Commit Graph

766554 Commits

Author SHA1 Message Date
Joel Fernandes (Google)
3b745c8969 rcutorture: Make boost test more robust
Currently, with RCU_BOOST disabled, I get no failures when forcing
rcutorture to test RCU boost priority inversion. The reason seems to be
that we don't check for failures if the callback never ran at all for
the duration of the boost-test loop.

Further, the 'rtb' and 'rtbf' counters seem to be used inconsistently.
'rtb' is incremented at the start of each test and 'rtbf' is incremented
per-cpu on each failure of call_rcu. So its possible 'rtbf' > 'rtb'.

To test the boost with rcutorture, I did following on a 4-CPU x86 machine:

modprobe rcutorture  test_boost=2
sleep 20
rmmod rcutorture

With patch:
rtbf: 8 rtb: 12

Without patch:
rtbf: 0 rtb: 2

In summary this patch:
 - Increments failed and total test counters once per boost-test.
 - Checks for failure cases correctly.

Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:42:06 -07:00
Joel Fernandes (Google)
450efca718 rcutorture: Disable RT throttling for boost tests
Currently rcutorture is not able to torture RCU boosting properly. This
is because the rcutorture's boost threads which are doing the torturing
may be throttled due to RT throttling.

This patch makes rcutorture use the right torture technique (unthrottled
rcutorture boost tasks) for torturing RCU so that the test fails
correctly when no boost is available.

Currently this requires accessing sysctl_sched_rt_runtime directly, but
that should be Ok since rcutorture is test code. Such direct access is
also only possible if rcutorture is used as a built-in so make it
conditional on that.

Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:42:06 -07:00
Paul E. McKenney
bf1bef50be rcutorture: Emphasize testing of single reader protection type
For RCU implementations supporting multiple types of reader protection,
rcutorture currently randomly selects the combinations of types of
protection for each phase of each reader.  The problem with this,
for example, given the four kinds of protection for RCU-sched
(local_irq_disable(), local_bh_disable(), preempt_disable(), and
rcu_read_lock_sched()), the reader will be protected by a single
mechanism only 25% of the time.  We really heavier testing of single
read-side mechanisms.

This commit therefore uses only a single mechanism about 60% of the time,
half of the time explicitly and one-eighth of the time by chance.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:42:05 -07:00
Paul E. McKenney
2397d072f7 rcutorture: Handle extended read-side critical sections
This commit enables rcutorture to test whether RCU properly aggregates
different types of read-side critical sections into a larger section
covering the set.  It does this by extending an initial read-side
critical section randomly for a random number of extensions.  There is
a new rcu_torture_ops field ->extendable that specifies what extensions
are permitted for a given flavor of RCU (for example, SRCU does not
permit any extensions, while RCU-sched permits all types).  Note that
if a given operation (for example, local_bh_disable()) extends an RCU
read-side critical section, then rcutorture feels free to also start
and end the critical section with that operation's type of disabling.

Disabling operations include local_bh_disable(), local_irq_disable(),
and preempt_disable().  This commit also adds a new "busted_srcud"
torture type, which verifies rcutorture's ability to detect extensions
of RCU read-side critical sections that are not handled.  Gotta test
the test, after all!

Note that it is not legal to invoke local_bh_disable() with interrupts
disabled, and this transition is avoided by overriding the random-number
generator when it wants to call local_bh_disable() while interrupts
are disabled.  The code instead leaves both interrupts and bh/softirq
disabled in this case.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:42:05 -07:00
Paul E. McKenney
241b42522a rcutorture: Make rcu_torture_timer() use rcu_torture_one_read()
This commit saves a few lines of code by making rcu_torture_timer()
invoke rcu_torture_one_read(), thus completing the consolidation of
code between rcu_torture_timer() and rcu_torture_reader().

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:42:04 -07:00
Paul E. McKenney
3025520ec4 rcutorture: Use per-CPU random state for rcu_torture_timer()
Currently, the rcu_torture_timer() function uses a single global
torture_random_state structure protected by a single global lock.
This conflicts to some extent with performance and scalability,
but even more with the goal of consolidating read-side testing
with rcu_torture_reader().  This commit therefore creates a per-CPU
torture_random_state structure for use by rcu_torture_timer() and
eliminates the lock.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Make rcu_torture_timer_rand static, per 0day Test Robot report. ]
2018-07-12 15:42:04 -07:00
Paul E. McKenney
8da9a59523 rcutorture: Use atomic increment for n_rcu_torture_timers
Currently, rcu_torture_timer() relies on a lock to guard updates to
n_rcu_torture_timers.  Unfortunately, consolidating code with
rcu_torture_reader() will dispense with this lock.  This commit
therefore makes n_rcu_torture_timers be an atomic_long_t and uses
atomic_long_inc() to carry out the update.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:42:03 -07:00
Paul E. McKenney
6b06aa723e rcutorture: Extract common code from rcu_torture_reader()
This commit extracts the code executed on each pass through the loop
in rcu_torture_reader() into a new rcu_torture_one_read() function.
This new function will also be used by rcu_torture_timer().

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:42:02 -07:00
Paul E. McKenney
2d3625841d rcuperf: Remove unused torturing_tasks() function
The torturing_tasks() function in rcuperf.c is not used, so this commit
removes it.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:42:02 -07:00
Paul E. McKenney
6bea2cc5a9 rcu: Remove rcutorture test version and sequence number
Back when RCU had a debugfs interface, there was a test version and
sequence number that allowed associating debugfs data with a particular
test run, where the test run started with modprobe and ended with rmmod,
which was how tests were run back on the old ABAT system within IBM.
But rcutorture testing no longer runs on ABAT, and there is no longer an
RCU debugfs interface, so there is no longer any need for test versions
and sequence numbers.

This commit therefore removes the rcutorture_record_test_transition()
and rcutorture_record_progress() functions, and along with them the
rcutorture_testseq and rcutorture_vernum variables that they update.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:42:01 -07:00
Paul E. McKenney
028be12b29 rcutorture: Change units of onoff_interval to jiffies
Some RCU bugs have been sensitive to the frequency of CPU-hotplug
operations, which have been gradually increased over time.  But this
frequency is now at the one-second lower limit that can be specified using
the rcutorture.onoff_interval kernel parameter.  This commit therefore
changes the units of rcutorture.onoff_interval from seconds to jiffies,
and also sets the value specified for this kernel parameter in the TREE03
rcutorture scenario to 200, which is 200 milliseconds for HZ=1000.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:42:01 -07:00
Paul E. McKenney
f2e2df5978 rcu: Add diagnostics for offline CPUs failing to report QS
CPUs are expected to report quiescent states when coming online and
when going offline, and grace-period initialization is supposed to
handle any race conditions where a CPU's ->qsmask bit is set just after
it goes offline.  This commit adds diagnostics for the case where an
offline CPU nevertheless has a grace period waiting on it.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:39:10 -07:00
Paul E. McKenney
fea3f222d3 rcu: Record ->gp_state for both phases of grace-period initialization
Grace-period initialization first processes any recent CPU-hotplug
operations, and then initializes state for the new grace period.  These
two phases of initialization are currently not distinguished in debug
prints, but the distinction is valuable in a number of debug situations.
This commit therefore introduces two new values for ->gp_state,
RCU_GP_ONOFF and RCU_GP_INIT, in order to make this distinction.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:39:09 -07:00
Paul E. McKenney
5773894231 rcu: Add CPU online/offline state to dump_blkd_tasks()
Interactions between CPU-hotplug operations and grace-period
initialization can result in dump_blkd_tasks().  One of the first
debugging actions in this case is to search back in dmesg to work
out which of the affected rcu_node structure's CPUs are online and to
determine the last CPU-hotplug operation affecting any of those CPUs.
This can be laborious and error-prone, especially when console output
is lost.

This commit therefore causes dump_blkd_tasks() to dump the state of
the affected rcu_node structure's CPUs and the last grace period during
which the last offline and online operation affected each of these CPUs.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:39:09 -07:00
Paul E. McKenney
ff3cee3908 rcu: Add up-tree information to dump_blkd_tasks() diagnostics
This commit updates dump_blkd_tasks() to print out quiescent-state
bitmasks for the rcu_node structures further up the tree.  This
information helps debugging of interactions between CPU-hotplug
operations and RCU grace-period initialization.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:39:08 -07:00
Paul E. McKenney
e05121ba5b rcu: Remove CPU-hotplug failsafe from force-quiescent-state code path
Now that quiescent states for newly offlined CPUs are reported either
when that CPU goes offline or at the end of grace-period initialization,
the CPU-hotplug failsafe in the force-quiescent-state code path is no
longer needed.

This commit therefore removes this failsafe.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:39:07 -07:00
Paul E. McKenney
17a8212b8d rcu: Remove failsafe check for lost quiescent state
Now that quiescent-state reporting is fully event-driven, this commit
removes the check for a lost quiescent state from force_qs_rnp().

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:39:06 -07:00
Paul E. McKenney
f34f2f5852 rcu: Move grace-period pre-init delay after pre-init
The main race with the early part of grace-period initialization appears
to be with CPU hotplug.  To more fully open this race window, this commit
moves the rcu_gp_slow() from the beginning of the early initialization
loop to follow that loop, thus widening the race window, especially for
the rcu_node structures that are initialized last.  This commit also
expands rcutree.gp_preinit_delay from 3 to 12, giving the same overall
delay in the grace period, but concentrated in the spot where it will
do the most good.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:39:06 -07:00
Paul E. McKenney
1f3e5f51b9 rcu: Add RCU-preempt check for waiting on newly onlined CPU
RCU should only be waiting on CPUs that were online at the time that the
current grace period started.  Failure to abide by this rule can result
in confusing splats during grace-period cleanup and initialization.
This commit therefore adds a check to RCU-preempt's preempted-task
queuing that checks for waiting on newly onlined CPUs.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:39:05 -07:00
Paul E. McKenney
1e64b15a4b rcu: Fix grace-period hangs due to race with CPU offline
Without special fail-safe quiescent-state-propagation checks, grace-period
hangs can result from the following scenario:

1.	CPU 1 goes offline.

2.	Because CPU 1 is the only CPU in the system blocking the current
	grace period, the grace period ends as soon as
	rcu_cleanup_dying_idle_cpu()'s call to rcu_report_qs_rnp()
	returns.

3.	At this point, the leaf rcu_node structure's ->lock is no longer
	held: rcu_report_qs_rnp() has released it, as it must in order
	to awaken the RCU grace-period kthread.

4.	At this point, that same leaf rcu_node structure's ->qsmaskinitnext
	field still records CPU 1 as being online.  This is absolutely
	necessary because the scheduler uses RCU (in this case on the
	wake-up path while awakening RCU's grace-period kthread), and
	->qsmaskinitnext contains RCU's idea as to which CPUs are online.
	Therefore, invoking rcu_report_qs_rnp() after clearing CPU 1's
	bit from ->qsmaskinitnext would result in a lockdep-RCU splat
	due to RCU being used from an offline CPU.

5.	RCU's grace-period kthread awakens, sees that the old grace period
	has completed and that a new one is needed.  It therefore starts
	a new grace period, but because CPU 1's leaf rcu_node structure's
	->qsmaskinitnext field still shows CPU 1 as being online, this new
	grace period is initialized to wait for a quiescent state from the
	now-offline CPU 1.

6.	Without the fail-safe force-quiescent-state checks, there would
	be no quiescent state from the now-offline CPU 1, which would
	eventually result in RCU CPU stall warnings and memory exhaustion.

It would be good to get rid of the special fail-safe quiescent-state
propagation checks, and thus it would be good to fix things so that
the above scenario cannot happen.  This commit therefore adds a new
->ofl_lock to the rcu_state structure.  This lock is held by rcu_gp_init()
across the applying of buffered online and offline operations to the
rcu_node tree, and it is also held by rcu_cleanup_dying_idle_cpu()
when buffering a new offline operation.  This prevents rcu_gp_init()
from acquiring the leaf rcu_node structure's lock during the interval
between when rcu_cleanup_dying_idle_cpu() invokes rcu_report_qs_rnp(),
which releases ->lock and the re-acquisition of that same lock.
This in turn prevents the failure scenario outlined above, and will
hopefully eventually allow removal of the offline-CPU checks from the
force-quiescent-state code path.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:39:04 -07:00
Paul E. McKenney
ec2c29765a rcu: Fix grace-period hangs from mid-init task resume
Without special fail-safe quiescent-state-propagation checks, grace-period
hangs can result from the following scenario:

1.	A task running on a given CPU is preempted in its RCU read-side
	critical section.

2.	That CPU goes offline, and there are now no online CPUs
	corresponding to that CPU's leaf rcu_node structure.

3.	The rcu_gp_init() function does the first phase of grace-period
	initialization, and sets the aforementioned leaf rcu_node
	structure's ->qsmaskinit field to all zeroes.  Because there
	is a blocked task, it does not propagate the zeroing of either
	->qsmaskinit or ->qsmaskinitnext up the rcu_node tree.

4.	The task resumes on some other CPU and exits its critical section.
	There is no grace period in progress, so the resulting quiescent
	state is not reported up the tree.

5.	The rcu_gp_init() function does the second phase of grace-period
	initialization, which results in the leaf rcu_node structure
	being initialized to expect no further quiescent states, but
	with that structure's parent expecting a quiescent-state report.

	The parent will never receive a quiescent state from this leaf
	rcu_node structure, so the grace period will hang, resulting in
	RCU CPU stall warnings.

It would be good to get rid of the special fail-safe quiescent-state
propagation checks.  This commit therefore checks the leaf rcu_node
structure's ->wait_blkd_tasks field during grace-period initialization.
If this flag is set, the rcu_report_qs_rnp() is invoked to immediately
report the possible quiescent state.  While in the neighborhood, this
commit also report quiescent states for any CPUs that went offline between
the two phases of grace-period initialization, thus reducing grace-period
delays and hopefully eventually allowing removal of offline-CPU checks
from the force-quiescent-state code path.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:39:04 -07:00
Paul E. McKenney
0b107d24d9 rcu: Suppress false-positive splats from mid-init task resume
Consider the following sequence of events in a PREEMPT=y kernel:

1.	All CPUs corresponding to a given leaf rcu_node structure are
	offline.

2.	The first phase of the rcu_gp_init() function's grace-period
	initialization runs, and sets that rcu_node structure's
	->qsmaskinit to zero, as it should.

3.	One of the CPUs corresponding to that rcu_node structure comes
	back online.  Note that because this CPU came online after the
	grace period started, this grace period can safely ignore this
	newly onlined CPU.

4.	A task running on the newly onlined CPU enters an RCU-preempt
	read-side critical section, and is then preempted.  Because
	the corresponding rcu_node structure's ->qsmask is zero,
	rcu_preempt_ctxt_queue() leaves the rcu_node structure's
	->gp_tasks field NULL, as it should.

5.	The rcu_gp_init() function continues running the second phase of
	grace-period initialization.  The ->qsmask field of the parent of
	the aforementioned leaf rcu_node structure is set to not expect
	a quiescent state from the leaf, as is only right and proper.

	However, when rcu_gp_init() reaches the leaf, it invokes
	rcu_preempt_check_blocked_tasks(), which sees that the leaf's
	->blkd_tasks list is non-empty, and therefore sets the leaf's
	->gp_tasks field to reference the first task on that list.

6.	The grace period ends before the preempted task resumes, which
	is perfectly fine, given that this grace period was under no
	obligation to wait for that task to exit its late-starting
	RCU-preempt read-side critical section.  Unfortunately, the
	leaf's ->gp_tasks field is non-NULL, so rcu_gp_cleanup() splats.
	After all, it appears to rcu_gp_cleanup() that the grace period
	failed to wait for a task that was supposed to be blocking that
	grace period.

This commit avoids this false-positive splat by adding a check of both
->qsmaskinit and ->wait_blkd_tasks to rcu_preempt_check_blocked_tasks().
If both ->qsmaskinit and ->wait_blkd_tasks are zero, then the task must
have entered its RCU-preempt read-side critical section late (after all,
the CPU that it is running on was not online at that time), which means
that the upper-level rcu_node structure won't be waiting for anything
on the leaf anyway.

If ->wait_blkd_tasks is non-zero, then there is at least one task on
ths rcu_node structure's ->blkd_tasks list whose RCU read-side
critical section predates the current grace period.  If ->qsmaskinit
is non-zero, there is at least one CPU that was online at the start
of the current grace period.  Thus, if both are zero, there is nothing
to wait for.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:39:03 -07:00
Paul E. McKenney
99990da1b3 rcu: Suppress more involved false-positive preempted-task splats
Consider the following sequence of events in a PREEMPT=y kernel:

1.	All but one of the CPUs corresponding to a given leaf rcu_node
	structure go offline.  Each of these CPUs clears its bit in that
	structure's ->qsmaskinitnext field.

2.	A new grace period starts, and rcu_gp_init() scans the leaf
	rcu_node structures, applying CPU-hotplug changes since the
	start of the previous grace period, including those changes in
	#1 above.  This copies each leaf structure's ->qsmaskinitnext
	to its ->qsmask field, which represents the CPUs that this new
	grace period will wait on.  Each copy operation is done holding
	the corresponding leaf rcu_node structure's ->lock, and at the
	end of this scan, rcu_gp_init() holds no locks.

3.	The last CPU corresponding to #1's leaf rcu_node structure goes
	offline, clearing its bit in that structure's ->qsmaskinitnext
	field, but not touching the ->qsmaskinit field.  Note that
	rcu_gp_init() is not currently holding any locks!  This CPU does
	-not- report a quiescent state because the grace period has not
	yet initialized itself sufficiently to have set any bits in any
	of the leaf rcu_node structures' ->qsmask fields.

4.	The rcu_gp_init() function continues initializing the new grace
	period, copying each leaf rcu_node structure's ->qsmaskinit
	field to its ->qsmask field while holding the corresponding ->lock.
	This sets the ->qsmask bit corresponding to #3's CPU.

5.	Before the grace period ends, #3's CPU comes back online.
	Because te grace period has not yet done any force-quiescent-state
	scans (which would report a quiescent state on behalf of any
	offline CPUs), this CPU's ->qsmask bit is still set.

6.	A task running on the newly onlined CPU is preempted while in
	an RCU read-side critical section.  Because this CPU's ->qsmask
	bit is net, not only does this task queue itself on the leaf
	rcu_node structure's ->blkd_tasks list, it also sets that
	structure's ->gp_tasks pointer to reference it.

7.	The grace period started in #1 above comes to an end.  This
	results in rcu_gp_cleanup() being invoked, which, among other
	things, checks to make sure that there are no tasks blocking the
	just-ended grace period, that is, that all ->gp_tasks pointers
	are NULL.  The ->gp_tasks pointer corresponding to the task
	preempted in #3 above is non-NULL, which results in a splat.

This splat is a false positive.  The task's RCU read-side critical
section cannot have begun before the just-ended grace period because
this would mean either: (1) The CPU came online before the grace period
started, which cannot have happened because the grace period started
before that CPU went offline, or (2) The task started its RCU read-side
critical section on some other CPU, but then it would have had to have
been preempted before migrating to this CPU, which would mean that it
would have instead queued itself on that other CPU's rcu_node structure.
RCU's grace periods thus are working correctly.  Or, more accurately,
that remaining bugs in RCU's grace periods are elsewhere.

This commit eliminates this false positive by adding code to the end
of rcu_cpu_starting() that reports a quiescent state to RCU, which has
the side-effect of clearing that CPU's ->qsmask bit, preventing the
above scenario.  This approach has the added benefit of more promptly
reporting quiescent states corresponding to offline CPUs.  Nevertheless,
this commit does -not- remove the need for the force-quiescent-state
scans to check for offline CPUs, given that a CPU might remain offline
indefinitely.  And without the checks in the force-quiescent-state scans,
the grace period would also persist indefinitely, which could result in
hangs or memory exhaustion.

Note well that the call to rcu_report_qs_rnp() reporting the quiescent
state must come -after- the setting of this CPU's bit in the leaf rcu_node
structure's ->qsmaskinitnext field.  Otherwise, lockdep-RCU will complain
bitterly about quiescent states coming from an offline CPU.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:39:03 -07:00
Paul E. McKenney
fece27760f rcu: Suppress false-positive preempted-task splats
Consider the following sequence of events in a PREEMPT=y kernel:

1.	All CPUs corresponding to a given rcu_node structure go offline.
	A new grace period starts just after the CPU-hotplug code path
	does its synchronize_rcu() for the last CPU, so at least this
	CPU is present in that structure's ->qsmask.

2.	Before the grace period ends, a CPU comes back online, and not
	just any CPU, but the one corresponding to a non-zero bit in
	the leaf rcu_node structure's ->qsmask.

3.	A task running on the newly onlined CPU is preempted while in
	an RCU read-side critical section.  Because this CPU's ->qsmask
	bit is net, not only does this task queue itself on the leaf
	rcu_node structure's ->blkd_tasks list, it also sets that
	structure's ->gp_tasks pointer to reference it.

4.	The grace period started in #1 above comes to an end.  This
	results in rcu_gp_cleanup() being invoked, which, among other
	things, checks to make sure that there are no tasks blocking the
	just-ended grace period, that is, that all ->gp_tasks pointers
	are NULL.  The ->gp_tasks pointer corresponding to the task
	preempted in #3 above is non-NULL, which results in a splat.

This splat is a false positive.  The task's RCU read-side critical
section cannot have begun before the just-ended grace period because
this would mean either: (1) The CPU came online before the grace period
started, which cannot have happened because the grace period started
before that CPU was all the way offline, or (2) The task started its
RCU read-side critical section on some other CPU, but then it would
have had to have been preempted before migrating to this CPU, which
would mean that it would have instead queued itself on that other CPU's
rcu_node structure.

This commit eliminates this false positive by adding code to the end
of rcu_cleanup_dying_idle_cpu() that reports a quiescent state to RCU,
which has the side-effect of clearing that CPU's ->qsmask bit, preventing
the above scenario.  This approach has the added benefit of more promptly
reporting quiescent states corresponding to offline CPUs.

Note well that the call to rcu_report_qs_rnp() reporting the quiescent
state must come -before- the clearing of this CPU's bit in the leaf
rcu_node structure's ->qsmaskinitnext field.  Otherwise, lockdep-RCU
will complain bitterly about quiescent states coming from an offline CPU.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:39:02 -07:00
Paul E. McKenney
5554788e1d rcu: Suppress false-positive offline-CPU lockdep-RCU splat
The rcu_lockdep_current_cpu_online() function currently checks only the
RCU-sched data structures to determine whether or not RCU believes that a
given CPU is offline.  Unfortunately, there are multiple flavors of RCU,
which means that there is a short window of time during which the various
flavors disagree as to whether or not a given CPU is offline.  This can
result in false-positive lockdep-RCU splats in which some other flavor
of RCU tries to do something based on its view that the CPU is online,
only to get hit with a lockdep-RCU splat because RCU-sched instead
believes that the CPU is offline.

This commit therefore changes rcu_lockdep_current_cpu_online() to scan
all RCU flavors and to consider a given CPU to be online if any of the
RCU flavors believe it to be online, thus preventing these false-positive
splats.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:39:02 -07:00
Paul E. McKenney
928164351e rcu: Prevent useless FQS scan after all CPUs have checked in
The force_qs_rnp() function checks for ->qsmask being all zero, that is,
all CPUs for the current rcu_node structure having already passed through
quiescent states.  But with RCU-preempt, this is not sufficient to report
quiescent states further up the tree, so there are further checks that
can initiate RCU priority boosting and also for races with CPU-hotplug
operations.  However, if neither of these further checks apply, the code
proceeds to carry out a useless scan of an all-zero ->qsmask.

This commit therefore adds code to release the current rcu_node
structure's lock and continue on to the next rcu_node structure, thereby
avoiding this useless scan.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:39:01 -07:00
Paul E. McKenney
91f63ced7d rcu: Replace smp_wmb() with smp_store_release() for stall check
This commit gets rid of the smp_wmb() in record_gp_stall_check_time()
in favor of an smp_store_release().

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:39:01 -07:00
Paul E. McKenney
77cfc7bf24 rcu: Fix typo and add additional debug
This commit fixes a typo and adds some additional debugging to the
message emitted when a task blocking the current grace period is listed
as blocking it when either that grace period ends or the next grace
period begins.  This commit also reformats the console message for
readability.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:39:00 -07:00
Paul E. McKenney
c74859d1eb rcu: Make rcu_report_unblock_qs_rnp() warn on violated preconditions
If rcu_report_unblock_qs_rnp() is invoked on something other than
preemptible RCU or if there are still preempted tasks blocking the
current grace period, something went badly wrong in the caller.
This commit therefore adds WARN_ON_ONCE() to these conditions, but
leaving the legitimate reason for early exit (rnp->qsmask != 0)
unwarned.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:38:59 -07:00
Paul E. McKenney
8d672fa6bf rcu: Make rcu_init_new_rnp() stop upon already-set bit
Currently, rcu_init_new_rnp() walks up the rcu_node combining tree,
setting bits in the ->qsmaskinit fields on the way up.  It walks up
unconditionally, regardless of the initial state of these bits.  This is
OK because only the corresponding RCU grace-period kthread ever tests
or sets these bits during runtime.  However, it is also pointless, and
it increases both memory and lock contention (albeit only slightly), so
this commit stops the walk as soon as an already-set bit is encountered.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:38:59 -07:00
Paul E. McKenney
c50cbe535c rcu: Fix an obsolete ->qsmaskinit comment
Back in the old days, when grace-period initialization blocked CPU
hotplug, the ->qsmaskinit mask was indeed updated at the time that
a given CPU went offline.  However, with the deferral of these updates
until the beginning of the next grace period in commit 0aa04b055e
("rcu: Process offlining and onlining only at grace-period start"),
it is instead ->qsmaskinitnext that gets updated at that time.

This commit therefore updates the obsolete comment.  It also fixes
punctuation while on the topic of comments mentioning ->qsmaskinit.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:38:58 -07:00
Paul E. McKenney
962aff03c3 rcu: Clean up handling of tasks blocked across full-rcu_node offline
Commit 0aa04b055e ("rcu: Process offlining and onlining only at
grace-period start") deferred handling of CPU-hotplug events until the
start of the next grace period, but consider the following sequence
of events:

1.	A task is preempted within an RCU-preempt read-side critical
	section.

2.	The CPU that this task was running on goes offline, along with all
	other CPUs sharing the corresponding leaf rcu_node structure.

3.	The task resumes execution.

4.	One of those CPUs comes back online before a new grace period starts.

In step 2, the code in the next rcu_gp_init() invocation will (correctly)
defer removing the leaf rcu_node structure from the upper-level bitmasks,
and will (correctly) set that structure's ->wait_blkd_tasks field.  During
the ensuing interval, RCU will (correctly) track the tasks preempted on
that structure because they must block any subsequent grace period.

In step 3, the code in rcu_read_unlock_special() will (correctly) remove
the task from the leaf rcu_node structure.  From this point forward, RCU
need not pay attention to this structure, at least not until one of the
corresponding CPUs comes back online.

In step 4, the code in the next rcu_gp_init() invocation will
(incorrectly) invoke rcu_init_new_rnp().  This is incorrect because
the corresponding rcu_cleanup_dead_rnp() was never invoked.  This is
nevertheless harmless because the upper-level bits are still set.
So, no harm, no foul, right?

At least, all is well until a little further into rcu_gp_init()
invocation, which will notice that there are no longer any tasks blocked
on the leaf rcu_node structure, conclude that there is no longer anything
left over from step 2's offline operation, and will therefore invoke
rcu_cleanup_dead_rnp().  But this invocation of rcu_cleanup_dead_rnp()
is for the beginning of the earlier offline interval, and the previous
invocation of rcu_init_new_rnp() is for the end of that same interval.
That is right, they are invoked out of order.

That cannot be good, can it?

It turns out that this is not a (correctness!) problem because
rcu_cleanup_dead_rnp() checks to see if any of the corresponding CPUs
are online, and refuses to do anything if so.  In other words, in the
case where rcu_init_new_rnp() and rcu_cleanup_dead_rnp() execute out of
order, they both have no effect.

But this is at best an accident waiting to happen.

This commit therefore adds logic to rcu_gp_init() so that
rcu_init_new_rnp() and rcu_cleanup_dead_rnp() are always invoked in
order, and so that neither are invoked at all in cases where RCU had to
pay attention to the leaf rcu_node structure during the entire time that
all corresponding CPUs were offline.

And, while in the area, this commit reduces confusion by using formal
parameters rather than local variables that just happen to have the same
value at that particular point in the code.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:38:58 -07:00
Joel Fernandes (Google)
226ca5e766 rcu: Identify grace period is in progress as we advance up the tree
There's no need to keep checking the same starting node for whether a
grace period is in progress as we advance up the funnel lock loop. Its
sufficient if we just checked it in the start, and then subsequently
checked the internal nodes as we advanced up the combining tree. This
also makes sense because the grace-period updates propogate from the
root to the leaf, so there's a chance we may find a grace period has
started as we advance up, lets check for the same.

Reported-by: Paul McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:38:57 -07:00
Joel Fernandes (Google)
df2bf8f7f7 rcu: Use better variable names in funnel locking loop
The funnel locking loop in rcu_start_this_gp uses rcu_root as a
temporary variable while walking the combining tree. This causes a
tiresome exercise of a code reader reminding themselves that rcu_root
may not be root. Lets just call it rnp, and rename other variables as
well to be more appropriate.

Original patch: https://patchwork.kernel.org/patch/10396577/

Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Fix name in comment as well. ]
2018-07-12 15:38:57 -07:00
Joel Fernandes
b73de91d6a rcu: Rename the grace-period-request variables and parameters
The name 'c' is used for variables and parameters holding the requested
grace-period sequence number.  However it is no longer very meaningful
given the conversions from ->gpnum and (especially) ->completed to
->gp_seq. This commit therefore renames 'c' to 'gp_seq_req'.

Previous patch discussion is at:
https://patchwork.kernel.org/patch/10396579/

Signed-off-by: Joel Fernandes <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:38:56 -07:00
Paul E. McKenney
3d18469a2b rcu: Regularize resetting of rcu_data wrap indicator
The rcu_data structure's ->gpwrap indicator is currently reset only
when the CPU in question detects a new grace period.  This is in theory
sufficient because any CPU that has been out of action for long enough
that its ->gpwrap indicator is set is guaranteed to see both the end
of an old grace period and the start of a new one.

However, the current code leaves a short window during which the ->gpwrap
indicator has been reset but the corresponding ->gp_seq counter has not
yet been brought up to date.  This is harmless because interrupts are
disabled, but it is likely to (at the very least) cause confusion.

This commit therefore moves the resetting of ->gpwrap to follow the
updating of ->gp_seq.  While in the area, it also resets ->gp_seq_needed.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:38:56 -07:00
Paul E. McKenney
d72193123c rcutorture: Correctly handle grace-period sequence wrap
The new ->gq_seq grace-period sequence numbers must be shifted down,
which give artifacts when these numbers wrap.  This commit therefore
enables rcutorture and rcuperf to handle grace-period sequence numbers
even if they do wrap.  It does this by allowing a special subtraction
function to be specified, and this function subtracts before shifting.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:38:55 -07:00
Paul E. McKenney
2e3e5e5501 rcu: Make rcu_start_this_gp() check for grace period already started
In the old days of ->gpnum and ->completed, the code requesting a new
grace period checked to see if that grace period had already started,
bailing early if so.  The new-age ->gp_seq approach instead checks
whether the grace period has already finished.  A compensating change
pushed the requested grace period down to the bottom of the tree, thus
reducing lock contention and even eliminating it in some cases.  But why
not further reduce contention, especially on large systems, by doing both,
especially given that the cost of doing both is extremely small?

This commit therefore adds a new rcu_seq_started() function that checks
whether a specified grace period has already started.  It then uses
this new function in place of rcu_seq_done() in the rcu_start_this_gp()
function's funnel locking code.

Reported-by: Joel Fernandes <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:38:54 -07:00
Joel Fernandes (Google)
5ca0905f67 rcu: Fix cpustart tracepoint gp_seq number
The "cpustart" trace event shows a stale gp_seq. This is because it uses
rdp->gp_seq, which is updated only at the end of the __note_gp_changes()
function. This commit therefore instead uses rnp->gp_seq.

An alternative fix would be to update rdp->gp_seq earlier, but this would
break RCU's detection of the beginning of a new-to-this-CPU grace period.

Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:38:53 -07:00
Joel Fernandes (Google)
5b55072f22 rcu: Produce last "CleanupMore" trace only if late-breaking request
Currently Tree RCU's clean-up code emits a "CleanupMore" trace event in
response to late-arriving grace-period requests even if the grace period
was already requested. This makes "CleanupMore" show up an extra time (in
addition to once for each rcu_node structure that was previously marked
with the request), and for no good reason.  This commit therefore avoids
emitting this trace message unless the the only request for this next
grace period arrived during or after the cleanup scan of the rcu_node
structures.

Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:38:53 -07:00
Paul E. McKenney
a2165e4168 rcu: Don't funnel-lock above leaf node if GP in progress
The old grace-period start code would acquire only the leaf's rcu_node
structure's ->lock if that structure believed that a grace period was
in progress.  The new code advances to the leaf's parent in this case,
needlessly acquiring then leaf's parent's ->lock.  This commit therefore
checks the grace-period state after marking the leaf with the need for
the specified grace period, and if the leaf believes that a grace period
is in progress, takes an early exit.

Reported-by: Joel Fernandes <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Add "Startedleaf" tracing as suggested by Joel Fernandes. ]
2018-07-12 15:38:52 -07:00
Paul E. McKenney
e1333462e3 doc: Update RCU CPU stall-warning documentation
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:38:51 -07:00
Paul E. McKenney
869cc745bf doc: Update memory-ordering documentation for ->gp-seq
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:38:51 -07:00
Paul E. McKenney
b1e1f21f5b doc: Update data-structure documentation for ->gp_seq
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:38:49 -07:00
Paul E. McKenney
e44e73ca47 rcu: Make simple callback acceleration refer to rdp->gp_seq_needed
Now that the rcu_data structure contains ->gp_seq_needed, create an
rcu_accelerate_cbs_unlocked() helper function that locklessly checks to
see if new callbacks' required grace period has already been requested.
If so, update the callback list locally and again locklessly.  (Though
interrupts must be and are disabled to avoid racing with conflicting
updates in interrupt handlers.)

Otherwise, call rcu_accelerate_cbs() as before.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:38:49 -07:00
Paul E. McKenney
ff3bb6f4d0 rcu: Remove ->gpnum and ->completed
Now that everything has been converted to use ->gp_seq instead of
->gpnum and ->completed, this commit removes ->gpnum and ->completed.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:38:48 -07:00
Paul E. McKenney
fee5997c17 rcu: Convert rcu_fqs tracepoint to ->gp_seq
This commit makes the rcu_fqs tracepoint use ->gp_seq instead of ->gpnum.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:38:47 -07:00
Paul E. McKenney
db023296f0 rcu: Convert rcu_quiescent_state_report tracepoint to ->gp_seq
This commit makes the rcu_quiescent_state_report tracepoint use ->gp_seq
instead of ->gpnum.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:38:47 -07:00
Paul E. McKenney
865aa1e08d rcu: Convert rcu_unlock_preempted_task tracepoint to ->gp_seq
This commit makes the rcu_unlock_preempted_task tracepoint use ->gp_seq
instead of ->gpnum.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:38:46 -07:00
Paul E. McKenney
598ce09480 rcu: Convert rcu_preempt_task tracepoint to ->gp_seq
This commit makes the rcu_preempt_task tracepoint use ->gp_seq instead
of ->gpnum.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2018-07-12 15:38:45 -07:00