Add a test which shows a race in the multi-order iteration code. This
test reliably hits the race in under a second on my machine, and is the
result of a real bug report against kernel a production v4.15 based
kernel (4.15.6-300.fc27.x86_64). With a real kernel this issue is hit
when using order 9 PMD DAX radix tree entries.
The race has to do with how we tear down multi-order sibling entries
when we are removing an item from the tree. Remember that an order 2
entry looks like this:
struct radix_tree_node.slots[] = [entry][sibling][sibling][sibling]
where 'entry' is in some slot in the struct radix_tree_node, and the
three slots following 'entry' contain sibling pointers which point back
to 'entry.'
When we delete 'entry' from the tree, we call :
radix_tree_delete()
radix_tree_delete_item()
__radix_tree_delete()
replace_slot()
replace_slot() first removes the siblings in order from the first to the
last, then at then replaces 'entry' with NULL. This means that for a
brief period of time we end up with one or more of the siblings removed,
so:
struct radix_tree_node.slots[] = [entry][NULL][sibling][sibling]
This causes an issue if you have a reader iterating over the slots in
the tree via radix_tree_for_each_slot() while only under
rcu_read_lock()/rcu_read_unlock() protection. This is a common case in
mm/filemap.c.
The issue is that when __radix_tree_next_slot() => skip_siblings() tries
to skip over the sibling entries in the slots, it currently does so with
an exact match on the slot directly preceding our current slot.
Normally this works:
V preceding slot
struct radix_tree_node.slots[] = [entry][sibling][sibling][sibling]
^ current slot
This lets you find the first sibling, and you skip them all in order.
But in the case where one of the siblings is NULL, that slot is skipped
and then our sibling detection is interrupted:
V preceding slot
struct radix_tree_node.slots[] = [entry][NULL][sibling][sibling]
^ current slot
This means that the sibling pointers aren't recognized since they point
all the way back to 'entry', so we think that they are normal internal
radix tree pointers. This causes us to think we need to walk down to a
struct radix_tree_node starting at the address of 'entry'.
In a real running kernel this will crash the thread with a GP fault when
you try and dereference the slots in your broken node starting at
'entry'.
In the radix tree test suite this will be caught by the address
sanitizer:
==27063==ERROR: AddressSanitizer: heap-buffer-overflow on address
0x60c0008ae400 at pc 0x00000040ce4f bp 0x7fa89b8fcad0 sp 0x7fa89b8fcac0
READ of size 8 at 0x60c0008ae400 thread T3
#0 0x40ce4e in __radix_tree_next_slot /home/rzwisler/project/linux/tools/testing/radix-tree/radix-tree.c:1660
#1 0x4022cc in radix_tree_next_slot linux/../../../../include/linux/radix-tree.h:567
#2 0x4022cc in iterator_func /home/rzwisler/project/linux/tools/testing/radix-tree/multiorder.c:655
#3 0x7fa8a088d50a in start_thread (/lib64/libpthread.so.0+0x750a)
#4 0x7fa8a03bd16e in clone (/lib64/libc.so.6+0xf516e)
Link: http://lkml.kernel.org/r/20180503192430.7582-5-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: CR, Sapthagirish <sapthagirish.cr@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During truncation, the mapping has already been checked for shmem and
dax so it's known that workingset_update_node is required.
This patch avoids the checks on mapping for each page being truncated.
In all other cases, a lookup helper is used to determine if
workingset_update_node() needs to be called. The one danger is that the
API is slightly harder to use as calling workingset_update_node directly
without checking for dax or shmem mappings could lead to surprises.
However, the API rarely needs to be used and hopefully the comment is
enough to give people the hint.
sparsetruncate (tiny)
4.14.0-rc4 4.14.0-rc4
oneirq-v1r1 pickhelper-v1r1
Min Time 141.00 ( 0.00%) 140.00 ( 0.71%)
1st-qrtle Time 142.00 ( 0.00%) 141.00 ( 0.70%)
2nd-qrtle Time 142.00 ( 0.00%) 142.00 ( 0.00%)
3rd-qrtle Time 143.00 ( 0.00%) 143.00 ( 0.00%)
Max-90% Time 144.00 ( 0.00%) 144.00 ( 0.00%)
Max-95% Time 147.00 ( 0.00%) 145.00 ( 1.36%)
Max-99% Time 195.00 ( 0.00%) 191.00 ( 2.05%)
Max Time 230.00 ( 0.00%) 205.00 ( 10.87%)
Amean Time 144.37 ( 0.00%) 143.82 ( 0.38%)
Stddev Time 10.44 ( 0.00%) 9.00 ( 13.74%)
Coeff Time 7.23 ( 0.00%) 6.26 ( 13.41%)
Best99%Amean Time 143.72 ( 0.00%) 143.34 ( 0.26%)
Best95%Amean Time 142.37 ( 0.00%) 142.00 ( 0.26%)
Best90%Amean Time 142.19 ( 0.00%) 141.85 ( 0.24%)
Best75%Amean Time 141.92 ( 0.00%) 141.58 ( 0.24%)
Best50%Amean Time 141.69 ( 0.00%) 141.31 ( 0.27%)
Best25%Amean Time 141.38 ( 0.00%) 140.97 ( 0.29%)
As you'd expect, the gain is marginal but it can be detected. The
differences in bonnie are all within the noise which is not surprising
given the impact on the microbenchmark.
radix_tree_update_node_t is a callback for some radix operations that
optionally passes in a private field. The only user of the callback is
workingset_update_node and as it no longer requires a mapping, the
private field is removed.
Link: http://lkml.kernel.org/r/20171018075952.10627-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The last of the memory leaks in the test suite was a couple of places in
the split/join testing where I forgot to free the element being removed
from the tree.
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: Rehas Sachdeva <aquannie@gmail.com>
Make the output of radix tree test suite less verbose by default and add
-v and -vv command line options for increasing level of verbosity.
Signed-off-by: Rehas Sachdeva <aquannie@gmail.com>
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
To allow developers to run a subset of tests, build separate multiorder
and idr-test binaries which will run just the tests in those files.
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: Rehas Sachdeva <aquannie@gmail.com>
radix_tree_join() was freeing nodes with a non-zero ->exceptional count,
and radix_tree_split() wasn't zeroing ->exceptional when it allocated
the new node. Fix this by making all callers of radix_tree_node_alloc()
pass in the new counts (and some other always-initialised fields), which
will prevent the problem recurring if in future we decide to do
something similar.
Link: http://lkml.kernel.org/r/1481667692-14500-3-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The random iteration test only inserts order-0 entries currently.
Update it to insert entries of order between 7 and 0. Also make the
maximum index configurable, make some variables static, make the test
duration variable, remove some useless spinning, and add a fifth thread
which calls tag_tagged_items().
Link: http://lkml.kernel.org/r/1480369871-5271-62-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When replacing an entry with NULL, we need to delete any sibling
entries. Also account deleting exceptional entries properly. Also fix
a bug with radix_tree_iter_replace() where we would fail to remove
entirely freed nodes. Also fix accounting bug when switching between
normal and exceptional entries with replace_slot. Also add testcases
for all these bugs.
Link: http://lkml.kernel.org/r/1480369871-5271-61-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Calculate how many nodes we need to allocate to split an old_order entry
into multiple entries, each of size new_order. The test suite checks
that we allocated exactly the right number of nodes; neither too many
(checked by rtp->nr == 0), nor too few (checked by comparing
nr_allocated before and after the call to radix_tree_split()).
Link: http://lkml.kernel.org/r/1480369871-5271-60-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This new function splits a larger multiorder entry into smaller entries
(potentially multi-order entries). These entries are initialised to
RADIX_TREE_RETRY to ensure that RCU walkers who see this state aren't
confused. The caller should then call radix_tree_for_each_slot() and
radix_tree_replace_slot() in order to turn these retry entries into the
intended new entries. Tags are replicated from the original multiorder
entry into each new entry.
Link: http://lkml.kernel.org/r/1480369871-5271-59-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This new function allows for the replacement of many smaller entries in
the radix tree with one larger multiorder entry. From the point of view
of an RCU walker, they may see a mixture of the smaller entries and the
large entry during the same walk, but they will never see NULL for an
index which was populated before the join.
Link: http://lkml.kernel.org/r/1480369871-5271-58-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is an exceptionally complicated function with just one caller
(tag_pages_for_writeback). We devote a large portion of the runtime of
the test suite to testing this one function which has one caller. By
introducing the new function radix_tree_iter_tag_set(), we can eliminate
all of the complexity while keeping the performance. The caller can now
use a fairly standard radix_tree_for_each() loop, and it doesn't need to
worry about tricksy things like 'start' wrapping.
The test suite continues to spend a large amount of time investigating
this function, but now it's testing the underlying primitives such as
radix_tree_iter_resume() and the radix_tree_for_each_tagged() iterator
which are also used by other parts of the kernel.
Link: http://lkml.kernel.org/r/1480369871-5271-57-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This fixes several interlinked problems with the iterators in the
presence of multiorder entries.
1. radix_tree_iter_next() would only advance by one slot, which would
result in the iterators returning the same entry more than once if
there were sibling entries.
2. radix_tree_next_slot() could return an internal pointer instead of
a user pointer if a tagged multiorder entry was immediately followed by
an entry of lower order.
3. radix_tree_next_slot() expanded to a lot more code than it used to
when multiorder support was compiled in. And I wasn't comfortable with
entry_to_node() being in a header file.
Fixing radix_tree_iter_next() for the presence of sibling entries
necessarily involves examining the contents of the radix tree, so we now
need to pass 'slot' to radix_tree_iter_next(), and we need to change the
calling convention so it is called *before* dropping the lock which
protects the tree. Also rename it to radix_tree_iter_resume(), as some
people thought it was necessary to call radix_tree_iter_next() each time
around the loop.
radix_tree_next_slot() becomes closer to how it looked before multiorder
support was introduced. It only checks to see if the next entry in the
chunk is a sibling entry or a pointer to a node; this should be rare
enough that handling this case out of line is not a performance impact
(and such impact is amortised by the fact that the entry we just
processed was a multiorder entry). Also, radix_tree_next_slot() used to
force a new chunk lookup for untagged entries, which is more expensive
than the out of line sibling entry skipping.
Link: http://lkml.kernel.org/r/1480369871-5271-55-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This probably doubles the size of each item allocated by the test suite
but it lets us check a few more things, and may be needed for upcoming
API changes that require the caller pass in the order of the entry.
Link: http://lkml.kernel.org/r/1480369871-5271-46-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The bug in khugepaged fixed earlier in this series shows that radix tree
slot replacement is fragile; and it will become more so when not only
NULL<->!NULL transitions need to be caught but transitions from and to
exceptional entries as well. We need checks.
Re-implement radix_tree_replace_slot() on top of the sanity-checked
__radix_tree_replace(). This requires existing callers to also pass the
radix tree root, but it'll warn us when somebody replaces slots with
contents that need proper accounting (transitions between NULL entries,
real entries, exceptional entries) and where a replacement through the
slot pointer would corrupt the radix tree node counts.
Link: http://lkml.kernel.org/r/20161117193021.GB23430@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we replace a multiorder entry, check that all indices reflect the
new value.
Also, compile the test suite with -O2, which shows other problems with
the code due to some dodgy pointer operations in the radix tree code.
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert radix_tree_next_chunk to use 'child' instead of 'slot' as the
name of the child node. Also use node_maxindex() where it makes sense.
The 'rnode' variable was unnecessary; it doesn't overlap in usage with
'node', so we can just use 'node' the whole way through the function.
Improve the testcase to start the walk from every index in the carefully
constructed tree, and to accept any index within the range covered by
the entry.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: Neil Brown <neilb@suse.de>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I had previously decided that tagging a single multiorder entry would
count as tagging 2^order entries for the purposes of 'nr_to_tag'. I now
believe that decision to be a mistake, and it should count as a single
entry. That's more likely to be what callers expect.
When walking back up the tree from a newly-tagged entry, the current
code assumed we were starting from the lowest level of the tree; if we
have a multiorder entry with an order at least RADIX_TREE_MAP_SHIFT in
size then we need to shift the index by 'shift' before we start walking
back up the tree, or we will end up not setting tags on higher entries,
and then mistakenly thinking that entries below a certain point in the
tree are not tagged.
If the first index we examine is a sibling entry of a tagged multiorder
entry, we were not tagging it. We need to examine the canonical entry,
and the easiest way to do that is to use radix_tree_descend(). We then
have to skip over sibling slots when looking for the next entry in the
tree or we will end up walking back to the canonical entry.
Add several tests for radix_tree_range_tag_if_tagged().
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the radix tree user attempted to insert a colliding entry with an
existing multiorder entry, then radix_tree_create() could encounter a
sibling entry when walking down the tree to look for a slot. Use
radix_tree_descend() to fix the problem, and add a test-case to make
sure the problem doesn't come back in future.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a generic test for multi-order tag verification, and call it using
several different configurations.
This test creates a multi-order radix tree using the given index and
order, and then sets, checks and clears tags using the indices covered
by the single multi-order radix tree entry.
With the various calls done by this test we verify root multi-order
entries without siblings, multi-order entries without siblings in a
radix tree node, as well as multi-order entries with siblings of various
sizes.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a unit test to verify that we can iterate over multi-order entries
properly via a radix_tree_for_each_slot() loop.
This was done with a single, somewhat complicated configuration that was
meant to test many of the various corner cases having to do with
multi-order entries:
- An iteration could begin at a sibling entry, and we need to return the
canonical entry.
- We could have entries of various orders in the same slots[] array.
- We could have multi-order entries at a nonzero height, followed by
indirect pointers to more radix tree nodes later in that same slots[]
array.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These BUG_ON tests are to ensure that all the tags are clear when
inserting a new entry. If we insert a multiorder entry, we'll end up
looking at the tags for a different node, and so the BUG_ON can end up
triggering spuriously.
Also, we now have three tags, not two, so check all three are clear, and
check all the root tags with a single call to BUG_ON since the bits are
stored contiguously.
Include a test-case to ensure this problem does not reoccur.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Setting the indirect bit on the user data entry used to be unambiguous
because the tree walking code knew not to expect internal nodes in the
last level of the tree. Multiorder entries can appear at any level of
the tree, and a leaf with the indirect bit set is indistinguishable from
a pointer to a node.
Introduce a special entry (RADIX_TREE_RETRY) which is neither a valid
user entry, nor a valid pointer to a node. The radix_tree_deref_retry()
function continues to work the same way, but tree walking code can
distinguish it from a pointer to a node.
Also fix the condition for setting slot->parent to NULL; it does not
matter what height the tree is, it only matters whether slot is an
indirect pointer. Move this code above the comment which is referring
to the assignment to root->rnode.
Also fix the condition for preventing the tree from shrinking to a
single entry if it's a multiorder entry.
Add a test-case to the test suite that checks that the tree goes back
down to its original height after an item is inserted & deleted from a
higher index in the tree.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Test suite infrastructure for working with multiorder entries.
The test itself is pretty basic: Add an entry, check that all expected
indices return that entry and that indices around that entry don't
return an entry. Then delete the entry and check no index returns that
entry. Tests a few edge conditions including the multiorder entry at
index 0 and at a higher index. Also tests deleting through an alias as
well as through the canonical index.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>