mmu_pte_write().
Use it in these places to replace !sp->role.direct and rename
for_each_gfn_indirect_valid_sp.
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220420131204.2850-2-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This can help identify potential performance issues when handles
AVIC incomplete IPI due vCPU not running.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220420154954.19305-3-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, an AVIC-enabled VM suffers from performance bottleneck
when scaling to large number of vCPUs for I/O intensive workloads.
In such case, a vCPU often executes halt instruction to get into idle state
waiting for interrupts, in which KVM would de-schedule the vCPU from
physical CPU.
When AVIC HW tries to deliver interrupt to the halting vCPU, it would
result in AVIC incomplete IPI #vmexit to notify KVM to reschedule
the target vCPU into running state.
Investigation has shown the main hotspot is in the kvm_apic_match_dest()
in the following call stack where it tries to find target vCPUs
corresponding to the information in the ICRH/ICRL registers.
- handle_exit
- svm_invoke_exit_handler
- avic_incomplete_ipi_interception
- kvm_apic_match_dest
However, AVIC provides hints in the #vmexit info, which can be used to
retrieve the destination guest physical APIC ID.
In addition, since QEMU defines guest physical APIC ID to be the same as
vCPU ID, it can be used to quickly identify the target vCPU to deliver IPI,
and avoid the overhead from searching through all vCPUs to match the target
vCPU.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220420154954.19305-2-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
direct_map is always equal to the direct field of the root page's role:
- for shadow paging, direct_map is true if CR0.PG=0 and root_role.direct is
copied from cpu_role.base.direct
- for TDP, it is always true and root_role.direct is also always true
- for shadow TDP, it is always false and root_role.direct is also always
false
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove another duplicate field of struct kvm_mmu. This time it's
the root level for page table walking; the separate field is
always initialized as cpu_role.base.level, so its users can look
up the CPU mode directly instead.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
root_role.level is always the same value as shadow_level:
- it's kvm_mmu_get_tdp_level(vcpu) when going through init_kvm_tdp_mmu
- it's the level argument when going through kvm_init_shadow_ept_mmu
- it's assigned directly from new_role.base.level when going
through shadow_mmu_init_context
Remove the duplication and get the level directly from the role.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do not lead init_kvm_*mmu into the temptation of poking
into struct kvm_mmu_role_regs, by passing to it directly
the CPU mode.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Shadow MMUs compute their role from cpu_role.base, simply by adjusting
the root level. It's one line of code, so do not place it in a separate
function.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Before the separation of the CPU and the MMU role, CR0.PG was not
available in the base MMU role, because two-dimensional paging always
used direct=1 in the MMU role. However, now that the raw role is
snapshotted in mmu->cpu_role, the value of CR0.PG always matches both
!cpu_role.base.direct and cpu_role.base.level > 0. There is no need to
store it again in union kvm_mmu_extended_role; instead, write an is_cr0_pg
accessor by hand that takes care of the conversion. Use cpu_role.base.level
since the future of the direct field is unclear.
Likewise, CR4.PAE is now always present in the CPU role as
!cpu_role.base.has_4_byte_gpte. The inversion makes certain tests on
the MMU role easier, and is easily hidden by the is_cr4_pae accessor
when operating on the CPU role.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It is quite confusing that the "full" union is called kvm_mmu_role
but is used for the "cpu_role" field of struct kvm_mmu. Rename it
to kvm_cpu_role.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
mmu_role represents the role of the root of the page tables.
It does not need any extended bits, as those govern only KVM's
page table walking; the is_* functions used for page table
walking always use the CPU role.
ext.valid is not present anymore in the MMU role, but an
all-zero MMU role is impossible because the level field is
never zero in the MMU role. So just zap the whole mmu_role
in order to force invalidation after CPUID is updated.
While making this change, which requires touching almost every
occurrence of "mmu_role", rename it to "root_role".
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that the MMU role is separate from the CPU role, it can be a
truthful description of the format of the shadow pages. This includes
whether the shadow pages use the NX bit; so force the efer_nx field
of the MMU role when TDP is disabled, and remove the hardcoding it in
the callers of reset_shadow_zero_bits_mask.
In fact, the initialization of reserved SPTE bits can now be made common
to shadow paging and shadow NPT; move it to shadow_mmu_init_context.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Inline kvm_calc_mmu_role_common into its sole caller, and simplify it
by removing the computation of unnecessary bits.
Extended bits are unnecessary because page walking uses the CPU role,
and EFER.NX/CR0.WP can be set to one unconditionally---matching the
format of shadow pages rather than the format of guest pages.
The MMU role for two dimensional paging does still depend on the CPU role,
even if only barely so, due to SMM and guest mode; for consistency,
pass it down to kvm_calc_tdp_mmu_root_page_role instead of querying
the vcpu with is_smm or is_guest_mode.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_calc_shadow_root_page_role_common is the same as
kvm_calc_cpu_role except for the level, which is overwritten
afterwards in kvm_calc_shadow_mmu_root_page_role
and kvm_calc_shadow_npt_root_page_role.
role.base.direct is already set correctly for the CPU role,
and CR0.PG=1 is required for VMRUN so it will also be
correct for nested NPT.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The ept_ad field is used during page walk to determine if the guest PTEs
have accessed and dirty bits. In the MMU role, the ad_disabled
bit represents whether the *shadow* PTEs have the bits, so it
would be incorrect to replace PT_HAVE_ACCESSED_DIRTY with just
!mmu->mmu_role.base.ad_disabled.
However, the similar field in the CPU mode, ad_disabled, is initialized
correctly: to the opposite value of ept_ad for shadow EPT, and zero
for non-EPT guest paging modes (which always have A/D bits). It is
therefore possible to compute PT_HAVE_ACCESSED_DIRTY from the CPU mode,
like other page-format fields; it just has to be inverted to account
for the different polarity.
In fact, now that the CPU mode is distinct from the MMU roles, it would
even be possible to remove PT_HAVE_ACCESSED_DIRTY macro altogether, and
use !mmu->cpu_role.base.ad_disabled instead. I am not doing this because
the macro has a small effect in terms of dead code elimination:
text data bss dec hex
103544 16665 112 120321 1d601 # as of this patch
103746 16665 112 120523 1d6cb # without PT_HAVE_ACCESSED_DIRTY
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The root_level can be found in the cpu_role (in fact the field
is superfluous and could be removed, but one thing at a time).
Since there is only one usage left of role_regs_to_root_level,
inline it into kvm_calc_cpu_role.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Snapshot the state of the processor registers that govern page walk into
a new field of struct kvm_mmu. This is a more natural representation
than having it *mostly* in mmu_role but not exclusively; the delta
right now is represented in other fields, such as root_level.
The nested MMU now has only the CPU role; and in fact the new function
kvm_calc_cpu_role is analogous to the previous kvm_calc_nested_mmu_role,
except that it has role.base.direct equal to !CR0.PG. For a walk-only
MMU, "direct" has no meaning, but we set it to !CR0.PG so that
role.ext.cr0_pg can go away in a future patch.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The argument is always false now that kvm_mmu_calc_root_page_role has
been removed.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace the per-vendor hack-a-fix for KVM's #PF => #PF => #DF workaround
with an explicit, common workaround in kvm_inject_emulated_page_fault().
Aside from being a hack, the current approach is brittle and incomplete,
e.g. nSVM's KVM_SET_NESTED_STATE fails to set ->inject_page_fault(),
and nVMX fails to apply the workaround when VMX is intercepting #PF due
to allow_smaller_maxphyaddr=1.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If accessed bits are not supported there simple isn't any distinction
between accessed and non-accessed gPTEs, so the comment does not make
much sense. Rephrase it in terms of what happens if accessed bits
*are* supported.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The init_kvm_*mmu functions, with the exception of shadow NPT,
do not need to know the full values of CR0/CR4/EFER; they only
need to know the bits that make up the "role". This cleanup
however will take quite a few incremental steps. As a start,
pull the common computation of the struct kvm_mmu_role_regs
into their caller: all of them extract the struct from the vcpu
as the very first step.
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
struct kvm_mmu_role_regs is computed just once and then accessed. Use
const to make this clearer, even though the const fields of struct
kvm_mmu_role_regs already prevent (or make it harder...) to modify
the contents of the struct.
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The role.base.smm flag is always zero when setting up shadow EPT,
do not bother copying it over from vcpu->arch.root_mmu.
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Clear enable_mmio_caching if hardware can't support MMIO caching and use
the dedicated flag to detect if MMIO caching is enabled instead of
assuming shadow_mmio_value==0 means MMIO caching is disabled. TDX will
use a zero value even when caching is enabled, and is_mmio_spte() isn't
so hot that it needs to avoid an extra memory access, i.e. there's no
reason to be super clever. And the clever approach may not even be more
performant, e.g. gcc-11 lands the extra check on a non-zero value inline,
but puts the enable_mmio_caching out-of-line, i.e. avoids the few extra
uops for non-MMIO SPTEs.
Cc: Isaku Yamahata <isaku.yamahata@intel.com>
Cc: Kai Huang <kai.huang@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220420002747.3287931-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When determining whether or not a SPTE needs to have SME/SEV's memory
encryption flag set, do the moderately expensive host MMIO pfn check if
and only if the memory encryption mask is non-zero.
Note, KVM could further optimize the host MMIO checks by making a single
call to kvm_is_mmio_pfn(), but the tdp_enabled path (for EPT's memtype
handling) will likely be split out to a separate flow[*]. At that point,
a better approach would be to shove the call to kvm_is_mmio_pfn() into
VMX code so that AMD+NPT without SME doesn't get hit with an unnecessary
lookup.
[*] https://lkml.kernel.org/r/20220321224358.1305530-3-bgardon@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220415004909.2216670-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TSC_AUX virtualization feature allows AMD SEV-ES guests to securely use
TSC_AUX (auxiliary time stamp counter data) in the RDTSCP and RDPID
instructions. The TSC_AUX value is set using the WRMSR instruction to the
TSC_AUX MSR (0xC0000103). It is read by the RDMSR, RDTSCP and RDPID
instructions. If the read/write of the TSC_AUX MSR is intercepted, then
RDTSCP and RDPID must also be intercepted when TSC_AUX virtualization
is present. However, the RDPID instruction can't be intercepted. This means
that when TSC_AUX virtualization is present, RDTSCP and TSC_AUX MSR
read/write must not be intercepted for SEV-ES (or SEV-SNP) guests.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Message-Id: <165040164424.1399644.13833277687385156344.stgit@bmoger-ubuntu>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>