[ Upstream commit 1aa0006676 ]
By adding a forward declaration for struct lppaca we can untangle paca.h
and lppaca.h. Also move get_lppaca() into lppaca.h for consistency.
Add includes of lppaca.h to some files that need it.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20230823055317.751786-3-mpe@ellerman.id.au
Stable-dep-of: eac030b22e ("powerpc/pseries: Rework lppaca_shared_proc() to avoid DEBUG_PREEMPT")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9981bace85 ]
At debugfs/kvm/<pid>/vcpu0/timings we show how long each part of the
code takes to run:
$ cat /sys/kernel/debug/kvm/*-*/vcpu0/timings
rm_entry: 123785 49398892 118 4898
rm_intr: 123780 6075890 22 390
rm_exit: 0 0 0 0 <-- NOK
guest: 123780 46732919988 402 9997638
cede: 0 0 0 0 <-- OK, no cede napping in P9
The "rm_exit" is always showing zero because it is the last one and
end_timing does not increment the counter of the previous entry.
We can fix it by calling accumulate_time again instead of
end_timing. That way the counter gets incremented. The rest of the
arithmetic can be ignored because there are no timing points after
this and the accumulators are reset before the next round.
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220525130554.2614394-2-farosas@linux.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7ef3d06f1b ]
The existing logic in KVM to support guests calling H_RANDOM only works
on Power8, because it looks for an RNG in the device tree, but on Power9
we just use darn.
In addition the existing code needs to work in real mode, so we have the
special cased powernv_get_random_real_mode() to deal with that.
Instead just have KVM call ppc_md.get_random_seed(), and do the real
mode check inside of there, that way we use whatever RNG is available,
including darn on Power9.
Fixes: e928e9cb36 ("KVM: PPC: Book3S HV: Add fast real-mode H_RANDOM implementation.")
Cc: stable@vger.kernel.org # v4.1+
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
[mpe: Rebase on previous commit, update change log appropriately]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220727143219.2684192-2-mpe@ellerman.id.au
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit aebd1fb45c ]
Introduce macros that operate on a (start, end) range of GPRs, which
reduces lines of code and need to do mental arithmetic while reading the
code.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Segher Boessenkool <segher@kernel.crashing.org>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211022061322.2671178-1-npiggin@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 37b2a6510a ]
Allocations whose size is related to the memslot size can be arbitrarily
large. Do not use kvzalloc/kvcalloc, as those are limited to "not crazy"
sizes that fit in 32 bits.
Cc: stable@vger.kernel.org
Fixes: 7661809d49 ("mm: don't allow oversized kvmalloc() calls")
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2852ebfa10 ]
The L1 should not be able to adjust LPES mode for the L2. Setting LPES
if the L0 needs it clear would cause external interrupts to be sent to
L2 and missed by the L0.
Clearing LPES when it may be set, as typically happens with XIVE enabled
could cause a performance issue despite having no native XIVE support in
the guest, because it will cause mediated interrupts for the L2 to be
taken in HV mode, which then have to be injected.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220303053315.1056880-7-npiggin@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 300981abdd upstream.
The bug is here:
if (!p)
return ret;
The list iterator value 'p' will *always* be set and non-NULL by
list_for_each_entry(), so it is incorrect to assume that the iterator
value will be NULL if the list is empty or no element is found.
To fix the bug, Use a new value 'iter' as the list iterator, while use
the old value 'p' as a dedicated variable to point to the found element.
Fixes: dfaa973ae9 ("KVM: PPC: Book3S HV: In H_SVM_INIT_DONE, migrate remaining normal-GFNs to secure-GFNs")
Cc: stable@vger.kernel.org # v5.9+
Signed-off-by: Xiaomeng Tong <xiam0nd.tong@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220414062103.8153-1-xiam0nd.tong@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ee8348496c upstream.
Commit 863771a28e ("powerpc/32s: Convert switch_mmu_context() to C")
moved the switch_mmu_context() to C. While in principle a good idea, it
meant that the function now uses the stack. The stack is not accessible
from real mode though.
So to keep calling the function, let's turn on MSR_DR while we call it.
That way, all pointer references to the stack are handled virtually.
In addition, make sure to save/restore r12 on the stack, as it may get
clobbered by the C function.
Fixes: 863771a28e ("powerpc/32s: Convert switch_mmu_context() to C")
Cc: stable@vger.kernel.org # v5.14+
Reported-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Alexander Graf <graf@amazon.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220510123717.24508-1-graf@amazon.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 26a62b750a ]
The LoPAPR spec defines a guest visible IOMMU with a variable page size.
Currently QEMU advertises 4K, 64K, 2M, 16MB pages, a Linux VM picks
the biggest (16MB). In the case of a passed though PCI device, there is
a hardware IOMMU which does not support all pages sizes from the above -
P8 cannot do 2MB and P9 cannot do 16MB. So for each emulated
16M IOMMU page we may create several smaller mappings ("TCEs") in
the hardware IOMMU.
The code wrongly uses the emulated TCE index instead of hardware TCE
index in error handling. The problem is easier to see on POWER8 with
multi-level TCE tables (when only the first level is preallocated)
as hash mode uses real mode TCE hypercalls handlers.
The kernel starts using indirect tables when VMs get bigger than 128GB
(depends on the max page order).
The very first real mode hcall is going to fail with H_TOO_HARD as
in the real mode we cannot allocate memory for TCEs (we can in the virtual
mode) but on the way out the code attempts to clear hardware TCEs using
emulated TCE indexes which corrupts random kernel memory because
it_offset==1<<59 is subtracted from those indexes and the resulting index
is out of the TCE table bounds.
This fixes kvmppc_clear_tce() to use the correct TCE indexes.
While at it, this fixes TCE cache invalidation which uses emulated TCE
indexes instead of the hardware ones. This went unnoticed as 64bit DMA
is used these days and VMs map all RAM in one go and only then do DMA
and this is when the TCE cache gets populated.
Potentially this could slow down mapping, however normally 16MB
emulated pages are backed by 64K hardware pages so it is one write to
the "TCE Kill" per 256 updates which is not that bad considering the size
of the cache (1024 TCEs or so).
Fixes: ca1fc489cf ("KVM: PPC: Book3S: Allow backing bigger guest IOMMU pages with smaller physical pages")
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Tested-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Frederic Barrat <fbarrat@linux.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220420050840.328223-1-aik@ozlabs.ru
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit af41d2866f upstream.
Using conditional branches between two files is hasardous,
they may get linked too far from each other.
arch/powerpc/kvm/book3s_64_entry.o:(.text+0x3ec): relocation truncated
to fit: R_PPC64_REL14 (stub) against symbol `system_reset_common'
defined in .text section in arch/powerpc/kernel/head_64.o
Reorganise the code to use non conditional branches.
Fixes: 89d35b2391 ("KVM: PPC: Book3S HV P9: Implement the rest of the P9 path in C")
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
[mpe: Avoid odd-looking bne ., use named local labels]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/89cf27bf43ee07a0b2879b9e8e2f5cd6386a3645.1648366338.git.christophe.leroy@csgroup.eu
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 69ab6ac380 ]
The return of the function is being shadowed by the call to
kvmppc_uvmem_init.
Fixes: ca9f494267 ("KVM: PPC: Book3S HV: Support for running secure guests")
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220125155735.1018683-2-farosas@linux.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b99234b918 ]
The MMIO emulation code for vector instructions is duplicated between
VSX and VMX. When emulating VMX we should check the VMX copy size
instead of the VSX one.
Fixes: acc9eb9305 ("KVM: PPC: Reimplement LOAD_VMX/STORE_VMX instruction ...")
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220125215655.1026224-3-farosas@linux.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 22f7ff0dea upstream.
The L0 is storing HFSCR requested by the L1 for the L2 in struct
kvm_nested_guest when the L1 requests a vCPU enter L2. kvm_nested_guest
is not a per-vCPU structure. Hilarity ensues.
Fix it by moving the nested hfscr into the vCPU structure together with
the other per-vCPU nested fields.
Fixes: 8b210a880b ("KVM: PPC: Book3S HV Nested: Make nested HFSCR state accessible")
Cc: stable@vger.kernel.org # v5.15+
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220122105530.3477250-1-npiggin@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 792020907b ]
H_COPY_TOFROM_GUEST is an hcall for an upper level VM to access its nested
VMs memory. The userspace can trigger WARN_ON_ONCE(!(gfp & __GFP_NOWARN))
in __alloc_pages() by constructing a tiny VM which only does
H_COPY_TOFROM_GUEST with a too big GPR9 (number of bytes to copy).
This silences the warning by adding __GFP_NOWARN.
Spotted by syzkaller.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210901084550.1658699-1-aik@ozlabs.ru
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 511d25d6b7 ]
The userspace can trigger "vmalloc size %lu allocation failure: exceeds
total pages" via the KVM_SET_USER_MEMORY_REGION ioctl.
This silences the warning by checking the limit before calling vzalloc()
and returns ENOMEM if failed.
This does not call underlying valloc helpers as __vmalloc_node() is only
exported when CONFIG_TEST_VMALLOC_MODULE and __vmalloc_node_range() is
not exported at all.
Spotted by syzkaller.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[mpe: Use 'size' for the variable rather than 'cb']
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210901084512.1658628-1-aik@ozlabs.ru
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit cf0b0e3712 upstream.
The POWER9 ERAT flush instruction is a SLBIA with IH=7, which is a
reserved value on POWER7/8. On POWER8 this invalidates the SLB entries
above index 0, similarly to SLBIA IH=0.
If the SLB entries are invalidated, and then the guest is bypassed, the
host SLB does not get re-loaded, so the bolted entries above 0 will be
lost. This can result in kernel stack access causing a SLB fault.
Kernel stack access causing a SLB fault was responsible for the infamous
mega bug (search "Fix SLB reload bug"). Although since commit
48e7b76957 ("powerpc/64s/hash: Convert SLB miss handlers to C") that
starts using the kernel stack in the SLB miss handler, it might only
result in an infinite loop of SLB faults. In any case it's a bug.
Fix this by only executing the instruction on >= POWER9 where IH=7 is
defined not to invalidate the SLB. POWER7/8 don't require this ERAT
flush.
Fixes: 5008711259 ("KVM: PPC: Book3S HV: Invalidate ERAT when flushing guest TLB entries")
Cc: stable@vger.kernel.org # v5.2+
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211119031627.577853-1-npiggin@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit dae5818646 ]
kvmppc_h_set_dabr(), and kvmppc_h_set_xdabr() which jumps into
it, need to use _GLOBAL_TOC to setup the kernel TOC pointer, because
kvmppc_h_set_dabr() uses LOAD_REG_ADDR() to load dawr_force_enable.
When called from hcall_try_real_mode() we have the kernel TOC in r2,
established near the start of kvmppc_interrupt_hv(), so there is no
issue.
But they can also be called from kvmppc_pseries_do_hcall() which is
module code, so the access ends up happening with the kvm-hv module's
r2, which will not point at dawr_force_enable and could even cause a
fault.
With the current code layout and compilers we haven't observed a fault
in practice, the load hits somewhere in kvm-hv.ko and silently returns
some bogus value.
Note that we we expect p8/p9 guests to use the DAWR, but SLOF uses
h_set_dabr() to test if sc1 works correctly, see SLOF's
lib/libhvcall/brokensc1.c.
Fixes: c1fe190c06 ("powerpc: Add force enable of DAWR on P9 option")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Link: https://lore.kernel.org/r/20210923151031.72408-1-mpe@ellerman.id.au
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 235cee1624 upstream.
Commit 112665286d ("KVM: PPC: Book3S HV: Context tracking exit guest
context before enabling irqs") moved guest_exit() into the interrupt
protected area to avoid wrong context warning (or worse). The problem is
that tick-based time accounting has not yet been updated at this point
(because it depends on the timer interrupt firing), so the guest time
gets incorrectly accounted to system time.
To fix the problem, follow the x86 fix in commit 1604571401 ("Defer
vtime accounting 'til after IRQ handling"), and allow host IRQs to run
before accounting the guest exit time.
In the case vtime accounting is enabled, this is not required because TB
is used directly for accounting.
Before this patch, with CONFIG_TICK_CPU_ACCOUNTING=y in the host and a
guest running a kernel compile, the 'guest' fields of /proc/stat are
stuck at zero. With the patch they can be observed increasing roughly as
expected.
Fixes: e233d54d4d ("KVM: booke: use __kvm_guest_exit")
Fixes: 112665286d ("KVM: PPC: Book3S HV: Context tracking exit guest context before enabling irqs")
Cc: stable@vger.kernel.org # 5.12+
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
[np: only required for tick accounting, add Book3E fix, tweak changelog]
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211027142150.3711582-1-npiggin@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We call idle_kvm_start_guest() from power7_offline() if the thread has
been requested to enter KVM. We pass it the SRR1 value that was returned
from power7_idle_insn() which tells us what sort of wakeup we're
processing.
Depending on the SRR1 value we pass in, the KVM code might enter the
guest, or it might return to us to do some host action if the wakeup
requires it.
If idle_kvm_start_guest() is able to handle the wakeup, and enter the
guest it is supposed to indicate that by returning a zero SRR1 value to
us.
That was the behaviour prior to commit 10d91611f4 ("powerpc/64s:
Reimplement book3s idle code in C"), however in that commit the
handling of SRR1 was reworked, and the zeroing behaviour was lost.
Returning from idle_kvm_start_guest() without zeroing the SRR1 value can
confuse the host offline code, causing the guest to crash and other
weirdness.
Fixes: 10d91611f4 ("powerpc/64s: Reimplement book3s idle code in C")
Cc: stable@vger.kernel.org # v5.2+
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211015133929.832061-2-mpe@ellerman.id.au
In commit 10d91611f4 ("powerpc/64s: Reimplement book3s idle code in
C") kvm_start_guest() became idle_kvm_start_guest(). The old code
allocated a stack frame on the emergency stack, but didn't use the
frame to store anything, and also didn't store anything in its caller's
frame.
idle_kvm_start_guest() on the other hand is written more like a normal C
function, it creates a frame on entry, and also stores CR/LR into its
callers frame (per the ABI). The problem is that there is no caller
frame on the emergency stack.
The emergency stack for a given CPU is allocated with:
paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
So emergency_sp actually points to the first address above the emergency
stack allocation for a given CPU, we must not store above it without
first decrementing it to create a frame. This is different to the
regular kernel stack, paca->kstack, which is initialised to point at an
initial frame that is ready to use.
idle_kvm_start_guest() stores the backchain, CR and LR all of which
write outside the allocation for the emergency stack. It then creates a
stack frame and saves the non-volatile registers. Unfortunately the
frame it creates is not large enough to fit the non-volatiles, and so
the saving of the non-volatile registers also writes outside the
emergency stack allocation.
The end result is that we corrupt whatever is at 0-24 bytes, and 112-248
bytes above the emergency stack allocation.
In practice this has gone unnoticed because the memory immediately above
the emergency stack happens to be used for other stack allocations,
either another CPUs mc_emergency_sp or an IRQ stack. See the order of
calls to irqstack_early_init() and emergency_stack_init().
The low addresses of another stack are the top of that stack, and so are
only used if that stack is under extreme pressue, which essentially
never happens in practice - and if it did there's a high likelyhood we'd
crash due to that stack overflowing.
Still, we shouldn't be corrupting someone else's stack, and it is purely
luck that we aren't corrupting something else.
To fix it we save CR/LR into the caller's frame using the existing r1 on
entry, we then create a SWITCH_FRAME_SIZE frame (which has space for
pt_regs) on the emergency stack with the backchain pointing to the
existing stack, and then finally we switch to the new frame on the
emergency stack.
Fixes: 10d91611f4 ("powerpc/64s: Reimplement book3s idle code in C")
Cc: stable@vger.kernel.org # v5.2+
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211015133929.832061-1-mpe@ellerman.id.au
POWER9 DD2.2 and 2.3 hardware implements a "fake-suspend" mode where
certain TM instructions executed in HV=0 mode cause softpatch interrupts
so the hypervisor can emulate them and prevent problematic processor
conditions. In this fake-suspend mode, the treclaim. instruction does
not modify registers.
Unfortunately the rfscv instruction executed by the guest do not
generate softpatch interrupts, which can cause the hypervisor to lose
track of the fake-suspend mode, and it can execute this treclaim. while
not in fake-suspend mode. This modifies GPRs and crashes the hypervisor.
It's not trivial to disable scv in the guest with HFSCR now, because
they assume a POWER9 has scv available. So this fix saves and restores
checkpointed registers across the treclaim.
Fixes: 7854f7545b ("KVM: PPC: Book3S: Rework TM save/restore code and make it C-callable")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210908101718.118522-2-npiggin@gmail.com
- Page ownership tracking between host EL1 and EL2
- Rely on userspace page tables to create large stage-2 mappings
- Fix incompatibility between pKVM and kmemleak
- Fix the PMU reset state, and improve the performance of the virtual PMU
- Move over to the generic KVM entry code
- Address PSCI reset issues w.r.t. save/restore
- Preliminary rework for the upcoming pKVM fixed feature
- A bunch of MM cleanups
- a vGIC fix for timer spurious interrupts
- Various cleanups
s390:
- enable interpretation of specification exceptions
- fix a vcpu_idx vs vcpu_id mixup
x86:
- fast (lockless) page fault support for the new MMU
- new MMU now the default
- increased maximum allowed VCPU count
- allow inhibit IRQs on KVM_RUN while debugging guests
- let Hyper-V-enabled guests run with virtualized LAPIC as long as they
do not enable the Hyper-V "AutoEOI" feature
- fixes and optimizations for the toggling of AMD AVIC (virtualized LAPIC)
- tuning for the case when two-dimensional paging (EPT/NPT) is disabled
- bugfixes and cleanups, especially with respect to 1) vCPU reset and
2) choosing a paging mode based on CR0/CR4/EFER
- support for 5-level page table on AMD processors
Generic:
- MMU notifier invalidation callbacks do not take mmu_lock unless necessary
- improved caching of LRU kvm_memory_slot
- support for histogram statistics
- add statistics for halt polling and remote TLB flush requests
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmE2CIAUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMyqwf+Ky2WoThuQ9Ra0r/m8pUTAx5+gsAf
MmG24rNLE+26X0xuBT9Q5+etYYRLrRTWJvo5cgHooz7muAYW6scR+ho5xzvLTAxi
DAuoijkXsSdGoFCp0OMUHiwG3cgY5N7feTEwLPAb2i6xr/l6SZyCP4zcwiiQbJ2s
UUD0i3rEoNQ02/hOEveud/ENxzUli9cmmgHKXR3kNgsJClSf1fcuLnhg+7EGMhK9
+c2V+hde5y0gmEairQWm22MLMRolNZ5NL4kjykiNh2M5q9YvbHe5+f/JmENlNZMT
bsUQT6Ry1ukuJ0V59rZvUw71KknPFzZ3d6HgW4pwytMq6EJKiISHzRbVnQ==
=FCAB
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- Page ownership tracking between host EL1 and EL2
- Rely on userspace page tables to create large stage-2 mappings
- Fix incompatibility between pKVM and kmemleak
- Fix the PMU reset state, and improve the performance of the virtual
PMU
- Move over to the generic KVM entry code
- Address PSCI reset issues w.r.t. save/restore
- Preliminary rework for the upcoming pKVM fixed feature
- A bunch of MM cleanups
- a vGIC fix for timer spurious interrupts
- Various cleanups
s390:
- enable interpretation of specification exceptions
- fix a vcpu_idx vs vcpu_id mixup
x86:
- fast (lockless) page fault support for the new MMU
- new MMU now the default
- increased maximum allowed VCPU count
- allow inhibit IRQs on KVM_RUN while debugging guests
- let Hyper-V-enabled guests run with virtualized LAPIC as long as
they do not enable the Hyper-V "AutoEOI" feature
- fixes and optimizations for the toggling of AMD AVIC (virtualized
LAPIC)
- tuning for the case when two-dimensional paging (EPT/NPT) is
disabled
- bugfixes and cleanups, especially with respect to vCPU reset and
choosing a paging mode based on CR0/CR4/EFER
- support for 5-level page table on AMD processors
Generic:
- MMU notifier invalidation callbacks do not take mmu_lock unless
necessary
- improved caching of LRU kvm_memory_slot
- support for histogram statistics
- add statistics for halt polling and remote TLB flush requests"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (210 commits)
KVM: Drop unused kvm_dirty_gfn_invalid()
KVM: x86: Update vCPU's hv_clock before back to guest when tsc_offset is adjusted
KVM: MMU: mark role_regs and role accessors as maybe unused
KVM: MIPS: Remove a "set but not used" variable
x86/kvm: Don't enable IRQ when IRQ enabled in kvm_wait
KVM: stats: Add VM stat for remote tlb flush requests
KVM: Remove unnecessary export of kvm_{inc,dec}_notifier_count()
KVM: x86/mmu: Move lpage_disallowed_link further "down" in kvm_mmu_page
KVM: x86/mmu: Relocate kvm_mmu_page.tdp_mmu_page for better cache locality
Revert "KVM: x86: mmu: Add guest physical address check in translate_gpa()"
KVM: x86/mmu: Remove unused field mmio_cached in struct kvm_mmu_page
kvm: x86: Increase KVM_SOFT_MAX_VCPUS to 710
kvm: x86: Increase MAX_VCPUS to 1024
kvm: x86: Set KVM_MAX_VCPU_ID to 4*KVM_MAX_VCPUS
KVM: VMX: avoid running vmx_handle_exit_irqoff in case of emulation
KVM: x86/mmu: Don't freak out if pml5_root is NULL on 4-level host
KVM: s390: index kvm->arch.idle_mask by vcpu_idx
KVM: s390: Enable specification exception interpretation
KVM: arm64: Trim guest debug exception handling
KVM: SVM: Add 5-level page table support for SVM
...
- Page ownership tracking between host EL1 and EL2
- Rely on userspace page tables to create large stage-2 mappings
- Fix incompatibility between pKVM and kmemleak
- Fix the PMU reset state, and improve the performance of the virtual PMU
- Move over to the generic KVM entry code
- Address PSCI reset issues w.r.t. save/restore
- Preliminary rework for the upcoming pKVM fixed feature
- A bunch of MM cleanups
- a vGIC fix for timer spurious interrupts
- Various cleanups
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmEnfogPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDF9oQAINWHN1n30gsxcErMV8gH+XAyhDq2vTjkExQ
Qz5ddo4R5zeVkj0nkunFSK+W3xYz+W97X3I+IaiiHvk5D6dUatj37IyYlazX5iFT
7mbjTAqY7GRxfd6um7uK+CTRCApXY49GGkCVLGA5f+6mQ0JMVXaK9AKlsXKWUQLZ
JvLasUgKkseN6IEJWmPDNBdIeiKBTZloeZMdlM2vSm34HsuirSS5LmshdzJQzSk8
QSEqwXZX50afzJLNlB9Qa6V1tokjZVoYIBk0vAPO83tTh9HIyGL/PFAqBeq2rnWT
M19fFFbx5vizap4ICbpviLmZ5AOywCoBmbPBT79eMAJ53rOqHUJhU1y/3DoiVzxu
LJZI4wmGBQZVivOWOqyEZcNtTAagPLhyrLhMzYulBLwAjfFJmUHdSOxYtx+2Ysvr
SDIPN31FKWrvifTXTqJHDmaaXusi2CNZUOPzVSe2I14SbX+ZX2ny9DltlbRgPNuc
hGJagI5cZc0ngd4mAIzjjNmgBS2B+dSc8dOo71dRNJRLtQLiNHcAyQNJyFme+4xI
NpvpkvzxBAs8rG2X0YIR/Cz3W3yZoCYuQNcoPk7+F/bUTK47VocQCS+gLucHVLbT
H4286EV5n4nZ7E01oJ6uWnDnslPvrx9Sz2fxsrWYkBDR+xrz0EprrGsftFaILprz
Ic43uXfd
=LuHM
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for 5.15
- Page ownership tracking between host EL1 and EL2
- Rely on userspace page tables to create large stage-2 mappings
- Fix incompatibility between pKVM and kmemleak
- Fix the PMU reset state, and improve the performance of the virtual PMU
- Move over to the generic KVM entry code
- Address PSCI reset issues w.r.t. save/restore
- Preliminary rework for the upcoming pKVM fixed feature
- A bunch of MM cleanups
- a vGIC fix for timer spurious interrupts
- Various cleanups
Since commit e1a1ef84cd ("KVM: PPC: Book3S: Allocate guest TCEs on
demand too"), pages for TCE tables for KVM guests are allocated only
when needed. This allows skipping any update when clearing TCEs. This
works mostly fine as TCE updates are handled when the MMU is enabled.
The realmode handlers fail with H_TOO_HARD when pages are not yet
allocated, except when clearing a TCE in which case KVM prints a warning
and proceeds to dereference a NULL pointer, which crashes the host OS.
This has not been caught so far as the change in commit e1a1ef84cd is
reasonably new, and POWER9 runs mostly radix which does not use realmode
handlers. With hash, the default TCE table is memset() by QEMU when the
machine is reset which triggers page faults and the KVM TCE device's
kvm_spapr_tce_fault() handles those with MMU on. And the huge DMA
windows are not cleared by VMs which instead successfully create a DMA
window big enough to map the VM memory 1:1 and then VMs just map
everything without clearing.
This started crashing now as commit 381ceda88c ("powerpc/pseries/iommu:
Make use of DDW for indirect mapping") added a mode when a dymanic DMA
window not big enough to map the VM memory 1:1 but it is used anyway,
and the VM now is the first (i.e. not QEMU) to clear a just created
table. Note that upstream QEMU needs to be modified to trigger the VM to
trigger the host OS crash.
This replaces WARN_ON_ONCE_RM() with a check and return, and adds
another warning if TCE is not being cleared.
Fixes: e1a1ef84cd ("KVM: PPC: Book3S: Allocate guest TCEs on demand too")
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210827040706.517652-1-aik@ozlabs.ru
This register is not architected and not implemented in POWER9 or 10,
it just reads back zeroes for compatibility.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Link: https://lore.kernel.org/r/20210811160134.904987-11-npiggin@gmail.com
After the L1 saves its PMU SPRs but before loading the L2's PMU SPRs,
switch the pmcregs_in_use field in the L1 lppaca to the value advertised
by the L2 in its VPA. On the way out of the L2, set it back after saving
the L2 PMU registers (if they were in-use).
This transfers the PMU liveness indication between the L1 and L2 at the
points where the registers are not live.
This fixes the nested HV bug for which a workaround was added to the L0
HV by commit 63279eeb7f ("KVM: PPC: Book3S HV: Always save guest pmu
for guest capable of nesting"), which explains the problem in detail.
That workaround is no longer required for guests that include this bug
fix.
Fixes: 360cae3137 ("KVM: PPC: Book3S HV: Nested guest entry via hypercall")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Link: https://lore.kernel.org/r/20210811160134.904987-10-npiggin@gmail.com
vcpu is already anargument so vcpu->arch.trap can be used directly.
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210811160134.904987-9-npiggin@gmail.com
If the nested hypervisor has no access to a facility because it has
been disabled by the host, it should also not be able to see the
Hypervisor Facility Unavailable that arises from one of its guests
trying to access the facility.
This patch turns a HFU that happened in L2 into a Hypervisor Emulation
Assistance interrupt and forwards it to L1 for handling. The ones that
happened because L1 explicitly disabled the facility for L2 are still
let through, along with the corresponding Cause bits in the HFSCR.
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
[np: move handling into kvmppc_handle_nested_exit]
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210811160134.904987-8-npiggin@gmail.com
When the L0 runs a nested L2, there are several permutations of HFSCR
that can be relevant. The HFSCR that the L1 vcpu L1 requested, the
HFSCR that the L1 vcpu may use, and the HFSCR that is actually being
used to run the L2.
The L1 requested HFSCR is not accessible outside the nested hcall
handler, so copy that into a new kvm_nested_guest.hfscr field.
The permitted HFSCR is taken from the HFSCR that the L1 runs with,
which is also not accessible while the hcall is being made. Move
this into a new kvm_vcpu_arch.hfscr_permitted field.
These will be used by the next patch to improve facility handling
for nested guests, and later by facility demand faulting patches.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210811160134.904987-7-npiggin@gmail.com
As one of the arguments of the H_ENTER_NESTED hypercall, the nested
hypervisor (L1) prepares a structure containing the values of various
hypervisor-privileged registers with which it wants the nested guest
(L2) to run. Since the nested HV runs in supervisor mode it needs the
host to write to these registers.
To stop a nested HV manipulating this mechanism and using a nested
guest as a proxy to access a facility that has been made unavailable
to it, we have a routine that sanitises the values of the HV registers
before copying them into the nested guest's vcpu struct.
However, when coming out of the guest the values are copied as they
were back into L1 memory, which means that any sanitisation we did
during guest entry will be exposed to L1 after H_ENTER_NESTED returns.
This patch alters this sanitisation to have effect on the vcpu->arch
registers directly before entering and after exiting the guest,
leaving the structure that is copied back into L1 unchanged (except
when we really want L1 to access the value, e.g the Cause bits of
HFSCR).
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Link: https://lore.kernel.org/r/20210811160134.904987-6-npiggin@gmail.com
Have the TM softpatch emulation code set up the HFAC interrupt and
return -1 in case an instruction was executed with HFSCR bits clear,
and have the interrupt exit handler fall through to the HFAC handler.
When the L0 is running a nested guest, this ensures the HFAC interrupt
is correctly passed up to the L1.
The "direct guest" exit handler will turn these into PROGILL program
interrupts so functionality in practice will be unchanged. But it's
possible an L1 would want to handle these in a different way.
Also rearrange the FAC interrupt emulation code to match the HFAC format
while here (mainly, adding the FSCR_INTR_CAUSE mask).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210811160134.904987-5-npiggin@gmail.com
The softpatch interrupt sets HSRR0 to the faulting instruction +4, so
it should subtract 4 for the faulting instruction address in the case
it is a TM softpatch interrupt (the instruction was not executed) and
it was not emulated.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210811160134.904987-4-npiggin@gmail.com
It is possible to create a VCPU without setting the MSR before running
it, which results in a warning in kvmhv_vcpu_entry_p9() that MSR_ME is
not set. This is pretty harmless because the MSR_ME bit is added to
HSRR1 before HRFID to guest, and a normal qemu guest doesn't hit it.
Initialise the vcpu MSR with MSR_ME set.
Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210811160134.904987-2-npiggin@gmail.com
The book3s_64_mmu_radix.o object is not part of the KVM builtins and
all the callers of the exported symbols are in the same kvm-hv.ko
module so we should not need to export any symbols.
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210805212616.2641017-4-farosas@linux.ibm.com
Both paths into __kvmhv_copy_tofrom_guest_radix ensure that we arrive
with an effective address that is smaller than our total addressable
space and addresses quadrant 0.
- The H_COPY_TOFROM_GUEST hypercall path rejects the call with
H_PARAMETER if the effective address has any of the twelve most
significant bits set.
- The kvmhv_copy_tofrom_guest_radix path clears the top twelve bits
before calling the internal function.
Although the callers make sure that the effective address is sane, any
future use of the function is exposed to a programming error, so add a
sanity check.
Suggested-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210805212616.2641017-3-farosas@linux.ibm.com
The __kvmhv_copy_tofrom_guest_radix function was introduced along with
nested HV guest support. It uses the platform's Radix MMU quadrants to
provide a nested hypervisor with fast access to its nested guests
memory (H_COPY_TOFROM_GUEST hypercall). It has also since been added
as a fast path for the kvmppc_ld/st routines which are used during
instruction emulation.
The commit def0bfdbd6 ("powerpc: use probe_user_read() and
probe_user_write()") changed the low level copy function from
raw_copy_from_user to probe_user_read, which adds a check to
access_ok. In powerpc that is:
static inline bool __access_ok(unsigned long addr, unsigned long size)
{
return addr < TASK_SIZE_MAX && size <= TASK_SIZE_MAX - addr;
}
and TASK_SIZE_MAX is 0x0010000000000000UL for 64-bit, which means that
setting the two MSBs of the effective address (which correspond to the
quadrant) now cause access_ok to reject the access.
This was not caught earlier because the most common code path via
kvmppc_ld/st contains a fallback (kvm_read_guest) that is likely to
succeed for L1 guests. For nested guests there is no fallback.
Another issue is that probe_user_read (now __copy_from_user_nofault)
does not return the number of bytes not copied in case of failure, so
the destination memory is not being cleared anymore in
kvmhv_copy_from_guest_radix:
ret = kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, to, NULL, n);
if (ret > 0) <-- always false!
memset(to + (n - ret), 0, ret);
This patch fixes both issues by skipping access_ok and open-coding the
low level __copy_to/from_user_inatomic.
Fixes: def0bfdbd6 ("powerpc: use probe_user_read() and probe_user_write()")
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210805212616.2641017-2-farosas@linux.ibm.com
Add three log histogram stats to record the distribution of time spent
on successful polling, failed polling and VCPU wait.
halt_poll_success_hist: Distribution of spent time for a successful poll.
halt_poll_fail_hist: Distribution of spent time for a failed poll.
halt_wait_hist: Distribution of time a VCPU has spent on waiting.
Signed-off-by: Jing Zhang <jingzhangos@google.com>
Message-Id: <20210802165633.1866976-6-jingzhangos@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add simple stats halt_wait_ns to record the time a VCPU has spent on
waiting for all architectures (not just powerpc).
Signed-off-by: Jing Zhang <jingzhangos@google.com>
Message-Id: <20210802165633.1866976-5-jingzhangos@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add new types of KVM stats, linear and logarithmic histogram.
Histogram are very useful for observing the value distribution
of time or size related stats.
Signed-off-by: Jing Zhang <jingzhangos@google.com>
Message-Id: <20210802165633.1866976-2-jingzhangos@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit a278e7ea60 ("powerpc: Fix compile issue with force DAWR")
selects the non-existing config PPC_DAWR_FORCE_ENABLE for config
KVM_BOOK3S_64_HANDLER. As this commit also introduces a config PPC_DAWR
and this config PPC_DAWR is selected with PPC if PPC64, there is no
need for any further select in the KVM_BOOK3S_64_HANDLER.
Remove an obsolete and unneeded select in config KVM_BOOK3S_64_HANDLER.
The issue was identified with ./scripts/checkkconfigsymbols.py.
Fixes: a278e7ea60 ("powerpc: Fix compile issue with force DAWR")
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210819113954.17515-2-lukas.bulwahn@gmail.com
No functional change in this patch. arch_debugfs_dir is the generic kernel
name declared in linux/debugfs.h for arch-specific debugfs directory.
Architectures like x86/s390 already use the name. Rename powerpc
specific powerpc_debugfs_root to arch_debugfs_dir.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210812132831.233794-2-aneesh.kumar@linux.ibm.com
On P10, the feature doing an automatic "save & restore" of a VCPU
interrupt context is set by default in OPAL. When a VP context is
pulled out, the state of the interrupt registers are saved by the XIVE
interrupt controller under the internal NVP structure representing the
VP. This saves a costly store/load in guest entries and exits.
If OPAL advertises the "save & restore" feature in the device tree,
it should also have set the 'H' bit in the CAM line. Check that when
vCPUs are connected to their ICP in KVM before going any further.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210720134209.256133-3-clg@kaod.org
Use it to hold platform specific features. P9 DD2 introduced
single-escalation support. P10 will add others.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210720134209.256133-2-clg@kaod.org
PCI MSIs now live in an MSI domain but the underlying calls, which
will EOI the interrupt in real mode, need an HW IRQ number mapped in
the XICS IRQ domain. Grab it there.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-31-clg@kaod.org
pnv_opal_pci_msi_eoi() is called from KVM to EOI passthrough interrupts
when in real mode. Adding MSI domain broke the hack using the
'ioda.irq_chip' field to deduce the owning PHB. Fix that by using the
IRQ chip data in the MSI domain.
The 'ioda.irq_chip' field is now unused and could be removed from the
pnv_phb struct.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-30-clg@kaod.org
PCI MSI interrupt numbers are now mapped in a PCI-MSI domain but the
underlying calls handling the passthrough of the interrupt in the
guest need a number in the XIVE IRQ domain.
Use the IRQ data mapped in the XIVE IRQ domain and not the one in the
PCI-MSI domain.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-16-clg@kaod.org