Commit Graph

299 Commits

Author SHA1 Message Date
Andrew Murray
671db58181 arm64: Expose DC CVADP to userspace
ARMv8.5 builds upon the ARMv8.2 DC CVAP instruction by introducing a DC
CVADP instruction which cleans the data cache to the point of deep
persistence. Let's expose this support via the arm64 ELF hwcaps.

Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-04-16 16:27:56 +01:00
Andrew Murray
aaba098fe6 arm64: HWCAP: add support for AT_HWCAP2
As we will exhaust the first 32 bits of AT_HWCAP let's start
exposing AT_HWCAP2 to userspace to give us up to 64 caps.

Whilst it's possible to use the remaining 32 bits of AT_HWCAP, we
prefer to expand into AT_HWCAP2 in order to provide a consistent
view to userspace between ILP32 and LP64. However internal to the
kernel we prefer to continue to use the full space of elf_hwcap.

To reduce complexity and allow for future expansion, we now
represent hwcaps in the kernel as ordinals and use a
KERNEL_HWCAP_ prefix. This allows us to support automatic feature
based module loading for all our hwcaps.

We introduce cpu_set_feature to set hwcaps which complements the
existing cpu_have_feature helper. These helpers allow us to clean
up existing direct uses of elf_hwcap and reduce any future effort
required to move beyond 64 caps.

For convenience we also introduce cpu_{have,set}_named_feature which
makes use of the cpu_feature macro to allow providing a hwcap name
without a {KERNEL_}HWCAP_ prefix.

Signed-off-by: Andrew Murray <andrew.murray@arm.com>
[will: use const_ilog2() and tweak documentation]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-04-16 16:27:12 +01:00
Shameer Kolothum
24062fe858 perf/smmuv3: Enable HiSilicon Erratum 162001800 quirk
HiSilicon erratum 162001800 describes the limitation of
SMMUv3 PMCG implementation on HiSilicon Hip08 platforms.

On these platforms, the PMCG event counter registers
(SMMU_PMCG_EVCNTRn) are read only and as a result it
is not possible to set the initial counter period value
on event monitor start.

To work around this, the current value of the counter
is read and used for delta calculations. OEM information
from ACPI header is used to identify the affected hardware
platforms.

Signed-off-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
[will: update silicon-errata.txt and add reason string to acpi match]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-04-04 16:49:22 +01:00
Linus Torvalds
3d8dfe75ef arm64 updates for 5.1:
- Pseudo NMI support for arm64 using GICv3 interrupt priorities
 
 - uaccess macros clean-up (unsafe user accessors also merged but
   reverted, waiting for objtool support on arm64)
 
 - ptrace regsets for Pointer Authentication (ARMv8.3) key management
 
 - inX() ordering w.r.t. delay() on arm64 and riscv (acks in place by the
   riscv maintainers)
 
 - arm64/perf updates: PMU bindings converted to json-schema, unused
   variable and misleading comment removed
 
 - arm64/debug fixes to ensure checking of the triggering exception level
   and to avoid the propagation of the UNKNOWN FAR value into the si_code
   for debug signals
 
 - Workaround for Fujitsu A64FX erratum 010001
 
 - lib/raid6 ARM NEON optimisations
 
 - NR_CPUS now defaults to 256 on arm64
 
 - Minor clean-ups (documentation/comments, Kconfig warning, unused
   asm-offsets, clang warnings)
 
 - MAINTAINERS update for list information to the ARM64 ACPI entry
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlyCl0cACgkQa9axLQDI
 XvEyKxAAiogBZLbyhcy8bTUHVzVoJE0FyAkdO2wWnnaff2Ohkhy1Y/npv33IeK2q
 RknxqDIx2DUUVPJNRZGoI/WwBtTZdKaAnW4rIKG84yC1eAkFcd96WQasaZzcp1qY
 HmvbJiYXM0bh+0J7i3Wgry/QzOkrltJFJW2kp6Wd5aFE+R1WyWyxT6d+Fp0J3vlA
 bT70jlpBK6LXEOmmBS+04Ml02+8MvaGxIl8EInBHSfDLRLErj5E8n41rRHKUiSWz
 maWI+kVoLYwOE68xiZlDftUBEeQpUSWgg2nxeK+640QSl1wJmVcRcY9nm6TZeMG2
 AiZTR9a7cP5rrdSN5suUmb7d4AMMVlVMisGDlwb+9oCxeTRDzg0uwACaVgHfPqQr
 UeBdHbL9nStN7uBH23H8L9mKk+tqpFmk0sgzdrKejOwysAiqWV8aazb/Na3qnVRl
 J1B5opxMnGOsjXmHvtG/tiZl281Uwz5ZmzfLmIY3gUZgUgdA3511Egp0ry5y1dzJ
 SkYC4Hmzb2ybQvXGIDDa3OzCwXXiqyqKsO+O8Egg1k4OIwbp3w+NHE7gKeA+dMgD
 gjN7zEalCUi46Q28xiCPEb+88BpQ18czIWGQLb9mAnmYeZPjqqenXKXuRHr4lgVe
 jPURJ/vqvFEglZJN1RDuQHKzHEcm5f2XE566sMZYdSoeiUCb0QM=
 =2U56
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Catalin Marinas:

 - Pseudo NMI support for arm64 using GICv3 interrupt priorities

 - uaccess macros clean-up (unsafe user accessors also merged but
   reverted, waiting for objtool support on arm64)

 - ptrace regsets for Pointer Authentication (ARMv8.3) key management

 - inX() ordering w.r.t. delay() on arm64 and riscv (acks in place by
   the riscv maintainers)

 - arm64/perf updates: PMU bindings converted to json-schema, unused
   variable and misleading comment removed

 - arm64/debug fixes to ensure checking of the triggering exception
   level and to avoid the propagation of the UNKNOWN FAR value into the
   si_code for debug signals

 - Workaround for Fujitsu A64FX erratum 010001

 - lib/raid6 ARM NEON optimisations

 - NR_CPUS now defaults to 256 on arm64

 - Minor clean-ups (documentation/comments, Kconfig warning, unused
   asm-offsets, clang warnings)

 - MAINTAINERS update for list information to the ARM64 ACPI entry

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (54 commits)
  arm64: mmu: drop paging_init comments
  arm64: debug: Ensure debug handlers check triggering exception level
  arm64: debug: Don't propagate UNKNOWN FAR into si_code for debug signals
  Revert "arm64: uaccess: Implement unsafe accessors"
  arm64: avoid clang warning about self-assignment
  arm64: Kconfig.platforms: fix warning unmet direct dependencies
  lib/raid6: arm: optimize away a mask operation in NEON recovery routine
  lib/raid6: use vdupq_n_u8 to avoid endianness warnings
  arm64: io: Hook up __io_par() for inX() ordering
  riscv: io: Update __io_[p]ar() macros to take an argument
  asm-generic/io: Pass result of I/O accessor to __io_[p]ar()
  arm64: Add workaround for Fujitsu A64FX erratum 010001
  arm64: Rename get_thread_info()
  arm64: Remove documentation about TIF_USEDFPU
  arm64: irqflags: Fix clang build warnings
  arm64: Enable the support of pseudo-NMIs
  arm64: Skip irqflags tracing for NMI in IRQs disabled context
  arm64: Skip preemption when exiting an NMI
  arm64: Handle serror in NMI context
  irqchip/gic-v3: Allow interrupts to be set as pseudo-NMI
  ...
2019-03-10 10:17:23 -07:00
Zhang Lei
3e32131abc arm64: Add workaround for Fujitsu A64FX erratum 010001
On the Fujitsu-A64FX cores ver(1.0, 1.1), memory access may cause
an undefined fault (Data abort, DFSC=0b111111). This fault occurs under
a specific hardware condition when a load/store instruction performs an
address translation. Any load/store instruction, except non-fault access
including Armv8 and SVE might cause this undefined fault.

The TCR_ELx.NFD1 bit is used by the kernel when CONFIG_RANDOMIZE_BASE
is enabled to mitigate timing attacks against KASLR where the kernel
address space could be probed using the FFR and suppressed fault on
SVE loads.

Since this erratum causes spurious exceptions, which may corrupt
the exception registers, we clear the TCR_ELx.NFDx=1 bits when
booting on an affected CPU.

Signed-off-by: Zhang Lei <zhang.lei@jp.fujitsu.com>
[Generated MIDR value/mask for __cpu_setup(), removed spurious-fault handler
 and always disabled the NFDx bits on affected CPUs]
Signed-off-by: James Morse <james.morse@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-02-28 16:24:25 +00:00
Samuel Holland
c950ca8c35 clocksource/drivers/arch_timer: Workaround for Allwinner A64 timer instability
The Allwinner A64 SoC is known[1] to have an unstable architectural
timer, which manifests itself most obviously in the time jumping forward
a multiple of 95 years[2][3]. This coincides with 2^56 cycles at a
timer frequency of 24 MHz, implying that the time went slightly backward
(and this was interpreted by the kernel as it jumping forward and
wrapping around past the epoch).

Investigation revealed instability in the low bits of CNTVCT at the
point a high bit rolls over. This leads to power-of-two cycle forward
and backward jumps. (Testing shows that forward jumps are about twice as
likely as backward jumps.) Since the counter value returns to normal
after an indeterminate read, each "jump" really consists of both a
forward and backward jump from the software perspective.

Unless the kernel is trapping CNTVCT reads, a userspace program is able
to read the register in a loop faster than it changes. A test program
running on all 4 CPU cores that reported jumps larger than 100 ms was
run for 13.6 hours and reported the following:

 Count | Event
-------+---------------------------
  9940 | jumped backward      699ms
   268 | jumped backward     1398ms
     1 | jumped backward     2097ms
 16020 | jumped forward       175ms
  6443 | jumped forward       699ms
  2976 | jumped forward      1398ms
     9 | jumped forward    356516ms
     9 | jumped forward    357215ms
     4 | jumped forward    714430ms
     1 | jumped forward   3578440ms

This works out to a jump larger than 100 ms about every 5.5 seconds on
each CPU core.

The largest jump (almost an hour!) was the following sequence of reads:
    0x0000007fffffffff → 0x00000093feffffff → 0x0000008000000000

Note that the middle bits don't necessarily all read as all zeroes or
all ones during the anomalous behavior; however the low 10 bits checked
by the function in this patch have never been observed with any other
value.

Also note that smaller jumps are much more common, with backward jumps
of 2048 (2^11) cycles observed over 400 times per second on each core.
(Of course, this is partially explained by lower bits rolling over more
frequently.) Any one of these could have caused the 95 year time skip.

Similar anomalies were observed while reading CNTPCT (after patching the
kernel to allow reads from userspace). However, the CNTPCT jumps are
much less frequent, and only small jumps were observed. The same program
as before (except now reading CNTPCT) observed after 72 hours:

 Count | Event
-------+---------------------------
    17 | jumped backward      699ms
    52 | jumped forward       175ms
  2831 | jumped forward       699ms
     5 | jumped forward      1398ms

Further investigation showed that the instability in CNTPCT/CNTVCT also
affected the respective timer's TVAL register. The following values were
observed immediately after writing CNVT_TVAL to 0x10000000:

 CNTVCT             | CNTV_TVAL  | CNTV_CVAL          | CNTV_TVAL Error
--------------------+------------+--------------------+-----------------
 0x000000d4a2d8bfff | 0x10003fff | 0x000000d4b2d8bfff | +0x00004000
 0x000000d4a2d94000 | 0x0fffffff | 0x000000d4b2d97fff | -0x00004000
 0x000000d4a2d97fff | 0x10003fff | 0x000000d4b2d97fff | +0x00004000
 0x000000d4a2d9c000 | 0x0fffffff | 0x000000d4b2d9ffff | -0x00004000

The pattern of errors in CNTV_TVAL seemed to depend on exactly which
value was written to it. For example, after writing 0x10101010:

 CNTVCT             | CNTV_TVAL  | CNTV_CVAL          | CNTV_TVAL Error
--------------------+------------+--------------------+-----------------
 0x000001ac3effffff | 0x1110100f | 0x000001ac4f10100f | +0x1000000
 0x000001ac40000000 | 0x1010100f | 0x000001ac5110100f | -0x1000000
 0x000001ac58ffffff | 0x1110100f | 0x000001ac6910100f | +0x1000000
 0x000001ac66000000 | 0x1010100f | 0x000001ac7710100f | -0x1000000
 0x000001ac6affffff | 0x1110100f | 0x000001ac7b10100f | +0x1000000
 0x000001ac6e000000 | 0x1010100f | 0x000001ac7f10100f | -0x1000000

I was also twice able to reproduce the issue covered by Allwinner's
workaround[4], that writing to TVAL sometimes fails, and both CVAL and
TVAL are left with entirely bogus values. One was the following values:

 CNTVCT             | CNTV_TVAL  | CNTV_CVAL
--------------------+------------+--------------------------------------
 0x000000d4a2d6014c | 0x8fbd5721 | 0x000000d132935fff (615s in the past)
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>

========================================================================

Because the CPU can read the CNTPCT/CNTVCT registers faster than they
change, performing two reads of the register and comparing the high bits
(like other workarounds) is not a workable solution. And because the
timer can jump both forward and backward, no pair of reads can
distinguish a good value from a bad one. The only way to guarantee a
good value from consecutive reads would be to read _three_ times, and
take the middle value only if the three values are 1) each unique and
2) increasing. This takes at minimum 3 counter cycles (125 ns), or more
if an anomaly is detected.

However, since there is a distinct pattern to the bad values, we can
optimize the common case (1022/1024 of the time) to a single read by
simply ignoring values that match the error pattern. This still takes no
more than 3 cycles in the worst case, and requires much less code. As an
additional safety check, we still limit the loop iteration to the number
of max-frequency (1.2 GHz) CPU cycles in three 24 MHz counter periods.

For the TVAL registers, the simple solution is to not use them. Instead,
read or write the CVAL and calculate the TVAL value in software.

Although the manufacturer is aware of at least part of the erratum[4],
there is no official name for it. For now, use the kernel-internal name
"UNKNOWN1".

[1]: https://github.com/armbian/build/commit/a08cd6fe7ae9
[2]: https://forum.armbian.com/topic/3458-a64-datetime-clock-issue/
[3]: https://irclog.whitequark.org/linux-sunxi/2018-01-26
[4]: https://github.com/Allwinner-Homlet/H6-BSP4.9-linux/blob/master/drivers/clocksource/arm_arch_timer.c#L272

Acked-by: Maxime Ripard <maxime.ripard@bootlin.com>
Tested-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Samuel Holland <samuel@sholland.org>
Cc: stable@vger.kernel.org
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2019-02-23 12:13:45 +01:00
Julien Thierry
d98d0a990c irqchip/gic-v3: Detect if GIC can support pseudo-NMIs
The values non secure EL1 needs to use for PMR and RPR registers depends on
the value of SCR_EL3.FIQ.

The values non secure EL1 sees from the distributor and redistributor
depend on whether security is enabled for the GIC or not.

To avoid having to deal with two sets of values for PMR
masking/unmasking, only enable pseudo-NMIs when GIC has non-secure view
of priorities.

Also, add firmware requirements related to SCR_EL3.

Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Jason Cooper <jason@lakedaemon.net>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-02-06 10:05:21 +00:00
Kristina Martsenko
d0a060be57 arm64: add ptrace regsets for ptrauth key management
Add two new ptrace regsets, which can be used to request and change the
pointer authentication keys of a thread. NT_ARM_PACA_KEYS gives access
to the instruction/data address keys, and NT_ARM_PACG_KEYS to the
generic authentication key. The keys are also part of the core dump file
of the process.

The regsets are only exposed if the kernel is compiled with
CONFIG_CHECKPOINT_RESTORE=y, as the only intended use case is
checkpointing and restoring processes that are using pointer
authentication. (This can be changed later if there are other use
cases.)

Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-02-01 13:56:58 +00:00
Linus Torvalds
5694cecdb0 arm64 festive updates for 4.21
In the end, we ended up with quite a lot more than I expected:
 
 - Support for ARMv8.3 Pointer Authentication in userspace (CRIU and
   kernel-side support to come later)
 
 - Support for per-thread stack canaries, pending an update to GCC that
   is currently undergoing review
 
 - Support for kexec_file_load(), which permits secure boot of a kexec
   payload but also happens to improve the performance of kexec
   dramatically because we can avoid the sucky purgatory code from
   userspace. Kdump will come later (requires updates to libfdt).
 
 - Optimisation of our dynamic CPU feature framework, so that all
   detected features are enabled via a single stop_machine() invocation
 
 - KPTI whitelisting of Cortex-A CPUs unaffected by Meltdown, so that
   they can benefit from global TLB entries when KASLR is not in use
 
 - 52-bit virtual addressing for userspace (kernel remains 48-bit)
 
 - Patch in LSE atomics for per-cpu atomic operations
 
 - Custom preempt.h implementation to avoid unconditional calls to
   preempt_schedule() from preempt_enable()
 
 - Support for the new 'SB' Speculation Barrier instruction
 
 - Vectorised implementation of XOR checksumming and CRC32 optimisations
 
 - Workaround for Cortex-A76 erratum #1165522
 
 - Improved compatibility with Clang/LLD
 
 - Support for TX2 system PMUS for profiling the L3 cache and DMC
 
 - Reflect read-only permissions in the linear map by default
 
 - Ensure MMIO reads are ordered with subsequent calls to Xdelay()
 
 - Initial support for memory hotplug
 
 - Tweak the threshold when we invalidate the TLB by-ASID, so that
   mremap() performance is improved for ranges spanning multiple PMDs.
 
 - Minor refactoring and cleanups
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABCgAGBQJcE4TmAAoJELescNyEwWM0Nr0H/iaU7/wQSzHyNXtZoImyKTul
 Blu2ga4/EqUrTU7AVVfmkl/3NBILWlgQVpY6tH6EfXQuvnxqD7CizbHyLdyO+z0S
 B5PsFUH2GLMNAi48AUNqGqkgb2knFbg+T+9IimijDBkKg1G/KhQnRg6bXX32mLJv
 Une8oshUPBVJMsHN1AcQknzKariuoE3u0SgJ+eOZ9yA2ZwKxP4yy1SkDt3xQrtI0
 lojeRjxcyjTP1oGRNZC+BWUtGOT35p7y6cGTnBd/4TlqBGz5wVAJUcdoxnZ6JYVR
 O8+ob9zU+4I0+SKt80s7pTLqQiL9rxkKZ5joWK1pr1g9e0s5N5yoETXKFHgJYP8=
 =sYdt
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 festive updates from Will Deacon:
 "In the end, we ended up with quite a lot more than I expected:

   - Support for ARMv8.3 Pointer Authentication in userspace (CRIU and
     kernel-side support to come later)

   - Support for per-thread stack canaries, pending an update to GCC
     that is currently undergoing review

   - Support for kexec_file_load(), which permits secure boot of a kexec
     payload but also happens to improve the performance of kexec
     dramatically because we can avoid the sucky purgatory code from
     userspace. Kdump will come later (requires updates to libfdt).

   - Optimisation of our dynamic CPU feature framework, so that all
     detected features are enabled via a single stop_machine()
     invocation

   - KPTI whitelisting of Cortex-A CPUs unaffected by Meltdown, so that
     they can benefit from global TLB entries when KASLR is not in use

   - 52-bit virtual addressing for userspace (kernel remains 48-bit)

   - Patch in LSE atomics for per-cpu atomic operations

   - Custom preempt.h implementation to avoid unconditional calls to
     preempt_schedule() from preempt_enable()

   - Support for the new 'SB' Speculation Barrier instruction

   - Vectorised implementation of XOR checksumming and CRC32
     optimisations

   - Workaround for Cortex-A76 erratum #1165522

   - Improved compatibility with Clang/LLD

   - Support for TX2 system PMUS for profiling the L3 cache and DMC

   - Reflect read-only permissions in the linear map by default

   - Ensure MMIO reads are ordered with subsequent calls to Xdelay()

   - Initial support for memory hotplug

   - Tweak the threshold when we invalidate the TLB by-ASID, so that
     mremap() performance is improved for ranges spanning multiple PMDs.

   - Minor refactoring and cleanups"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (125 commits)
  arm64: kaslr: print PHYS_OFFSET in dump_kernel_offset()
  arm64: sysreg: Use _BITUL() when defining register bits
  arm64: cpufeature: Rework ptr auth hwcaps using multi_entry_cap_matches
  arm64: cpufeature: Reduce number of pointer auth CPU caps from 6 to 4
  arm64: docs: document pointer authentication
  arm64: ptr auth: Move per-thread keys from thread_info to thread_struct
  arm64: enable pointer authentication
  arm64: add prctl control for resetting ptrauth keys
  arm64: perf: strip PAC when unwinding userspace
  arm64: expose user PAC bit positions via ptrace
  arm64: add basic pointer authentication support
  arm64/cpufeature: detect pointer authentication
  arm64: Don't trap host pointer auth use to EL2
  arm64/kvm: hide ptrauth from guests
  arm64/kvm: consistently handle host HCR_EL2 flags
  arm64: add pointer authentication register bits
  arm64: add comments about EC exception levels
  arm64: perf: Treat EXCLUDE_EL* bit definitions as unsigned
  arm64: kpti: Whitelist Cortex-A CPUs that don't implement the CSV3 field
  arm64: enable per-task stack canaries
  ...
2018-12-25 17:41:56 -08:00
Mark Rutland
fbedc599e9 arm64: docs: document pointer authentication
Now that we've added code to support pointer authentication, add some
documentation so that people can figure out if/how to use it.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Reviewed-by: Ramana Radhakrishnan <ramana.radhakrishnan@arm.com>
Cc: Andrew Jones <drjones@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ramana Radhakrishnan <ramana.radhakrishnan@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-13 16:42:47 +00:00
Marc Zyngier
a457b0f7f5 arm64: Add configuration/documentation for Cortex-A76 erratum 1165522
Now that the infrastructure to handle erratum 1165522 is in place,
let's make it a selectable option and add the required documentation.

Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-10 12:21:06 +00:00
Catalin Marinas
ce8c80c536 arm64: Add workaround for Cortex-A76 erratum 1286807
On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual address
for a cacheable mapping of a location is being accessed by a core while
another core is remapping the virtual address to a new physical page
using the recommended break-before-make sequence, then under very rare
circumstances TLBI+DSB completes before a read using the translation
being invalidated has been observed by other observers. The workaround
repeats the TLBI+DSB operation and is shared with the Qualcomm Falkor
erratum 1009

Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-11-29 16:45:45 +00:00
Punit Agrawal
0c09d48564 Documentation/arm64: HugeTLB page implementation
Arm v8 architecture supports multiple page sizes - 4k, 16k and
64k. Based on the active page size, the Linux port supports
corresponding hugepage sizes at PMD and PUD(4k only) levels.

In addition, the architecture also supports caching larger sized
ranges (composed of multiple entries) at the PTE and PMD level in the
TLBs using the contiguous bit. The Linux port makes use of this
architectural support to enable additional hugepage sizes.

Describe the two different types of hugepages supported by the arm64
kernel and the hugepage sizes enabled by each.

Acked-by: Randy Dunlap <rdunlap@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-10-10 18:08:36 +01:00
Marc Zyngier
e03a4e5bb7 arm64: Add silicon-errata.txt entry for ARM erratum 1188873
Document that we actually work around ARM erratum 1188873

Fixes: 95b861a4a6 ("arm64: arch_timer: Add workaround for ARM erratum 1188873")
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-10-10 17:53:29 +01:00
Will Deacon
ee91176120 arm64: docs: Document SSBS HWCAP
We advertise the MRS/MSR instructions for toggling SSBS at EL0 using an
HWCAP, so document it along with the others.

Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-10-01 16:28:17 +01:00
Giacomo Travaglini
4bfbe5eee3 arm64: docs: Fix typos in ELF hwcaps
Fix some typos in our hwcap documentation, where we refer to the wrong
ID register for some of the capabilities.

Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
[will: fix amusing binary constants]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-10-01 16:28:15 +01:00
Julien Grall
afce0cc9ad Documentation/arm64/sve: Couple of improvements and typos
- Fix mismatch between SVE registers (Z) and FPSIMD register (V)
  - Don't prefix the path for [3] with Linux to stay consistent with
    [1] and [2].

Signed-off-by: Julien Grall <julien.grall@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-08-29 11:33:19 +01:00
Linus Torvalds
d8312a3f61 ARM:
- VHE optimizations
 - EL2 address space randomization
 - speculative execution mitigations ("variant 3a", aka execution past invalid
 privilege register access)
 - bugfixes and cleanups
 
 PPC:
 - improvements for the radix page fault handler for HV KVM on POWER9
 
 s390:
 - more kvm stat counters
 - virtio gpu plumbing
 - documentation
 - facilities improvements
 
 x86:
 - support for VMware magic I/O port and pseudo-PMCs
 - AMD pause loop exiting
 - support for AMD core performance extensions
 - support for synchronous register access
 - expose nVMX capabilities to userspace
 - support for Hyper-V signaling via eventfd
 - use Enlightened VMCS when running on Hyper-V
 - allow userspace to disable MWAIT/HLT/PAUSE vmexits
 - usual roundup of optimizations and nested virtualization bugfixes
 
 Generic:
 - API selftest infrastructure (though the only tests are for x86 as of now)
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJay19UAAoJEL/70l94x66DGKYIAIu9PTHAEwaX0et15fPW5y2x
 rrtS355lSAmMrPJ1nePRQ+rProD/1B0Kizj3/9O+B9OTKKRsorRYNa4CSu9neO2k
 N3rdE46M1wHAPwuJPcYvh3iBVXtgbMayk1EK5aVoSXaMXEHh+PWZextkl+F+G853
 kC27yDy30jj9pStwnEFSBszO9ua/URdKNKBATNx8WUP6d9U/dlfm5xv3Dc3WtKt2
 UMGmog2wh0i7ecXo7hRkMK4R7OYP3ZxAexq5aa9BOPuFp+ZdzC/MVpN+jsjq2J/M
 Zq6RNyA2HFyQeP0E9QgFsYS2BNOPeLZnT5Jg1z4jyiD32lAZ/iC51zwm4oNKcDM=
 =bPlD
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "ARM:
   - VHE optimizations

   - EL2 address space randomization

   - speculative execution mitigations ("variant 3a", aka execution past
     invalid privilege register access)

   - bugfixes and cleanups

  PPC:
   - improvements for the radix page fault handler for HV KVM on POWER9

  s390:
   - more kvm stat counters

   - virtio gpu plumbing

   - documentation

   - facilities improvements

  x86:
   - support for VMware magic I/O port and pseudo-PMCs

   - AMD pause loop exiting

   - support for AMD core performance extensions

   - support for synchronous register access

   - expose nVMX capabilities to userspace

   - support for Hyper-V signaling via eventfd

   - use Enlightened VMCS when running on Hyper-V

   - allow userspace to disable MWAIT/HLT/PAUSE vmexits

   - usual roundup of optimizations and nested virtualization bugfixes

  Generic:
   - API selftest infrastructure (though the only tests are for x86 as
     of now)"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (174 commits)
  kvm: x86: fix a prototype warning
  kvm: selftests: add sync_regs_test
  kvm: selftests: add API testing infrastructure
  kvm: x86: fix a compile warning
  KVM: X86: Add Force Emulation Prefix for "emulate the next instruction"
  KVM: X86: Introduce handle_ud()
  KVM: vmx: unify adjacent #ifdefs
  x86: kvm: hide the unused 'cpu' variable
  KVM: VMX: remove bogus WARN_ON in handle_ept_misconfig
  Revert "KVM: X86: Fix SMRAM accessing even if VM is shutdown"
  kvm: Add emulation for movups/movupd
  KVM: VMX: raise internal error for exception during invalid protected mode state
  KVM: nVMX: Optimization: Dont set KVM_REQ_EVENT when VMExit with nested_run_pending
  KVM: nVMX: Require immediate-exit when event reinjected to L2 and L1 event pending
  KVM: x86: Fix misleading comments on handling pending exceptions
  KVM: x86: Rename interrupt.pending to interrupt.injected
  KVM: VMX: No need to clear pending NMI/interrupt on inject realmode interrupt
  x86/kvm: use Enlightened VMCS when running on Hyper-V
  x86/hyper-v: detect nested features
  x86/hyper-v: define struct hv_enlightened_vmcs and clean field bits
  ...
2018-04-09 11:42:31 -07:00
Suzuki K Poulose
ece1397cbc arm64: Add work around for Arm Cortex-A55 Erratum 1024718
Some variants of the Arm Cortex-55 cores (r0p0, r0p1, r1p0) suffer
from an erratum 1024718, which causes incorrect updates when DBM/AP
bits in a page table entry is modified without a break-before-make
sequence. The work around is to skip enabling the hardware DBM feature
on the affected cores. The hardware Access Flag management features
is not affected. There are some other cores suffering from this
errata, which could be added to the midr_list to trigger the work
around.

Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: ckadabi@codeaurora.org
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:44 +01:00
Suzuki K Poulose
7206dc93a5 arm64: Expose Arm v8.4 features
Expose the new features introduced by Arm v8.4 extensions to
Arm v8-A profile.

These include :

 1) Data indpendent timing of instructions. (DIT, exposed as HWCAP_DIT)
 2) Unaligned atomic instructions and Single-copy atomicity of loads
    and stores. (AT, expose as HWCAP_USCAT)
 3) LDAPR and STLR instructions with immediate offsets (extension to
    LRCPC, exposed as HWCAP_ILRCPC)
 4) Flag manipulation instructions (TS, exposed as HWCAP_FLAGM).

Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-19 18:14:27 +00:00
Suzuki K Poulose
847ecd3fa3 arm64: Documentation: cpu-feature-registers: Remove RES0 fields
Remove the invisible RES0 field entries from the table, listing
fields in CPU ID feature registers, as :
 1) We are only interested in the user visible fields.
 2) The field description may not be up-to-date, as the
    field could be assigned a new meaning.
 3) We already explain the rules of the fields which are not
    visible.

Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-19 18:14:26 +00:00
Marc Zyngier
dee39247dc arm64: KVM: Allow mapping of vectors outside of the RAM region
We're now ready to map our vectors in weird and wonderful locations.
On enabling ARM64_HARDEN_EL2_VECTORS, a vector slot gets allocated
if this hasn't been already done via ARM64_HARDEN_BRANCH_PREDICTOR
and gets mapped outside of the normal RAM region, next to the
idmap.

That way, being able to obtain VBAR_EL2 doesn't reveal the mapping
of the rest of the hypervisor code.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:06:46 +00:00
Marc Zyngier
6bb934af1f arm64: Update the KVM memory map documentation
Update the documentation to reflect the new tricks we play on the
EL2 mappings...

Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19 13:05:31 +00:00
Linus Torvalds
0aebc6a440 arm64 updates for 4.16:
- Security mitigations:
   - variant 2: invalidating the branch predictor with a call to secure firmware
   - variant 3: implementing KPTI for arm64
 
 - 52-bit physical address support for arm64 (ARMv8.2)
 
 - arm64 support for RAS (firmware first only) and SDEI (software
   delegated exception interface; allows firmware to inject a RAS error
   into the OS)
 
 - Perf support for the ARM DynamIQ Shared Unit PMU
 
 - CPUID and HWCAP bits updated for new floating point multiplication
   instructions in ARMv8.4
 
 - Removing some virtual memory layout printks during boot
 
 - Fix initial page table creation to cope with larger than 32M kernel
   images when 16K pages are enabled
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlpwxDMACgkQa9axLQDI
 XvF55BAAniMpxPXnYNfv6l7/4O8eKo1lJIaG1wbej4JRZ/rT3K4Z3OBXW1dKHO8d
 /PTbVmZ90IqIGROkoDrE+6xyjjn9yK3uuW4ytN2zQkBa8VFaHAnHlX+zKQcuwy9f
 yxwiHk+C7vK5JR7mpXTazjRknsUv1MPtlTt7DQrSdq0KRDJVDNFC+grmbew2rz0X
 cjQDqZqgzuFyrKxdiQVjDmc3zH9NsNBhDo0hlGHf2jK6bGJsAPtI8M2JcLrK8ITG
 Ye/dD7BJp1mWD8ff0BPaMxu24qfAMNLH8f2dpTa986/H78irVz7i/t5HG0/1+5Jh
 EE4OFRTKZ59Qgyo1zWcaJvdp8YjiaX/L4PWJg8CxM5OhP9dIac9ydcFQfWzpKpUs
 xyZfmK6XliGFReAkVOOf5tEqFUDhMtsqhzPYmbmU1lp61wmSYIZ8CTenpWWCJSRO
 NOGyG1X2uFBvP69+iPNlfTGz1r7tg1URY5iO8fUEIhY8LrgyORkiqw4OvPEgnMXP
 Ngy+dXhyvnps2AAWbSX0O4puRlTgEYLT5KaMLzH/+gWsXATT0rzUCD/aOwUQq/Y7
 SWXZHkb3jpmOZZnzZsLL2MNzEIPCFBwSUE9fSv4dA9d/N6tUmlmZALJjHkfzCDpj
 +mPsSmAMTj72kUYzm0b5GCtOu/iQ2kDWOZjOM1m4+v/B+f7JoEE=
 =iEjP
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Catalin Marinas:
 "The main theme of this pull request is security covering variants 2
  and 3 for arm64. I expect to send additional patches next week
  covering an improved firmware interface (requires firmware changes)
  for variant 2 and way for KPTI to be disabled on unaffected CPUs
  (Cavium's ThunderX doesn't work properly with KPTI enabled because of
  a hardware erratum).

  Summary:

   - Security mitigations:
      - variant 2: invalidate the branch predictor with a call to
        secure firmware
      - variant 3: implement KPTI for arm64

   - 52-bit physical address support for arm64 (ARMv8.2)

   - arm64 support for RAS (firmware first only) and SDEI (software
     delegated exception interface; allows firmware to inject a RAS
     error into the OS)

   - perf support for the ARM DynamIQ Shared Unit PMU

   - CPUID and HWCAP bits updated for new floating point multiplication
     instructions in ARMv8.4

   - remove some virtual memory layout printks during boot

   - fix initial page table creation to cope with larger than 32M kernel
     images when 16K pages are enabled"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (104 commits)
  arm64: Fix TTBR + PAN + 52-bit PA logic in cpu_do_switch_mm
  arm64: Turn on KPTI only on CPUs that need it
  arm64: Branch predictor hardening for Cavium ThunderX2
  arm64: Run enable method for errata work arounds on late CPUs
  arm64: Move BP hardening to check_and_switch_context
  arm64: mm: ignore memory above supported physical address size
  arm64: kpti: Fix the interaction between ASID switching and software PAN
  KVM: arm64: Emulate RAS error registers and set HCR_EL2's TERR & TEA
  KVM: arm64: Handle RAS SErrors from EL2 on guest exit
  KVM: arm64: Handle RAS SErrors from EL1 on guest exit
  KVM: arm64: Save ESR_EL2 on guest SError
  KVM: arm64: Save/Restore guest DISR_EL1
  KVM: arm64: Set an impdef ESR for Virtual-SError using VSESR_EL2.
  KVM: arm/arm64: mask/unmask daif around VHE guests
  arm64: kernel: Prepare for a DISR user
  arm64: Unconditionally enable IESB on exception entry/return for firmware-first
  arm64: kernel: Survive corrected RAS errors notified by SError
  arm64: cpufeature: Detect CPU RAS Extentions
  arm64: sysreg: Move to use definitions for all the SCTLR bits
  arm64: cpufeature: __this_cpu_has_cap() shouldn't stop early
  ...
2018-01-30 13:57:43 -08:00
Stephen Boyd
bb48711800 arm64: cpu_errata: Add Kryo to Falkor 1003 errata
The Kryo CPUs are also affected by the Falkor 1003 errata, so
we need to do the same workaround on Kryo CPUs. The MIDR is
slightly more complicated here, where the PART number is not
always the same when looking at all the bits from 15 to 4. Drop
the lower 8 bits and just look at the top 4 to see if it's '2'
and then consider those as Kryo CPUs. This covers all the
combinations without having to list them all out.

Fixes: 38fd94b027 ("arm64: Work around Falkor erratum 1003")
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-14 18:49:52 +00:00
Dongjiu Geng
3b3b681097 arm64: v8.4: Support for new floating point multiplication instructions
ARM v8.4 extensions add new neon instructions for performing a
multiplication of each FP16 element of one vector with the corresponding
FP16 element of a second vector, and to add or subtract this without an
intermediate rounding to the corresponding FP32 element in a third vector.

This patch detects this feature and let the userspace know about it via a
HWCAP bit and MRS emulation.

Cc: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Dongjiu Geng <gengdongjiu@huawei.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-05 11:29:48 +00:00
Shanker Donthineni
932b50c7c1 arm64: Add software workaround for Falkor erratum 1041
The ARM architecture defines the memory locations that are permitted
to be accessed as the result of a speculative instruction fetch from
an exception level for which all stages of translation are disabled.
Specifically, the core is permitted to speculatively fetch from the
4KB region containing the current program counter 4K and next 4K.

When translation is changed from enabled to disabled for the running
exception level (SCTLR_ELn[M] changed from a value of 1 to 0), the
Falkor core may errantly speculatively access memory locations outside
of the 4KB region permitted by the architecture. The errant memory
access may lead to one of the following unexpected behaviors.

1) A System Error Interrupt (SEI) being raised by the Falkor core due
   to the errant memory access attempting to access a region of memory
   that is protected by a slave-side memory protection unit.
2) Unpredictable device behavior due to a speculative read from device
   memory. This behavior may only occur if the instruction cache is
   disabled prior to or coincident with translation being changed from
   enabled to disabled.

The conditions leading to this erratum will not occur when either of the
following occur:
 1) A higher exception level disables translation of a lower exception level
   (e.g. EL2 changing SCTLR_EL1[M] from a value of 1 to 0).
 2) An exception level disabling its stage-1 translation if its stage-2
    translation is enabled (e.g. EL1 changing SCTLR_EL1[M] from a value of 1
    to 0 when HCR_EL2[VM] has a value of 1).

To avoid the errant behavior, software must execute an ISB immediately
prior to executing the MSR that will change SCTLR_ELn[M] from 1 to 0.

Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-12-12 11:45:19 +00:00
Linus Torvalds
c9b012e5f4 arm64 updates for 4.15
Plenty of acronym soup here:
 
 - Initial support for the Scalable Vector Extension (SVE)
 - Improved handling for SError interrupts (required to handle RAS events)
 - Enable GCC support for 128-bit integer types
 - Remove kernel text addresses from backtraces and register dumps
 - Use of WFE to implement long delay()s
 - ACPI IORT updates from Lorenzo Pieralisi
 - Perf PMU driver for the Statistical Profiling Extension (SPE)
 - Perf PMU driver for Hisilicon's system PMUs
 - Misc cleanups and non-critical fixes
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABCgAGBQJaCcLqAAoJELescNyEwWM0JREH/2FbmD/khGzEtP8LW+o9D8iV
 TBM02uWQxS1bbO1pV2vb+512YQO+iWfeQwJH9Jv2FZcrMvFv7uGRnYgAnJuXNGrl
 W+LL6OhN22A24LSawC437RU3Xe7GqrtONIY/yLeJBPablfcDGzPK1eHRA0pUzcyX
 VlyDruSHWX44VGBPV6JRd3x0vxpV8syeKOjbRvopRfn3Nwkbd76V3YSfEgwoTG5W
 ET1sOnXLmHHdeifn/l1Am5FX1FYstpcd7usUTJ4Oto8y7e09tw3bGJCD0aMJ3vow
 v1pCUWohEw7fHqoPc9rTrc1QEnkdML4vjJvMPUzwyTfPrN+7uEuMIEeJierW+qE=
 =0qrg
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Will Deacon:
 "The big highlight is support for the Scalable Vector Extension (SVE)
  which required extensive ABI work to ensure we don't break existing
  applications by blowing away their signal stack with the rather large
  new vector context (<= 2 kbit per vector register). There's further
  work to be done optimising things like exception return, but the ABI
  is solid now.

  Much of the line count comes from some new PMU drivers we have, but
  they're pretty self-contained and I suspect we'll have more of them in
  future.

  Plenty of acronym soup here:

   - initial support for the Scalable Vector Extension (SVE)

   - improved handling for SError interrupts (required to handle RAS
     events)

   - enable GCC support for 128-bit integer types

   - remove kernel text addresses from backtraces and register dumps

   - use of WFE to implement long delay()s

   - ACPI IORT updates from Lorenzo Pieralisi

   - perf PMU driver for the Statistical Profiling Extension (SPE)

   - perf PMU driver for Hisilicon's system PMUs

   - misc cleanups and non-critical fixes"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (97 commits)
  arm64: Make ARMV8_DEPRECATED depend on SYSCTL
  arm64: Implement __lshrti3 library function
  arm64: support __int128 on gcc 5+
  arm64/sve: Add documentation
  arm64/sve: Detect SVE and activate runtime support
  arm64/sve: KVM: Hide SVE from CPU features exposed to guests
  arm64/sve: KVM: Treat guest SVE use as undefined instruction execution
  arm64/sve: KVM: Prevent guests from using SVE
  arm64/sve: Add sysctl to set the default vector length for new processes
  arm64/sve: Add prctl controls for userspace vector length management
  arm64/sve: ptrace and ELF coredump support
  arm64/sve: Preserve SVE registers around EFI runtime service calls
  arm64/sve: Preserve SVE registers around kernel-mode NEON use
  arm64/sve: Probe SVE capabilities and usable vector lengths
  arm64: cpufeature: Move sys_caps_initialised declarations
  arm64/sve: Backend logic for setting the vector length
  arm64/sve: Signal handling support
  arm64/sve: Support vector length resetting for new processes
  arm64/sve: Core task context handling
  arm64/sve: Low-level CPU setup
  ...
2017-11-15 10:56:56 -08:00
Dave Martin
ce6990813f arm64/sve: Add documentation
This patch adds basic documentation of the user/kernel interface
provided by the for SVE.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Alan Hayward <alan.hayward@arm.com>
Cc: Alex Bennée <alex.bennee@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Szabolcs Nagy <szabolcs.nagy@arm.com>
Cc: linux-api@vger.kernel.org
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-11-03 15:24:21 +00:00
Dave Martin
43994d824e arm64/sve: Detect SVE and activate runtime support
This patch enables detection of hardware SVE support via the
cpufeatures framework, and reports its presence to the kernel and
userspace via the new ARM64_SVE cpucap and HWCAP_SVE hwcap
respectively.

Userspace can also detect SVE using ID_AA64PFR0_EL1, using the
cpufeatures MRS emulation.

When running on hardware that supports SVE, this enables runtime
kernel support for SVE, and allows user tasks to execute SVE
instructions and make of the of the SVE-specific user/kernel
interface extensions implemented by this series.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-11-03 15:24:21 +00:00
Marc Zyngier
5c9a882e94 irqchip/gic-v3-its: Workaround HiSilicon Hip07 redistributor addressing
The ITSes on the Hip07 (as present in the Huawei D05) are broken when
it comes to addressing the redistributors, and need to be explicitely
told to address the VLPI page instead of the redistributor base address.

So let's add yet another quirk, fixing up the target address
in the command stream.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-10-19 11:22:40 +01:00
Mark Rutland
611a7bc74e arm64: docs: describe ELF hwcaps
We don't document our ELF hwcaps, leaving developers to interpret them
according to hearsay, guesswork, or (in exceptional cases) inspection of
the current kernel code.

This is less than optimal, and it would be far better if we had some
definitive description of each of the ELF hwcaps that developers could
refer to.

This patch adds a document describing the (native) arm64 ELF hwcaps.

Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Martin <Dave.Martin@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
[ Updated new hwcap entries in the document ]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-11 15:28:40 +01:00
Suzuki K Poulose
f5e035f869 arm64: Expose support for optional ARMv8-A features
ARMv8-A adds a few optional features for ARMv8.2 and ARMv8.3.
Expose them to the userspace via HWCAPs and mrs emulation.

SHA2-512  - Instruction support for SHA512 Hash algorithm (e.g SHA512H,
	    SHA512H2, SHA512U0, SHA512SU1)
SHA3 	  - SHA3 crypto instructions (EOR3, RAX1, XAR, BCAX).
SM3	  - Instruction support for Chinese cryptography algorithm SM3
SM4 	  - Instruction support for Chinese cryptography algorithm SM4
DP	  - Dot Product instructions (UDOT, SDOT).

Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Dave Martin <dave.martin@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-11 15:28:40 +01:00
Yury Norov
9339fd348d arm64: fix documentation on kernel pages mappings to HYP VA
The Documentation/arm64/memory.txt says:
When using KVM, the hypervisor maps kernel pages in EL2, at a fixed
offset from the kernel VA (top 24bits of the kernel VA set to zero):

In fact, kernel addresses are transleted to HYP with kern_hyp_va macro,
which has more options, and none of them assumes clearing of top 24bits
of the kernel VA.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Yury Norov <ynorov@caviumnetworks.com>
[will: removed gory details]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-02 10:13:05 +01:00
Robin Murphy
7aac405ebb arm64: Expose DC CVAP to userspace
The ARMv8.2-DCPoP feature introduces persistent memory support to the
architecture, by defining a point of persistence in the memory
hierarchy, and a corresponding cache maintenance operation, DC CVAP.
Expose the support via HWCAP and MRS emulation.

Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-09 11:00:35 +01:00
Linus Torvalds
fb4e3beeff IOMMU Updates for Linux v4.13
This update comes with:
 
 	* Support for lockless operation in the ARM io-pgtable code.
 	  This is an important step to solve the scalability problems in
 	  the common dma-iommu code for ARM
 
 	* Some Errata workarounds for ARM SMMU implemenations
 
 	* Rewrite of the deferred IO/TLB flush code in the AMD IOMMU
 	  driver. The code suffered from very high flush rates, with the
 	  new implementation the flush rate is down to ~1% of what it
 	  was before
 
 	* Support for amd_iommu=off when booting with kexec. Problem
 	  here was that the IOMMU driver bailed out early without
 	  disabling the iommu hardware, if it was enabled in the old
 	  kernel
 
 	* The Rockchip IOMMU driver is now available on ARM64
 
 	* Align the return value of the iommu_ops->device_group
 	  call-backs to not miss error values
 
 	* Preempt-disable optimizations in the Intel VT-d and common
 	  IOVA code to help Linux-RT
 
 	* Various other small cleanups and fixes
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQIcBAABAgAGBQJZZgddAAoJECvwRC2XARrjurgQANO338GIBr2ZkA0oectidDpZ
 Y4yu7W9RH6NyhupJG/Xooya7daBWFjbaA1AVJ3ZZNlMERh69AmehVfRUfVMzF2w+
 buma58HQgiJWN1zFD8xdeMzYKms9P77whA88C/9QvrK/klB3LipWP2SC0yvvvyxJ
 mMCDpgt+D+CGnIDqbRuyLDQoRu3yjAkAvYb6OzL8DPJVP1Y5oLffGwGnHzJbJnOf
 eWJwYHM5ai0uF/Qqy6RNNekacObjVaOLihjugGvokH6ipXfOrSSNriXW9pZiWR5m
 S91898YTP3KuWWsJM+N93UAjvc6pL9PqL/OvbB9zdYpzu+5PtUpFXHYcOebKyEEO
 4j9CaRzubsWFTFjbYItJnR4WgXQRf4NKOGfTfHMHA+dY8aODYnlXNVdQDAA2aFgn
 TUBvHq5xb0zZ3nbPwtTDyW06oDMVfBBarLx2yFI1aQSSh+eg/GtIi5KP28gyFZNz
 4gWj0q3g/e3y7WEwNbYV7L3TS0d/p8VUYFtUp7PUCddnWoY+4cJzgidub5xIViZD
 Ql0nZzga9pXXIE/kE5Pf74WqrG7JJzZsvK2ABy4+XGrMq6RclJf+0pXbSqiXDpXL
 quw8t0oXw0ZEeavQ31Za8mjXBvo5ocM5iintl1wrl2BujHEO3oKqbGsIOaRcLnlN
 Ukehbl4OEKzZpD3oLPPk
 =pmBf
 -----END PGP SIGNATURE-----

Merge tag 'iommu-updates-v4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu

Pull IOMMU updates from Joerg Roedel:
 "This update comes with:

   - Support for lockless operation in the ARM io-pgtable code.

     This is an important step to solve the scalability problems in the
     common dma-iommu code for ARM

   - Some Errata workarounds for ARM SMMU implemenations

   - Rewrite of the deferred IO/TLB flush code in the AMD IOMMU driver.

     The code suffered from very high flush rates, with the new
     implementation the flush rate is down to ~1% of what it was before

   - Support for amd_iommu=off when booting with kexec.

     The problem here was that the IOMMU driver bailed out early without
     disabling the iommu hardware, if it was enabled in the old kernel

   - The Rockchip IOMMU driver is now available on ARM64

   - Align the return value of the iommu_ops->device_group call-backs to
     not miss error values

   - Preempt-disable optimizations in the Intel VT-d and common IOVA
     code to help Linux-RT

   - Various other small cleanups and fixes"

* tag 'iommu-updates-v4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (60 commits)
  iommu/vt-d: Constify intel_dma_ops
  iommu: Warn once when device_group callback returns NULL
  iommu/omap: Return ERR_PTR in device_group call-back
  iommu: Return ERR_PTR() values from device_group call-backs
  iommu/s390: Use iommu_group_get_for_dev() in s390_iommu_add_device()
  iommu/vt-d: Don't disable preemption while accessing deferred_flush()
  iommu/iova: Don't disable preempt around this_cpu_ptr()
  iommu/arm-smmu-v3: Add workaround for Cavium ThunderX2 erratum #126
  iommu/arm-smmu-v3: Enable ACPI based HiSilicon CMD_PREFETCH quirk(erratum 161010701)
  iommu/arm-smmu-v3: Add workaround for Cavium ThunderX2 erratum #74
  ACPI/IORT: Fixup SMMUv3 resource size for Cavium ThunderX2 SMMUv3 model
  iommu/arm-smmu-v3, acpi: Add temporary Cavium SMMU-V3 IORT model number definitions
  iommu/io-pgtable-arm: Use dma_wmb() instead of wmb() when publishing table
  iommu/io-pgtable: depend on !GENERIC_ATOMIC64 when using COMPILE_TEST with LPAE
  iommu/arm-smmu-v3: Remove io-pgtable spinlock
  iommu/arm-smmu: Remove io-pgtable spinlock
  iommu/io-pgtable-arm-v7s: Support lockless operation
  iommu/io-pgtable-arm: Support lockless operation
  iommu/io-pgtable: Introduce explicit coherency
  iommu/io-pgtable-arm-v7s: Refactor split_blk_unmap
  ...
2017-07-12 10:00:04 -07:00
Geetha Sowjanya
f935448acf iommu/arm-smmu-v3: Add workaround for Cavium ThunderX2 erratum #126
Cavium ThunderX2 SMMU doesn't support MSI and also doesn't have unique irq
lines for gerror, eventq and cmdq-sync.

New named irq "combined" is set as a errata workaround, which allows to
share the irq line by register single irq handler for all the interrupts.

Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Geetha sowjanya <gakula@caviumnetworks.com>
[will: reworked irq equality checking and added SPI check]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-23 17:58:04 +01:00
shameer
99caf177f6 iommu/arm-smmu-v3: Enable ACPI based HiSilicon CMD_PREFETCH quirk(erratum 161010701)
HiSilicon SMMUv3 on Hip06/Hip07 platforms doesn't support CMD_PREFETCH
command. The dt based support for this quirk is already present in the
driver(hisilicon,broken-prefetch-cmd). This adds ACPI support for the
quirk using the IORT smmu model number.

Signed-off-by: shameer <shameerali.kolothum.thodi@huawei.com>
Signed-off-by: hanjun <guohanjun@huawei.com>
[will: rewrote patch]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-23 17:58:04 +01:00
Linu Cherian
e5b829de05 iommu/arm-smmu-v3: Add workaround for Cavium ThunderX2 erratum #74
Cavium ThunderX2 SMMU implementation doesn't support page 1 register space
and PAGE0_REGS_ONLY option is enabled as an errata workaround.
This option when turned on, replaces all page 1 offsets used for
EVTQ_PROD/CONS, PRIQ_PROD/CONS register access with page 0 offsets.

SMMU resource size checks are now based on SMMU option PAGE0_REGS_ONLY,
since resource size can be either 64k/128k.
For this, arm_smmu_device_dt_probe/acpi_probe has been moved before
platform_get_resource call, so that SMMU options are set beforehand.

Signed-off-by: Linu Cherian <linu.cherian@cavium.com>
Signed-off-by: Geetha Sowjanya <geethasowjanya.akula@cavium.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-23 17:58:03 +01:00
David Daney
690a341577 arm64: Add workaround for Cavium Thunder erratum 30115
Some Cavium Thunder CPUs suffer a problem where a KVM guest may
inadvertently cause the host kernel to quit receiving interrupts.

Use the Group-0/1 trapping in order to deal with it.

[maz]: Adapted patch to the Group-0/1 trapping, reworked commit log

Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: David Daney <david.daney@cavium.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-06-15 09:45:04 +01:00
Kristina Martsenko
f0e421b1bf arm64: documentation: document tagged pointer stack constraints
Some kernel features don't currently work if a task puts a non-zero
address tag in its stack pointer, frame pointer, or frame record entries
(FP, LR).

For example, with a tagged stack pointer, the kernel can't deliver
signals to the process, and the task is killed instead. As another
example, with a tagged frame pointer or frame records, perf fails to
generate call graphs or resolve symbols.

For now, just document these limitations, instead of finding and fixing
everything that doesn't work, as it's not known if anyone needs to use
tags in these places anyway.

In addition, as requested by Dave Martin, generalize the limitations
into a general kernel address tag policy, and refactor
tagged-pointers.txt to include it.

Fixes: d50240a5f6 ("arm64: mm: permit use of tagged pointers at EL0")
Cc: <stable@vger.kernel.org> # 3.12.x-
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-05-09 17:43:18 +01:00
Catalin Marinas
a5a3237e50 Pre-requisites for the arch timer errata workarounds:
- Allow checking of a CPU-local erratum
 - Add CNTVCT_EL0 trap handler
 - Define Cortex-A73 MIDR
 - Allow an erratum to be match for all revisions of a core
 - Add capability to advertise Cortex-A73 erratum 858921
 -----BEGIN PGP SIGNATURE-----
 
 iQJJBAABCAAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAljnlbgVHG1hcmMuenlu
 Z2llckBhcm0uY29tAAoJECPQ0LrRPXpDx+YP/1OU8GnrVBR2cjEctaTz3s51sPRR
 +7j1BZ3pbKnwY3XpM6GJpxc//sSBSphqWZXN5GJZW1lSgw7hpl02mA9rh62G4Xmh
 wUqR2hmQ5UdenoR5tE39BZrzMFlef90bA7AZyatSqum6AEQcYPJZEgzOvEvfw/mY
 Bc4w73At9OTILRXeZjJZabdeJ4aJLs+6xMfsc9ApgxiZIZ5xhJ7CQzcJFdQ2tFeB
 9wYqxkt8i9aZfmj3IX14m3fXISQ4JlXoi8QTBqy7qunCMEFU6jtCwC5aZKj1U3Hh
 zebVWomcWMQpFaJw3qxZgjVXftv5r2UsHbMoLo4wFa98Qerr7t9/bGifbFqpKm7S
 hA0uzcftUHoQF+l/Qxt9rTlsPKrBMoXjY2XDkKiWP/hqXsXKDBnngKQb2ZFJFT5r
 UABMBhqlBQpI2l0/Qn0fL7aEC1xZCVnSgGpAXFvg/Ci7X2K+HH37brt5uNh3vDZI
 c5UaWUUycDa5GcCnmoK3QWVeitVW/ydJGaoIT06CKBDrktcpsoO4u4w6CI8xsIJL
 RbJwCb72JU5HV7XDpdbc/lLzi30kWceOEUSHrs3dCEnkr41kOunDGm/Xxk/Sm8VL
 SeYSx9UotuJvWWozZzVWpLiUSizjh6UB2XWnkSLkT++KA6YPX4L2/hYAw7E3bYVe
 FAFoLL7jUYdrjpCF
 =XSx4
 -----END PGP SIGNATURE-----

Merge tag 'arch-timer-errata-prereq' of git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm-platforms into for-next/core

Pre-requisites for the arch timer errata workarounds:

- Allow checking of a CPU-local erratum
- Add CNTVCT_EL0 trap handler
- Define Cortex-A73 MIDR
- Allow an erratum to be match for all revisions of a core
- Add capability to advertise Cortex-A73 erratum 858921

* tag 'arch-timer-errata-prereq' of git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm-platforms:
  arm64: cpu_errata: Add capability to advertise Cortex-A73 erratum 858921
  arm64: cpu_errata: Allow an erratum to be match for all revisions of a core
  arm64: Define Cortex-A73 MIDR
  arm64: Add CNTVCT_EL0 trap handler
  arm64: Allow checking of a CPU-local erratum
2017-04-07 17:04:19 +01:00
Marc Zyngier
eeb1efbcb8 arm64: cpu_errata: Add capability to advertise Cortex-A73 erratum 858921
In order to work around Cortex-A73 erratum 858921 in a subsequent
patch, add the required capability that advertise the erratum.

As the configuration option it depends on is not present yet,
this has no immediate effect.

Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-04-07 11:22:08 +01:00
Suzuki K Poulose
c651aae5a7 arm64: v8.3: Support for weaker release consistency
ARMv8.3 adds new instructions to support Release Consistent
processor consistent (RCpc) model, which is weaker than the
RCsc model.

Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-20 16:30:22 +00:00
Suzuki K Poulose
cb567e79fa arm64: v8.3: Support for complex number instructions
ARM v8.3 adds support for new instructions to aid floating-point
multiplication and addition of complex numbers. Expose the support
via HWCAP and MRS emulation

Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-20 16:30:08 +00:00
Suzuki K Poulose
c8c3798d23 arm64: v8.3: Support for Javascript conversion instruction
ARMv8.3 adds support for a new instruction to perform conversion
from double precision floating point to integer  to match the
architected behaviour of the equivalent Javascript conversion.
Expose the availability via HWCAP and MRS emulation.

Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-20 16:29:28 +00:00
Shanker Donthineni
90922a2d03 irqchip/gicv3-its: Add workaround for QDF2400 ITS erratum 0065
On Qualcomm Datacenter Technologies QDF2400 SoCs, the ITS hardware
implementation uses 16Bytes for Interrupt Translation Entry (ITE),
but reports an incorrect value of 8Bytes in GITS_TYPER.ITTE_size.

It might cause kernel memory corruption depending on the number
of MSI(x) that are configured and the amount of memory that has
been allocated for ITEs in its_create_device().

This patch fixes the potential memory corruption by setting the
correct ITE size to 16Bytes.

Cc: stable@vger.kernel.org
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2017-03-07 14:34:27 +00:00
Christopher Covington
38fd94b027 arm64: Work around Falkor erratum 1003
The Qualcomm Datacenter Technologies Falkor v1 CPU may allocate TLB entries
using an incorrect ASID when TTBRx_EL1 is being updated. When the erratum
is triggered, page table entries using the new translation table base
address (BADDR) will be allocated into the TLB using the old ASID. All
circumstances leading to the incorrect ASID being cached in the TLB arise
when software writes TTBRx_EL1[ASID] and TTBRx_EL1[BADDR], a memory
operation is in the process of performing a translation using the specific
TTBRx_EL1 being written, and the memory operation uses a translation table
descriptor designated as non-global. EL2 and EL3 code changing the EL1&0
ASID is not subject to this erratum because hardware is prohibited from
performing translations from an out-of-context translation regime.

Consider the following pseudo code.

  write new BADDR and ASID values to TTBRx_EL1

Replacing the above sequence with the one below will ensure that no TLB
entries with an incorrect ASID are used by software.

  write reserved value to TTBRx_EL1[ASID]
  ISB
  write new value to TTBRx_EL1[BADDR]
  ISB
  write new value to TTBRx_EL1[ASID]
  ISB

When the above sequence is used, page table entries using the new BADDR
value may still be incorrectly allocated into the TLB using the reserved
ASID. Yet this will not reduce functionality, since TLB entries incorrectly
tagged with the reserved ASID will never be hit by a later instruction.

Based on work by Shanker Donthineni <shankerd@codeaurora.org>

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Christopher Covington <cov@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-02-10 11:22:12 +00:00
Ding Tianhong
6e01398fe4 arm64: arch_timer: document Hisilicon erratum 161010101
Now that we have a workaround for Hisilicon erratum 161010101, notes
this in the arm64 silicon-errata document.

The new config option is too long to fit in the existing kconfig column,
so this is widened to accomodate it. At the same time, an existing
whitespace error is corrected, and the existing pattern of a line space
between vendors is enforced for recent additions.

Signed-off-by: Ding Tianhong <dingtianhong@huawei.com>
[Mark: split patch, reword commit message, rework table]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-02-09 18:00:47 +00:00
Christopher Covington
d9ff80f83e arm64: Work around Falkor erratum 1009
During a TLB invalidate sequence targeting the inner shareable domain,
Falkor may prematurely complete the DSB before all loads and stores using
the old translation are observed. Instruction fetches are not subject to
the conditions of this erratum. If the original code sequence includes
multiple TLB invalidate instructions followed by a single DSB, onle one of
the TLB instructions needs to be repeated to work around this erratum.
While the erratum only applies to cases in which the TLBI specifies the
inner-shareable domain (*IS form of TLBI) and the DSB is ISH form or
stronger (OSH, SYS), this changes applies the workaround overabundantly--
to local TLBI, DSB NSH sequences as well--for simplicity.

Based on work by Shanker Donthineni <shankerd@codeaurora.org>

Signed-off-by: Christopher Covington <cov@codeaurora.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-02-01 15:41:50 +00:00
Suzuki K Poulose
4aa8a472c3 arm64: Documentation - Expose CPU feature registers
Documentation for the infrastructure to expose CPU feature
register by emulating MRS.

Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Dave Martin <dave.martin@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-01-12 12:31:31 +00:00
Linus Torvalds
7af8a0f808 arm64 updates for 4.9:
- Support for execute-only page permissions
 - Support for hibernate and DEBUG_PAGEALLOC
 - Support for heterogeneous systems with mismatches cache line sizes
 - Errata workarounds (A53 843419 update and QorIQ A-008585 timer bug)
 - arm64 PMU perf updates, including cpumasks for heterogeneous systems
 - Set UTS_MACHINE for building rpm packages
 - Yet another head.S tidy-up
 - Some cleanups and refactoring, particularly in the NUMA code
 - Lots of random, non-critical fixes across the board
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABCgAGBQJX7k31AAoJELescNyEwWM0XX0H/iOaWCfKlWOhvBsStGUCsLrK
 XryTzQT2KjdnLKf3jwP+1ateCuBR5ROurYxoDCX5/7mD63c5KiI338Vbv61a1lE1
 AAwjt1stmQVUg/j+kqnuQwB/0DYg+2C8se3D3q5Iyn7zc19cDZJEGcBHNrvLMufc
 XgHrgHgl/rzBDDlHJXleknDFge/MfhU5/Q1vJMRRb4JYrpAtmIokzCO75CYMRcCT
 ND2QbmppKtsyuFPGUTVbAFzJlP6dGKb3eruYta7/ct5d0pJQxav3u98D2yWGfjdM
 YaYq1EmX5Pol7rWumqLtk0+mA9yCFcKLLc+PrJu20Vx0UkvOq8G8Xt70sHNvZU8=
 =gdPM
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Will Deacon:
 "It's a bit all over the place this time with no "killer feature" to
  speak of.  Support for mismatched cache line sizes should help people
  seeing whacky JIT failures on some SoCs, and the big.LITTLE perf
  updates have been a long time coming, but a lot of the changes here
  are cleanups.

  We stray outside arch/arm64 in a few areas: the arch/arm/ arch_timer
  workaround is acked by Russell, the DT/OF bits are acked by Rob, the
  arch_timer clocksource changes acked by Marc, CPU hotplug by tglx and
  jump_label by Peter (all CC'd).

  Summary:

   - Support for execute-only page permissions
   - Support for hibernate and DEBUG_PAGEALLOC
   - Support for heterogeneous systems with mismatches cache line sizes
   - Errata workarounds (A53 843419 update and QorIQ A-008585 timer bug)
   - arm64 PMU perf updates, including cpumasks for heterogeneous systems
   - Set UTS_MACHINE for building rpm packages
   - Yet another head.S tidy-up
   - Some cleanups and refactoring, particularly in the NUMA code
   - Lots of random, non-critical fixes across the board"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (100 commits)
  arm64: tlbflush.h: add __tlbi() macro
  arm64: Kconfig: remove SMP dependence for NUMA
  arm64: Kconfig: select OF/ACPI_NUMA under NUMA config
  arm64: fix dump_backtrace/unwind_frame with NULL tsk
  arm/arm64: arch_timer: Use archdata to indicate vdso suitability
  arm64: arch_timer: Work around QorIQ Erratum A-008585
  arm64: arch_timer: Add device tree binding for A-008585 erratum
  arm64: Correctly bounds check virt_addr_valid
  arm64: migrate exception table users off module.h and onto extable.h
  arm64: pmu: Hoist pmu platform device name
  arm64: pmu: Probe default hw/cache counters
  arm64: pmu: add fallback probe table
  MAINTAINERS: Update ARM PMU PROFILING AND DEBUGGING entry
  arm64: Improve kprobes test for atomic sequence
  arm64/kvm: use alternative auto-nop
  arm64: use alternative auto-nop
  arm64: alternative: add auto-nop infrastructure
  arm64: lse: convert lse alternatives NOP padding to use __nops
  arm64: barriers: introduce nops and __nops macros for NOP sequences
  arm64: sysreg: replace open-coded mrs_s/msr_s with {read,write}_sysreg_s
  ...
2016-10-03 08:58:35 -07:00
Scott Wood
f6dc1576cd arm64: arch_timer: Work around QorIQ Erratum A-008585
Erratum A-008585 says that the ARM generic timer counter "has the
potential to contain an erroneous value for a small number of core
clock cycles every time the timer value changes".  Accesses to TVAL
(both read and write) are also affected due to the implicit counter
read.  Accesses to CVAL are not affected.

The workaround is to reread TVAL and count registers until successive
reads return the same value.  Writes to TVAL are replaced with an
equivalent write to CVAL.

The workaround is to reread TVAL and count registers until successive reads
return the same value, and when writing TVAL to retry until counter
reads before and after the write return the same value.

The workaround is enabled if the fsl,erratum-a008585 property is found in
the timer node in the device tree.  This can be overridden with the
clocksource.arm_arch_timer.fsl-a008585 boot parameter, which allows KVM
users to enable the workaround until a mechanism is implemented to
automatically communicate this information.

This erratum can be found on LS1043A and LS2080A.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Scott Wood <oss@buserror.net>
[will: renamed read macro to reflect that it's not usually unstable]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-09-23 17:19:25 +01:00
Marc Zyngier
674e701270 arm64: Document workaround for Cortex-A72 erratum #853709
We already have a workaround for Cortex-A57 erratum #852523,
but Cortex-A72 r0p0 to r0p2 do suffer from the same issue
(known as erratum #853709).

Let's document the fact that we already handle this.

Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2016-08-17 12:23:47 +02:00
Al Stone
83ce0efc12 ARM64: ACPI: Update documentation for latest specification version
The ACPI 6.1 specification was recently released at the end of January
2016, but the arm64 kernel documentation for the use of ACPI was written
for the 5.1 version of the spec.  There were significant additions to the
spec that had not yet been mentioned -- for example, the 6.0 mechanisms
added to make it easier to define processors and low power idle states,
as well as the 6.1 addition allowing regular interrupts (not just from
GPIO) be used to signal ACPI general purpose events.

This patch reflects going back through and examining the specs in detail
and updating content appropriately.  Whilst there, a few odds and ends of
typos were caught as well.  This brings the documentation up to date with
ACPI 6.1 for arm64.

Signed-off-by: Al Stone <al.stone@linaro.org>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org>
Reviewed-by: Roy Franz <roy.franz@hpe.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-06-21 16:26:09 +01:00
Ganapatrao Kulkarni
fbf8f40e16 irqchip/gicv3-its: numa: Enable workaround for Cavium thunderx erratum 23144
The erratum fixes the hang of ITS SYNC command by avoiding inter node
io and collections/cpu mapping on thunderx dual-socket platform.

This fix is only applicable for Cavium's ThunderX dual-socket platform.

Reviewed-by: Robert Richter <rrichter@cavium.com>
Signed-off-by: Ganapatrao Kulkarni <gkulkarni@caviumnetworks.com>
Signed-off-by: Robert Richter <rrichter@cavium.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-06-02 18:01:07 +01:00
Linus Torvalds
e0fb1b3639 IOMMU Updates for Linux v4.7
The updates include:
 
 	* Rate limiting for the VT-d fault handler
 
 	* Remove statistics code from the AMD IOMMU driver. It is unused
 	  and should be replaced by something more generic if needed
 
 	* Per-domain pagesize-bitmaps in IOMMU core code to support
 	  systems with different types of IOMMUs
 
 	* Support for ACPI devices in the AMD IOMMU driver
 
 	* 4GB mode support for Mediatek IOMMU driver
 
 	* ARM-SMMU updates from Will Deacon:
 
 		- Support for 64k pages with SMMUv1 implementations
 		  (e.g MMU-401)
 
 		- Remove open-coded 64-bit MMIO accessors
 
 		- Initial support for 16-bit VMIDs, as supported by some
 		  ThunderX SMMU implementations
 
 		- A couple of errata workarounds for silicon in the
 		  field
 
 	* Various fixes here and there
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQIcBAABAgAGBQJXPeM1AAoJECvwRC2XARrjA2QP/2Cz+pVkpQCuvhAse57eN4rB
 wWXKTjqSFZ4PcA3Vu5yvX6XMv15g46xXFJAhf2spE5//8+xgFfYBgkBRpnqu1brw
 SL6f8A912MnfMRgWqcdKkJNeHbiN0kOvcIQv1J8GNfciqMiyYFhiLP6fFiRmWR/F
 XDBjUeFZ5+Uwf1BAGqw0cVPexeakEbsLHUGqxFsh5g2T4i43aHzO2HJT3IdwWHDt
 F2ivs8gNFGBeJEyzhW8TD0rOEEyHAnM3N18qPEU9+dD0UmjnTQPymEZSbsGW5d4j
 Cn40QYlA+Zmbwgx6LaDVChzQyRJu6O3uvFThyRviiYKCri/Nc9cUT4vHsFGU4MXb
 1d3bqrgzaw7vw31BN7S1Py3MV+WpVnEYjFm2O+hW28OjtSpm6ZvbI8wc0rF4UT/I
 KgL0gSeA8tp25uVISM+ktpIrObYsAcoCz8nvurpDv2AGkKRzhyoSze0Jg43rusD8
 BH7iFWu1LRPlulTGlrHMtNmbZeEApUPbObcQAOcrBOj9vjuFaZ8qduZmB+hwS2iV
 p9atn+54LmGO0LuzqsGrhApIeXTeTZSrGyjlbUADWBJlTw8Xyk/CR39Wf3m/Xmpr
 DiJ/5oa8SKQtNbwvbScn1+sInNWP/pH/JgnRO3Yvqth8HWF/DlpzNj5XxAB8czwr
 qjk9WjpEXun50ocPFQeS
 =jpPD
 -----END PGP SIGNATURE-----

Merge tag 'iommu-updates-v4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu

Pull IOMMU updates from Joerg Roedel:
 "The updates include:

   - rate limiting for the VT-d fault handler

   - remove statistics code from the AMD IOMMU driver.  It is unused and
     should be replaced by something more generic if needed

   - per-domain pagesize-bitmaps in IOMMU core code to support systems
     with different types of IOMMUs

   - support for ACPI devices in the AMD IOMMU driver

   - 4GB mode support for Mediatek IOMMU driver

   - ARM-SMMU updates from Will Deacon:
      - support for 64k pages with SMMUv1 implementations (e.g MMU-401)
      - remove open-coded 64-bit MMIO accessors
      - initial support for 16-bit VMIDs, as supported by some ThunderX
        SMMU implementations
      - a couple of errata workarounds for silicon in the field

   - various fixes here and there"

* tag 'iommu-updates-v4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (44 commits)
  iommu/arm-smmu: Use per-domain page sizes.
  iommu/amd: Remove statistics code
  iommu/dma: Finish optimising higher-order allocations
  iommu: Allow selecting page sizes per domain
  iommu: of: enforce const-ness of struct iommu_ops
  iommu: remove unused priv field from struct iommu_ops
  iommu/dma: Implement scatterlist segment merging
  iommu/arm-smmu: Clear cache lock bit of ACR
  iommu/arm-smmu: Support SMMUv1 64KB supplement
  iommu/arm-smmu: Decouple context format from kernel config
  iommu/arm-smmu: Tidy up 64-bit/atomic I/O accesses
  io-64-nonatomic: Add relaxed accessor variants
  iommu/arm-smmu: Work around MMU-500 prefetch errata
  iommu/arm-smmu: Convert ThunderX workaround to new method
  iommu/arm-smmu: Differentiate specific implementations
  iommu/arm-smmu: Workaround for ThunderX erratum #27704
  iommu/arm-smmu: Add support for 16 bit VMID
  iommu/amd: Move get_device_id() and friends to beginning of file
  iommu/amd: Don't use IS_ERR_VALUE to check integer values
  iommu/amd: Signedness bug in acpihid_device_group()
  ...
2016-05-19 17:07:04 -07:00
Robin Murphy
f0cfffc48c iommu/arm-smmu: Work around MMU-500 prefetch errata
MMU-500 erratum #841119 is tickled by a particular set of circumstances
interacting with the next-page prefetcher. Since said prefetcher is
quite dumb and actually detrimental to performance in some cases (by
causing unwanted TLB evictions for non-sequential access patterns), we
lose very little by turning it off, and what we gain is a guarantee that
the erratum is never hit.

As a bonus, the same workaround will also prevent erratum #826419 once
v7 short descriptor support is implemented.

CC: Catalin Marinas <catalin.marinas@arm.com>
CC: Will Deacon <will.deacon@arm.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-05-03 18:23:02 +01:00
Tirumalesh Chalamarla
1bd37a6835 iommu/arm-smmu: Workaround for ThunderX erratum #27704
Due to erratum #27704, the CN88xx SMMUv2 implementation supports only
shared ASID and VMID numberspaces.

This patch ensures that ASID and VMIDs are unique across all SMMU
instances on affected Cavium systems.

Signed-off-by: Tirumalesh Chalamarla <tchalamarla@caviumnetworks.com>
Signed-off-by: Akula Geethasowjanya <Geethasowjanya.Akula@caviumnetworks.com>
[will: commit message, comments and formatting]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-05-03 18:23:01 +01:00
Ard Biesheuvel
177e15f0c1 arm64: add the initrd region to the linear mapping explicitly
Instead of going out of our way to relocate the initrd if it turns out
to occupy memory that is not covered by the linear mapping, just add the
initrd to the linear mapping. This puts the burden on the bootloader to
pass initrd= and mem= options that are mutually consistent.

Note that, since the placement of the linear region in the PA space is
also dependent on the placement of the kernel Image, which may reside
anywhere in memory, we may still end up with a situation where the initrd
and the kernel Image are simply too far apart to be covered by the linear
region.

Since we now leave it up to the bootloader to pass the initrd in memory
that is guaranteed to be accessible by the kernel, add a mention of this to
the arm64 boot protocol specification as well.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-14 16:20:45 +01:00
Andrew Pinski
104a0c02e8 arm64: Add workaround for Cavium erratum 27456
On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
instructions may cause the icache to become corrupted if it contains
data for a non-current ASID.

This patch implements the workaround (which invalidates the local
icache when switching the mm) by using code patching.

Signed-off-by: Andrew Pinski <apinski@cavium.com>
Signed-off-by: David Daney <david.daney@cavium.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-26 15:14:27 +00:00
Ard Biesheuvel
a7f8de168a arm64: allow kernel Image to be loaded anywhere in physical memory
This relaxes the kernel Image placement requirements, so that it
may be placed at any 2 MB aligned offset in physical memory.

This is accomplished by ignoring PHYS_OFFSET when installing
memblocks, and accounting for the apparent virtual offset of
the kernel Image. As a result, virtual address references
below PAGE_OFFSET are correctly mapped onto physical references
into the kernel Image regardless of where it sits in memory.

Special care needs to be taken for dealing with memory limits passed
via mem=, since the generic implementation clips memory top down, which
may clip the kernel image itself if it is loaded high up in memory. To
deal with this case, we simply add back the memory covering the kernel
image, which may result in more memory to be retained than was passed
as a mem= parameter.

Since mem= should not be considered a production feature, a panic notifier
handler is installed that dumps the memory limit at panic time if one was
set.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-18 18:16:53 +00:00
Will Deacon
9cb9c9e5ba arm64: Documentation: add list of software workarounds for errata
It's not immediately obvious which hardware errata are worked around in
the Linux kernel for an arbitrary kernel tree, so add a file to keep
track of what we're working around.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-12-11 17:33:21 +00:00
Linus Torvalds
2dc10ad81f arm64 updates for 4.4:
- "genirq: Introduce generic irq migration for cpu hotunplugged" patch
   merged from tip/irq/for-arm to allow the arm64-specific part to be
   upstreamed via the arm64 tree
 
 - CPU feature detection reworked to cope with heterogeneous systems
   where CPUs may not have exactly the same features. The features
   reported by the kernel via internal data structures or ELF_HWCAP are
   delayed until all the CPUs are up (and before user space starts)
 
 - Support for 16KB pages, with the additional bonus of a 36-bit VA
   space, though the latter only depending on EXPERT
 
 - Implement native {relaxed, acquire, release} atomics for arm64
 
 - New ASID allocation algorithm which avoids IPI on roll-over, together
   with TLB invalidation optimisations (using local vs global where
   feasible)
 
 - KASan support for arm64
 
 - EFI_STUB clean-up and isolation for the kernel proper (required by
   KASan)
 
 - copy_{to,from,in}_user optimisations (sharing the memcpy template)
 
 - perf: moving arm64 to the arm32/64 shared PMU framework
 
 - L1_CACHE_BYTES increased to 128 to accommodate Cavium hardware
 
 - Support for the contiguous PTE hint on kernel mapping (16 consecutive
   entries may be able to use a single TLB entry)
 
 - Generic CONFIG_HZ now used on arm64
 
 - defconfig updates
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJWOkmIAAoJEGvWsS0AyF7x4GgQAINU3NePjFFvWZNCkqobeH9+
 jFKwtXamIudhTSdnXNXyYWmtRL9Krg3qI4zDQf68dvDFAZAze2kVuOi1yPpCbpFZ
 /j/afNyQc7+PoyqRAzmT+EMPZlcuOA84Prrl1r3QWZ58QaFeVk/6ZxrHunTHxN0x
 mR9PIXfWx73MTo+UnG8FChkmEY6LmV4XpemgTaMR9FqFhdT51OZSxDDAYXOTm4JW
 a5HdN9OWjjJ2rhLlFEaC7tszG9B5doHdy2tr5ge/YERVJzIPDogHkMe8ZhfAJc+x
 SQU5tKN6Pg4MOi+dLhxlk0/mKCvHLiEQ5KVREJnt8GxupAR54Bat+DQ+rP9cSnpq
 dRQTcARIOyy9LGgy+ROAsSo+NiyM5WuJ0/WJUYKmgWTJOfczRYoZv6TMKlwNOUYb
 tGLCZHhKPM3yBHJlWbQykl3xmSuudxCMmjlZzg7B+MVfTP6uo0CRSPmYl+v67q+J
 bBw/Z2RYXWYGnvlc6OfbMeImI6prXeE36+5ytyJFga0m+IqcTzRGzjcLxKEvdbiU
 pr8n9i+hV9iSsT/UwukXZ8ay6zH7PrTLzILWQlieutfXlvha7MYeGxnkbLmdYcfe
 GCj374io5cdImHcVKmfhnOMlFOLuOHphl9cmsd/O2LmCIqBj9BIeNH2Om8mHVK2F
 YHczMdpESlJApE7kUc1e
 =3six
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Catalin Marinas:

 - "genirq: Introduce generic irq migration for cpu hotunplugged" patch
   merged from tip/irq/for-arm to allow the arm64-specific part to be
   upstreamed via the arm64 tree

 - CPU feature detection reworked to cope with heterogeneous systems
   where CPUs may not have exactly the same features.  The features
   reported by the kernel via internal data structures or ELF_HWCAP are
   delayed until all the CPUs are up (and before user space starts)

 - Support for 16KB pages, with the additional bonus of a 36-bit VA
   space, though the latter only depending on EXPERT

 - Implement native {relaxed, acquire, release} atomics for arm64

 - New ASID allocation algorithm which avoids IPI on roll-over, together
   with TLB invalidation optimisations (using local vs global where
   feasible)

 - KASan support for arm64

 - EFI_STUB clean-up and isolation for the kernel proper (required by
   KASan)

 - copy_{to,from,in}_user optimisations (sharing the memcpy template)

 - perf: moving arm64 to the arm32/64 shared PMU framework

 - L1_CACHE_BYTES increased to 128 to accommodate Cavium hardware

 - Support for the contiguous PTE hint on kernel mapping (16 consecutive
   entries may be able to use a single TLB entry)

 - Generic CONFIG_HZ now used on arm64

 - defconfig updates

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (91 commits)
  arm64/efi: fix libstub build under CONFIG_MODVERSIONS
  ARM64: Enable multi-core scheduler support by default
  arm64/efi: move arm64 specific stub C code to libstub
  arm64: page-align sections for DEBUG_RODATA
  arm64: Fix build with CONFIG_ZONE_DMA=n
  arm64: Fix compat register mappings
  arm64: Increase the max granular size
  arm64: remove bogus TASK_SIZE_64 check
  arm64: make Timer Interrupt Frequency selectable
  arm64/mm: use PAGE_ALIGNED instead of IS_ALIGNED
  arm64: cachetype: fix definitions of ICACHEF_* flags
  arm64: cpufeature: declare enable_cpu_capabilities as static
  genirq: Make the cpuhotplug migration code less noisy
  arm64: Constify hwcap name string arrays
  arm64/kvm: Make use of the system wide safe values
  arm64/debug: Make use of the system wide safe value
  arm64: Move FP/ASIMD hwcap handling to common code
  arm64/HWCAP: Use system wide safe values
  arm64/capabilities: Make use of system wide safe value
  arm64: Delay cpu feature capability checks
  ...
2015-11-04 14:47:13 -08:00
Ard Biesheuvel
9d372c9fab arm64: Add page size to the kernel image header
This patch adds the page size to the arm64 kernel image header
so that one can infer the PAGESIZE used by the kernel. This will
be helpful to diagnose failures to boot the kernel with page size
not supported by the CPU.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-19 17:54:41 +01:00
Marc Zyngier
6d32ab2d8a arm64: Update booting requirements for GICv3 in GICv2 mode
The current requirements do not describe the case where a GICv3
system gets booted with system register access disabled, and
expect the kernel to drive GICv3 in GICv2 mode.

Describe the expected settings for that particular case.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2015-10-09 22:16:57 +01:00
Ard Biesheuvel
6c020ea8dc arm64/Documentation: clarify wording regarding memory below the Image
Clarify that the memory below the start of the image but inside the
region covered by the linear mapping has no special significance to
the kernel, and may be used by the firmware provided that it is marked
as reserved.

Also, fix up some whitespace errors.

Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-07-29 18:32:10 +01:00
Ard Biesheuvel
61bd93ce80 arm64: use fixmap region for permanent FDT mapping
Currently, the FDT blob needs to be in the same 512 MB region as
the kernel, so that it can be mapped into the kernel virtual memory
space very early on using a minimal set of statically allocated
translation tables.

Now that we have early fixmap support, we can relax this restriction,
by moving the permanent FDT mapping to the fixmap region instead.
This way, the FDT blob may be anywhere in memory.

This also moves the vetting of the FDT to mmu.c, since the early
init code in head.S does not handle mapping of the FDT anymore.
At the same time, fix up some comments in head.S that have gone stale.

Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-06-02 16:31:33 +01:00
Al Stone
735f00bdf2 ARM64 / ACPI: additions of ACPI documentation for arm64
One more documentation file are also being added:

A section by section review of the ACPI spec (acpi_object_usage.txt)
to note recommendations and prohibitions on the use of the numerous
ACPI tables and objects.  This sets out the current expectations of
the firmware by Linux very explicitly (or as explicitly as I can, for
now).

CC: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
CC: Yi Li <phoenix.liyi@huawei.com>
CC: Mark Langsdorf <mlangsdo@redhat.com>
CC: Ashwin Chaugule <ashwinc@codeaurora.org>
Acked-by: Robert Richter <rrichter@cavium.com>
Signed-off-by: Al Stone <al.stone@linaro.org>
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-03-26 15:13:09 +00:00
Graeme Gregory
dc81f2cfaa Documentation: ACPI for ARM64
Add documentation for the guidelines of how to use ACPI
on ARM64.

Reviewed-by: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Reviewed-by: Yi Li <phoenix.liyi@huawei.com>
Reviewed-by: Mark Langsdorf <mlangsdo@redhat.com>
Reviewed-by: Ashwin Chaugule <ashwinc@codeaurora.org>
Acked-by: Robert Richter <rrichter@cavium.com>
Signed-off-by: Graeme Gregory <graeme.gregory@linaro.org>
Signed-off-by: Al Stone <al.stone@linaro.org>
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-03-26 15:13:09 +00:00
Suzuki K. Poulose
2d888f48e0 arm64: Emulate SETEND for AArch32 tasks
Emulate deprecated 'setend' instruction for AArch32 bit tasks.

	setend [le/be] - Sets the endianness of EL0

On systems with CPUs which support mixed endian at EL0, the hardware
support for the instruction can be enabled by setting the SCTLR_EL1.SED
bit. Like the other emulated instructions it is controlled by an entry in
/proc/sys/abi/. For more information see :
	Documentation/arm64/legacy_instructions.txt

The instruction is emulated by setting/clearing the SPSR_EL1.E bit, which
will be reflected in the PSTATE.E in AArch32 context.

This patch also restores the native endianness for the execution of signal
handlers, since the process could have changed the endianness.

Note: All CPUs on the system must have mixed endian support at EL0. Once the
handler is registered, hotplugging a CPU which doesn't support mixed endian,
could lead to unexpected results/behavior in applications.

Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-01-23 17:11:44 +00:00
Punit Agrawal
c852f32058 arm64: Emulate CP15 Barrier instructions
The CP15 barrier instructions (CP15ISB, CP15DSB and CP15DMB) are
deprecated in the ARMv7 architecture, superseded by ISB, DSB and DMB
instructions respectively. Some implementations may provide the
ability to disable the CP15 barriers by disabling the CP15BEN bit in
SCTLR_EL1. If not enabled, the encodings for these instructions become
undefined.

To support legacy software using these instructions, this patch
register hooks to -
* emulate CP15 barriers and warn the user about their use
* toggle CP15BEN in SCTLR_EL1

Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2014-11-20 16:34:48 +00:00
Punit Agrawal
bd35a4adc4 arm64: Port SWP/SWPB emulation support from arm
The SWP instruction was deprecated in the ARMv6 architecture. The
ARMv7 multiprocessing extensions mandate that SWP/SWPB instructions
are treated as undefined from reset, with the ability to enable them
through the System Control Register SW bit. With ARMv8, the option to
enable these instructions through System Control Register was dropped
as well.

To support legacy applications using these instructions, port the
emulation of the SWP and SWPB instructions from the arm port to arm64.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2014-11-20 16:34:31 +00:00
Punit Agrawal
587064b610 arm64: Add framework for legacy instruction emulation
Typically, providing support for legacy instructions requires
emulating the behaviour of instructions whose encodings have become
undefined. If the instructions haven't been removed from the
architecture, there maybe an option in the implementation to turn
on/off the support for these instructions.

Create common infrastructure to support legacy instruction
emulation. In addition to emulation, also provide an option to support
hardware execution when supported. The default execution mode (one of
undef, emulate, hw exeuction) is dependent on the state of the
instruction (deprecated or obsolete) in the architecture and
can specified at the time of registering the instruction handlers. The
runtime state of the emulation can be controlled by writing to
individual nodes in sysctl. The expected default behaviour is
documented as part of this patch.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2014-11-20 16:33:53 +00:00
Alex Bennée
a24637d5dd Documentation/arm64/memory.txt: fix typo
There is no swapper_pgd_dir, it meant swapper_pg_dir.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-10-20 17:55:38 +01:00
Paolo Bonzini
5d57686605 KVM/ARM New features for 3.17 include:
- Fixes and code refactoring for stage2 kvm MMU unmap_range
  - Support unmapping IPAs on deleting memslots for arm and arm64
  - Support MMIO mappings in stage2 faults
  - KVM VGIC v2 emulation on GICv3 hardware
  - Big-Endian support for arm/arm64 (guest and host)
  - Debug Architecture support for arm64 (arm32 is on Christoffer's todo list)
  - Detect non page-aligned GICV regions and bail out (plugs guest-can-crash host bug)
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABAgAGBQJT3oZTAAoJEEtpOizt6ddyKQIH/1Bj/cZYSkkSf3IJfQhHRbWN
 jS37IBsvcHwjHkRJxCNmQuKP/Ho5XEusluPGrVY25PAgBMl+ouPqAuKzUk+GEab6
 snjJjDFqw0zs0x0h3tg6UwfZdF+eyyIkmFGn8/IATD5P3PPd8kWBVtYnSnZmYK+R
 KJNVcp6RPDrt9kvUDY8Ln9fW99Jl+7CdgQAnc3QkHcXUlanLyrfq+fE1lSzyrbhZ
 ETzyMFAX4kCdc8tflgyyBS4A7+RvfQ6ZIQummxoAMFHIoSk90dtK7ovX68rd9U3e
 yL+mpe130+dTIFpUMbxCnIdE7C0eud3vcgXC6MuWtFjUrxQoaEgsVE+ffGC5tX0=
 =axkp
 -----END PGP SIGNATURE-----

Merge tag 'kvm-arm-for-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm

KVM/ARM New features for 3.17 include:
 - Fixes and code refactoring for stage2 kvm MMU unmap_range
 - Support unmapping IPAs on deleting memslots for arm and arm64
 - Support MMIO mappings in stage2 faults
 - KVM VGIC v2 emulation on GICv3 hardware
 - Big-Endian support for arm/arm64 (guest and host)
 - Debug Architecture support for arm64 (arm32 is on Christoffer's todo list)

Conflicts:
	virt/kvm/arm/vgic.c [last minute cherry-pick from 3.17 to 3.16]
2014-08-05 09:47:45 +02:00
Catalin Marinas
383c279911 arm64: Add support for 48-bit VA space with 64KB page configuration
This patch allows support for 3 levels of page tables with 64KB page
configuration allowing 48-bit VA space. The pgd is no longer a full
PAGE_SIZE (PTRS_PER_PGD is 64) and (swapper|idmap)_pg_dir are not fully
populated (pgd_alloc falls back to kzalloc).

Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Jungseok Lee <jungseoklee85@gmail.com>
2014-07-23 15:28:15 +01:00
Catalin Marinas
08375198b0 arm64: Determine the vmalloc/vmemmap space at build time based on VA_BITS
Rather than guessing what the maximum vmmemap space should be, this
patch allows the calculation based on the VA_BITS and sizeof(struct
page). The vmalloc space extends to the beginning of the vmemmap space.

Since the virtual kernel memory layout now depends on the build
configuration, this patch removes the detailed description in
Documentation/arm64/memory.txt in favour of information printed during
kernel booting.

Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Jungseok Lee <jungseoklee85@gmail.com>
2014-07-23 15:28:05 +01:00
Jungseok Lee
4edae01e89 arm64: Add a description on 48-bit address space with 4KB pages
This patch adds memory layout and translation lookup information
about 48-bit address space with 4K pages. The description is based
on 4 levels of translation tables.

Signed-off-by: Jungseok Lee <jays.lee@samsung.com>
Reviewed-by: Sungjinn Chung <sungjinn.chung@samsung.com>
Acked-by: Kukjin Kim <kgene.kim@samsung.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Jungseok Lee <jungseoklee85@gmail.com>
2014-07-23 15:27:28 +01:00
Marc Zyngier
63f8344cb4 arm64: boot protocol documentation update for GICv3
Linux has some requirements that must be satisfied in order to boot
on a system built with a GICv3.

Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11 04:57:30 -07:00
Mark Rutland
a2c1d73b94 arm64: Update the Image header
Currently the kernel Image is stripped of everything past the initial
stack, and at runtime the memory is initialised and used by the kernel.
This makes the effective minimum memory footprint of the kernel larger
than the size of the loaded binary, though bootloaders have no mechanism
to identify how large this minimum memory footprint is. This makes it
difficult to choose safe locations to place both the kernel and other
binaries required at boot (DTB, initrd, etc), such that the kernel won't
clobber said binaries or other reserved memory during initialisation.

Additionally when big endian support was added the image load offset was
overlooked, and is currently of an arbitrary endianness, which makes it
difficult for bootloaders to make use of it. It seems that bootloaders
aren't respecting the image load offset at present anyway, and are
assuming that offset 0x80000 will always be correct.

This patch adds an effective image size to the kernel header which
describes the amount of memory from the start of the kernel Image binary
which the kernel expects to use before detecting memory and handling any
memory reservations. This can be used by bootloaders to choose suitable
locations to load the kernel and/or other binaries such that the kernel
will not clobber any memory unexpectedly. As before, memory reservations
are required to prevent the kernel from clobbering these locations
later.

Both the image load offset and the effective image size are forced to be
little-endian regardless of the native endianness of the kernel to
enable bootloaders to load a kernel of arbitrary endianness. Bootloaders
which wish to make use of the load offset can inspect the effective
image size field for a non-zero value to determine if the offset is of a
known endianness. To enable software to determine the endinanness of the
kernel as may be required for certain use-cases, a new flags field (also
little-endian) is added to the kernel header to export this information.

The documentation is updated to clarify these details. To discourage
future assumptions regarding the value of text_offset, the value at this
point in time is removed from the main flow of the documentation (though
kept as a compatibility note). Some minor formatting issues in the
documentation are also corrected.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Tom Rini <trini@ti.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Kevin Hilman <kevin.hilman@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-07-10 12:36:40 +01:00
Mark Salter
cdd7857898 doc: arm64: add description of EFI stub support
Add explanation of arm64 EFI stub and kernel image header changes
needed to masquerade as a PE/COFF application.

Signed-off-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Leif Lindholm <leif.lindholm@linaro.org>
Acked-by: Grant Likely <grant.likely@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-04-30 19:57:05 +01:00
Linus Torvalds
e4f30545a2 - Documentation clarification on CPU topology and booting requirements
- Additional cache flushing during boot (needed in the presence of
   external caches or under virtualisation)
 - DMA range invalidation fix for non cache line aligned buffers
 - Build failure fix with !COMPAT
 - Kconfig update for STRICT_DEVMEM
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1.4.9 (GNU/Linux)
 
 iQIcBAABAgAGBQJTRDI8AAoJEGvWsS0AyF7xx2IP/jgBjjeIII7L6T45dG3BeJR1
 ph8CBfnsHK3wr5KXiFrdQ2mhAWFr44SLNOd9xuZZmzpA/QWlyqaH46+oqz2GozUf
 y2HucJoEIO+wXMFscQ/EQDiT4uUSbEXBQ6JeZzrhCgVaXeSs+wkKTtGXkxEh2gWo
 w4OI1/JX7phv4heim51aabzziQ3o9JziIs6hALv6OVZVsuPF/TX+mK8C2ejJWLnv
 ou+6E6iv69wNrgPnM3fcKj1CDisCNdFVvjd2LwzkJS7MUra74SWoXczCbfBYW6Ty
 1GgZ/t3TOluDoaLgXfGyQXxnhOUyHdV16034/k8wISfuXG59V0eT+CaCgAotftKD
 5oH+P4MfyVOvZpILrRtY/4MajlCr4V1RnzSYKnS/h3zzHW7Cx/BtYbbQEOVQnZwc
 Gh4adLqc0f8QtkD4zGI7UWmxPxiI9KX9EEpVDAU3TJw6FjVSp7qZ1ifajsWc201h
 STzQEu8LDBWQY2WKrtZxXvFjZj4eSSXNaDHNVCugODk2FBU6wNv4P5q1S+23xt+G
 rR9UI8a0mpginNvhnwHoIR6X+RW3CDaUzn9k3gaJWDWvGoTeuAIstdyxCn6Dm26c
 XF2B5xf5SdxXeNv513WfULCyLgJmLs9CzVFybgYWKLciLbLn7f3pAiisHuO1DWvu
 Gv+70wfYArAcbkGPw5Qt
 =mDkd
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull second set of arm64 updates from Catalin Marinas:
 "A second pull request for this merging window, mainly with fixes and
  docs clarification:

   - Documentation clarification on CPU topology and booting
     requirements
   - Additional cache flushing during boot (needed in the presence of
     external caches or under virtualisation)
   - DMA range invalidation fix for non cache line aligned buffers
   - Build failure fix with !COMPAT
   - Kconfig update for STRICT_DEVMEM"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
  arm64: Fix DMA range invalidation for cache line unaligned buffers
  arm64: Add missing Kconfig for CONFIG_STRICT_DEVMEM
  arm64: fix !CONFIG_COMPAT build failures
  Revert "arm64: virt: ensure visibility of __boot_cpu_mode"
  arm64: Relax the kernel cache requirements for boot
  arm64: Update the TCR_EL1 translation granule definitions for 16K pages
  ARM: topology: Make it clear that all CPUs need to be described
2014-04-08 12:06:03 -07:00
Mark Salter
bf4b558eba arm64: add early_ioremap support
Add support for early IO or memory mappings which are needed before the
normal ioremap() is usable.  This also adds fixmap support for permanent
fixed mappings such as that used by the earlyprintk device register
region.

Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:36:15 -07:00
Catalin Marinas
c218bca74e arm64: Relax the kernel cache requirements for boot
With system caches for the host OS or architected caches for guest OS we
cannot easily guarantee that there are no dirty or stale cache lines for
the areas of memory written by the kernel during boot with the MMU off
(therefore non-cacheable accesses).

This patch adds the necessary cache maintenance during boot and relaxes
the booting requirements.

Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-04-05 10:06:18 +01:00
Catalin Marinas
22bd1c91fe arm64: Extend the PCI I/O space to 16MB
The patch moves the PCI I/O space (currently at 64K) before the
earlyprintk mapping and extends it to 16MB.

Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-02-26 11:16:27 +00:00
Catalin Marinas
847264fb7e arm64: Use 42-bit address space with 64K pages
This patch expands the VA_BITS to 42 when the 64K page configuration is
enabled allowing 2TB kernel linear mapping. Linux still uses 2 levels of
page tables in this configuration with pgd now being a full page.

Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
2013-11-05 17:23:52 +00:00
Mark Rutland
4fcd6e1416 Docs: arm64: booting: clarify boot requirements
There are a few points in the arm64 booting document which are unclear
(such as the initial state of secondary CPUs), and/or have not been
documented (PSCI is a supported mechanism for booting secondary CPUs).

This patch amends the arm64 boot document to better express the
(existing) requirements, and to describe PSCI as a supported booting
mechanism.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Martin <dave.martin@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Fu Wei <tekkamanninja@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2013-10-24 15:47:20 +01:00
Catalin Marinas
e29a074b44 arm64: Fix memory layout typo
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2013-10-24 15:46:26 +01:00
Will Deacon
374ed9d18e arm64: documentation: tighten up tagged pointer documentation
Commit d50240a5f6 ("arm64: mm: permit use of tagged pointers at EL0")
added support for tagged pointers in userspace, but the corresponding
update to Documentation/ contained some imprecise statements.

This patch fixes up some minor ambiguities in the text, hopefully making
it more clear about exactly what the kernel expects from user virtual
addresses.

Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2013-09-20 09:56:06 +01:00
Mark Salter
4d5e0b1527 Documentation/arm64: clarify requirements for DTB placement
The current description of DTB placement requirements does not quite
match the kernel code in head.S: __vet_fdt and __create_page_tables.
This patch tweaks the text to match the actual requirements placed on
it by the code.

Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2013-09-05 17:29:05 +01:00
Will Deacon
d50240a5f6 arm64: mm: permit use of tagged pointers at EL0
TCR.TBI0 can be used to cause hardware address translation to ignore the
top byte of userspace virtual addresses. Whilst not especially useful in
standard C programs, this can be used by JITs to `tag' pointers with
various pieces of metadata.

This patch enables this bit for AArch64 Linux, and adds a new file to
Documentation/arm64/ which describes some potential caveats when using
tagged virtual addresses.

Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2013-09-03 10:18:02 +01:00
Roy Franz
4370eec05a arm64: Expand arm64 image header
Expand the arm64 image header to allow for co-existance with
PE/COFF header required by the EFI stub.  The PE/COFF format
requires the "MZ" header to be at offset 0, and the offset
to the PE/COFF header to be at offset 0x3c.  The image
header is expanded to allow 2 instructions at the beginning
to accommodate a benign intruction at offset 0 that includes
the "MZ" header, a magic number, and the offset to the PE/COFF
header.

Signed-off-by: Roy Franz <roy.franz@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2013-08-22 11:45:04 +01:00
Marc Zyngier
aa4a73a0a2 arm64: KVM: document kernel object mappings in HYP
HYP mode has access to some of the kernel pages. Document the
memory mapping and the offset between kernel VA and HYP VA.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2013-06-12 16:42:20 +01:00
Catalin Marinas
2475ff9d2c arm64: Add simple earlyprintk support
This patch adds support for "earlyprintk=" parameter on the kernel
command line. The format is:

  earlyprintk=<name>[,<addr>][,<options>]

where <name> is the name of the (UART) device, e.g. "pl011", <addr> is
the I/O address. The <options> aren't currently used.

The mapping of the earlyprintk device is done very early during kernel
boot and there are restrictions on which functions it can call. A
special early_io_map() function is added which creates the mapping from
the pre-defined EARLY_IOBASE to the device I/O address passed via the
kernel parameter. The pgd entry corresponding to EARLY_IOBASE is
pre-populated in head.S during kernel boot.

Only PL011 is currently supported and it is assumed that the interface
is already initialised by the boot loader before the kernel is started.

Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
2013-01-22 17:51:01 +00:00
Tekkaman Ninja
715a7119ea Documentation: Fixes a word in Documentation/arm64/memory.txt
Fixes a term in Documentation/arm64/memory.txt
The modification is based on Catalin Marinas <catalin.marinas@arm.com>'s
suggestion:
    "memory" in "ffffffc000000000 ffffffffffffffff 256GB memory"
    should  be treated as "kernel logical memory map".

Signed-off-by: Fu Wei <tekkamanninja@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2012-11-29 16:33:18 +00:00
Catalin Marinas
e3978cded4 arm64: Move PCI_IOBASE closer to MODULES_VADDR
This is to reuse the same pmd table that is sparsely populated with
the modules space.

Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2012-10-23 15:30:51 +01:00
Catalin Marinas
4f04d8f005 arm64: MMU definitions
The virtual memory layout is described in
Documentation/arm64/memory.txt. This patch adds the MMU definitions for
the 4KB and 64KB translation table configurations. The SECTION_SIZE is
2MB with 4KB page and 512MB with 64KB page configuration.

PHYS_OFFSET is calculated at run-time and stored in a variable (no
run-time code patching at this stage).

On the current implementation, both user and kernel address spaces are
512G (39-bit) each with a maximum of 256G for the RAM linear mapping.
Linux uses 3 levels of translation tables with the 4K page configuration
and 2 levels with the 64K configuration. Extending the memory space
beyond 39-bit with the 4K pages or 42-bit with 64K pages requires an
additional level of translation tables.

The SPARSEMEM configuration is global to all AArch64 platforms and
allows for 1GB sections with SPARSEMEM_VMEMMAP enabled by default.

Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Olof Johansson <olof@lixom.net>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
2012-09-17 13:41:56 +01:00
Catalin Marinas
9703d9d7f7 arm64: Kernel booting and initialisation
The patch adds the kernel booting and the initial setup code.
Documentation/arm64/booting.txt describes the booting protocol on the
AArch64 Linux kernel. This is subject to change following the work on
boot standardisation, ACPI.

Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Tony Lindgren <tony@atomide.com>
Acked-by: Olof Johansson <olof@lixom.net>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
2012-09-17 10:24:45 +01:00