Hi.
I have a proposal for possibly resolving this issue.
I believe that this situation occurs due to the way that the
Linux NFS client handles writes which modify partial pages.
The Linux NFS client handles partial page modifications by
allocating a page from the page cache, copying the data from
the user level into the page, and then keeping track of the
offset and length of the modified portions of the page. The
page is not marked as up to date because there are portions
of the page which do not contain valid file contents.
When a read call comes in for a portion of the page, the
contents of the page must be read in the from the server.
However, since the page may already contain some modified
data, that modified data must be written to the server
before the file contents can be read back in the from server.
And, since the writing and reading can not be done atomically,
the data must be written and committed to stable storage on
the server for safety purposes. This means either a
FILE_SYNC WRITE or a UNSTABLE WRITE followed by a COMMIT.
This has been discussed at length previously.
This algorithm could be described as modify-write-read. It
is most efficient when the application only updates pages
and does not read them.
My proposed solution is to add a heuristic to decide whether
to do this modify-write-read algorithm or switch to a read-
modify-write algorithm when initially allocating the page
in the write system call path. The heuristic uses the modes
that the file was opened with, the offset in the page to
read from, and the size of the region to read.
If the file was opened for reading in addition to writing
and the page would not be filled completely with data from
the user level, then read in the old contents of the page
and mark it as Uptodate before copying in the new data. If
the page would be completely filled with data from the user
level, then there would be no reason to read in the old
contents because they would just be copied over.
This would optimize for applications which randomly access
and update portions of files. The linkage editor for the
C compiler is an example of such a thing.
I tested the attached patch by using rpmbuild to build the
current Fedora rawhide kernel. The kernel without the
patch generated about 269,500 WRITE requests. The modified
kernel containing the patch generated about 261,000 WRITE
requests. Thus, about 8,500 fewer WRITE requests were
generated. I suspect that many of these additional
WRITE requests were probably FILE_SYNC requests to WRITE
a single page, but I didn't test this theory.
The difference between this patch and the previous one was
to remove the unneeded PageDirty() test. I then retested to
ensure that the resulting system continued to behave as
desired.
Thanx...
ps
Signed-off-by: Peter Staubach <staubach@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Tighten up the validity checking in param_set_port: check for NULL pointers.
Ensure that the option shows up on 'modinfo' output.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
If the NFSv4 server doesn't support a POSIX attribute, the generic NFS code
needs to know that, so that it don't keep trying to poll for it.
However, by the same count, if the NFSv4 server does support that
attribute, then we should ensure that the inode metadata is appropriately
labelled as being untrusted. For instance, if we don't know the correct
value of the file's uid, we should certainly not be caching ACLs or ACCESS
results.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
If the server is broken, then retrying forever won't fix it. We
should just give up after a while, and return an error to the user.
We set the number of retries to 10 for now...
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Ensure that index i remains within array mnt_errtbl[] and mnt3_errtbl[].
Signed-off-by: Roel Kluin <roel.kluin@gmail.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
invalidate_inode_pages2_range may return -EBUSY occasionally
which results Oops. This patch fixes the issue by moving
invalidate_inode_pages2_range into a loop and keeping calling
it until the return value is not -EBUSY.
The EBUSY return is temporary, and can happen when the btrfs release page
function is unable to release a page because the EXTENT_LOCK
bit is set.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
find_zlib_workspace returns an ERR_PTR value in an error case instead of NULL.
A simplified version of the semantic match that finds this problem is as
follows: (http://coccinelle.lip6.fr/)
// <smpl>
@match exists@
expression x, E;
statement S1, S2;
@@
x = find_zlib_workspace(...)
... when != x = E
(
* if (x == NULL || ...) S1 else S2
|
* if (x == NULL && ...) S1 else S2
)
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This takes care of the following entry from Dan's list:
fs/btrfs/inode.c +4788 btrfs_rename(36) warning: variable derefenced before check 'old_inode'
Reported-by: Dan Carpenter <error27@gmail.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Eugene Teo <eteo@redhat.com>
Cc: Julia Lawall <julia@diku.dk>
Signed-off-by: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* git://git.infradead.org/mtd-2.6:
jffs2: Fix return value from jffs2_do_readpage_nolock()
mtd: mtdblock: introduce mtdblks_lock
mtd: remove 'SBC8240 Wind River' Device Driver Code
mtd: OneNAND: OMAP2/3: free GPMC CS on module removal
mtd: OneNAND: fix incorrect bufferram offset
mtd: blkdevs: do not forget to get MTD devices
mtd: fix the conversion from dev to mtd_info
mtd: let include/linux/mtd/partitions.h stand on its own
The new credentials code broke load_flat_shared_library() as it now uses
an uninitialized cred pointer.
Reported-by: Bernd Schmidt <bernds_cb1@t-online.de>
Tested-by: Bernd Schmidt <bernds_cb1@t-online.de>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: David Howells <dhowells@redhat.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I suspect that mnt_want_write_file() may have wrong assumption. I think
mnt_want_write_file() is assuming it increments ->mnt_writers if
(file->f_mode & FMODE_WRITE). But, if it's special_file(), it is false?
Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Acked-by: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The FIEMAP_IOC_FIEMAP mapping ioctl was missing a 32-bit compat handler,
which means that 32-bit suerspace on 64-bit kernels cannot use this ioctl
command.
The structure is nicely aligned, padded, and sized, so it is just this
simple.
Tested w/ 32-bit ioctl tester (from Josef) on a 64-bit kernel on ext4.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Cc: <linux-ext4@vger.kernel.org>
Cc: Mark Lord <lkml@rtr.ca>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Josef Bacik <josef@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When freeing an inode that lost race getting added to the inode cache we
must not call into ->destroy_inode, because that would delete the inode
that won the race from the inode cache radix tree.
This patch uses splits a new xfs_inode_free helper out of xfs_ireclaim
and uses that plus __destroy_inode to make sure we really only free
the memory allocted for the inode that lost the race, and not mess with
the inode cache state.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Eric Sandeen <sandeen@sandeen.net>
Reported-by: Alex Samad <alex@samad.com.au>
Reported-by: Andrew Randrianasulu <randrik@mail.ru>
Reported-by: Stephane <sharnois@max-t.com>
Reported-by: Tommy <tommy@news-service.com>
Reported-by: Miah Gregory <mace@darksilence.net>
Reported-by: Gabriel Barazer <gabriel@oxeva.fr>
Reported-by: Leandro Lucarella <llucax@gmail.com>
Reported-by: Daniel Burr <dburr@fami.com.au>
Reported-by: Nickolay <newmail@spaces.ru>
Reported-by: Michael Guntsche <mike@it-loops.com>
Reported-by: Dan Carley <dan.carley+linuxkern-bugs@gmail.com>
Reported-by: Michael Ole Olsen <gnu@gmx.net>
Reported-by: Michael Weissenbacher <mw@dermichi.com>
Reported-by: Martin Spott <Martin.Spott@mgras.net>
Reported-by: Christian Kujau <lists@nerdbynature.de>
Tested-by: Michael Guntsche <mike@it-loops.com>
Tested-by: Dan Carley <dan.carley+linuxkern-bugs@gmail.com>
Tested-by: Christian Kujau <lists@nerdbynature.de>
When we want to tear down an inode that lost the add to the cache race
in XFS we must not call into ->destroy_inode because that would delete
the inode that won the race from the inode cache radix tree.
This patch provides the __destroy_inode helper needed to fix this,
the actual fix will be in th next patch. As XFS was the only reason
destroy_inode was exported we shift the export to the new __destroy_inode.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Eric Sandeen <sandeen@sandeen.net>
Currently inode_init_always calls into ->destroy_inode if the additional
initialization fails. That's not only counter-intuitive because
inode_init_always did not allocate the inode structure, but in case of
XFS it's actively harmful as ->destroy_inode might delete the inode from
a radix-tree that has never been added. This in turn might end up
deleting the inode for the same inum that has been instanciated by
another process and cause lots of cause subtile problems.
Also in the case of re-initializing a reclaimable inode in XFS it would
free an inode we still want to keep alive.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Eric Sandeen <sandeen@sandeen.net>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ryusuke/nilfs2:
nilfs2: fix missing unlock in error path of nilfs_mdt_write_page
nilfs2: fix oops due to inconsistent state in page with discrete b-tree nodes
Check whether index is within bounds before testing the element.
Acked-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Roel Kluin <roel.kluin@gmail.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>
Since forceuid is the default, we now need to show when it's disabled.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>
This adds a missing unlock of nilfs->ns_writer_mutex in
nilfs_mdt_write_page() function.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
This patch fixes the regression reported here:
http://bugzilla.kernel.org/show_bug.cgi?id=13861
commit 4ae1507f6d changed the default
behavior when the uid= or gid= option was specified for a mount. The
existing behavior was to always clobber the ownership information
provided by the server when these options were specified. The above
commit changed this behavior so that these options simply provided
defaults when the server did not provide this information (unless
"forceuid" or "forcegid" were specified)
This patch reverts this change so that the default behavior is restored.
It also adds "noforceuid" and "noforcegid" options to make it so that
ownership information from the server is preserved, even when the mount
has uid= or gid= options specified.
It also adds a couple of printk notices that pop up when forceuid or
forcegid options are specified without a uid= or gid= option.
Reported-by: Tom Chiverton <bugzilla.kernel.org@falkensweb.com>
Reviewed-by: Shirish Pargaonkar <shirishp@us.ibm.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>
Andrea Gelmini gave me a report that a kernel oops hit on a nilfs
filesystem with a 1KB block size when doing rsync.
This turned out to be caused by an inconsistency of dirty state
between a page and its buffers storing b-tree node blocks.
If the page had multiple buffers split over multiple logs, and if the
logs were written at a time, a dirty flag remained in the page even
every dirty flag in the buffers was cleared.
This will fix the failure by dropping the dirty flag properly for
pages with the discrete multiple b-tree nodes.
Reported-by: Andrea Gelmini <andrea.gelmini@gmail.com>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Tested-by: Andrea Gelmini <andrea.gelmini@gmail.com>
Cc: stable@kernel.org
The async caching thread can end up looping forever if a given
search puts it at the last key in a leaf. It will end up calling
btrfs_next_leaf and then checking if it needs to politely drop
the read semaphore.
Most of the time this looping isn't noticed because it is able to
make progress the next time around. But, during log replay,
we wait on the async caching thread to finish, and the async thread
is waiting on the commit, and no progress is really made.
The fix used here is to copy the key out of the next leaf,
that way our search lands there properly.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Yan Zheng hit a problem where we tried to remove some free space but failed
because we couldn't find the free space entry. This is because the free space
was held within a bitmap that had a starting offset well before the actual
offset of the free space, and there were free space extents that were in the
same range as that offset, so tree_search_offset returned with NULL because we
couldn't find a free space extent that had that offset. This is fixed by
making sure that if we fail to find the entry, we re-search again with
bitmap_only set to 1 and do an offset_to_bitmap so we can get the appropriate
bitmap. A similar problem happens in btrfs_alloc_from_bitmap for the
clustering code, but that is not as bad since we will just go and redo our
cluster allocation.
Also this adds some debugging checks to make sure that the free space we are
trying to remove from the bitmap is in fact there. This can probably go away
after a while, but since this code is only used by the tree-logging stuff it
would be nice to run with it for a while to make sure there are no problems.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
VM calculation for nr_to_write seems off. Bump it way
up, this gets simple streaming writes zippy again.
To be reviewed again after Jens' writeback changes.
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Cc: Chris Mason <chris.mason@oracle.com>
Reviewed-by: Felix Blyakher <felixb@sgi.com>
Signed-off-by: Felix Blyakher <felixb@sgi.com>
commit 6321e3ed2a caused
the full bmv_count's worth of getbmapx structures to get
allocated; telling it to do MAXEXTNUM was a bit insane,
resulting in ENOMEM every time.
Chop it down to something reasonable, the number of slots
in the caller's input buffer. If this is too large the
caller may get ENOMEM but the reason should not be a
mystery, and they can try again with something smaller.
We add 1 to the value because in the normal getbmap
world, bmv_count includes the header and xfs_getbmap does:
nex = bmv->bmv_count - 1;
if (nex <= 0)
return XFS_ERROR(EINVAL);
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Reviewed-by: Olaf Weber <olaf@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Felix Blyakher <felixb@sgi.com>
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: be more polite in the async caching threads
Btrfs: preserve commit_root for async caching
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-udf-2.6:
udf: Fix loading of VAT inode when drive wrongly reports number of recorded blocks
* git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-2.6-fixes:
GFS2: remove dcache entries for remote deleted inodes
GFS2: Fix incorrent statfs consistency check
GFS2: Don't put unlikely reclaim candidates on the reclaim list.
GFS2: Don't try and dealloc own inode
GFS2: Fix panic in glock memory shrinker
GFS2: keep statfs info in sync on grows
GFS2: Shrink the shrinker
Commit d01730d74d didn't completely fix
the problem since we still take dqio_mutex and i_mutex in the wrong
order. Move taking of i_mutex further down (luckily it's needed only
for updating inode flags) below where dqio_mutex is taken.
Tested-by: Valdis Kletnieks <valdis.kletnieks@vt.edu>
Signed-off-by: Jan Kara <jack@suse.cz>
VAT inode is located in the last block recorded block of the medium. When the
drive errorneously reports number of recorded blocks, we failed to load the VAT
inode and thus mount the medium. This patch makes kernel try to read VAT inode
from the last block of the device if it is different from the last recorded
block.
Signed-off-by: Jan Kara <jack@suse.cz>
The semaphore used by the async caching threads can prevent a
transaction commit, which can make the FS appear to stall. This
releases the semaphore more often when a transaction commit is
in progress.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The async block group caching code uses the commit_root pointer
to get a stable version of the extent allocation tree for scanning.
This copy of the tree root isn't going to change and it significantly
reduces the complexity of the scanning code.
During a commit, we have a loop where we update the extent allocation
tree root. We need to loop because updating the root pointer in
the tree of tree roots may allocate blocks which may change the
extent allocation tree.
Right now the commit_root pointer is changed inside this loop. It
is more correct to change the commit_root pointer only after all the
looping is done.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When a file is deleted from a gfs2 filesystem on one node, a dcache
entry for it may still exist on other nodes in the cluster. If this
happens, gfs2 will be unable to free this file on disk. Because of this,
it's possible to have a gfs2 filesystem with no files on it and no free
space. With this patch, when a node receives a callback notifying it
that the file is being deleted on another node, it schedules a new
workqueue thread to remove the file's dcache entry.
Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Since both linked and unlinked inodes are counted by rgd->rd_dinodes, It
makes no sense to count them with the used data blocks (first check that
I changed), it makes sense to count them with the linked inodes (second
check), and it makes no sense to care if there are more unlinked inodes
than linked ones. This fixes these errors.
Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
GFS2 was placing far too many glocks on the reclaim list that were not good
candidates for freeing up from cache. These locks would sit there and
repeatedly get scanned to see if they could be reclaimed, wasting a lot
of time when there was memory pressure. This fix does more checks on the
locks to see if they are actually likely to be removable from cache.
Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
When searching for unlinked, but still allocated inodes during block
allocation, avoid the block relating to the inode that is doing the
allocation. This fixes a hang caused when an unlinked, but still
open, inode tries to allocate some more blocks and lands up
finding itself during the search for deallocatable inodes.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
It is possible for gfs2_shrink_glock_memory() to check a glock for
demotion
that's in the process of being freed by gfs2_glock_put(). In this case,
gfs2_shrink_glock_memory() will acquire a new reference to this glock,
and
then try to free the glock itself when it drops the refernce. To solve
this, gfs2_shrink_glock_memory() just needs to check if the glock is in
the process of being freed, and if so skip it without ever unlocking the
lru_lock.
Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com>
Acked-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
GFS2 wasn't syncing its statfs info on grows. This causes a problem
when you grow the filesystem on multiple nodes. GFS2 would calculate
the new space based on the resource groups (which are always current),
and then assume that the filesystem had grown the from the existing
statfs size. If you grew the filesystem on two different nodes in a
short time, the second node wouldn't see the statfs size change from the
first node, and would assume that it was grown by a larger amount than
it was. When all these changes were synced out, the total fileystem
size would be incorrect (the first grow would be counted twice).
This patch syncs makes GFS2 read in the statfs changes from disk before
a grow, and write them out after the grow, while the master statfs inode
is locked.
Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This patch removes some of the special cases that the shrinker
was trying to deal with. As a result we leave fewer items on
the list and none at all which cannot be demoted. This makes
the list scanning more efficient and solves some issues seen
with large numbers of inodes.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>