Implement querying and acting upon the no sack bit in the features
field.
Signed-off-by: Gilad Ben-Yossef <gilad@codefidence.com>
Sigend-off-by: Ori Finkelman <ori@comsleep.com>
Sigend-off-by: Yony Amit <yony@comsleep.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We need tcp_parse_options to be aware of dst_entry to
take into account per dst_entry TCP options settings
Signed-off-by: Gilad Ben-Yossef <gilad@codefidence.com>
Sigend-off-by: Ori Finkelman <ori@comsleep.com>
Sigend-off-by: Yony Amit <yony@comsleep.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Corrected a spelling error in a function name.
Signed-off-by: Andreas Petlund <apetlund@simula.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
It was once upon time so that snd_sthresh was a 16-bit quantity.
...That has not been true for long period of time. I run across
some ancient compares which still seem to trust such legacy.
Put all that magic into a single place, I hopefully found all
of them.
Compile tested, though linking of allyesconfig is ridiculous
nowadays it seems.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Here, an ICMP host/network unreachable message, whose payload fits to
TCP's SND.UNA, is taken as an indication that the RTO retransmission has
not been lost due to congestion, but because of a route failure
somewhere along the path.
With true congestion, a router won't trigger such a message and the
patched TCP will operate as standard TCP.
This patch reverts one RTO backoff, if an ICMP host/network unreachable
message, whose payload fits to TCP's SND.UNA, arrives.
Based on the new RTO, the retransmission timer is reset to reflect the
remaining time, or - if the revert clocked out the timer - a retransmission
is sent out immediately.
Backoffs are only reverted, if TCP is in RTO loss recovery, i.e. if
there have been retransmissions and reversible backoffs, already.
Changes from v2:
1) Renaming of skb in tcp_v4_err() moved to another patch.
2) Reintroduced tcp_bound_rto() and __tcp_set_rto().
3) Fixed code comments.
Signed-off-by: Damian Lukowski <damian@tvk.rwth-aachen.de>
Acked-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Somewhat luckily, I was looking into these parts with very fine
comb because I've made somewhat similar changes on the same
area (conflicts that arose weren't that lucky though). The loop
was very much overengineered recently in commit 915219441d
(tcp: Use SKB queue and list helpers instead of doing it
by-hand), while it basically just wants to know if there are
skbs after 'skb'.
Also it got broken because skb1 = skb->next got translated into
skb1 = skb1->next (though abstracted) improperly. Note that
'skb1' is pointing to previous sk_buff than skb or NULL if at
head. Two things went wrong:
- We'll kfree 'skb' on the first iteration instead of the
skbuff following 'skb' (it would require required SACK reneging
to recover I think).
- The list head case where 'skb1' is NULL is checked too early
and the loop won't execute whereas it previously did.
Conclusion, mostly revert the recent changes which makes the
cset very messy looking but using proper accessor in the
previous-like version.
The effective changes against the original can be viewed with:
git-diff 915219441d566f1da0caa0e262be49b666159e17^ \
net/ipv4/tcp_input.c | sed -n -e '57,70 p'
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
tcp_prequeue() refers to the constant value (TCP_RTO_MIN) regardless of
the actual value might be tuned. The following patches fix this and make
tcp_prequeue get the actual value returns from tcp_rto_min().
Signed-off-by: Satoru SATOH <satoru.satoh@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This should be very safe compared with full enabled, so I see
no reason why it shouldn't be done right away. As ECN can only
be negotiated if the SYN sending party is also supporting it,
somebody in the loop probably knows what he/she is doing. If
SYN does not ask for ECN, the server side SYN-ACK is identical
to what it is without ECN. Thus it's quite safe.
The chosen value is safe w.r.t to existing configs which
choose to currently set manually either 0 or 1 but
silently upgrades those who have not explicitly requested
ECN off.
Whether to just enable both sides comes up time to time but
unless that gets done now we can at least make the servers
aware of ECN already. As there are some known problems to occur
if ECN is enabled, it's currently questionable whether there's
any real gain from enabling clients as servers mostly won't
support it anyway (so we'd hit just the negative sides). After
enabling the servers and getting that deployed, the client end
enable really has some potential gain too.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
A long-standing feature in tcp_init_metrics() is such that
any of its goto reset prevents call to tcp_init_cwnd().
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Discard incoming packets whose ack field iincludes data not yet sent.
This is consistent with RFC 793 Section 3.9.
Change tcp_ack() to distinguish between too-small and too-large ack
field values. Keep segments with too-large ack fields out of the fast
path, and change slow path to discard them.
Reported-by: Oliver Zheng <mailinglists+netdev@oliverzheng.com>
Signed-off-by: John Dykstra <john.dykstra1@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
tcp_sack_swap seems unnecessary so I pushed swap to the caller.
Also removed comment that seemed then pointless, and added include
when not already there. Compile tested.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
There's very little need for most of the callsites to get
tp->xmit_goal_size updated. That will cost us divide as is,
so slice the function in two. Also, the only users of the
tp->xmit_goal_size are directly behind tcp_current_mss(),
so there's no need to store that variable into tcp_sock
at all! The drop of xmit_goal_size currently leaves 16-bit
hole and some reorganization would again be necessary to
change that (but I'm aiming to fill that hole with u16
xmit_goal_size_segs to cache the results of the remaining
divide to get that tso on regression).
Bring xmit_goal_size parts into tcp.c
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Cc: Evgeniy Polyakov <zbr@ioremap.net>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: David S. Miller <davem@davemloft.net>
It seems that no variables clash such that we couldn't do
the check just once later on. Therefore move it.
Also kill dead obvious comment, dead argument and add
unlikely since this mtu probe does not happen too often.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Wow, it was quite tricky to merge that stream of negations
but I think I finally got it right:
check & replace_ts_recent:
(s32)(rcv_tsval - ts_recent) >= 0 => 0
(s32)(ts_recent - rcv_tsval) <= 0 => 0
discard:
(s32)(ts_recent - rcv_tsval) > TCP_PAWS_WINDOW => 1
(s32)(ts_recent - rcv_tsval) <= TCP_PAWS_WINDOW => 0
I toggled the return values of tcp_paws_check around since
the old encoding added yet-another negation making tracking
of truth-values really complicated.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
I've already forgotten what for this was necessary, anyway
it's no longer used (if it ever was).
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
In the pure assignment case, the earlier zeroing is
still in effect.
David S. Miller raised concerns if the ifs are there to avoid
dirtying cachelines. I came to these conclusions:
> We'll be dirty it anyway (now that I check), the first "real" statement
> in tcp_rcv_established is:
>
> tp->rx_opt.saw_tstamp = 0;
>
> ...that'll land on the same dword. :-/
>
> I suppose the blocks are there just because they had more complexity
> inside when they had to calculate the eff_sacks too (maybe it would
> have been better to just remove them in that drop-patch so you would
> have had less head-ache :-)).
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
The above functions from include/net/tcp.h have been defined with an
argument that they never use. The argument is 'u32 ack' which is never
used inside the function body, and thus it can be removed. The rest of
the patch involves the necessary changes to the function callers of the
above two functions.
Signed-off-by: Hantzis Fotis <xantzis@ceid.upatras.gr>
Signed-off-by: David S. Miller <davem@davemloft.net>
Also fixes insignificant bug that would cause sending of stale
SACK block (would occur in some corner cases).
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Some comment about its current state added. So far I have
seen very few cases where the thing is actually useful,
usually just marginally (though admittedly I don't usually
see top of window losses where it seems possible that there
could be some gain), instead, more often the cases suffer
from L-marking spike which is certainly not desirable
(I'll bury improving it to my todo list, but on a low
prio position).
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Arnd Hannemann <hannemann@nets.rwth-aachen.de> noticed and was
puzzled by the fact that !tcp_is_fack(tp) leads to early return
near the beginning and the later on tcp_is_fack(tp) was still
used in an if condition. The later check was a left-over from
RFC3517 SACK stuff (== !tcp_is_fack(tp) behavior nowadays) as
there wasn't clear way how to handle this particular check
cheaply in the spirit of RFC3517 (using only SACK blocks, not
holes + SACK blocks as with FACK). I sort of left it there as
a reminder but since it's confusing other people just remove
it and comment the missing-feature stuff instead.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Cc: Arnd Hannemann <hannemann@nets.rwth-aachen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
It is possible that lost_cnt_hint gets underflow in
tcp_clean_rtx_queue because the cumulative ACK can cover
the segment where lost_skb_hint points to only partially,
which means that the hint is not cleared, opposite to what
my (earlier) comment claimed.
Also I don't agree what I ended up writing about non-trivial
case there to be what I intented to say. It was not supposed
to happen that the hint won't get cleared and we underflow
in any scenario.
In general, this is quite hard to trigger in practice.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
There's conflicting assumptions in shifting, the caller assumes
that dupsack results in S'ed skbs (or a part of it) for sure but
never gave a hint to tcp_sacktag_one when dsack is actually in
use. Thus DSACK retrans_out -= pcount was not taken and the
counter became out of sync. Remove obstacle from that information
flow to get DSACKs accounted in tcp_sacktag_one as expected.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Tested-by: Denys Fedoryshchenko <denys@visp.net.lb>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use the general-purpose channel allocation provided by dmaengine.
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
There are just too many args to some sacktag functions. This
idea was first proposed by David S. Miller around a year ago,
and the current situation is much worse that what it was back
then.
tcp_sacktag_one can be made a bit simpler by returning the
new sacked (it can be achieved with a single variable though
the previous code "caching" sacked into a local variable and
therefore it is not exactly equal but the results will be the
same).
codiff on x86_64
tcp_sacktag_one | -15
tcp_shifted_skb | -50
tcp_match_skb_to_sack | -1
tcp_sacktag_walk | -64
tcp_sacktag_write_queue | -59
tcp_urg | +1
tcp_event_data_recv | -1
7 functions changed, 1 bytes added, 190 bytes removed, diff: -189
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
I noticed that since skb->len has nothing to do with actual segment
length with gso, we need to figure it out separately, reuse
a function from the recent shifting stuff (generalize it).
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
S|R won't result in S if just SACK is received. DSACK is
another story (but it is covered correctly already).
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
The earlier version was just very basic one which is "playing
safe" by always clearing the hints. However, clearing of a hint
is extremely costly operation with large windows, so it must be
avoided at all cost whenever possible, there is a way with
shifting too achieve not-clearing.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
During SACK processing, most of the benefits of TSO are eaten by
the SACK blocks that one-by-one fragment SKBs to MSS sized chunks.
Then we're in problems when cleanup work for them has to be done
when a large cumulative ACK comes. Try to return back to pre-split
state already while more and more SACK info gets discovered by
combining newly discovered SACK areas with the previous skb if
that's SACKed as well.
This approach has a number of benefits:
1) The processing overhead is spread more equally over the RTT
2) Write queue has less skbs to process (affect everything
which has to walk in the queue past the sacked areas)
3) Write queue is consistent whole the time, so no other parts
of TCP has to be aware of this (this was not the case with
some other approach that was, well, quite intrusive all
around).
4) Clean_rtx_queue can release most of the pages using single
put_page instead of previous PAGE_SIZE/mss+1 calls
In case a hole is fully filled by the new SACK block, we attempt
to combine the next skb too which allows construction of skbs
that are even larger than what tso split them to and it handles
hole per on every nth patterns that often occur during slow start
overshoot pretty nicely. Though this to be really useful also
a retransmission would have to get lost since cumulative ACKs
advance one hole at a time in the most typical case.
TODO: handle upwards only merging. That should be rather easy
when segment is fully sacked but I'm leaving that as future
work item (it won't make very large difference anyway since
this current approach already covers quite a lot of normal
cases).
I was earlier thinking of some sophisticated way of tracking
timestamps of the first and the last segment but later on
realized that it won't be that necessary at all to store the
timestamp of the last segment. The cases that can occur are
basically either:
1) ambiguous => no sensible measurement can be taken anyway
2) non-ambiguous is due to reordering => having the timestamp
of the last segment there is just skewing things more off
than does some good since the ack got triggered by one of
the holes (besides some substle issues that would make
determining right hole/skb even harder problem). Anyway,
it has nothing to do with this change then.
I choose to route some abnormal looking cases with goto noop,
some could be handled differently (eg., by stopping the
walking at that skb but again). In general, they either
shouldn't happen at all or are rare enough to make no difference
in practice.
In theory this change (as whole) could cause some macroscale
regression (global) because of cache misses that are taken over
the round-trip time but it gets very likely better because of much
less (local) cache misses per other write queue walkers and the
big recovery clearing cumulative ack.
Worth to note that these benefits would be very easy to get also
without TSO/GSO being on as long as the data is in pages so that
we can merge them. Currently I won't let that happen because
DSACK splitting at fragment that would mess up pcounts due to
sk_can_gso in tcp_set_skb_tso_segs. Once DSACKs fragments gets
avoided, we have some conditions that can be made less strict.
TODO: I will probably have to convert the excessive pointer
passing to struct sacktag_state... :-)
My testing revealed that considerable amount of skbs couldn't
be shifted because they were cloned (most likely still awaiting
tx reclaim)...
[The rest is considering future work instead since I got
repeatably EFAULT to tcpdump's recvfrom when I added
pskb_expand_head to deal with clones, so I separated that
into another, later patch]
...To counter that, I gave up on the fifth advantage:
5) When growing previous SACK block, less allocs for new skbs
are done, basically a new alloc is needed only when new hole
is detected and when the previous skb runs out of frags space
...which now only happens of if reclaim is fast enough to dispose
the clone before the SACK block comes in (the window is RTT long),
otherwise we'll have to alloc some.
With clones being handled I got these numbers (will be somewhat
worse without that), taken with fine-grained mibs:
TCPSackShifted 398
TCPSackMerged 877
TCPSackShiftFallback 320
TCPSACKCOLLAPSEFALLBACKGSO 0
TCPSACKCOLLAPSEFALLBACKSKBBITS 0
TCPSACKCOLLAPSEFALLBACKSKBDATA 0
TCPSACKCOLLAPSEFALLBACKBELOW 0
TCPSACKCOLLAPSEFALLBACKFIRST 1
TCPSACKCOLLAPSEFALLBACKPREVBITS 318
TCPSACKCOLLAPSEFALLBACKMSS 1
TCPSACKCOLLAPSEFALLBACKNOHEAD 0
TCPSACKCOLLAPSEFALLBACKSHIFT 0
TCPSACKCOLLAPSENOOPSEQ 0
TCPSACKCOLLAPSENOOPSMALLPCOUNT 0
TCPSACKCOLLAPSENOOPSMALLLEN 0
TCPSACKCOLLAPSEHOLE 12
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is preparatory work for SACK combiner patch which may
have to count TCP state changes for only a part of the skb
because it will intentionally avoids splitting skb to SACKed
and not sacked parts.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Sadly enough, this adds possible divide though we try to avoid
it by checking one mss as common case.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
I knew already when rewriting the sacktag that this condition
was too conservative, change it now since it prevent lot of
useless work (especially in the sack shifter decision code
that is being added by a later patch). This shouldn't change
anything really, just save some processing regardless of the
shifter.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Using NIPQUAD() with NIPQUAD_FMT, %d.%d.%d.%d or %u.%u.%u.%u
can be replaced with %pI4
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
From: Ali Saidi <saidi@engin.umich.edu>
When TCP receive copy offload is enabled it's possible that
tcp_rcv_established() will cause two acks to be sent for a single
packet. In the case that a tcp_dma_early_copy() is successful,
copied_early is set to true which causes tcp_cleanup_rbuf() to be
called early which can send an ack. Further along in
tcp_rcv_established(), __tcp_ack_snd_check() is called and will
schedule a delayed ACK. If no packets are processed before the delayed
ack timer expires the packet will be acked twice.
Signed-off-by: David S. Miller <davem@davemloft.net>
I'm quite sure that if I give this function in its old format
for you to inspect, you start to wonder what is the type of
demanded or if it's a global variable.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
It all started from me noticing that this urgent check in
tcp_clean_rtx_queue is unnecessarily inside the loop. Then
I took a longer look to it and found out that the users of
urg_mode can trivially do without, well almost, there was
one gotcha.
Bonus: those funny people who use urg with >= 2^31 write_seq -
snd_una could now rejoice too (that's the only purpose for the
between being there, otherwise a simple compare would have done
the thing). Not that I assume that the rest of the tcp code
happily lives with such mind-boggling numbers :-). Alas, it
turned out to be impossible to set wmem to such numbers anyway,
yes I really tried a big sendfile after setting some wmem but
nothing happened :-). ...Tcp_wmem is int and so is sk_sndbuf...
So I hacked a bit variable to long and found out that it seems
to work... :-)
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
This minor cleanup simplifies later changes which will convert
struct sk_buff and friends over to using struct list_head.
Signed-off-by: David S. Miller <davem@davemloft.net>
Most importantly avoid doing it with cumulative ACK. However,
since we have lost_cnt_hint in the picture as well needing
adjustments, it's not as trivial as dealing with
retransmit_skb_hint (and cannot be done in the all place we
could trivially leave retransmit_skb_hint untouched).
With the previous patch, this should mostly remove O(n^2)
behavior while cumulative ACKs start flowing once rexmit
after a lossy round-trip made it through.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Most importantly avoid doing it with cumulative ACK. Not clearing
means that we no longer need n^2 processing in resolution of each
fast recovery.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Because lost counter no longer requires tuning, this is
trivial to remove (the tuning wouldn't have been too
hard either) because no "new" retransmittable skb appeared
below retransmit_skb_hint when SACKing for sure.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
I suspect it might have been related to the changed amount
of lost skbs, which was counted by retransmit_cnt_hint that
got changed.
The place for this clearing was very illogical anyway,
it should have been after the LOST-bit clearing loop to
make any sense.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Main benefit in this is that we can then freely point
the retransmit_skb_hint to anywhere we want to because
there's no longer need to know what would be the count
changes involve, and since this is really used only as a
terminator, unnecessary work is one time walk at most,
and if some retransmissions are necessary after that
point later on, the walk is not full waste of time
anyway.
Since retransmit_high must be kept valid, all lost
markers must ensure that.
Now I also have learned how those "holes" in the
rexmittable skbs can appear, mtu probe does them. So
I removed the misleading comment as well.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
This useful because we'd need to verifying soon in many places
which makes things slightly more complex than it used to be.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Ie., the difference between partial and all clearing doesn't
exists anymore since the SACK optimizations got dropped by
an sacktag rewrite.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch consolidates the code common to TCP and CCID-2:
* TCP uses RFC 3390 in a packet-oriented manner (tcp_input.c) and
* CCID-2 uses RFC 3390 in packet-oriented manner (RFC 4341).
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Some duplicated code lying around. Located with my suffix tree
tool.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Large block of code duplication removed.
Sadly, the return value thing is a bit tricky here but it
seems the most sensible way to return positive from validator
on success rather than negative.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Removes legacy reinvent-the-wheel type thing. The generic
machinery integrates much better to automated debugging aids
such as kerneloops.org (and others), and is unambiguous due to
better naming. Non-intuively BUG_TRAP() is actually equal to
WARN_ON() rather than BUG_ON() though some might actually be
promoted to BUG_ON() but I left that to future.
I could make at least one BUILD_BUG_ON conversion.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is based upon an excellent bug report from Eric Dumazet.
tcp_ack() should clear ->icsk_probes_out even if there are packets
outstanding. Otherwise if we get a sequence of ACKs while we do have
packets outstanding over and over again, we'll never clear the
probes_out value and eventually think the connection is too sick and
we'll reset it.
This appears to be some "optimization" added to tcp_ack() in the 2.4.x
timeframe. In 2.2.x, probes_out is pretty much always cleared by
tcp_ack().
Here is Eric's original report:
----------------------------------------
Apparently, we can in some situations reset TCP connections in a couple of seconds when some frames are lost.
In order to reproduce the problem, please try the following program on linux-2.6.25.*
Setup some iptables rules to allow two frames per second sent on loopback interface to tcp destination port 12000
iptables -N SLOWLO
iptables -A SLOWLO -m hashlimit --hashlimit 2 --hashlimit-burst 1 --hashlimit-mode dstip --hashlimit-name slow2 -j ACCEPT
iptables -A SLOWLO -j DROP
iptables -A OUTPUT -o lo -p tcp --dport 12000 -j SLOWLO
Then run the attached program and see the output :
# ./loop
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,200ms,1)
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,200ms,3)
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,200ms,5)
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,200ms,7)
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,200ms,9)
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,200ms,11)
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,201ms,13)
State Recv-Q Send-Q Local Address:Port Peer Address:Port
ESTAB 0 40 127.0.0.1:54455 127.0.0.1:12000 timer:(persist,188ms,15)
write(): Connection timed out
wrote 890 bytes but was interrupted after 9 seconds
ESTAB 0 0 127.0.0.1:12000 127.0.0.1:54455
Exiting read() because no data available (4000 ms timeout).
read 860 bytes
While this tcp session makes progress (sending frames with 50 bytes of payload, every 500ms), linux tcp stack decides to reset it, when tcp_retries 2 is reached (default value : 15)
tcpdump :
15:30:28.856695 IP 127.0.0.1.56554 > 127.0.0.1.12000: S 33788768:33788768(0) win 32792 <mss 16396,nop,nop,sackOK,nop,wscale 7>
15:30:28.856711 IP 127.0.0.1.12000 > 127.0.0.1.56554: S 33899253:33899253(0) ack 33788769 win 32792 <mss 16396,nop,nop,sackOK,nop,wscale 7>
15:30:29.356947 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 1:61(60) ack 1 win 257
15:30:29.356966 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 61 win 257
15:30:29.866415 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 61:111(50) ack 1 win 257
15:30:29.866427 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 111 win 257
15:30:30.366516 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 111:161(50) ack 1 win 257
15:30:30.366527 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 161 win 257
15:30:30.876196 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 161:211(50) ack 1 win 257
15:30:30.876207 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 211 win 257
15:30:31.376282 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 211:261(50) ack 1 win 257
15:30:31.376290 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 261 win 257
15:30:31.885619 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 261:311(50) ack 1 win 257
15:30:31.885631 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 311 win 257
15:30:32.385705 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 311:361(50) ack 1 win 257
15:30:32.385715 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 361 win 257
15:30:32.895249 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 361:411(50) ack 1 win 257
15:30:32.895266 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 411 win 257
15:30:33.395341 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 411:461(50) ack 1 win 257
15:30:33.395351 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 461 win 257
15:30:33.918085 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 461:511(50) ack 1 win 257
15:30:33.918096 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 511 win 257
15:30:34.418163 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 511:561(50) ack 1 win 257
15:30:34.418172 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 561 win 257
15:30:34.927685 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 561:611(50) ack 1 win 257
15:30:34.927698 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 611 win 257
15:30:35.427757 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 611:661(50) ack 1 win 257
15:30:35.427766 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 661 win 257
15:30:35.937359 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 661:711(50) ack 1 win 257
15:30:35.937376 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 711 win 257
15:30:36.437451 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 711:761(50) ack 1 win 257
15:30:36.437464 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 761 win 257
15:30:36.947022 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 761:811(50) ack 1 win 257
15:30:36.947039 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 811 win 257
15:30:37.447135 IP 127.0.0.1.56554 > 127.0.0.1.12000: P 811:861(50) ack 1 win 257
15:30:37.447203 IP 127.0.0.1.12000 > 127.0.0.1.56554: . ack 861 win 257
15:30:41.448171 IP 127.0.0.1.12000 > 127.0.0.1.56554: F 1:1(0) ack 861 win 257
15:30:41.448189 IP 127.0.0.1.56554 > 127.0.0.1.12000: R 33789629:33789629(0) win 0
Source of program :
/*
* small producer/consumer program.
* setup a listener on 127.0.0.1:12000
* Forks a child
* child connect to 127.0.0.1, and sends 10 bytes on this tcp socket every 100 ms
* Father accepts connection, and read all data
*/
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <unistd.h>
#include <stdio.h>
#include <time.h>
#include <sys/poll.h>
int port = 12000;
char buffer[4096];
int main(int argc, char *argv[])
{
int lfd = socket(AF_INET, SOCK_STREAM, 0);
struct sockaddr_in socket_address;
time_t t0, t1;
int on = 1, sfd, res;
unsigned long total = 0;
socklen_t alen = sizeof(socket_address);
pid_t pid;
time(&t0);
socket_address.sin_family = AF_INET;
socket_address.sin_port = htons(port);
socket_address.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
if (lfd == -1) {
perror("socket()");
return 1;
}
setsockopt(lfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(int));
if (bind(lfd, (struct sockaddr *)&socket_address, sizeof(socket_address)) == -1) {
perror("bind");
close(lfd);
return 1;
}
if (listen(lfd, 1) == -1) {
perror("listen()");
close(lfd);
return 1;
}
pid = fork();
if (pid == 0) {
int i, cfd = socket(AF_INET, SOCK_STREAM, 0);
close(lfd);
if (connect(cfd, (struct sockaddr *)&socket_address, sizeof(socket_address)) == -1) {
perror("connect()");
return 1;
}
for (i = 0 ; ;) {
res = write(cfd, "blablabla\n", 10);
if (res > 0) total += res;
else if (res == -1) {
perror("write()");
break;
} else break;
usleep(100000);
if (++i == 10) {
system("ss -on dst 127.0.0.1:12000");
i = 0;
}
}
time(&t1);
fprintf(stderr, "wrote %lu bytes but was interrupted after %g seconds\n", total, difftime(t1, t0));
system("ss -on | grep 127.0.0.1:12000");
close(cfd);
return 0;
}
sfd = accept(lfd, (struct sockaddr *)&socket_address, &alen);
if (sfd == -1) {
perror("accept");
return 1;
}
close(lfd);
while (1) {
struct pollfd pfd[1];
pfd[0].fd = sfd;
pfd[0].events = POLLIN;
if (poll(pfd, 1, 4000) == 0) {
fprintf(stderr, "Exiting read() because no data available (4000 ms timeout).\n");
break;
}
res = read(sfd, buffer, sizeof(buffer));
if (res > 0) total += res;
else if (res == 0) break;
else perror("read()");
}
fprintf(stderr, "read %lu bytes\n", total);
close(sfd);
return 0;
}
----------------------------------------
Signed-off-by: David S. Miller <davem@davemloft.net>
Remove redundant checks when setting eff_sacks and make the number of SACKs a
compile time constant. Now that the options code knows how many SACK blocks can
fit in the header, we don't need to have the SACK code guessing at it.
Signed-off-by: Adam Langley <agl@imperialviolet.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Some of the metrics (RTT, RTTVAR and RTAX_RTO_MIN) are stored in
kernel units (jiffies) and this leaks out through the netlink API to
user space where the units for jiffies are unknown.
This patches changes the kernel to convert to/from milliseconds. This
changes the ABI, but milliseconds seemed like the most natural unit
for these parameters. Values available via syscall in
/proc/net/rt_cache and netlink will be in milliseconds.
Signed-off-by: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
These places have a tcp_sock, but we'd prefer the sock itself to
get net from it. Fortunately, tcp_sk macro is just a type cast, so
this replace is really cheap.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Same as before - the sock is always there to get the net from,
but there are also some places with the net already saved on
the stack.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
There are some places in TCP that select one MIB index to
bump snmp statistics like this:
if (<something>)
NET_INC_STATS_BH(<some_id>);
else if (<something_else>)
NET_INC_STATS_BH(<some_other_id>);
...
else
NET_INC_STATS_BH(<default_id>);
or in a more tricky but still similar way.
On the other hand, this NET_INC_STATS_BH is a camouflaged
increment of percpu variable, which is not that small.
Factoring those cases out de-bloats 235 bytes on non-preemptible
i386 config and drives parts of the code into 80 columns.
add/remove: 0/0 grow/shrink: 0/7 up/down: 0/-235 (-235)
function old new delta
tcp_fastretrans_alert 1437 1424 -13
tcp_dsack_set 137 124 -13
tcp_xmit_retransmit_queue 690 676 -14
tcp_try_undo_recovery 283 265 -18
tcp_sacktag_write_queue 1550 1515 -35
tcp_update_reordering 162 106 -56
tcp_retransmit_timer 990 904 -86
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This reverts two changesets, ec3c0982a2
("[TCP]: TCP_DEFER_ACCEPT updates - process as established") and
the follow-on bug fix 9ae27e0adb
("tcp: Fix slab corruption with ipv6 and tcp6fuzz").
This change causes several problems, first reported by Ingo Molnar
as a distcc-over-loopback regression where connections were getting
stuck.
Ilpo Järvinen first spotted the locking problems. The new function
added by this code, tcp_defer_accept_check(), only has the
child socket locked, yet it is modifying state of the parent
listening socket.
Fixing that is non-trivial at best, because we can't simply just grab
the parent listening socket lock at this point, because it would
create an ABBA deadlock. The normal ordering is parent listening
socket --> child socket, but this code path would require the
reverse lock ordering.
Next is a problem noticed by Vitaliy Gusev, he noted:
----------------------------------------
>--- a/net/ipv4/tcp_timer.c
>+++ b/net/ipv4/tcp_timer.c
>@@ -481,6 +481,11 @@ static void tcp_keepalive_timer (unsigned long data)
> goto death;
> }
>
>+ if (tp->defer_tcp_accept.request && sk->sk_state == TCP_ESTABLISHED) {
>+ tcp_send_active_reset(sk, GFP_ATOMIC);
>+ goto death;
Here socket sk is not attached to listening socket's request queue. tcp_done()
will not call inet_csk_destroy_sock() (and tcp_v4_destroy_sock() which should
release this sk) as socket is not DEAD. Therefore socket sk will be lost for
freeing.
----------------------------------------
Finally, Alexey Kuznetsov argues that there might not even be any
real value or advantage to these new semantics even if we fix all
of the bugs:
----------------------------------------
Hiding from accept() sockets with only out-of-order data only
is the only thing which is impossible with old approach. Is this really
so valuable? My opinion: no, this is nothing but a new loophole
to consume memory without control.
----------------------------------------
So revert this thing for now.
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch removes CVS keywords that weren't updated for a long time
from comments.
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This bug is able to corrupt fackets_out in very rare cases.
In order for this to cause corruption:
1) DSACK in the middle of previous SACK block must be generated.
2) In order to take that particular branch, part or all of the
DSACKed segment must already be SACKed so that we have that
in cache in the first place.
3) The new info must be top enough so that fackets_out will be
updated on this iteration.
...then fack_count is updated while skb wasn't, then we walk again
that particular segment thus updating fack_count twice for
a single skb and finally that value is assigned to fackets_out
by tcp_sacktag_one.
It is safe to call tcp_sacktag_one just once for a segment (at
DSACK), no need to call again for plain SACK.
Potential problem of the miscount are limited to premature entry
to recovery and to inflated reordering metric (which could even
cancel each other out in the most the luckiest scenarios :-)).
Both are quite insignificant in worst case too and there exists
also code to reset them (fackets_out once sacked_out becomes zero
and reordering metric on RTO).
This has been reported by a number of people, because it occurred
quite rarely, it has been very evasive. Andy Furniss was able to
get it to occur couple of times so that a bit more info was
collected about the problem using a debug patch, though it still
required lot of checking around. Thanks also to others who have
tried to help here.
This is listed as Bugzilla #10346. The bug was introduced by
me in commit 68f8353b48 ([TCP]: Rewrite SACK block processing &
sack_recv_cache use), I probably thought back then that there's
need to scan that entry twice or didn't dare to make it go
through it just once there. Going through twice would have
required restoring fack_count after the walk but as noted above,
I chose to drop the additional walk step altogether here.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
It is possible that this skip path causes TCP to end up into an
invalid state where ca_state was left to CA_Open while some
segments already came into sacked_out. If next valid ACK doesn't
contain new SACK information TCP fails to enter into
tcp_fastretrans_alert(). Thus at least high_seq is set
incorrectly to a too high seqno because some new data segments
could be sent in between (and also, limited transmit is not
being correctly invoked there). Reordering in both directions
can easily cause this situation to occur.
I guess we would want to use tcp_moderate_cwnd(tp) there as well
as it may be possible to use this to trigger oversized burst to
network by sending an old ACK with huge amount of SACK info, but
I'm a bit unsure about its effects (mainly to FlightSize), so to
be on the safe side I just currently fixed it minimally to keep
TCP's state consistent (obviously, such nasty ACKs have been
possible this far). Though it seems that FlightSize is already
underestimated by some amount, so probably on the long term we
might want to trigger recovery there too, if appropriate, to make
FlightSize calculation to resemble reality at the time when the
losses where discovered (but such change scares me too much now
and requires some more thinking anyway how to do that as it
likely involves some code shuffling).
This bug was found by Brian Vowell while running my TCP debug
patch to find cause of another TCP issue (fackets_out
miscount).
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
If receiver consumes segments successfully only in-order, FRTO
fallback to conventional recovery produces RTO loop because
FRTO's forward transmissions will always get dropped and need to
be resent, yet by default they're not marked as lost (which are
the only segments we will retransmit in CA_Loss).
Price to pay about this is occassionally unnecessarily
retransmitting the forward transmission(s). SACK blocks help
a bit to avoid this, so it's mainly a concern for NewReno case
though SACK is not fully immune either.
This change has a side-effect of fixing SACKFRTO problem where
it didn't have snd_nxt of the RTO time available anymore when
fallback become necessary (this problem would have only occured
when RTO would occur for two or more segments and ECE arrives
in step 3; no need to figure out how to fix that unless the
TODO item of selective behavior is considered in future).
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Reported-by: Damon L. Chesser <damon@damtek.com>
Tested-by: Damon L. Chesser <damon@damtek.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
It seems that commit 009a2e3e4e ("[TCP] FRTO: Improve
interoperability with other undo_marker users") run into
another land-mine which caused fallback to conventional
recovery to break:
1. Cumulative ACK arrives after FRTO retransmission
2. tcp_try_to_open sees zero retrans_out, clears retrans_stamp
which should be kept like in CA_Loss state it would be
3. undo_marker change allowed tcp_packet_delayed to return
true because of the cleared retrans_stamp once FRTO is
terminated causing LossUndo to occur, which means all loss
markings FRTO made are reverted.
This means that the conventional recovery basically recovered
one loss per RTT, which is not that efficient. It was quite
unobvious that the undo_marker change broken something like
this, I had a quite long session to track it down because of
the non-intuitiviness of the bug (luckily I had a trivial
reproducer at hand and I was also able to learn to use kprobes
in the process as well :-)).
This together with the NewReno+FRTO fix and FRTO in-order
workaround this fixes Damon's problems, this and the first
mentioned are enough to fix Bugzilla #10063.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Reported-by: Damon L. Chesser <damon@damtek.com>
Tested-by: Damon L. Chesser <damon@damtek.com>
Tested-by: Sebastian Hyrwall <zibbe@cisko.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Note: there's actually another bug in FRTO's SACK variant, which
is the causing failure in NewReno case because of the error
that's fixed here. I'll fix the SACK case separately (it's
a separate bug really, though related, but in order to fix that
I need to audit tp->snd_nxt usage a bit).
There were two places where SACK variant of FRTO is getting
incorrectly used even if SACK wasn't negotiated by the TCP flow.
This leads to incorrect setting of frto_highmark with NewReno
if a previous recovery was interrupted by another RTO.
An eventual fallback to conventional recovery then incorrectly
considers one or couple of segments as forward transmissions
though they weren't, which then are not LOST marked during
fallback making them "non-retransmittable" until the next RTO.
In a bad case, those segments are really lost and are the only
one left in the window. Thus TCP needs another RTO to continue.
The next FRTO, however, could again repeat the same events
making the progress of the TCP flow extremely slow.
In order for these events to occur at all, FRTO must occur
again in FRTOs step 3 while the key segments must be lost as
well, which is not too likely in practice. It seems to most
frequently with some small devices such as network printers
that *seem* to accept TCP segments only in-order. In cases
were key segments weren't lost, things get automatically
resolved because those wrongly marked segments don't need to be
retransmitted in order to continue.
I found a reproducer after digging up relevant reports (few
reports in total, none at netdev or lkml I know of), some
cases seemed to indicate middlebox issues which seems now
to be a false assumption some people had made. Bugzilla
#10063 _might_ be related. Damon L. Chesser <damon@damtek.com>
had a reproducable case and was kind enough to tcpdump it
for me. With the tcpdump log it was quite trivial to figure
out.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
There are functions to refer to the value of dst->metric[THE_METRIC-1]
directly without use of a inline function "dst_metric" defined in
net/dst.h.
The following patch changes them to use the inline function
consistently.
Signed-off-by: Satoru SATOH <satoru.satoh@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
From: Evgeniy Polyakov <johnpol@2ka.mipt.ru>
This fixes a regression added by ec3c0982a2
("[TCP]: TCP_DEFER_ACCEPT updates - process as established")
tcp_v6_do_rcv()->tcp_rcv_established(), the latter goes to step5, where
eventually skb can be freed via tcp_data_queue() (drop: label), then if
check for tcp_defer_accept_check() returns true and thus
tcp_rcv_established() returns -1, which forces tcp_v6_do_rcv() to jump
to reset: label, which in turn will pass through discard: label and free
the same skb again.
Tested by Eric Sesterhenn.
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-By: Patrick McManus <mcmanus@ducksong.com>
Returns non-zero if tp->out_of_order_queue was seen non-empty.
This allows tcp_try_rmem_schedule() to return early.
Signed-off-by: Vitaliy Gusev <vgusev@openvz.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
tcp_prune_queue() doesn't prune an out-of-order queue at all.
Therefore sk_rmem_schedule() can fail but the out-of-order queue isn't
pruned . This can lead to tcp deadlock state if the next two
conditions are held:
1. There are a sequence hole between last received in
order segment and segments enqueued to the out-of-order queue.
2. Size of all segments in the out-of-order queue is more than tcp_mem[2].
Signed-off-by: Vitaliy Gusev <vgusev@openvz.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This expresses __skb_append in terms of __skb_queue_after, exploiting that
__skb_append(old, new, list) = __skb_queue_after(list, old, new).
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
MTU probe can cause some remedies for FRTO because the normal
packet ordering may be violated allowing FRTO to make a wrong
decision (it might not be that serious threat for anything
though). Thus it's safer to not run FRTO while MTU probe is
underway.
It seems that the basic FRTO variant should also look for an
skb at probe_seq.start to check if that's retransmitted one
but I didn't implement it now (plain seqno in window check
isn't robust against wraparounds).
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
This fixes Bugzilla #10384
tcp_simple_retransmit does L increment without any checking
whatsoever for overflowing S+L when Reno is in use.
The simplest scenario I can currently think of is rather
complex in practice (there might be some more straightforward
cases though). Ie., if mss is reduced during mtu probing, it
may end up marking everything lost and if some duplicate ACKs
arrived prior to that sacked_out will be non-zero as well,
leading to S+L > packets_out, tcp_clean_rtx_queue on the next
cumulative ACK or tcp_fastretrans_alert on the next duplicate
ACK will fix the S counter.
More straightforward (but questionable) solution would be to
just call tcp_reset_reno_sack() in tcp_simple_retransmit but
it would negatively impact the probe's retransmission, ie.,
the retransmissions would not occur if some duplicate ACKs
had arrived.
So I had to add reno sacked_out reseting to CA_Loss state
when the first cumulative ACK arrives (this stale sacked_out
might actually be the explanation for the reports of left_out
overflows in kernel prior to 2.6.23 and S+L overflow reports
of 2.6.24). However, this alone won't be enough to fix kernel
before 2.6.24 because it is building on top of the commit
1b6d427bb7 ([TCP]: Reduce sacked_out with reno when purging
write_queue) to keep the sacked_out from overflowing.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Reported-by: Alessandro Suardi <alessandro.suardi@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fixes a long-standing bug which makes NewReno recovery crippled.
With GSO the whole head skb was marked as LOST which is in
violation of NewReno procedure that only wants to mark one packet
and ended up breaking our TCP code by causing counter overflow
because our code was built on top of assumption about valid
NewReno procedure. This manifested as triggering a WARN_ON for
the overflow in a number of places.
It seems relatively safe alternative to just do nothing if
tcp_fragment fails due to oom because another duplicate ACK is
likely to be received soon and the fragmentation will be retried.
Special thanks goes to Soeren Sonnenburg <kernel@nn7.de> who was
lucky enough to be able to reproduce this so that the warning
for the overflow was hit. It's not as easy task as it seems even
if this bug happens quite often because the amount of outstanding
data is pretty significant for the mismarkings to lead to an
overflow.
Because it's very late in 2.6.25-rc cycle (if this even makes in
time), I didn't want to touch anything with SACK enabled here.
Fragmenting might be useful for it as well but it's more or less
a policy decision rather than mandatory fix. Thus there's no need
to rush and we can postpone considering tcp_fragment with SACK
for 2.6.26.
In 2.6.24 and earlier, this very same bug existed but the effect
is slightly different because of a small changes in the if
conditions that fit to the patch's context. With them nothing
got lost marker and thus no retransmissions happened.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
The fast retransmission can be forced locally to the rfc3517
branch in tcp_update_scoreboard instead of making such fragile
constructs deeper in tcp_mark_head_lost.
This is necessary for the next patch which must not have
loopholes for cnt > packets check. As one can notice,
readability got some improvements too because of this :-).
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Change TCP_DEFER_ACCEPT implementation so that it transitions a
connection to ESTABLISHED after handshake is complete instead of
leaving it in SYN-RECV until some data arrvies. Place connection in
accept queue when first data packet arrives from slow path.
Benefits:
- established connection is now reset if it never makes it
to the accept queue
- diagnostic state of established matches with the packet traces
showing completed handshake
- TCP_DEFER_ACCEPT timeouts are expressed in seconds and can now be
enforced with reasonable accuracy instead of rounding up to next
exponential back-off of syn-ack retry.
Signed-off-by: Patrick McManus <mcmanus@ducksong.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
__FUNCTION__ is gcc-specific, use __func__
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Updated to incorporate Eric's suggestion of using a per cpu buffer
rather than allocating on the stack. Just a two line change, but will
resend in it's entirety.
Signed-off-by: Glenn Griffin <ggriffin.kernel@gmail.com>
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
It makes fackets_out to grow too slowly compared with the
real write queue.
This shouldn't cause those BUG_TRAP(packets <= tp->packets_out)
to trigger but how knows how such inconsistent fackets_out
affects here and there around TCP when everything is nowadays
assuming accurate fackets_out. So lets see if this silences
them all.
Reported by Guillaume Chazarain <guichaz@gmail.com>.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
NewReno should add cnt per skb (as with FACK) instead of depending on
SACKED_ACKED bits which won't be set with it at all. Effectively,
NewReno should always exists after the first iteration anyway (or
immediately if there's already head in lost_out.
This was fixed earlier in net-2.6.25 but got reverted among other
stuff and I didn't notice that this is still necessary (actually
wasn't even considering this case while trying to figure out the
reports because I lived with different kind of code than it in reality
was).
This should solve the WARN_ONs in TCP code that as a result of this
triggered multiple times in every place we check for this invariant.
Special thanks to Dave Young <hidave.darkstar@gmail.com> and Krishna
Kumar2 <krkumar2@in.ibm.com> for trying with my debug patches.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Tested-by: Dave Young <hidave.darkstar@gmail.com>
Tested-by: Krishna Kumar2 <krkumar2@in.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Removed case indentation level & combined some nested ifs, mostly
within 80 lines now. This is a leftover from indent patch, it
just had to be done manually to avoid messing it up completely.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
These were manually selected from indent's results which as is
are too noisy to be of any use without human reason. In addition,
some extra newlines between function and its comment were removed
too.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
The snd_up check should be enough. I suspect this has been
there to provide a minor optimization in clean_rtx_queue which
used to have a small if (!->sacked) block which could skip
snd_up check among the other work.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
SACK reneging can be precalculated to a FLAG in clean_rtx_queue
which has the right skb looked up. This will help a bit in
future because skb->sacked access will be changed eventually,
changing it already won't hurt any.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Earlier resolution for NewReno's sacked_out should now keep
it small enough for this to become invariant-like check.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch introduces new memory accounting functions for each network
protocol. Most of them are renamed from memory accounting functions
for stream protocols. At the same time, some stream memory accounting
functions are removed since other functions do same thing.
Renaming:
sk_stream_free_skb() -> sk_wmem_free_skb()
__sk_stream_mem_reclaim() -> __sk_mem_reclaim()
sk_stream_mem_reclaim() -> sk_mem_reclaim()
sk_stream_mem_schedule -> __sk_mem_schedule()
sk_stream_pages() -> sk_mem_pages()
sk_stream_rmem_schedule() -> sk_rmem_schedule()
sk_stream_wmem_schedule() -> sk_wmem_schedule()
sk_charge_skb() -> sk_mem_charge()
Removeing
sk_stream_rfree(): consolidates into sock_rfree()
sk_stream_set_owner_r(): consolidates into skb_set_owner_r()
sk_stream_mem_schedule()
The following functions are added.
sk_has_account(): check if the protocol supports accounting
sk_mem_uncharge(): do the opposite of sk_mem_charge()
In addition, to achieve consolidation, updating sk_wmem_queued is
removed from sk_mem_charge().
Next, to consolidate memory accounting functions, this patch adds
memory accounting calls to network core functions. Moreover, present
memory accounting call is renamed to new accounting call.
Finally we replace present memory accounting calls with new interface
in TCP and SCTP.
Signed-off-by: Takahiro Yasui <tyasui@redhat.com>
Signed-off-by: Hideo Aoki <haoki@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While checking Gavin's patch I noticed that the returned seq_rtt
is not used by the caller.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
tcp_win_from_space() being signed, compiler might emit an integer divide
to compute tcp_win_from_space()/2 .
Using right shifts is OK here and less expensive.
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pointing to the next skb is necessary to avoid referencing
already SACKed skbs which will soon be on a separate list.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
Bogus seqno compares just mislead, the code is identical for
both sides of the seqno compare (and was even executed just
once because of return in between).
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
To get there, highest_sack must have advanced. When it advances,
a new skb is SACKed, which already sets that FLAG. Besides, the
original purpose of it has puzzled me, never understood why
LOST bit setting of retransmitted skb is marked with
FLAG_DATA_SACKED.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
Usually those skbs will have L set, not counting them as lost
retransmissions is misleading.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
1) Skip condition used to be wrong way around which made SACK
processing very broken, missed many blocks because of that.
2) Use highest_sack advancement only if some skbs are already
sacked because otherwise tcp_write_queue_next may move things
too far (occurs mainly with GSO). The other similar advancement
is not problem because highest_sack was previosly put to point
a sacked skb.
These problems were located because of problem report from Matt
Mathis <mathis@psc.edu>.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
The sock_wake_async() performs a bit different actions
depending on "how" argument. Unfortunately this argument
ony has numerical magic values.
I propose to give names to their constants to help people
reading this function callers understand what's going on
without looking into this function all the time.
I suppose this is 2.6.25 material, but if it's not (or the
naming seems poor/bad/awful), I can rework it against the
current net-2.6 tree.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
Previously one of the in-block skip branches was missing it.
Also, drop it from tail-fully-processed case because the next
iteration will do exactly the same thing, i.e., process the
SACK block that contains the DSACK information.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Key points of this patch are:
- In case new SACK information is advance only type, no skb
processing below previously discovered highest point is done
- Optimize cases below highest point too since there's no need
to always go up to highest point (which is very likely still
present in that SACK), this is not entirely true though
because I'm dropping the fastpath_skb_hint which could
previously optimize those cases even better. Whether that's
significant, I'm not too sure.
Currently it will provide skipping by walking. Combined with
RB-tree, all skipping would become fast too regardless of window
size (can be done incrementally later).
Previously a number of cases in TCP SACK processing fails to
take advantage of costly stored information in sack_recv_cache,
most importantly, expected events such as cumulative ACK and new
hole ACKs. Processing on such ACKs result in rather long walks
building up latencies (which easily gets nasty when window is
huge). Those latencies are often completely unnecessary
compared with the amount of _new_ information received, usually
for cumulative ACK there's no new information at all, yet TCP
walks whole queue unnecessary potentially taking a number of
costly cache misses on the way, etc.!
Since the inclusion of highest_sack, there's a lot information
that is very likely redundant (SACK fastpath hint stuff,
fackets_out, highest_sack), though there's no ultimate guarantee
that they'll remain the same whole the time (in all unearthly
scenarios). Take advantage of this knowledge here and drop
fastpath hint and use direct access to highest SACKed skb as
a replacement.
Effectively "special cased" fastpath is dropped. This change
adds some complexity to introduce better coveraged "fastpath",
though the added complexity should make TCP behave more cache
friendly.
The current ACK's SACK blocks are compared against each cached
block individially and only ranges that are new are then scanned
by the high constant walk. For other parts of write queue, even
when in previously known part of the SACK blocks, a faster skip
function is used (if necessary at all). In addition, whenever
possible, TCP fast-forwards to highest_sack skb that was made
available by an earlier patch. In typical case, no other things
but this fast-forward and mandatory markings after that occur
making the access pattern quite similar to the former fastpath
"special case".
DSACKs are special case that must always be walked.
The local to recv_sack_cache copying could be more intelligent
w.r.t DSACKs which are likely to be there only once but that
is left to a separate patch.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Worker function that implements the main logic of
the inner-most loop of tcp_sacktag_write_queue().
Idea was originally presented by David S. Miller.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Highest_sack_end_seq is no longer calculated in the loop,
thus it can be pushed to the worker function altogether
making that function independent of the sacktag.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
It is going to replace the sack fastpath hint quite soon... :-)
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Many assumptions that are true when no reordering or other
strange events happen are not a part of the RFC3517. FACK
implementation is based on such assumptions. Previously (before
the rewrite) the non-FACK SACK was basically doing fast rexmit
and then it times out all skbs when first cumulative ACK arrives,
which cannot really be called SACK based recovery :-).
RFC3517 SACK disables these things:
- Per SKB timeouts & head timeout entry to recovery
- Marking at least one skb while in recovery (RFC3517 does this
only for the fast retransmission but not for the other skbs
when cumulative ACKs arrive in the recovery)
- Sacktag's loss detection flavors B and C (see comment before
tcp_sacktag_write_queue)
This does not implement the "last resort" rule 3 of NextSeg, which
allows retransmissions also when not enough SACK blocks have yet
arrived above a segment for IsLost to return true [RFC3517].
The implementation differs from RFC3517 in these points:
- Rate-halving is used instead of FlightSize / 2
- Instead of using dupACKs to trigger the recovery, the number
of SACK blocks is used as FACK does with SACK blocks+holes
(which provides more accurate number). It seems that the
difference can affect negatively only if the receiver does not
generate SACK blocks at all even though it claimed to be
SACK-capable.
- Dupthresh is not a constant one. Dynamical adjustments include
both holes and sacked segments (equal to what FACK has) due to
complexity involved in determining the number sacked blocks
between highest_sack and the reordered segment. Thus it's will
be an over-estimate.
Implementation note:
tcp_clean_rtx_queue doesn't need a lost_cnt tweak because head
skb at that point cannot be SACKED_ACKED (nor would such
situation last for long enough to cause problems).
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
This implements more accurately what is stated in sacktag's
overall comment:
"Both of these heuristics are not used in Loss state, when
we cannot account for retransmits accurately."
When CA_Loss state is entered, the state changer ensures that
undo_marker is only set if no TCPCB_RETRANS skbs were found,
thus having non-zero undo_marker in CA_Loss basically tells
that the R-bits still accurately reflect the current state
of TCP.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
All intermediate conditions include it already, make them
simpler as well.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
When a delayed ACK representing two packets arrives, there are two RTT
samples available, one for each packet. The first (in order of seq
number) will be artificially long due to the delay waiting for the
second packet, the second will trigger the ACK and so will not itself
be delayed.
According to rfc1323, the SRTT used for RTO calculation should use the
first rtt, so receivers echo the timestamp from the first packet in
the delayed ack. For congestion control however, it seems measuring
delayed ack delay is not desirable as it varies independently of
congestion.
The patch below causes seq_rtt and last_ackt to be updated with any
available later packet rtts which should have less (and hopefully
zero) delack delay. The rtt value then gets passed to
ca_ops->pkts_acked().
Where TCP_CONG_RTT_STAMP was set, effort was made to supress RTTs from
within a TSO chunk (!fully_acked), using only the final ACK (which
includes any TSO delay) to generate RTTs. This patch removes these
checks so RTTs are passed for each ACK to ca_ops->pkts_acked().
For non-delay based congestion control (cubic, h-tcp), rtt is
sometimes used for rtt-scaling. In shortening the RTT, this may make
them a little less aggressive. Delay-based schemes (eg vegas, veno,
illinois) should get a cleaner, more accurate congestion signal,
particularly for small cwnds. The congestion control module can
potentially also filter out bad RTTs due to the delayed ack alarm by
looking at the associated cnt which (where delayed acking is in use)
should probably be 1 if the alarm went off or greater if the ACK was
triggered by a packet.
Signed-off-by: Gavin McCullagh <gavin.mccullagh@nuim.ie>
Acked-by: Ilpo Jrvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
tcp_input_metrics() refers to the built-time constant TCP_RTO_MIN
regardless of configured minimum RTO with iproute2.
Signed-off-by: Satoru SATOH <satoru.satoh@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The previous location is after sacktag processing, which affects
counters tcp_packets_in_flight depends on. This may manifest as
wrong behavior if new SACK blocks are present and all is clear
for call to tcp_cong_avoid, which in the case of
tcp_reno_cong_avoid bails out early because it thinks that
TCP is not limited by cwnd.
Signed-off-by: Ilpo Jrvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Though there's little need for everything that tcp_may_send_now
does (actually, even the state had to be adjusted to pass some
checks FRTO does not want to occur), it's more robust to let it
make the decision if sending is allowed. State adjustments
needed:
- Make sure snd_cwnd limit is not hit in there
- Disable nagle (if necessary) through the frto_counter == 2
The result of check for frto_counter in argument to call for
tcp_enter_frto_loss can just be open coded, therefore there
isn't need to store the previous frto_counter past
tcp_may_send_now.
In addition, returns can then be combined.
Signed-off-by: Ilpo Jrvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
I broke this in commit 3de96471bd:
[TCP]: Wrap-safed reordering detection FRTO check
tcp_process_frto should always see a valid frto_highmark. An invalid
frto_highmark (zero) is very likely what ultimately caused a seqno
compare in tcp_frto_enter_loss to do the wrong leading to the LOST-bit
leak.
Having LOST-bits integry ensured like done after commit
23aeeec365:
[TCP] FRTO: Plug potential LOST-bit leak
won't hurt. It may still be useful in some other, possibly legimate,
scenario.
Reported by Chazarain Guillaume <guichaz@yahoo.fr>.
Signed-off-by: Ilpo Jrvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
NULL ptr can be returned from tcp_write_queue_head to cached_skb
and then assigned to skb if packets_out was zero. Without this,
system is vulnerable to a carefully crafted ACKs which obviously
is remotely triggerable.
Besides, there's very little that needs to be done in sacktag
if there weren't any packets outstanding, just skipping the rest
doesn't hurt.
Signed-off-by: Ilpo Jrvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
It might be possible that, in some extreme scenario that
I just cannot now construct in my mind, end_seq <=
frto_highmark check does not match causing the lost_out
and LOST bits become out-of-sync due to clearing and
recounting in the loop.
This may fix LOST-bit leak reported by Chazarain Guillaume
<guichaz@yahoo.fr>.
Signed-off-by: Ilpo Jrvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Otherwise TCP might violate packet ordering principles that FRTO
is based on. If conventional recovery path is chosen, this won't
be significant at all. In practice, any small enough value will
be sufficient to provide proper operation for FRTO, yet other
users of snd_cwnd might benefit from a "close enough" value.
FRTO's formula is now equal to what tcp_enter_cwr() uses.
FRTO used to check application limitedness a bit differently but
I changed that in commit 575ee7140d
and as a result checking for application limitedness became
completely non-existing.
Signed-off-by: Ilpo Jrvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
In case we run out of mem when fragmenting, the clearing of
FLAG_ONLY_ORIG_SACKED might get missed which then feeds FRTO
with false information. Move clearing outside skb processing
loop so that it will get executed even if the skb loop
terminates prematurely due to out-of-mem.
Besides, now the core of the loop truly deals with a single
skb only, which also enables creation a more self-contained
of tcp_sacktag_one later on.
In addition, small reorganization of if branches was made.
Signed-off-by: Ilpo Jrvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fixes subtle bug like the one with fastpath_cnt_hint happening
due to the way the GSO and hints interact. Because hints are not
reset when just a GSOed skb is partially ACKed, there's no
guarantee that the relevant part of the write queue is going to
be processed in sacktag at all (skbs below snd_una) because
fastpath hint can fast forward the entrypoint.
This was also on the way of future reductions in sacktag's skb
processing. Also future cleanups in sacktag can be made after
this (in 2.6.25).
This may make reordering update in tcp_try_undo_partial
redundant but I'm not too sure so I left it there.
Signed-off-by: Ilpo Jrvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Reordering detection fails to take account that the reordered
skb may have pcount larger than 1. In such case the lowest of
them had the largest reordering, the old formula used the
highest of them which is pcount - 1 packets less reordered.
Signed-off-by: Ilpo Jrvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Similar to commit 3eec0047d9, point of this is to avoid
skipping R-bit skbs.
Signed-off-by: Ilpo Jrvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
DSACK inside another SACK block were missed if start_seq of DSACK
was larger than SACK block's because sorting prioritizes full
processing of the SACK block before DSACK. After SACK block
sorting situation is like this:
SSSSSSSSS
D
SSSSSS
SSSSSSS
Because write_queue is walked in-order, when the first SACK block
has been processed, TCP is already past the skb for which the
DSACK arrived and we haven't taught it to backtrack (nor should
we), so TCP just continues processing by going to the next SACK
block after the DSACK (if any).
Whenever such DSACK is present, do an embedded checking during
the previous SACK block.
If the DSACK is below snd_una, there won't be overlapping SACK
block, and thus no problem in that case. Also if start_seq of
the DSACK is equal to the actual block, it will be processed
first.
Tested this by using netem to duplicate 15% of packets, and
by printing SACK block when found_dup_sack is true and the
selected skb in the dup_sack = 1 branch (if taken):
SACK block 0: 4344-5792 (relative to snd_una 2019137317)
SACK block 1: 4344-5792 (relative to snd_una 2019137317)
equal start seqnos => next_dup = 0, dup_sack = 1 won't occur...
SACK block 0: 5792-7240 (relative to snd_una 2019214061)
SACK block 1: 2896-7240 (relative to snd_una 2019214061)
DSACK skb match 5792-7240 (relative to snd_una)
...and next_dup = 1 case (after the not shown start_seq sort),
went to dup_sack = 1 branch.
Signed-off-by: Ilpo Jrvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
In the current net-2.6 kernel, handling FLAG_DSACKING_ACK is broken.
The flag is cleared to 1 just after FLAG_DSACKING_ACK is set.
if (found_dup_sack)
flag |= FLAG_DSACKING_ACK;
:
flag = 1;
To fix it, this patch introduces a part of the tcp_sacktag_state patch:
http://marc.info/?l=linux-netdev&m=119210560431519&w=2
Signed-off-by: Ryousei Takano <takano-ryousei@aist.go.jp>
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fix inconsistency of terms:
1) D-SACK
2) F-RTO
Signed-off-by: Ryousei Takano <takano-ryousei@aist.go.jp>
Signed-off-by: David S. Miller <davem@davemloft.net>
In some places, the result of skb_headroom() is compared to an unsigned
integer, and in others, the result is compared to a signed integer. Make
the comparisons consistent and correct.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Both high-sack detection and new lowest seq variables have
unnecessary zero special case which are now removed by setting
safe initial seqnos.
This also fixes problem which caused zero received_upto being
passed to tcp_mark_lost_retrans which confused after relations
within the marker loop causing incorrect TCPCB_SACKED_RETRANS
clearing. The problem was noticed because of a performance
report from TAKANO Ryousei <takano@axe-inc.co.jp>.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Acked-by: Ryousei Takano <takano-ryousei@aist.go.jp>
Signed-off-by: David S. Miller <davem@davemloft.net>