Add noinode_cache mount option for btrfs.
Since inode map cache involves all the btrfs_find_free_ino/return_ino
things and if just trigger the mount_opt,
an inode number get from inode map cache will not returned to inode map
cache.
To keep the find and return inode both in the same behavior,
a new bit in mount_opt, CHANGE_INODE_CACHE, is introduced for this idea.
CHANGE_INODE_CACHE is set/cleared in remounting, and the original
INODE_MAP_CACHE is set/cleared according to CHANGE_INODE_CACHE after a
success transaction.
Since find/return inode is all done between btrfs_start_transaction and
btrfs_commit_transaction, this will keep consistent behavior.
Also noinode_cache mount option will not stop the caching_kthread.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
There is a bug that using btrfs_previous_item() to search metadata extent item.
This is because in btrfs_previous_item(), we need type match, however, since
skinny metada was introduced by josef, we may mix this two types. So just
use btrfs_previous_item() is not working right.
To keep btrfs_previous_item() like normal tree search, i introduce another
function btrfs_previous_extent_item().
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Check if we support skinny metadata firstly and fix to use
right type to search.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
It is possible for the send feature to send clone operations that
request a cloning range (offset + length) that is not aligned with
the block size. This makes the btrfs receive command send issue a
clone ioctl call that will fail, as the ioctl will return an -EINVAL
error because of the unaligned range.
Fix this by not sending clone operations for non block aligned ranges,
and instead send regular write operation for these (less common) cases.
The following xfstest reproduces this issue, which fails on the second
btrfs receive command without this change:
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
tmp=`mktemp -d`
status=1 # failure is the default!
trap "_cleanup; exit \$status" 0 1 2 3 15
_cleanup()
{
rm -fr $tmp
}
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
# real QA test starts here
_supported_fs btrfs
_supported_os Linux
_require_scratch
_need_to_be_root
rm -f $seqres.full
_scratch_mkfs >/dev/null 2>&1
_scratch_mount
$XFS_IO_PROG -f -c "truncate 819200" $SCRATCH_MNT/foo | _filter_xfs_io
$BTRFS_UTIL_PROG filesystem sync $SCRATCH_MNT | _filter_scratch
$XFS_IO_PROG -c "falloc -k 819200 667648" $SCRATCH_MNT/foo | _filter_xfs_io
$BTRFS_UTIL_PROG filesystem sync $SCRATCH_MNT | _filter_scratch
$XFS_IO_PROG -f -c "pwrite 1482752 2978" $SCRATCH_MNT/foo | _filter_xfs_io
$BTRFS_UTIL_PROG filesystem sync $SCRATCH_MNT | _filter_scratch
$BTRFS_UTIL_PROG subvol snapshot -r $SCRATCH_MNT $SCRATCH_MNT/mysnap1 | \
_filter_scratch
$XFS_IO_PROG -f -c "truncate 883305" $SCRATCH_MNT/foo | _filter_xfs_io
$BTRFS_UTIL_PROG filesystem sync $SCRATCH_MNT | _filter_scratch
$BTRFS_UTIL_PROG subvol snapshot -r $SCRATCH_MNT $SCRATCH_MNT/mysnap2 | \
_filter_scratch
$BTRFS_UTIL_PROG send $SCRATCH_MNT/mysnap1 -f $tmp/1.snap 2>&1 | _filter_scratch
$BTRFS_UTIL_PROG send -p $SCRATCH_MNT/mysnap1 $SCRATCH_MNT/mysnap2 \
-f $tmp/2.snap 2>&1 | _filter_scratch
md5sum $SCRATCH_MNT/foo | _filter_scratch
md5sum $SCRATCH_MNT/mysnap1/foo | _filter_scratch
md5sum $SCRATCH_MNT/mysnap2/foo | _filter_scratch
_scratch_unmount
_check_btrfs_filesystem $SCRATCH_DEV
_scratch_mkfs >/dev/null 2>&1
_scratch_mount
$BTRFS_UTIL_PROG receive $SCRATCH_MNT -f $tmp/1.snap
md5sum $SCRATCH_MNT/mysnap1/foo | _filter_scratch
$BTRFS_UTIL_PROG receive $SCRATCH_MNT -f $tmp/2.snap
md5sum $SCRATCH_MNT/mysnap2/foo | _filter_scratch
_scratch_unmount
_check_btrfs_filesystem $SCRATCH_DEV
status=0
exit
The tests expected output is:
QA output created by 025
FSSync 'SCRATCH_MNT'
FSSync 'SCRATCH_MNT'
wrote 2978/2978 bytes at offset 1482752
XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec)
FSSync 'SCRATCH_MNT'
Create a readonly snapshot of 'SCRATCH_MNT' in 'SCRATCH_MNT/mysnap1'
FSSync 'SCRATCH_MNT'
Create a readonly snapshot of 'SCRATCH_MNT' in 'SCRATCH_MNT/mysnap2'
At subvol SCRATCH_MNT/mysnap1
At subvol SCRATCH_MNT/mysnap2
129b8eaee8d3c2bcad49bec596591cb3 SCRATCH_MNT/foo
42b6369eae2a8725c1aacc0440e597aa SCRATCH_MNT/mysnap1/foo
129b8eaee8d3c2bcad49bec596591cb3 SCRATCH_MNT/mysnap2/foo
At subvol mysnap1
42b6369eae2a8725c1aacc0440e597aa SCRATCH_MNT/mysnap1/foo
At snapshot mysnap2
129b8eaee8d3c2bcad49bec596591cb3 SCRATCH_MNT/mysnap2/foo
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
After the change titled "Btrfs: add support for inode properties", if
btrfs was built-in the kernel (i.e. not as a module), it would cause a
kernel panic, as reported recently by Fengguang:
[ 2.024722] BUG: unable to handle kernel NULL pointer dereference at (null)
[ 2.027814] IP: [<ffffffff81501594>] crc32c+0xc/0x6b
[ 2.028684] PGD 0
[ 2.028684] Oops: 0000 [#1] SMP
[ 2.028684] Modules linked in:
[ 2.028684] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 3.13.0-rc7-04795-ga7b57c2 #1
[ 2.028684] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
[ 2.028684] task: ffff88000edba100 ti: ffff88000edd6000 task.ti: ffff88000edd6000
[ 2.028684] RIP: 0010:[<ffffffff81501594>] [<ffffffff81501594>] crc32c+0xc/0x6b
[ 2.028684] RSP: 0000:ffff88000edd7e58 EFLAGS: 00010246
[ 2.028684] RAX: 0000000000000000 RBX: ffffffff82295550 RCX: 0000000000000000
[ 2.028684] RDX: 0000000000000011 RSI: ffffffff81efe393 RDI: 00000000fffffffe
[ 2.028684] RBP: ffff88000edd7e60 R08: 0000000000000003 R09: 0000000000015d20
[ 2.028684] R10: ffffffff81ef225e R11: ffffffff811b0222 R12: ffffffffffffffff
[ 2.028684] R13: 0000000000000239 R14: 0000000000000000 R15: 0000000000000000
[ 2.028684] FS: 0000000000000000(0000) GS:ffff88000fa00000(0000) knlGS:0000000000000000
[ 2.028684] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[ 2.028684] CR2: 0000000000000000 CR3: 000000000220c000 CR4: 00000000000006f0
[ 2.028684] Stack:
[ 2.028684] ffffffff82295550 ffff88000edd7e80 ffffffff8238af62 ffffffff8238ac05
[ 2.028684] 0000000000000000 ffff88000edd7e98 ffffffff8238ac0f ffffffff8238ac05
[ 2.028684] ffff88000edd7f08 ffffffff810002ba ffff88000edd7f00 ffffffff810e2404
[ 2.028684] Call Trace:
[ 2.028684] [<ffffffff8238af62>] btrfs_props_init+0x4f/0x96
[ 2.028684] [<ffffffff8238ac05>] ? ftrace_define_fields_btrfs_space_reservation+0x145/0x145
[ 2.028684] [<ffffffff8238ac0f>] init_btrfs_fs+0xa/0xf0
[ 2.028684] [<ffffffff8238ac05>] ? ftrace_define_fields_btrfs_space_reservation+0x145/0x145
[ 2.028684] [<ffffffff810002ba>] do_one_initcall+0xa4/0x13a
[ 2.028684] [<ffffffff810e2404>] ? parse_args+0x25f/0x33d
[ 2.028684] [<ffffffff8234cf75>] kernel_init_freeable+0x1aa/0x230
[ 2.028684] [<ffffffff8234c785>] ? do_early_param+0x88/0x88
[ 2.028684] [<ffffffff819f61b5>] ? rest_init+0x89/0x89
[ 2.028684] [<ffffffff819f61c3>] kernel_init+0xe/0x109
The issue here is that the initialization function of btrfs (super.c:init_btrfs_fs)
started using crc32c (from lib/libcrc32c.c). But when it needs to call crc32c (as
part of the properties initialization routine), the libcrc32c is not yet initialized,
so crc32c derreferenced a NULL pointer (lib/libcrc32c.c:tfm), causing the kernel
panic on boot.
The approach to fix this is to use crypto component directly to use its crc32c (which
is basically what lib/libcrc32c.c is, a wrapper around crypto). This is what ext4 is
doing as well, it uses crypto directly to get crc32c functionality.
Verified this works both when btrfs is built-in and when it's loadable kernel module.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
In the clone ioctl, when the source and target inodes are different,
we can acquire their mutexes in 2 possible different orders. After
we're done cloning, we were releasing the mutexes always in the same
order - the most correct way of doing it is to release them by the
reverse order they were acquired.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Here we are not going to free memory, no need to remove every node
one by one, just init root node here is ok.
Cc: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We don't have to keep subvolume's block_rsv during transaction commit,
and within transaction commit, we may also need the free space reclaimed
from this block_rsv to process delayed refs.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we ran the 274th case of xfstests with nodatacow mount option,
We met the following warning message:
WARNING: CPU: 1 PID: 14185 at fs/btrfs/extent-tree.c:3734 btrfs_free_reserved_data_space+0xa6/0xd0
It is caused by the race between the write back and nocow buffered
write:
Task1 Task2
__btrfs_buffered_write()
skip data reservation
reserve the metadata space
copy the data
dirty the pages
unlock the pages
write back the pages
release the data space
becasue there is no
noreserve flag
set the noreserve flag
This patch fixes this problem by unlocking the pages after
the noreserve flag is set.
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The backref walking code will search down to the key it is looking for and then
proceed to walk _all_ of the extents on the file until it hits the end. This is
suboptimal with large files, we only need to look for as many extents as we have
references for that inode. I have a testcase that creates a randomly written 4
gig file and before this patch it took 6min 30sec to do the initial send, with
this patch it takes 2min 30sec to do the intial send. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Could have sworn I fixed this before but apparently not. This makes us pass
btrfs/022 with skinny metadata enabled. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
I don't think this is an issue and I've not seen it in practice but
extent_from_logical will fail to find a skinny extent because it uses
btrfs_previous_item and gives it the normal extent item type. This is just not
a place to use btrfs_previous_item since we care about either normal extents or
skinny extents, so open code btrfs_previous_item to properly check. This would
only affect metadata and the only place this is used for metadata is scrub and
I'm pretty sure it's just for printing stuff out, not actually doing any work so
hopefully it was never a problem other than a cosmetic one. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
On one of our gluster clusters we noticed some pretty big lag spikes. This
turned out to be because our transaction commit was taking like 3 minutes to
complete. This is because we have like 30 gigs of metadata, so our global
reserve would end up being the max which is like 512 mb. So our throttling code
would allow a ridiculous amount of delayed refs to build up and then they'd all
get run at transaction commit time, and for a cold mounted file system that
could take up to 3 minutes to run. So fix the throttling to be based on both
the size of the global reserve and how long it takes us to run delayed refs.
This patch tracks the time it takes to run delayed refs and then only allows 1
seconds worth of outstanding delayed refs at a time. This way it will auto-tune
itself from cold cache up to when everything is in memory and it no longer has
to go to disk. This makes our transaction commits take much less time to run.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Currently we have two rb-trees, one for delayed ref heads and one for all of the
delayed refs, including the delayed ref heads. When we process the delayed refs
we have to hold onto the delayed ref lock for all of the selecting and merging
and such, which results in quite a bit of lock contention. This was solved by
having a waitqueue and only one flusher at a time, however this hurts if we get
a lot of delayed refs queued up.
So instead just have an rb tree for the delayed ref heads, and then attach the
delayed ref updates to an rb tree that is per delayed ref head. Then we only
need to take the delayed ref lock when adding new delayed refs and when
selecting a delayed ref head to process, all the rest of the time we deal with a
per delayed ref head lock which will be much less contentious.
The locking rules for this get a little more complicated since we have to lock
up to 3 things to properly process delayed refs, but I will address that problem
later. For now this passes all of xfstests and my overnight stress tests.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Looking into some performance related issues with large amounts of metadata
revealed that we can have some pretty huge swings in fsync() performance. If we
have a lot of delayed refs backed up (as you will tend to do with lots of
metadata) fsync() will wander off and try to run some of those delayed refs
which can result in reading from disk and such. Since the actual act of fsync()
doesn't create any delayed refs there is no need to make it throttle on delayed
ref stuff, that will be handled by other people. With this patch we get much
smoother fsync performance with large amounts of metadata. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
This change adds infrastructure to allow for generic properties for
inodes. Properties are name/value pairs that can be associated with
inodes for different purposes. They are stored as xattrs with the
prefix "btrfs."
Properties can be inherited - this means when a directory inode has
inheritable properties set, these are added to new inodes created
under that directory. Further, subvolumes can also have properties
associated with them, and they can be inherited from their parent
subvolume. Naturally, directory properties have priority over subvolume
properties (in practice a subvolume property is just a regular
property associated with the root inode, objectid 256, of the
subvolume's fs tree).
This change also adds one specific property implementation, named
"compression", whose values can be "lzo" or "zlib" and it's an
inheritable property.
The corresponding changes to btrfs-progs were also implemented.
A patch with xfstests for this feature will follow once there's
agreement on this change/feature.
Further, the script at the bottom of this commit message was used to
do some benchmarks to measure any performance penalties of this feature.
Basically the tests correspond to:
Test 1 - create a filesystem and mount it with compress-force=lzo,
then sequentially create N files of 64Kb each, measure how long it took
to create the files, unmount the filesystem, mount the filesystem and
perform an 'ls -lha' against the test directory holding the N files, and
report the time the command took.
Test 2 - create a filesystem and don't use any compression option when
mounting it - instead set the compression property of the subvolume's
root to 'lzo'. Then create N files of 64Kb, and report the time it took.
The unmount the filesystem, mount it again and perform an 'ls -lha' like
in the former test. This means every single file ends up with a property
(xattr) associated to it.
Test 3 - same as test 2, but uses 4 properties - 3 are duplicates of the
compression property, have no real effect other than adding more work
when inheriting properties and taking more btree leaf space.
Test 4 - same as test 3 but with 10 properties per file.
Results (in seconds, and averages of 5 runs each), for different N
numbers of files follow.
* Without properties (test 1)
file creation time ls -lha time
10 000 files 3.49 0.76
100 000 files 47.19 8.37
1 000 000 files 518.51 107.06
* With 1 property (compression property set to lzo - test 2)
file creation time ls -lha time
10 000 files 3.63 0.93
100 000 files 48.56 9.74
1 000 000 files 537.72 125.11
* With 4 properties (test 3)
file creation time ls -lha time
10 000 files 3.94 1.20
100 000 files 52.14 11.48
1 000 000 files 572.70 142.13
* With 10 properties (test 4)
file creation time ls -lha time
10 000 files 4.61 1.35
100 000 files 58.86 13.83
1 000 000 files 656.01 177.61
The increased latencies with properties are essencialy because of:
*) When creating an inode, we now synchronously write 1 more item
(an xattr item) for each property inherited from the parent dir
(or subvolume). This could be done in an asynchronous way such
as we do for dir intex items (delayed-inode.c), which could help
reduce the file creation latency;
*) With properties, we now have larger fs trees. For this particular
test each xattr item uses 75 bytes of leaf space in the fs tree.
This could be less by using a new item for xattr items, instead of
the current btrfs_dir_item, since we could cut the 'location' and
'type' fields (saving 18 bytes) and maybe 'transid' too (saving a
total of 26 bytes per xattr item) from the btrfs_dir_item type.
Also tried batching the xattr insertions (ignoring proper hash
collision handling, since it didn't exist) when creating files that
inherit properties from their parent inode/subvolume, but the end
results were (surprisingly) essentially the same.
Test script:
$ cat test.pl
#!/usr/bin/perl -w
use strict;
use Time::HiRes qw(time);
use constant NUM_FILES => 10_000;
use constant FILE_SIZES => (64 * 1024);
use constant DEV => '/dev/sdb4';
use constant MNT_POINT => '/home/fdmanana/btrfs-tests/dev';
use constant TEST_DIR => (MNT_POINT . '/testdir');
system("mkfs.btrfs", "-l", "16384", "-f", DEV) == 0 or die "mkfs.btrfs failed!";
# following line for testing without properties
#system("mount", "-o", "compress-force=lzo", DEV, MNT_POINT) == 0 or die "mount failed!";
# following 2 lines for testing with properties
system("mount", DEV, MNT_POINT) == 0 or die "mount failed!";
system("btrfs", "prop", "set", MNT_POINT, "compression", "lzo") == 0 or die "set prop failed!";
system("mkdir", TEST_DIR) == 0 or die "mkdir failed!";
my ($t1, $t2);
$t1 = time();
for (my $i = 1; $i <= NUM_FILES; $i++) {
my $p = TEST_DIR . '/file_' . $i;
open(my $f, '>', $p) or die "Error opening file!";
$f->autoflush(1);
for (my $j = 0; $j < FILE_SIZES; $j += 4096) {
print $f ('A' x 4096) or die "Error writing to file!";
}
close($f);
}
$t2 = time();
print "Time to create " . NUM_FILES . ": " . ($t2 - $t1) . " seconds.\n";
system("umount", DEV) == 0 or die "umount failed!";
system("mount", DEV, MNT_POINT) == 0 or die "mount failed!";
$t1 = time();
system("bash -c 'ls -lha " . TEST_DIR . " > /dev/null'") == 0 or die "ls failed!";
$t2 = time();
print "Time to ls -lha all files: " . ($t2 - $t1) . " seconds.\n";
system("umount", DEV) == 0 or die "umount failed!";
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When writing to a file we drop existing file extent items that cover the
write range and then add a new file extent item that represents that write
range.
Before this change we were doing a tree lookup to remove the file extent
items, and then after we did another tree lookup to insert the new file
extent item.
Most of the time all the file extent items we need to drop are located
within a single leaf - this is the leaf where our new file extent item ends
up at. Therefore, in this common case just combine these 2 operations into
a single one.
By avoiding the second btree navigation for insertion of the new file extent
item, we reduce btree node/leaf lock acquisitions/releases, btree block/leaf
COW operations, CPU time on btree node/leaf key binary searches, etc.
Besides for file writes, this is an operation that happens for file fsync's
as well. However log btrees are much less likely to big as big as regular
fs btrees, therefore the impact of this change is smaller.
The following benchmark was performed against an SSD drive and a
HDD drive, both for random and sequential writes:
sysbench --test=fileio --file-num=4096 --file-total-size=8G \
--file-test-mode=[rndwr|seqwr] --num-threads=512 \
--file-block-size=8192 \ --max-requests=1000000 \
--file-fsync-freq=0 --file-io-mode=sync [prepare|run]
All results below are averages of 10 runs of the respective test.
** SSD sequential writes
Before this change: 225.88 Mb/sec
After this change: 277.26 Mb/sec
** SSD random writes
Before this change: 49.91 Mb/sec
After this change: 56.39 Mb/sec
** HDD sequential writes
Before this change: 68.53 Mb/sec
After this change: 69.87 Mb/sec
** HDD random writes
Before this change: 13.04 Mb/sec
After this change: 14.39 Mb/sec
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We may return early in btrfs_drop_snapshot(), we shouldn't
call btrfs_std_err() for this case, fix it.
Cc: stable@vger.kernel.org
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We will finish orphan cleanups during snapshot, so we don't
have to commit transaction here.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We should gurantee that parent and clone roots can not be destroyed
during send, for this we have two ideas.
1.by holding @subvol_sem, this might be a nightmare, because it will
block all subvolumes deletion for a long time.
2.Miao pointed out we can reuse @send_in_progress, that mean we will
skip snapshot deletion if root sending is in progress.
Here we adopt the second approach since it won't block other subvolumes
deletion for a long time.
Besides in btrfs_clean_one_deleted_snapshot(), we only check first root
, if this root is involved in send, we return directly rather than
continue to check.There are several reasons about it:
1.this case happen seldomly.
2.after sending,cleaner thread can continue to drop that root.
3.make code simple
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Steps to reproduce:
# mkfs.btrfs -f /dev/sda8
# mount /dev/sda8 /mnt
# btrfs sub snapshot -r /mnt /mnt/snap1
# btrfs sub snapshot -r /mnt /mnt/snap2
# btrfs send /mnt/snap1 -p /mnt/snap2 -f /mnt/1
# dmesg
The problem is that we will sort clone roots(include @send_root), it
might push @send_root before thus @send_root's @send_in_progress will
be decreased twice.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add treelog mount option to enable tree log with
remount option.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add datasum mount option to enable checksum with
remount option.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add datacow mount option to enable copy-on-write with
remount option.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add acl mount option to enable acl with remount option.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add noflushoncommit mount option to disable flush on commit with
remount option.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add noenospc_debug mount option to disable ENOSPC debug with
remount option.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add nodiscard mount option to disable discard with remount option.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Btrfs has autodefrag mount option but no pairing noautodefrag option,
which makes it impossible to disable autodefrag without umount.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Btrfs can be remounted without barrier, but there is no "barrier" option
so nobody can remount btrfs back with barrier on. Only umount and
mount again can re-enable barrier.(Quite awkward)
Also the mount options in the document is also changed slightly for the
further pairing options changes.
Reported-by: Daniel Blueman <daniel@quora.org>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Mike Fleetwood <mike.fleetwood@googlemail.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We only intent to fua the first superblock in every device from
comments, fix it.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
@full is not protected within global_rsv.lock, so we may think global_rsv
is already full but in fact it's not, so we miss the opportunity to return
free space to global_rsv directly when we release other block_rsvs.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
During balance test, we hit an oops:
[ 2013.841551] kernel BUG at fs/btrfs/relocation.c:1174!
The problem is that if we fail to relocate tree blocks, we should
update backref cache, otherwise, some pending nodes are not updated
while snapshot check @cache->last_trans is within one transaction
and won't update it and then oops happen.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The following warning message was outputed when running the 274th case
of xfstests with nodatacow option:
BUG: Bad page state in process kswapd0 pfn:1c66f
page:ffffea0000636848 count:0 mapcount:0 mapping:(null) index:0x78000
page flags: 0x1000000000100a(error|uptodate|private_2)
It is because the check of nocow range was wrong, we should compare the
start and end position of the extent with the write position to verify
if the write position was in the extent, but the current code just used
the start postion to do the check, so we got the wrong extent and told
the caller that it was a nocow write. And then when we write back the
dirty pages, we found we should cow the extent, but at that time, there
was no space in the fs, we had to the error flag for the page. When
someone reclaimed that page, the above warning outputed. Fix it.
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Previously, we will free reloc root memory and then force filesystem
to be readonly. The problem is that there may be another thread commiting
transaction which will try to access freed reloc root during merging reloc
roots process.
To keep consistency snapshots shared space, we should allow snapshot
finished if possible, so here we don't free reloc root memory.
signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
@nr is no longer used, remove it from select_reloc_root()
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we do a btree search with the goal of updating an existing item
without changing its size (ins_len == 0 and cow == 1), then we never
need to hold locks on upper level nodes (even when slot == 0) after we
COW their child nodes/leaves, as we won't have node splits or merges
in this scenario (that is, no key additions, removals or shifts on any
nodes or leaves).
Therefore release the locks immediately after COWing the child nodes/leaves
while navigating the btree, even if their parent slot is 0, instead of
returning a path to the caller with those nodes locked, which would get
released only when the caller releases or frees the path (or if it calls
btrfs_unlock_up_safe).
This is a common scenario, for example when updating inode items in fs
trees and block group items in the extent tree.
The following benchmarks were performed on a quad core machine with 32Gb
of ram, using a leaf/node size of 4Kb (to generate deeper fs trees more
quickly).
sysbench --test=fileio --file-num=131072 --file-total-size=8G \
--file-test-mode=seqwr --num-threads=512 --file-block-size=8192 \
--max-requests=100000 --file-io-mode=sync [prepare|run]
Before this change: 49.85Mb/s (average of 5 runs)
After this change: 50.38Mb/s (average of 5 runs)
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The local variable 'new_size' comes from userspace. If a large number
was passed, there would be an integer overflow in the following line:
new_size = old_size + new_size;
Signed-off-by: Wenliang Fan <fanwlexca@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We can starve out the transaction commit with a bunch of caching threads all
running at the same time. This is because we will only drop the
extent_commit_sem if we need_resched(), which isn't likely to happen since we
will be reading a lot from the disk so have already schedule()'ed plenty. Alex
observed that he could starve out a transaction commit for up to a minute with
32 caching threads all running at once. This will allow us to drop the
extent_commit_sem to allow the transaction commit to swap the commit_root out
and then all the cachers will start back up. Here is an explanation provided by
Igno
So, just to fill in what happens in this loop:
mutex_unlock(&caching_ctl->mutex);
cond_resched();
goto again;
where 'again:' takes caching_ctl->mutex and fs_info->extent_commit_sem
again:
again:
mutex_lock(&caching_ctl->mutex);
/* need to make sure the commit_root doesn't disappear */
down_read(&fs_info->extent_commit_sem);
So, if I'm reading the code correct, there can be a fair amount of
concurrency here: there may be multiple 'caching kthreads' per filesystem
active, while there's one fs_info->extent_commit_sem per filesystem
AFAICS.
So, what happens if there are a lot of CPUs all busy holding the
->extent_commit_sem rwsem read-locked and a writer arrives? They'd all
rush to try to release the fs_info->extent_commit_sem, and they'd block in
the down_read() because there's a writer waiting.
So there's a guarantee of forward progress. This should answer akpm's
concern I think.
Thanks,
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
The inode reference item is close to inode item, so we insert it simultaneously
with the inode item insertion when we create a file/directory.. In fact, we also
can handle the inode reference deletion by the same way. So we made this patch to
introduce the delayed inode reference deletion for the single link inode(At most
case, the file doesn't has hard link, so we don't take the hard link into account).
This function is based on the delayed inode mechanism. After applying this patch,
we can reduce the time of the file/directory deletion by ~10%.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Two reasons:
- btrfs_end_transaction_dmeta() is the same as btrfs_end_transaction_throttle()
so it is unnecessary.
- All the delayed items should be dealt in the current transaction, so the
workers should not commit the transaction, instead, deal with the delayed
items as many as possible.
So we can remove btrfs_end_transaction_dmeta()
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
- move the condition check for wait into a function
- use wait_event_interruptible instead of prepare-schedule-finish process
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
If the number of the delayed items is greater than the upper limit, we will
try to flush all the delayed items. After that, it is unnecessary to run
them again because they are being dealt with by the wokers or the number of
them is less than the lower limit.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Before applying the patch
commit de3cb945db
title: Btrfs: improve the delayed inode throttling
We need requeue the async work after the current work was done, it
introduced a deadlock problem. So we wrote the code that this patch
removes to avoid the above problem. But after applying the above
patch, the deadlock problem didn't exist. So we should remove that
fix code.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Convert all applicable cases of printk and pr_* to the btrfs_* macros.
Fix all uses of the BTRFS prefix.
Signed-off-by: Frank Holton <fholton@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
While running the test btrfs/004 from xfstests in a loop, it failed
about 1 time out of 20 runs in my desktop. The failure happened in
the backref walking part of the test, and the test's error message was
like this:
btrfs/004 93s ... [failed, exit status 1] - output mismatch (see /home/fdmanana/git/hub/xfstests_2/results//btrfs/004.out.bad)
--- tests/btrfs/004.out 2013-11-26 18:25:29.263333714 +0000
+++ /home/fdmanana/git/hub/xfstests_2/results//btrfs/004.out.bad 2013-12-10 15:25:10.327518516 +0000
@@ -1,3 +1,8 @@
QA output created by 004
*** test backref walking
-*** done
+unexpected output from
+ /home/fdmanana/git/hub/btrfs-progs/btrfs inspect-internal logical-resolve -P 141512704 /home/fdmanana/btrfs-tests/scratch_1
+expected inum: 405, expected address: 454656, file: /home/fdmanana/btrfs-tests/scratch_1/snap1/p0/d6/d3d/d156/fce, got:
+
...
(Run 'diff -u tests/btrfs/004.out /home/fdmanana/git/hub/xfstests_2/results//btrfs/004.out.bad' to see the entire diff)
Ran: btrfs/004
Failures: btrfs/004
Failed 1 of 1 tests
But immediately after the test finished, the btrfs inspect-internal command
returned the expected output:
$ btrfs inspect-internal logical-resolve -P 141512704 /home/fdmanana/btrfs-tests/scratch_1
inode 405 offset 454656 root 258
inode 405 offset 454656 root 5
It turned out this was because the btrfs_search_old_slot() calls performed
during backref walking (backref.c:__resolve_indirect_ref) were not finding
anything. The reason for this turned out to be that the tree mod logging
code was not logging some node multi-step operations atomically, therefore
btrfs_search_old_slot() callers iterated often over an incomplete tree that
wasn't fully consistent with any tree state from the past. Besides missing
items, this often (but not always) resulted in -EIO errors during old slot
searches, reported in dmesg like this:
[ 4299.933936] ------------[ cut here ]------------
[ 4299.933949] WARNING: CPU: 0 PID: 23190 at fs/btrfs/ctree.c:1343 btrfs_search_old_slot+0x57b/0xab0 [btrfs]()
[ 4299.933950] Modules linked in: btrfs raid6_pq xor pci_stub vboxpci(O) vboxnetadp(O) vboxnetflt(O) vboxdrv(O) bnep rfcomm bluetooth parport_pc ppdev binfmt_misc joydev snd_hda_codec_h
[ 4299.933977] CPU: 0 PID: 23190 Comm: btrfs Tainted: G W O 3.12.0-fdm-btrfs-next-16+ #70
[ 4299.933978] Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./Z77 Pro4, BIOS P1.50 09/04/2012
[ 4299.933979] 000000000000053f ffff8806f3fd98f8 ffffffff8176d284 0000000000000007
[ 4299.933982] 0000000000000000 ffff8806f3fd9938 ffffffff8104a81c ffff880659c64b70
[ 4299.933984] ffff880659c643d0 ffff8806599233d8 ffff880701e2e938 0000160000000000
[ 4299.933987] Call Trace:
[ 4299.933991] [<ffffffff8176d284>] dump_stack+0x55/0x76
[ 4299.933994] [<ffffffff8104a81c>] warn_slowpath_common+0x8c/0xc0
[ 4299.933997] [<ffffffff8104a86a>] warn_slowpath_null+0x1a/0x20
[ 4299.934003] [<ffffffffa065d3bb>] btrfs_search_old_slot+0x57b/0xab0 [btrfs]
[ 4299.934005] [<ffffffff81775f3b>] ? _raw_read_unlock+0x2b/0x50
[ 4299.934010] [<ffffffffa0655001>] ? __tree_mod_log_search+0x81/0xc0 [btrfs]
[ 4299.934019] [<ffffffffa06dd9b0>] __resolve_indirect_refs+0x130/0x5f0 [btrfs]
[ 4299.934027] [<ffffffffa06a21f1>] ? free_extent_buffer+0x61/0xc0 [btrfs]
[ 4299.934034] [<ffffffffa06de39c>] find_parent_nodes+0x1fc/0xe40 [btrfs]
[ 4299.934042] [<ffffffffa06b13e0>] ? defrag_lookup_extent+0xe0/0xe0 [btrfs]
[ 4299.934048] [<ffffffffa06b13e0>] ? defrag_lookup_extent+0xe0/0xe0 [btrfs]
[ 4299.934056] [<ffffffffa06df980>] iterate_extent_inodes+0xe0/0x250 [btrfs]
[ 4299.934058] [<ffffffff817762db>] ? _raw_spin_unlock+0x2b/0x50
[ 4299.934065] [<ffffffffa06dfb82>] iterate_inodes_from_logical+0x92/0xb0 [btrfs]
[ 4299.934071] [<ffffffffa06b13e0>] ? defrag_lookup_extent+0xe0/0xe0 [btrfs]
[ 4299.934078] [<ffffffffa06b7015>] btrfs_ioctl+0xf65/0x1f60 [btrfs]
[ 4299.934080] [<ffffffff811658b8>] ? handle_mm_fault+0x278/0xb00
[ 4299.934083] [<ffffffff81075563>] ? up_read+0x23/0x40
[ 4299.934085] [<ffffffff8177a41c>] ? __do_page_fault+0x20c/0x5a0
[ 4299.934088] [<ffffffff811b2946>] do_vfs_ioctl+0x96/0x570
[ 4299.934090] [<ffffffff81776e23>] ? error_sti+0x5/0x6
[ 4299.934093] [<ffffffff810b71e8>] ? trace_hardirqs_off_caller+0x28/0xd0
[ 4299.934096] [<ffffffff81776a09>] ? retint_swapgs+0xe/0x13
[ 4299.934098] [<ffffffff811b2eb1>] SyS_ioctl+0x91/0xb0
[ 4299.934100] [<ffffffff813eecde>] ? trace_hardirqs_on_thunk+0x3a/0x3f
[ 4299.934102] [<ffffffff8177ef12>] system_call_fastpath+0x16/0x1b
[ 4299.934102] [<ffffffff8177ef12>] system_call_fastpath+0x16/0x1b
[ 4299.934104] ---[ end trace 48f0cfc902491414 ]---
[ 4299.934378] btrfs bad fsid on block 0
These tree mod log operations that must be performed atomically, tree_mod_log_free_eb,
tree_mod_log_eb_copy, tree_mod_log_insert_root and tree_mod_log_insert_move, used to
be performed atomically before the following commit:
c8cc634165
(Btrfs: stop using GFP_ATOMIC for the tree mod log allocations)
That change removed the atomicity of such operations. This patch restores the
atomicity while still not doing the GFP_ATOMIC allocations of tree_mod_elem
structures, so it has to do the allocations using GFP_NOFS before acquiring
the mod log lock.
This issue has been experienced by several users recently, such as for example:
http://www.spinics.net/lists/linux-btrfs/msg28574.html
After running the btrfs/004 test for 679 consecutive iterations with this
patch applied, I didn't ran into the issue anymore.
Cc: stable@vger.kernel.org
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Warn if the balance goes below zero, which appears to be unlikely
though. Otherwise cleans up the code a bit.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Since daivd did the work that force us to use readonly snapshot,
we can safely remove transaction protection from btrfs send.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We met the following oops when doing space balance:
kobject (ffff88081b590278): tried to init an initialized object, something is seriously wrong.
...
Call Trace:
[<ffffffff81937262>] dump_stack+0x49/0x5f
[<ffffffff8137d259>] kobject_init+0x89/0xa0
[<ffffffff8137d36a>] kobject_init_and_add+0x2a/0x70
[<ffffffffa009bd79>] ? clear_extent_bit+0x199/0x470 [btrfs]
[<ffffffffa005e82c>] __link_block_group+0xfc/0x120 [btrfs]
[<ffffffffa006b9db>] btrfs_make_block_group+0x24b/0x370 [btrfs]
[<ffffffffa00a899b>] __btrfs_alloc_chunk+0x54b/0x7e0 [btrfs]
[<ffffffffa00a8c6f>] btrfs_alloc_chunk+0x3f/0x50 [btrfs]
[<ffffffffa0060123>] do_chunk_alloc+0x363/0x440 [btrfs]
[<ffffffffa00633d4>] btrfs_check_data_free_space+0x104/0x310 [btrfs]
[<ffffffffa0069f4d>] btrfs_write_dirty_block_groups+0x48d/0x600 [btrfs]
[<ffffffffa007aad4>] commit_cowonly_roots+0x184/0x250 [btrfs]
...
Steps to reproduce:
# mkfs.btrfs -f <dev>
# mount -o nospace_cache <dev> <mnt>
# btrfs balance start <mnt>
# dd if=/dev/zero of=<mnt>/tmpfile bs=1M count=1
The reason of this problem is that we initialized the raid kobject when we added
a block group into a empty raid list. As we know, when we mounted a btrfs filesystem,
the raid list was empty, we would initialize the raid kobject when we added the first
block group. But if there was not data stored in the block group, the block group
would be freed when doing balance, and the raid list would be empty. And then if we
allocated a new block group and added it into the raid list, we would initialize
the raid kobject again, the oops happened.
Fix this problem by initializing the raid kobject just when mounting the fs.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reported-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>