Get the so called "root" level from the low level shadow page table
walkers instead of manually attempting to calculate it higher up the
stack, e.g. in get_mmio_spte(). When KVM is using PAE shadow paging,
the starting level of the walk, from the callers perspective, is not
the CR3 root but rather the PDPTR "root". Checking for reserved bits
from the CR3 root causes get_mmio_spte() to consume uninitialized stack
data due to indexing into sptes[] for a level that was not filled by
get_walk(). This can result in false positives and/or negatives
depending on what garbage happens to be on the stack.
Opportunistically nuke a few extra newlines.
Fixes: 95fb5b0258 ("kvm: x86/mmu: Support MMIO in the TDP MMU")
Reported-by: Richard Herbert <rherbert@sympatico.ca>
Cc: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20201218003139.2167891-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Return -1 from the get_walk() helpers if the shadow walk doesn't fill at
least one spte, which can theoretically happen if the walk hits a
not-present PDPTR. Returning the root level in such a case will cause
get_mmio_spte() to return garbage (uninitialized stack data). In
practice, such a scenario should be impossible as KVM shouldn't get a
reserved-bit page fault with a not-present PDPTR.
Note, using mmu->root_level in get_walk() is wrong for other reasons,
too, but that's now a moot point.
Fixes: 95fb5b0258 ("kvm: x86/mmu: Support MMIO in the TDP MMU")
Cc: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20201218003139.2167891-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit cae7ed3c2c ("KVM: x86: Refactor the MMIO SPTE generation handling")
cleaned up the computation of MMIO generation SPTE masks, however it
introduced a bug how the upper part was encoded:
SPTE bits 52-61 were supposed to contain bits 10-19 of the current
generation number, however a missing shift encoded bits 1-10 there instead
(mostly duplicating the lower part of the encoded generation number that
then consisted of bits 1-9).
In the meantime, the upper part was shrunk by one bit and moved by
subsequent commits to become an upper half of the encoded generation number
(bits 9-17 of bits 0-17 encoded in a SPTE).
In addition to the above, commit 56871d444b ("KVM: x86: fix overlap between SPTE_MMIO_MASK and generation")
has changed the SPTE bit range assigned to encode the generation number and
the total number of bits encoded but did not update them in the comment
attached to their defines, nor in the KVM MMU doc.
Let's do it here, too, since it is too trivial thing to warrant a separate
commit.
Fixes: cae7ed3c2c ("KVM: x86: Refactor the MMIO SPTE generation handling")
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <156700708db2a5296c5ed7a8b9ac71f1e9765c85.1607129096.git.maciej.szmigiero@oracle.com>
Cc: stable@vger.kernel.org
[Reorganize macros so that everything is computed from the bit ranges. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the TDP MMU, use shadow_phys_bits to dermine the maximum possible GFN
mapped in the guest for zapping operations. boot_cpu_data.x86_phys_bits
may be reduced in the case of HW features that steal HPA bits for other
purposes. However, this doesn't necessarily reduce GPA space that can be
accessed via TDP. So zap based on a maximum gfn calculated with MAXPHYADDR
retrieved from CPUID. This is already stored in shadow_phys_bits, so use
it instead of x86_phys_bits.
Fixes: faaf05b00a ("kvm: x86/mmu: Support zapping SPTEs in the TDP MMU")
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Message-Id: <20201203231120.27307-1-rick.p.edgecombe@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 95fb5b0258 ("kvm: x86/mmu: Support MMIO in the TDP MMU") caused
the following WARNING on an Intel Ice Lake CPU:
get_mmio_spte: detect reserved bits on spte, addr 0xb80a0, dump hierarchy:
------ spte 0xb80a0 level 5.
------ spte 0xfcd210107 level 4.
------ spte 0x1004c40107 level 3.
------ spte 0x1004c41107 level 2.
------ spte 0x1db00000000b83b6 level 1.
WARNING: CPU: 109 PID: 10254 at arch/x86/kvm/mmu/mmu.c:3569 kvm_mmu_page_fault.cold.150+0x54/0x22f [kvm]
...
Call Trace:
? kvm_io_bus_get_first_dev+0x55/0x110 [kvm]
vcpu_enter_guest+0xaa1/0x16a0 [kvm]
? vmx_get_cs_db_l_bits+0x17/0x30 [kvm_intel]
? skip_emulated_instruction+0xaa/0x150 [kvm_intel]
kvm_arch_vcpu_ioctl_run+0xca/0x520 [kvm]
The guest triggering this crashes. Note, this happens with the traditional
MMU and EPT enabled, not with the newly introduced TDP MMU. Turns out,
there was a subtle change in the above mentioned commit. Previously,
walk_shadow_page_get_mmio_spte() was setting 'root' to 'iterator.level'
which is returned by shadow_walk_init() and this equals to
'vcpu->arch.mmu->shadow_root_level'. Now, get_mmio_spte() sets it to
'int root = vcpu->arch.mmu->root_level'.
The difference between 'root_level' and 'shadow_root_level' on CPUs
supporting 5-level page tables is that in some case we don't want to
use 5-level, in particular when 'cpuid_maxphyaddr(vcpu) <= 48'
kvm_mmu_get_tdp_level() returns '4'. In case upper layer is not used,
the corresponding SPTE will fail '__is_rsvd_bits_set()' check.
Revert to using 'shadow_root_level'.
Fixes: 95fb5b0258 ("kvm: x86/mmu: Support MMIO in the TDP MMU")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20201126110206.2118959-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In some cases where shadow paging is in use, the root page will
be either mmu->pae_root or vcpu->arch.mmu->lm_root. Then it will
not have an associated struct kvm_mmu_page, because it is allocated
with alloc_page instead of kvm_mmu_alloc_page.
Just return false quickly from is_tdp_mmu_root if the TDP MMU is
not in use, which also includes the case where shadow paging is
enabled.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix an off-by-one style bug in pte_list_add() where it failed to
account the last full set of SPTEs, i.e. when desc->sptes is full
and desc->more is NULL.
Merge the two "PTE_LIST_EXT-1" checks as part of the fix to avoid
an extra comparison.
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <1601196297-24104-1-git-send-email-lirongqing@baidu.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Even though the compiler is able to replace static const variables with
their value, it will warn about them being unused when Linux is built with W=1.
Use good old macros instead, this is not C++.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
a host hang.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl+T6RoUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMx2gf+PjoeMjLKtstdKDdiLFV46X7YdYKz
sUoDhpSbiLpEus5BF6OauUWwKgB7GcsoDUnLgjN5jqkAQzoFm0YOcI2GlXS999SL
5QIg6Vw5WF8X/7EVt6gxzC6KcWjbQvv38R/Ktd/0sMqRBPiZG7kVcWeXlopb9DaQ
Rdgg0hNVpgDiTNrBNl5RnM7Wz/SrOZmwaotW1LcII+BkCnj9Av77v77TxN9YuvG4
o+GMMQseFAzDjQ+jHZkHuBmPRy5dQB9ywzEIrUCubqhT04sWbQ6DhGfx45a0IgsY
33iT28omYdMVlRd/i3KcHQ86JJSo5g7pOqLwGd1L9HjNTS5VmQ8HXNJWBA==
=ECL9
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"Two fixes for this merge window, and an unrelated bugfix for a host
hang"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: ioapic: break infinite recursion on lazy EOI
KVM: vmx: rename pi_init to avoid conflict with paride
KVM: x86/mmu: Avoid modulo operator on 64-bit value to fix i386 build
Replace a modulo operator with the more common pattern for computing the
gfn "offset" of a huge page to fix an i386 build error.
arch/x86/kvm/mmu/tdp_mmu.c:212: undefined reference to `__umoddi3'
In fact, almost all of tdp_mmu.c can be elided on 32-bit builds, but
that is a much larger patch.
Fixes: 2f2fad0897 ("kvm: x86/mmu: Add functions to handle changed TDP SPTEs")
Reported-by: Daniel Díaz <daniel.diaz@linaro.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201024031150.9318-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- New page table code for both hypervisor and guest stage-2
- Introduction of a new EL2-private host context
- Allow EL2 to have its own private per-CPU variables
- Support of PMU event filtering
- Complete rework of the Spectre mitigation
PPC:
- Fix for running nested guests with in-kernel IRQ chip
- Fix race condition causing occasional host hard lockup
- Minor cleanups and bugfixes
x86:
- allow trapping unknown MSRs to userspace
- allow userspace to force #GP on specific MSRs
- INVPCID support on AMD
- nested AMD cleanup, on demand allocation of nested SVM state
- hide PV MSRs and hypercalls for features not enabled in CPUID
- new test for MSR_IA32_TSC writes from host and guest
- cleanups: MMU, CPUID, shared MSRs
- LAPIC latency optimizations ad bugfixes
For x86, also included in this pull request is a new alternative and
(in the future) more scalable implementation of extended page tables
that does not need a reverse map from guest physical addresses to
host physical addresses. For now it is disabled by default because
it is still lacking a few of the existing MMU's bells and whistles.
However it is a very solid piece of work and it is already available
for people to hammer on it.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl+S8dsUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroM40Af+M46NJmuS5rcwFfybvK/c42KT6svX
Co1NrZDwzSQ2mMy3WQzH9qeLvb+nbY4sT3n5BPNPNsT+aIDPOTDt//qJ2/Ip9UUs
tRNea0MAR96JWLE7MSeeRxnTaQIrw/AAZC0RXFzZvxcgytXwdqBExugw4im+b+dn
Dcz8QxX1EkwT+4lTm5HC0hKZAuo4apnK1QkqCq4SdD2QVJ1YE6+z7pgj4wX7xitr
STKD6q/Yt/0ndwqS0GSGbyg0jy6mE620SN6isFRkJYwqfwLJci6KnqvEK67EcNMu
qeE017K+d93yIVC46/6TfVHzLR/D1FpQ8LZ16Yl6S13OuGIfAWBkQZtPRg==
=AD6a
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"For x86, there is a new alternative and (in the future) more scalable
implementation of extended page tables that does not need a reverse
map from guest physical addresses to host physical addresses.
For now it is disabled by default because it is still lacking a few of
the existing MMU's bells and whistles. However it is a very solid
piece of work and it is already available for people to hammer on it.
Other updates:
ARM:
- New page table code for both hypervisor and guest stage-2
- Introduction of a new EL2-private host context
- Allow EL2 to have its own private per-CPU variables
- Support of PMU event filtering
- Complete rework of the Spectre mitigation
PPC:
- Fix for running nested guests with in-kernel IRQ chip
- Fix race condition causing occasional host hard lockup
- Minor cleanups and bugfixes
x86:
- allow trapping unknown MSRs to userspace
- allow userspace to force #GP on specific MSRs
- INVPCID support on AMD
- nested AMD cleanup, on demand allocation of nested SVM state
- hide PV MSRs and hypercalls for features not enabled in CPUID
- new test for MSR_IA32_TSC writes from host and guest
- cleanups: MMU, CPUID, shared MSRs
- LAPIC latency optimizations ad bugfixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (232 commits)
kvm: x86/mmu: NX largepage recovery for TDP MMU
kvm: x86/mmu: Don't clear write flooding count for direct roots
kvm: x86/mmu: Support MMIO in the TDP MMU
kvm: x86/mmu: Support write protection for nesting in tdp MMU
kvm: x86/mmu: Support disabling dirty logging for the tdp MMU
kvm: x86/mmu: Support dirty logging for the TDP MMU
kvm: x86/mmu: Support changed pte notifier in tdp MMU
kvm: x86/mmu: Add access tracking for tdp_mmu
kvm: x86/mmu: Support invalidate range MMU notifier for TDP MMU
kvm: x86/mmu: Allocate struct kvm_mmu_pages for all pages in TDP MMU
kvm: x86/mmu: Add TDP MMU PF handler
kvm: x86/mmu: Remove disallowed_hugepage_adjust shadow_walk_iterator arg
kvm: x86/mmu: Support zapping SPTEs in the TDP MMU
KVM: Cache as_id in kvm_memory_slot
kvm: x86/mmu: Add functions to handle changed TDP SPTEs
kvm: x86/mmu: Allocate and free TDP MMU roots
kvm: x86/mmu: Init / Uninit the TDP MMU
kvm: x86/mmu: Introduce tdp_iter
KVM: mmu: extract spte.h and spte.c
KVM: mmu: Separate updating a PTE from kvm_set_pte_rmapp
...
When KVM maps a largepage backed region at a lower level in order to
make it executable (i.e. NX large page shattering), it reduces the TLB
performance of that region. In order to avoid making this degradation
permanent, KVM must periodically reclaim shattered NX largepages by
zapping them and allowing them to be rebuilt in the page fault handler.
With this patch, the TDP MMU does not respect KVM's rate limiting on
reclaim. It traverses the entire TDP structure every time. This will be
addressed in a future patch.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-21-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Direct roots don't have a write flooding count because the guest can't
affect that paging structure. Thus there's no need to clear the write
flooding count on a fast CR3 switch for direct roots.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-20-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to support MMIO, KVM must be able to walk the TDP paging
structures to find mappings for a given GFN. Support this walk for
the TDP MMU.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
v2: Thanks to Dan Carpenter and kernel test robot for finding that root
was used uninitialized in get_mmio_spte.
Signed-off-by: Ben Gardon <bgardon@google.com>
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Message-Id: <20201014182700.2888246-19-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To support nested virtualization, KVM will sometimes need to write
protect pages which are part of a shadowed paging structure or are not
writable in the shadowed paging structure. Add a function to write
protect GFN mappings for this purpose.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-18-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Dirty logging ultimately breaks down MMU mappings to 4k granularity.
When dirty logging is no longer needed, these granaular mappings
represent a useless performance penalty. When dirty logging is disabled,
search the paging structure for mappings that could be re-constituted
into a large page mapping. Zap those mappings so that they can be
faulted in again at a higher mapping level.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-17-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Dirty logging is a key feature of the KVM MMU and must be supported by
the TDP MMU. Add support for both the write protection and PML dirty
logging modes.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-16-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to interoperate correctly with the rest of KVM and other Linux
subsystems, the TDP MMU must correctly handle various MMU notifiers. Add
a hook and handle the change_pte MMU notifier.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-15-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to interoperate correctly with the rest of KVM and other Linux
subsystems, the TDP MMU must correctly handle various MMU notifiers. The
main Linux MM uses the access tracking MMU notifiers for swap and other
features. Add hooks to handle the test/flush HVA (range) family of
MMU notifiers.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-14-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to interoperate correctly with the rest of KVM and other Linux
subsystems, the TDP MMU must correctly handle various MMU notifiers. Add
hooks to handle the invalidate range family of MMU notifiers.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-13-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Attach struct kvm_mmu_pages to every page in the TDP MMU to track
metadata, facilitate NX reclaim, and enable inproved parallelism of MMU
operations in future patches.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-12-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add functions to handle page faults in the TDP MMU. These page faults
are currently handled in much the same way as the x86 shadow paging
based MMU, however the ordering of some operations is slightly
different. Future patches will add eager NX splitting, a fast page fault
handler, and parallel page faults.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-11-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to avoid creating executable hugepages in the TDP MMU PF
handler, remove the dependency between disallowed_hugepage_adjust and
the shadow_walk_iterator. This will open the function up to being used
by the TDP MMU PF handler in a future patch.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-10-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add functions to zap SPTEs to the TDP MMU. These are needed to tear down
TDP MMU roots properly and implement other MMU functions which require
tearing down mappings. Future patches will add functions to populate the
page tables, but as for this patch there will not be any work for these
functions to do.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-8-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The existing bookkeeping done by KVM when a PTE is changed is spread
around several functions. This makes it difficult to remember all the
stats, bitmaps, and other subsystems that need to be updated whenever a
PTE is modified. When a non-leaf PTE is marked non-present or becomes a
leaf PTE, page table memory must also be freed. To simplify the MMU and
facilitate the use of atomic operations on SPTEs in future patches, create
functions to handle some of the bookkeeping required as a result of
a change.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP MMU must be able to allocate paging structure root pages and track
the usage of those pages. Implement a similar, but separate system for root
page allocation to that of the x86 shadow paging implementation. When
future patches add synchronization model changes to allow for parallel
page faults, these pages will need to be handled differently from the
x86 shadow paging based MMU's root pages.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP MMU offers an alternative mode of operation to the x86 shadow
paging based MMU, optimized for running an L1 guest with TDP. The TDP MMU
will require new fields that need to be initialized and torn down. Add
hooks into the existing KVM MMU initialization process to do that
initialization / cleanup. Currently the initialization and cleanup
fucntions do not do very much, however more operations will be added in
future patches.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-4-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP iterator implements a pre-order traversal of a TDP paging
structure. This iterator will be used in future patches to create
an efficient implementation of the KVM MMU for the TDP case.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The SPTE format will be common to both the shadow and the TDP MMU.
Extract code that implements the format to a separate module, as a
first step towards adding the TDP MMU and putting mmu.c on a diet.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP MMU's own function for the changed-PTE notifier will need to be
update a PTE in the exact same way as the shadow MMU. Rather than
re-implementing this logic, factor the SPTE creation out of kvm_set_pte_rmapp.
Extracted out of a patch by Ben Gardon. <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Separate the functions for generating leaf page table entries from the
function that inserts them into the paging structure. This refactoring
will facilitate changes to the MMU sychronization model to use atomic
compare / exchanges (which are not guaranteed to succeed) instead of a
monolithic MMU lock.
No functional change expected.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This commit introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP MMU page fault handler will need to be able to create non-leaf
SPTEs to build up the paging structures. Rather than re-implementing the
function, factor the SPTE creation out of link_shadow_page.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20200925212302.3979661-9-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These should be const, so make it so.
Signed-off-by: Joe Perches <joe@perches.com>
Message-Id: <ed95eef4f10fc1317b66936c05bc7dd8f943a6d5.1601770305.git.joe@perches.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull v5.10 RCU changes from Paul E. McKenney:
- Debugging for smp_call_function().
- Strict grace periods for KASAN. The point of this series is to find
RCU-usage bugs, so the corresponding new RCU_STRICT_GRACE_PERIOD
Kconfig option depends on both DEBUG_KERNEL and RCU_EXPERT, and is
further disabled by dfefault. Finally, the help text includes
a goodly list of scary caveats.
- New smp_call_function() torture test.
- Torture-test updates.
- Documentation updates.
- Miscellaneous fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move initialization of 'struct kvm_mmu' fields into alloc_mmu_pages() to
consolidate code, and rename the helper to __kvm_mmu_create().
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923163314.8181-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use bools to track write and user faults throughout the page fault paths
and down into mmu_set_spte(). The actual usage is purely boolean, but
that's not obvious without digging into all paths as the current code
uses a mix of bools (TDP and try_async_pf) and ints (shadow paging and
mmu_set_spte()).
No true functional change intended (although the pgprintk() will now
print 0/1 instead of 0/PFERR_WRITE_MASK).
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923183735.584-9-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the "ITLB multi-hit workaround enabled" check into the callers of
disallowed_hugepage_adjust() to make it more obvious that the helper is
specific to the workaround, and to be consistent with the accounting,
i.e. account_huge_nx_page() is called if and only if the workaround is
enabled.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923183735.584-8-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename 'hlevel', which presumably stands for 'host level', to simply
'level' in FNAME(fetch). The variable hasn't tracked the host level for
quite some time.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923183735.584-7-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Condition the accounting of a disallowed huge NX page on the original
requested level of the page being greater than the current iterator
level. This does two things: accounts the page if and only if a huge
page was actually disallowed, and accounts the shadow page if and only
if it was the level at which the huge page was disallowed. For the
latter case, the previous logic would account all shadow pages used to
create the translation for the forced small page, e.g. even PML4, which
can't be a huge page on current hardware, would be accounted as having
been a disallowed huge page when using 5-level EPT.
The overzealous accounting is purely a performance issue, i.e. the
recovery thread will spuriously zap shadow pages, but otherwise the bad
behavior is harmless.
Cc: Junaid Shahid <junaids@google.com>
Fixes: b8e8c8303f ("kvm: mmu: ITLB_MULTIHIT mitigation")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923183735.584-6-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Apply the "huge page disallowed" adjustment of the max level only after
capturing the original requested level. The requested level will be
used in a future patch to skip adding pages to the list of disallowed
huge pages if a huge page wasn't possible anyways, e.g. if the page
isn't mapped as a huge page in the host.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923183735.584-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Calculate huge_page_disallowed in __direct_map() and FNAME(fetch) in
preparation for reworking the calculation so that it preserves the
requested map level and eventually to avoid flagging a shadow page as
being disallowed for being used as a large/huge page when it couldn't
have been huge in the first place, e.g. because the backing page in the
host is not large.
Pass the error code into the helpers and use it to recalcuate exec and
write_fault instead adding yet more booleans to the parameters.
Opportunistically use huge_page_disallowed instead of lpage_disallowed
to match the nomenclature used within the mapping helpers (though even
they have existing inconsistencies).
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923183735.584-4-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refactor the zap loop in kvm_recover_nx_lpages() to be a for loop that
iterates on to_zap and drop the !to_zap check that leads to the in-loop
calling of kvm_mmu_commit_zap_page(). The in-loop commit when to_zap
hits zero is superfluous now that there's an unconditional commit after
the loop to handle the case where lpage_disallowed_mmu_pages is emptied.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923183735.584-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Call kvm_mmu_commit_zap_page() after exiting the "prepare zap" loop in
kvm_recover_nx_lpages() to finish zapping pages in the unlikely event
that the loop exited due to lpage_disallowed_mmu_pages being empty.
Because the recovery thread drops mmu_lock() when rescheduling, it's
possible that lpage_disallowed_mmu_pages could be emptied by a different
thread without to_zap reaching zero despite to_zap being derived from
the number of disallowed lpages.
Fixes: 1aa9b9572b ("kvm: x86: mmu: Recovery of shattered NX large pages")
Cc: Junaid Shahid <junaids@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923183735.584-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Detect spurious page faults, e.g. page faults that occur when multiple
vCPUs simultaneously access a not-present page, and skip the SPTE write,
prefetch, and stats update for spurious faults.
Note, the performance benefits of skipping the write and prefetch are
likely negligible, and the false positive stats adjustment is probably
lost in the noise. The primary motivation is to play nice with TDX's
SEPT in the long term. SEAMCALLs (to program SEPT entries) are quite
costly, e.g. thousands of cycles, and a spurious SEPT update will result
in a SEAMCALL error (which KVM will ideally treat as fatal).
Reported-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923220425.18402-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce RET_PF_FIXED and RET_PF_SPURIOUS to provide unique return
values instead of overloading RET_PF_RETRY. In the short term, the
unique values add clarity to the code and RET_PF_SPURIOUS will be used
by set_spte() to avoid unnecessary work for spurious faults.
In the long term, TDX will use RET_PF_FIXED to deterministically map
memory during pre-boot. The page fault flow may bail early for benign
reasons, e.g. if the mmu_notifier fires for an unrelated address. With
only RET_PF_RETRY, it's impossible for the caller to distinguish between
"cool, page is mapped" and "darn, need to try again", and thus cannot
handle benign cases like the mmu_notifier retry.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923220425.18402-4-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly check for RET_PF_EMULATE instead of implicitly doing the same
by checking for !RET_PF_RETRY (RET_PF_INVALID is handled earlier). This
will adding new RET_PF_ types in future patches without breaking the
emulation path.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923220425.18402-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Exit to userspace with an error if the MMU is buggy and returns
RET_PF_INVALID when servicing a page fault. This will allow a future
patch to invert the emulation path, i.e. emulate only on RET_PF_EMULATE
instead of emulating on anything but RET_PF_RETRY. This technically
means that KVM will exit to userspace instead of emulating on
RET_PF_INVALID, but practically speaking it's a nop as the MMU never
returns RET_PF_INVALID.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923220425.18402-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Recursively zap all to-be-orphaned children, unsynced or otherwise, when
zapping a shadow page for a nested TDP MMU. KVM currently only zaps the
unsynced child pages, but not the synced ones. This can create problems
over time when running many nested guests because it leaves unlinked
pages which will not be freed until the page quota is hit. With the
default page quota of 20 shadow pages per 1000 guest pages, this looks
like a memory leak and can degrade MMU performance.
In a recent benchmark, substantial performance degradation was observed:
An L1 guest was booted with 64G memory.
2G nested Windows guests were booted, 10 at a time for 20
iterations. (200 total boots)
Windows was used in this benchmark because they touch all of their
memory on startup.
By the end of the benchmark, the nested guests were taking ~10% longer
to boot. With this patch there is no degradation in boot time.
Without this patch the benchmark ends with hundreds of thousands of
stale EPT02 pages cluttering up rmaps and the page hash map. As a
result, VM shutdown is also much slower: deleting memslot 0 was
observed to take over a minute. With this patch it takes just a
few miliseconds.
Cc: Peter Shier <pshier@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923221406.16297-3-sean.j.christopherson@intel.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the logic that controls whether or not FNAME(invlpg) needs to flush
fully into FNAME(invlpg) so that mmu_page_zap_pte() doesn't return a
value. This allows a future patch to redefine the return semantics for
mmu_page_zap_pte() so that it can recursively zap orphaned child shadow
pages for nested TDP MMUs.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923221406.16297-2-sean.j.christopherson@intel.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To make kvm_mmu_free_roots() a bit more readable, capture 'kvm' in a
local variable instead of doing vcpu->kvm over and over (and over).
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923191204.8410-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>