Commit Graph

1740 Commits

Author SHA1 Message Date
Paul Mackerras
3032341853 KVM: PPC: Book3S HV: Add one-reg interface to virtual PTCR register
This adds a one-reg register identifier which can be used to read and
set the virtual PTCR for the guest.  This register identifies the
address and size of the virtual partition table for the guest, which
contains information about the nested guests under this guest.

Migrating this value is the only extra requirement for migrating a
guest which has nested guests (assuming of course that the destination
host supports nested virtualization in the kvm-hv module).

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Paul Mackerras
f3c99f97a3 KVM: PPC: Book3S HV: Don't access HFSCR, LPIDR or LPCR when running nested
When running as a nested hypervisor, this avoids reading hypervisor
privileged registers (specifically HFSCR, LPIDR and LPCR) at startup;
instead reasonable default values are used.  This also avoids writing
LPIDR in the single-vcpu entry/exit path.

Also, this removes the check for CPU_FTR_HVMODE in kvmppc_mmu_hv_init()
since its only caller already checks this.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Suraj Jitindar Singh
9d0b048da7 KVM: PPC: Book3S HV: Invalidate TLB when nested vcpu moves physical cpu
This is only done at level 0, since only level 0 knows which physical
CPU a vcpu is running on.  This does for nested guests what L0 already
did for its own guests, which is to flush the TLB on a pCPU when it
goes to run a vCPU there, and there is another vCPU in the same VM
which previously ran on this pCPU and has now started to run on another
pCPU.  This is to handle the situation where the other vCPU touched
a mapping, moved to another pCPU and did a tlbiel (local-only tlbie)
on that new pCPU and thus left behind a stale TLB entry on this pCPU.

This introduces a limit on the the vcpu_token values used in the
H_ENTER_NESTED hcall -- they must now be less than NR_CPUS.

[paulus@ozlabs.org - made prev_cpu array be short[] to reduce
 memory consumption.]

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Paul Mackerras
690ed4cad8 KVM: PPC: Book3S HV: Use hypercalls for TLB invalidation when nested
This adds code to call the H_TLB_INVALIDATE hypercall when running as
a guest, in the cases where we need to invalidate TLBs (or other MMU
caches) as part of managing the mappings for a nested guest.  Calling
H_TLB_INVALIDATE lets the nested hypervisor inform the parent
hypervisor about changes to partition-scoped page tables or the
partition table without needing to do hypervisor-privileged tlbie
instructions.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Suraj Jitindar Singh
e3b6b46615 KVM: PPC: Book3S HV: Implement H_TLB_INVALIDATE hcall
When running a nested (L2) guest the guest (L1) hypervisor will use
the H_TLB_INVALIDATE hcall when it needs to change the partition
scoped page tables or the partition table which it manages.  It will
use this hcall in the situations where it would use a partition-scoped
tlbie instruction if it were running in hypervisor mode.

The H_TLB_INVALIDATE hcall can invalidate different scopes:

Invalidate TLB for a given target address:
- This invalidates a single L2 -> L1 pte
- We need to invalidate any L2 -> L0 shadow_pgtable ptes which map the L2
  address space which is being invalidated. This is because a single
  L2 -> L1 pte may have been mapped with more than one pte in the
  L2 -> L0 page tables.

Invalidate the entire TLB for a given LPID or for all LPIDs:
- Invalidate the entire shadow_pgtable for a given nested guest, or
  for all nested guests.

Invalidate the PWC (page walk cache) for a given LPID or for all LPIDs:
- We don't cache the PWC, so nothing to do.

Invalidate the entire TLB, PWC and partition table for a given/all LPIDs:
- Here we re-read the partition table entry and remove the nested state
  for any nested guest for which the first doubleword of the partition
  table entry is now zero.

The H_TLB_INVALIDATE hcall takes as parameters the tlbie instruction
word (of which only the RIC, PRS and R fields are used), the rS value
(giving the lpid, where required) and the rB value (giving the IS, AP
and EPN values).

[paulus@ozlabs.org - adapted to having the partition table in guest
memory, added the H_TLB_INVALIDATE implementation, removed tlbie
instruction emulation, reworded the commit message.]

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Suraj Jitindar Singh
8cf531ed48 KVM: PPC: Book3S HV: Introduce rmap to track nested guest mappings
When a host (L0) page which is mapped into a (L1) guest is in turn
mapped through to a nested (L2) guest we keep a reverse mapping (rmap)
so that these mappings can be retrieved later.

Whenever we create an entry in a shadow_pgtable for a nested guest we
create a corresponding rmap entry and add it to the list for the
L1 guest memslot at the index of the L1 guest page it maps. This means
at the L1 guest memslot we end up with lists of rmaps.

When we are notified of a host page being invalidated which has been
mapped through to a (L1) guest, we can then walk the rmap list for that
guest page, and find and invalidate all of the corresponding
shadow_pgtable entries.

In order to reduce memory consumption, we compress the information for
each rmap entry down to 52 bits -- 12 bits for the LPID and 40 bits
for the guest real page frame number -- which will fit in a single
unsigned long.  To avoid a scenario where a guest can trigger
unbounded memory allocations, we scan the list when adding an entry to
see if there is already an entry with the contents we need.  This can
occur, because we don't ever remove entries from the middle of a list.

A struct nested guest rmap is a list pointer and an rmap entry;
----------------
| next pointer |
----------------
| rmap entry   |
----------------

Thus the rmap pointer for each guest frame number in the memslot can be
either NULL, a single entry, or a pointer to a list of nested rmap entries.

gfn	 memslot rmap array
 	-------------------------
 0	| NULL			|	(no rmap entry)
 	-------------------------
 1	| single rmap entry	|	(rmap entry with low bit set)
 	-------------------------
 2	| list head pointer	|	(list of rmap entries)
 	-------------------------

The final entry always has the lowest bit set and is stored in the next
pointer of the last list entry, or as a single rmap entry.
With a list of rmap entries looking like;

-----------------	-----------------	-------------------------
| list head ptr	| ----> | next pointer	| ---->	| single rmap entry	|
-----------------	-----------------	-------------------------
			| rmap entry	|	| rmap entry		|
			-----------------	-------------------------

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Suraj Jitindar Singh
fd10be2573 KVM: PPC: Book3S HV: Handle page fault for a nested guest
Consider a normal (L1) guest running under the main hypervisor (L0),
and then a nested guest (L2) running under the L1 guest which is acting
as a nested hypervisor. L0 has page tables to map the address space for
L1 providing the translation from L1 real address -> L0 real address;

	L1
	|
	| (L1 -> L0)
	|
	----> L0

There are also page tables in L1 used to map the address space for L2
providing the translation from L2 real address -> L1 read address. Since
the hardware can only walk a single level of page table, we need to
maintain in L0 a "shadow_pgtable" for L2 which provides the translation
from L2 real address -> L0 real address. Which looks like;

	L2				L2
	|				|
	| (L2 -> L1)			|
	|				|
	----> L1			| (L2 -> L0)
	      |				|
	      | (L1 -> L0)		|
	      |				|
	      ----> L0			--------> L0

When a page fault occurs while running a nested (L2) guest we need to
insert a pte into this "shadow_pgtable" for the L2 -> L0 mapping. To
do this we need to:

1. Walk the pgtable in L1 memory to find the L2 -> L1 mapping, and
   provide a page fault to L1 if this mapping doesn't exist.
2. Use our L1 -> L0 pgtable to convert this L1 address to an L0 address,
   or try to insert a pte for that mapping if it doesn't exist.
3. Now we have a L2 -> L0 mapping, insert this into our shadow_pgtable

Once this mapping exists we can take rc faults when hardware is unable
to automatically set the reference and change bits in the pte. On these
we need to:

1. Check the rc bits on the L2 -> L1 pte match, and otherwise reflect
   the fault down to L1.
2. Set the rc bits in the L1 -> L0 pte which corresponds to the same
   host page.
3. Set the rc bits in the L2 -> L0 pte.

As we reuse a large number of functions in book3s_64_mmu_radix.c for
this we also needed to refactor a number of these functions to take
an lpid parameter so that the correct lpid is used for tlb invalidations.
The functionality however has remained the same.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Paul Mackerras
4bad77799f KVM: PPC: Book3S HV: Handle hypercalls correctly when nested
When we are running as a nested hypervisor, we use a hypercall to
enter the guest rather than code in book3s_hv_rmhandlers.S.  This means
that the hypercall handlers listed in hcall_real_table never get called.
There are some hypercalls that are handled there and not in
kvmppc_pseries_do_hcall(), which therefore won't get processed for
a nested guest.

To fix this, we add cases to kvmppc_pseries_do_hcall() to handle those
hypercalls, with the following exceptions:

- The HPT hypercalls (H_ENTER, H_REMOVE, etc.) are not handled because
  we only support radix mode for nested guests.

- H_CEDE has to be handled specially because the cede logic in
  kvmhv_run_single_vcpu assumes that it has been processed by the time
  that kvmhv_p9_guest_entry() returns.  Therefore we put a special
  case for H_CEDE in kvmhv_p9_guest_entry().

For the XICS hypercalls, if real-mode processing is enabled, then the
virtual-mode handlers assume that they are being called only to finish
up the operation.  Therefore we turn off the real-mode flag in the XICS
code when running as a nested hypervisor.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Paul Mackerras
f3c18e9342 KVM: PPC: Book3S HV: Use XICS hypercalls when running as a nested hypervisor
This adds code to call the H_IPI and H_EOI hypercalls when we are
running as a nested hypervisor (i.e. without the CPU_FTR_HVMODE cpu
feature) and we would otherwise access the XICS interrupt controller
directly or via an OPAL call.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Paul Mackerras
360cae3137 KVM: PPC: Book3S HV: Nested guest entry via hypercall
This adds a new hypercall, H_ENTER_NESTED, which is used by a nested
hypervisor to enter one of its nested guests.  The hypercall supplies
register values in two structs.  Those values are copied by the level 0
(L0) hypervisor (the one which is running in hypervisor mode) into the
vcpu struct of the L1 guest, and then the guest is run until an
interrupt or error occurs which needs to be reported to L1 via the
hypercall return value.

Currently this assumes that the L0 and L1 hypervisors are the same
endianness, and the structs passed as arguments are in native
endianness.  If they are of different endianness, the version number
check will fail and the hcall will be rejected.

Nested hypervisors do not support indep_threads_mode=N, so this adds
code to print a warning message if the administrator has set
indep_threads_mode=N, and treat it as Y.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Paul Mackerras
8e3f5fc104 KVM: PPC: Book3S HV: Framework and hcall stubs for nested virtualization
This starts the process of adding the code to support nested HV-style
virtualization.  It defines a new H_SET_PARTITION_TABLE hypercall which
a nested hypervisor can use to set the base address and size of a
partition table in its memory (analogous to the PTCR register).
On the host (level 0 hypervisor) side, the H_SET_PARTITION_TABLE
hypercall from the guest is handled by code that saves the virtual
PTCR value for the guest.

This also adds code for creating and destroying nested guests and for
reading the partition table entry for a nested guest from L1 memory.
Each nested guest has its own shadow LPID value, different in general
from the LPID value used by the nested hypervisor to refer to it.  The
shadow LPID value is allocated at nested guest creation time.

Nested hypervisor functionality is only available for a radix guest,
which therefore means a radix host on a POWER9 (or later) processor.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Paul Mackerras
f0f825f0e2 KVM: PPC: Book3S HV: Use kvmppc_unmap_pte() in kvm_unmap_radix()
kvmppc_unmap_pte() does a sequence of operations that are open-coded in
kvm_unmap_radix().  This extends kvmppc_unmap_pte() a little so that it
can be used by kvm_unmap_radix(), and makes kvm_unmap_radix() call it.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Suraj Jitindar Singh
04bae9d5b4 KVM: PPC: Book3S HV: Refactor radix page fault handler
The radix page fault handler accounts for all cases, including just
needing to insert a pte.  This breaks it up into separate functions for
the two main cases; setting rc and inserting a pte.

This allows us to make the setting of rc and inserting of a pte
generic for any pgtable, not specific to the one for this guest.

[paulus@ozlabs.org - reduced diffs from previous code]

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Suraj Jitindar Singh
9811c78e96 KVM: PPC: Book3S HV: Make kvmppc_mmu_radix_xlate process/partition table agnostic
kvmppc_mmu_radix_xlate() is used to translate an effective address
through the process tables. The process table and partition tables have
identical layout. Exploit this fact to make the kvmppc_mmu_radix_xlate()
function able to translate either an effective address through the
process tables or a guest real address through the partition tables.

[paulus@ozlabs.org - reduced diffs from previous code]

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Suraj Jitindar Singh
89329c0be8 KVM: PPC: Book3S HV: Clear partition table entry on vm teardown
When destroying a VM we return the LPID to the pool, however we never
zero the partition table entry. This is instead done when we reallocate
the LPID.

Zero the partition table entry on VM teardown before returning the LPID
to the pool. This means if we were running as a nested hypervisor the
real hypervisor could use this to determine when it can free resources.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Paul Mackerras
fd0944baad KVM: PPC: Use ccr field in pt_regs struct embedded in vcpu struct
When the 'regs' field was added to struct kvm_vcpu_arch, the code
was changed to use several of the fields inside regs (e.g., gpr, lr,
etc.) but not the ccr field, because the ccr field in struct pt_regs
is 64 bits on 64-bit platforms, but the cr field in kvm_vcpu_arch is
only 32 bits.  This changes the code to use the regs.ccr field
instead of cr, and changes the assembly code on 64-bit platforms to
use 64-bit loads and stores instead of 32-bit ones.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Paul Mackerras
9a94d3ee2d KVM: PPC: Book3S HV: Add a debugfs file to dump radix mappings
This adds a file called 'radix' in the debugfs directory for the
guest, which when read gives all of the valid leaf PTEs in the
partition-scoped radix tree for a radix guest, in human-readable
format.  It is analogous to the existing 'htab' file which dumps
the HPT entries for a HPT guest.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Paul Mackerras
32eb150aee KVM: PPC: Book3S HV: Handle hypervisor instruction faults better
Currently the code for handling hypervisor instruction page faults
passes 0 for the flags indicating the type of fault, which is OK in
the usual case that the page is not mapped in the partition-scoped
page tables.  However, there are other causes for hypervisor
instruction page faults, such as not being to update a reference
(R) or change (C) bit.  The cause is indicated in bits in HSRR1,
including a bit which indicates that the fault is due to not being
able to write to a page (for example to update an R or C bit).
Not handling these other kinds of faults correctly can lead to a
loop of continual faults without forward progress in the guest.

In order to handle these faults better, this patch constructs a
"DSISR-like" value from the bits which DSISR and SRR1 (for a HISI)
have in common, and passes it to kvmppc_book3s_hv_page_fault() so
that it knows what caused the fault.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Paul Mackerras
95a6432ce9 KVM: PPC: Book3S HV: Streamlined guest entry/exit path on P9 for radix guests
This creates an alternative guest entry/exit path which is used for
radix guests on POWER9 systems when we have indep_threads_mode=Y.  In
these circumstances there is exactly one vcpu per vcore and there is
no coordination required between vcpus or vcores; the vcpu can enter
the guest without needing to synchronize with anything else.

The new fast path is implemented almost entirely in C in book3s_hv.c
and runs with the MMU on until the guest is entered.  On guest exit
we use the existing path until the point where we are committed to
exiting the guest (as distinct from handling an interrupt in the
low-level code and returning to the guest) and we have pulled the
guest context from the XIVE.  At that point we check a flag in the
stack frame to see whether we came in via the old path and the new
path; if we came in via the new path then we go back to C code to do
the rest of the process of saving the guest context and restoring the
host context.

The C code is split into separate functions for handling the
OS-accessible state and the hypervisor state, with the idea that the
latter can be replaced by a hypercall when we implement nested
virtualization.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[mpe: Fix CONFIG_ALTIVEC=n build]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Paul Mackerras
53655ddd77 KVM: PPC: Book3S HV: Call kvmppc_handle_exit_hv() with vcore unlocked
Currently kvmppc_handle_exit_hv() is called with the vcore lock held
because it is called within a for_each_runnable_thread loop.
However, we already unlock the vcore within kvmppc_handle_exit_hv()
under certain circumstances, and this is safe because (a) any vcpus
that become runnable and are added to the runnable set by
kvmppc_run_vcpu() have their vcpu->arch.trap == 0 and can't actually
run in the guest (because the vcore state is VCORE_EXITING), and
(b) for_each_runnable_thread is safe against addition or removal
of vcpus from the runnable set.

Therefore, in order to simplify things for following patches, let's
drop the vcore lock in the for_each_runnable_thread loop, so
kvmppc_handle_exit_hv() gets called without the vcore lock held.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Paul Mackerras
7854f7545b KVM: PPC: Book3S: Rework TM save/restore code and make it C-callable
This adds a parameter to __kvmppc_save_tm and __kvmppc_restore_tm
which allows the caller to indicate whether it wants the nonvolatile
register state to be preserved across the call, as required by the C
calling conventions.  This parameter being non-zero also causes the
MSR bits that enable TM, FP, VMX and VSX to be preserved.  The
condition register and DSCR are now always preserved.

With this, kvmppc_save_tm_hv and kvmppc_restore_tm_hv can be called
from C code provided the 3rd parameter is non-zero.  So that these
functions can be called from modules, they now include code to set
the TOC pointer (r2) on entry, as they can call other built-in C
functions which will assume the TOC to have been set.

Also, the fake suspend code in kvmppc_save_tm_hv is modified here to
assume that treclaim in fake-suspend state does not modify any registers,
which is the case on POWER9.  This enables the code to be simplified
quite a bit.

_kvmppc_save_tm_pr and _kvmppc_restore_tm_pr become much simpler with
this change, since they now only need to save and restore TAR and pass
1 for the 3rd argument to __kvmppc_{save,restore}_tm.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Paul Mackerras
df709a296e KVM: PPC: Book3S HV: Simplify real-mode interrupt handling
This streamlines the first part of the code that handles a hypervisor
interrupt that occurred in the guest.  With this, all of the real-mode
handling that occurs is done before the "guest_exit_cont" label; once
we get to that label we are committed to exiting to host virtual mode.
Thus the machine check and HMI real-mode handling is moved before that
label.

Also, the code to handle external interrupts is moved out of line, as
is the code that calls kvmppc_realmode_hmi_handler().

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Paul Mackerras
41f4e631da KVM: PPC: Book3S HV: Extract PMU save/restore operations as C-callable functions
This pulls out the assembler code that is responsible for saving and
restoring the PMU state for the host and guest into separate functions
so they can be used from an alternate entry path.  The calling
convention is made compatible with C.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Paul Mackerras
f7035ce9f1 KVM: PPC: Book3S HV: Move interrupt delivery on guest entry to C code
This is based on a patch by Suraj Jitindar Singh.

This moves the code in book3s_hv_rmhandlers.S that generates an
external, decrementer or privileged doorbell interrupt just before
entering the guest to C code in book3s_hv_builtin.c.  This is to
make future maintenance and modification easier.  The algorithm
expressed in the C code is almost identical to the previous
algorithm.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Paul Mackerras
966eba9316 KVM: PPC: Book3S HV: Remove left-over code in XICS-on-XIVE emulation
This removes code that clears the external interrupt pending bit in
the pending_exceptions bitmap.  This is left over from an earlier
iteration of the code where this bit was set when an escalation
interrupt arrived in order to wake the vcpu from cede.  Currently
we set the vcpu->arch.irq_pending flag instead for this purpose.
Therefore there is no need to do anything with the pending_exceptions
bitmap.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Paul Mackerras
d24ea8a733 KVM: PPC: Book3S: Simplify external interrupt handling
Currently we use two bits in the vcpu pending_exceptions bitmap to
indicate that an external interrupt is pending for the guest, one
for "one-shot" interrupts that are cleared when delivered, and one
for interrupts that persist until cleared by an explicit action of
the OS (e.g. an acknowledge to an interrupt controller).  The
BOOK3S_IRQPRIO_EXTERNAL bit is used for one-shot interrupt requests
and BOOK3S_IRQPRIO_EXTERNAL_LEVEL is used for persisting interrupts.

In practice BOOK3S_IRQPRIO_EXTERNAL never gets used, because our
Book3S platforms generally, and pseries in particular, expect
external interrupt requests to persist until they are acknowledged
at the interrupt controller.  That combined with the confusion
introduced by having two bits for what is essentially the same thing
makes it attractive to simplify things by only using one bit.  This
patch does that.

With this patch there is only BOOK3S_IRQPRIO_EXTERNAL, and by default
it has the semantics of a persisting interrupt.  In order to avoid
breaking the ABI, we introduce a new "external_oneshot" flag which
preserves the behaviour of the KVM_INTERRUPT ioctl with the
KVM_INTERRUPT_SET argument.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Alexey Kardashevskiy
a3ac077b75 KVM: PPC: Remove redundand permission bits removal
The kvmppc_gpa_to_ua() helper itself takes care of the permission
bits in the TCE and yet every single caller removes them.

This changes semantics of kvmppc_gpa_to_ua() so it takes TCEs
(which are GPAs + TCE permission bits) to make the callers simpler.

This should cause no behavioural change.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Alexey Kardashevskiy
2691f0ff3d KVM: PPC: Propagate errors to the guest when failed instead of ignoring
At the moment if the PUT_TCE{_INDIRECT} handlers fail to update
the hardware tables, we print a warning once, clear the entry and
continue. This is so as at the time the assumption was that if
a VFIO device is hotplugged into the guest, and the userspace replays
virtual DMA mappings (i.e. TCEs) to the hardware tables and if this fails,
then there is nothing useful we can do about it.

However the assumption is not valid as these handlers are not called for
TCE replay (VFIO ioctl interface is used for that) and these handlers
are for new TCEs.

This returns an error to the guest if there is a request which cannot be
processed. By now the only possible failure must be H_TOO_HARD.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 16:04:27 +11:00
Alexey Kardashevskiy
42de7b9e21 KVM: PPC: Validate TCEs against preregistered memory page sizes
The userspace can request an arbitrary supported page size for a DMA
window and this works fine as long as the mapped memory is backed with
the pages of the same or bigger size; if this is not the case,
mm_iommu_ua_to_hpa{_rm}() fail and tables do not populated with
dangerously incorrect TCEs.

However since it is quite easy to misconfigure the KVM and we do not do
reverts to all changes made to TCE tables if an error happens in a middle,
we better do the acceptable page size validation before we even touch
the tables.

This enhances kvmppc_tce_validate() to check the hardware IOMMU page sizes
against the preregistered memory page sizes.

Since the new check uses real/virtual mode helpers, this renames
kvmppc_tce_validate() to kvmppc_rm_tce_validate() to handle the real mode
case and mirrors it for the virtual mode under the old name. The real
mode handler is not used for the virtual mode as:
1. it uses _lockless() list traversing primitives instead of RCU;
2. realmode's mm_iommu_ua_to_hpa_rm() uses vmalloc_to_phys() which
virtual mode does not have to use and since on POWER9+radix only virtual
mode handlers actually work, we do not want to slow down that path even
a bit.

This removes EXPORT_SYMBOL_GPL(kvmppc_tce_validate) as the validators
are static now.

From now on the attempts on mapping IOMMU pages bigger than allowed
will result in KVM exit.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[mpe: Fix KVM_HV=n build]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-09 15:45:15 +11:00
Alexey Kardashevskiy
f7960e299f KVM: PPC: Inform the userspace about TCE update failures
We return H_TOO_HARD from TCE update handlers when we think that
the next handler (realmode -> virtual mode -> user mode) has a chance to
handle the request; H_HARDWARE/H_CLOSED otherwise.

This changes the handlers to return H_TOO_HARD on every error giving
the userspace an opportunity to handle any request or at least log
them all.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-02 23:09:27 +10:00
Alexey Kardashevskiy
e199ad2bf5 KVM: PPC: Validate all tces before updating tables
The KVM TCE handlers are written in a way so they fail when either
something went horribly wrong or the userspace did some obvious mistake
such as passing a misaligned address.

We are going to enhance the TCE checker to fail on attempts to map bigger
IOMMU page than the underlying pinned memory so let's valitate TCE
beforehand.

This should cause no behavioral change.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-02 23:09:26 +10:00
Nicholas Piggin
71d29f43b6 KVM: PPC: Book3S HV: Don't use compound_order to determine host mapping size
THP paths can defer splitting compound pages until after the actual
remap and TLB flushes to split a huge PMD/PUD. This causes radix
partition scope page table mappings to get out of synch with the host
qemu page table mappings.

This results in random memory corruption in the guest when running
with THP. The easiest way to reproduce is use KVM balloon to free up
a lot of memory in the guest and then shrink the balloon to give the
memory back, while some work is being done in the guest.

Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: kvm-ppc@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-09-12 08:50:50 +10:00
Alexey Kardashevskiy
425333bf3a KVM: PPC: Avoid marking DMA-mapped pages dirty in real mode
At the moment the real mode handler of H_PUT_TCE calls iommu_tce_xchg_rm()
which in turn reads the old TCE and if it was a valid entry, marks
the physical page dirty if it was mapped for writing. Since it is in
real mode, realmode_pfn_to_page() is used instead of pfn_to_page()
to get the page struct. However SetPageDirty() itself reads the compound
page head and returns a virtual address for the head page struct and
setting dirty bit for that kills the system.

This adds additional dirty bit tracking into the MM/IOMMU API for use
in the real mode. Note that this does not change how VFIO and
KVM (in virtual mode) set this bit. The KVM (real mode) changes include:
- use the lowest bit of the cached host phys address to carry
the dirty bit;
- mark pages dirty when they are unpinned which happens when
the preregistered memory is released which always happens in virtual
mode;
- add mm_iommu_ua_mark_dirty_rm() helper to set delayed dirty bit;
- change iommu_tce_xchg_rm() to take the kvm struct for the mm to use
in the new mm_iommu_ua_mark_dirty_rm() helper;
- move iommu_tce_xchg_rm() to book3s_64_vio_hv.c (which is the only
caller anyway) to reduce the real mode KVM and IOMMU knowledge
across different subsystems.

This removes realmode_pfn_to_page() as it is not used anymore.

While we at it, remove some EXPORT_SYMBOL_GPL() as that code is for
the real mode only and modules cannot call it anyway.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-09-12 08:49:54 +10:00
Radim Krčmář
732b53146a PPC KVM fixes for 4.19
Two small fixes for KVM on POWER machines; one fixes a bug where pages
 might not get marked dirty, causing guest memory corruption on migration,
 and the other fixes a bug causing reads from guest memory to use the
 wrong guest real address for very large HPT guests (>256G of memory),
 leading to failures in instruction emulation.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQEcBAABCAAGBQJbfVFcAAoJEJ2a6ncsY3GfwAcH/i4BDNm5bSXLbCZv1Zqc9iWM
 ZqCNSlx9fuR5z+Bl3FWvm14CqfG7JFMd1pVXVD3AEGN6nv0mtLPotmoaw+BUWXIP
 aD3BRIBSfOVHj90CiWJ1pqZGzE49vAKrjUGocuqHhBiqGjYmnnE7QKgD+lQ13SND
 LWDV3XaQgoO9+NZdqtV6hsWMmKCmXWIHykkG9H+EVkD+341e2EBQf6r83qibAGz4
 U5SHkr/3JqL8oC7RJixT8CS/dV5qCgmuL8Vs5NYDTUnc6DmKhdes2s7OiugK7nHg
 twKe8K0aRVowmTA8yIwEN22OeH1FAUmYDClkgHozHFWyD2+u7O9kLrAYZxEN9Q4=
 =61nR
 -----END PGP SIGNATURE-----

Merge tag 'kvm-ppc-fixes-4.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc

PPC KVM fixes for 4.19

Two small fixes for KVM on POWER machines; one fixes a bug where pages
might not get marked dirty, causing guest memory corruption on migration,
and the other fixes a bug causing reads from guest memory to use the
wrong guest real address for very large HPT guests (>256G of memory),
leading to failures in instruction emulation.
2018-09-04 21:12:46 +02:00
Linus Torvalds
aa5b1054ba powerpc fixes for 4.19 #2
- An implementation for the newly added hv_ops->flush() for the OPAL hvc
    console driver backends, I forgot to apply this after merging the hvc driver
    changes before the merge window.
 
  - Enable all PCI bridges at boot on powernv, to avoid races when multiple
    children of a bridge try to enable it simultaneously. This is a workaround
    until the PCI core can be enhanced to fix the races.
 
  - A fix to query PowerVM for the correct system topology at boot before
    initialising sched domains, seen in some configurations to cause broken
    scheduling etc.
 
  - A fix for pte_access_permitted() on "nohash" platforms.
 
  - Two commits to fix SIGBUS when using remap_pfn_range() seen on Power9 due to
    a workaround when using the nest MMU (GPUs, accelerators).
 
  - Another fix to the VFIO code used by KVM, the previous fix had some bugs
    which caused guests to not start in some configurations.
 
  - A handful of other minor fixes.
 
 Thanks to:
   Aneesh Kumar K.V, Benjamin Herrenschmidt, Christophe Leroy, Hari Bathini, Luke
   Dashjr, Mahesh Salgaonkar, Nicholas Piggin, Paul Mackerras, Srikar Dronamraju.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAlt//10THG1wZUBlbGxl
 cm1hbi5pZC5hdQAKCRBR6+o8yOGlgLUGD/9y/MPrs+V2lNFhxP+l1jO4Ro0v8DPI
 vARjqq06WfppgQgSS1dvWfzLaMFbGe8wPRfL0T1xMOXCZg8Ts/HrgxVBVFYcv6/Q
 xBaU5bKztg6HKQbwwO+8B/gdTA3hO7yFVux6JGwsGO5Ebl8Q3UDOdbvYX6XTj3H8
 rdiicle9LaI7qodC8bxlBo1Be0YKEW0O/ag179sxXzozzvoPIyFpeX6FL1sAft++
 XlQS1MHu4hErSM2rbmyoFCm+SmyRt3CD0NTVmNd2cgw5XexPOBFlnsdgpaK1jJFc
 CYu1chP83E91ol1/8NAPkcmPWvP6MGyoqOl75RghooY2D1IJ2GtLKoz2Dvc53ay2
 ZlIpMyc2CYIa55Mj18tOV/NbGbh0Lf0Ta++BxqxbcCDt5fq0VxHkoDPqBgWh/tdp
 Po7oQc7U2VTKKC3wiLr//nSHpgtSTAWtucDt7oT7GdP8+EMxUZ8teBFIfTkwfuD2
 plroEmcYuRD3beI4FAG/iCp5POOCsnHLkKVDl7tyQPl3Yvu8hvyLY9gBS9RN4Unt
 /z94YFJtz7UD+VP7jDaPiQS26y0WEJfW8ml0tNxMZVBdksZLPIPN0/EU/04V0jWf
 GxynzKMhElxC67tK/Eb43EGiLEZAlbEnJxoOtiCnL1MK+OIJPjg6e7o6qlsmaa+Y
 zkXVpxLtkq0OoQ==
 =1AUa
 -----END PGP SIGNATURE-----

Merge tag 'powerpc-4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux

Pull powerpc fixes from Michael Ellerman:

 - An implementation for the newly added hv_ops->flush() for the OPAL
   hvc console driver backends, I forgot to apply this after merging the
   hvc driver changes before the merge window.

 - Enable all PCI bridges at boot on powernv, to avoid races when
   multiple children of a bridge try to enable it simultaneously. This
   is a workaround until the PCI core can be enhanced to fix the races.

 - A fix to query PowerVM for the correct system topology at boot before
   initialising sched domains, seen in some configurations to cause
   broken scheduling etc.

 - A fix for pte_access_permitted() on "nohash" platforms.

 - Two commits to fix SIGBUS when using remap_pfn_range() seen on Power9
   due to a workaround when using the nest MMU (GPUs, accelerators).

 - Another fix to the VFIO code used by KVM, the previous fix had some
   bugs which caused guests to not start in some configurations.

 - A handful of other minor fixes.

Thanks to: Aneesh Kumar K.V, Benjamin Herrenschmidt, Christophe Leroy,
Hari Bathini, Luke Dashjr, Mahesh Salgaonkar, Nicholas Piggin, Paul
Mackerras, Srikar Dronamraju.

* tag 'powerpc-4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
  powerpc/mce: Fix SLB rebolting during MCE recovery path.
  KVM: PPC: Book3S: Fix guest DMA when guest partially backed by THP pages
  powerpc/mm/radix: Only need the Nest MMU workaround for R -> RW transition
  powerpc/mm/books3s: Add new pte bit to mark pte temporarily invalid.
  powerpc/nohash: fix pte_access_permitted()
  powerpc/topology: Get topology for shared processors at boot
  powerpc64/ftrace: Include ftrace.h needed for enable/disable calls
  powerpc/powernv/pci: Work around races in PCI bridge enabling
  powerpc/fadump: cleanup crash memory ranges support
  powerpc/powernv: provide a console flush operation for opal hvc driver
  powerpc/traps: Avoid rate limit messages from show unhandled signals
  powerpc/64s: Fix PACA_IRQ_HARD_DIS accounting in idle_power4()
2018-08-24 09:34:23 -07:00
Finn Thain
3cc97bea60 treewide: correct "differenciate" and "instanciate" typos
Also add these typos to spelling.txt so checkpatch.pl will look for them.

Link: http://lkml.kernel.org/r/88af06b9de34d870cb0afc46cfd24e0458be2575.1529471371.git.fthain@telegraphics.com.au
Signed-off-by: Finn Thain <fthain@telegraphics.com.au>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-23 18:48:43 -07:00
Luke Dashjr
d6ee76d3d3 powerpc64/ftrace: Include ftrace.h needed for enable/disable calls
this_cpu_disable_ftrace and this_cpu_enable_ftrace are inlines in
ftrace.h Without it included, the build fails.

Fixes: a4bc64d305 ("powerpc64/ftrace: Disable ftrace during kvm entry/exit")
Cc: stable@vger.kernel.org # v4.18+
Signed-off-by: Luke Dashjr <luke-jr+git@utopios.org>
Acked-by: Naveen N. Rao <naveen.n.rao at linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-08-21 15:58:34 +10:00
Paul Mackerras
46dec40fb7 KVM: PPC: Book3S HV: Don't truncate HPTE index in xlate function
This fixes a bug which causes guest virtual addresses to get translated
to guest real addresses incorrectly when the guest is using the HPT MMU
and has more than 256GB of RAM, or more specifically has a HPT larger
than 2GB.  This has showed up in testing as a failure of the host to
emulate doorbell instructions correctly on POWER9 for HPT guests with
more than 256GB of RAM.

The bug is that the HPTE index in kvmppc_mmu_book3s_64_hv_xlate()
is stored as an int, and in forming the HPTE address, the index gets
shifted left 4 bits as an int before being signed-extended to 64 bits.
The simple fix is to make the variable a long int, matching the
return type of kvmppc_hv_find_lock_hpte(), which is what calculates
the index.

Fixes: 697d3899dc ("KVM: PPC: Implement MMIO emulation support for Book3S HV guests")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-08-20 16:05:45 +10:00
Linus Torvalds
e61cf2e3a5 Minor code cleanups for PPC.
For x86 this brings in PCID emulation and CR3 caching for shadow page
 tables, nested VMX live migration, nested VMCS shadowing, an optimized
 IPI hypercall, and some optimizations.
 
 ARM will come next week.
 
 There is a semantic conflict because tip also added an .init_platform
 callback to kvm.c.  Please keep the initializer from this branch,
 and add a call to kvmclock_init (added by tip) inside kvm_init_platform
 (added here).
 
 Also, there is a backmerge from 4.18-rc6.  This is because of a
 refactoring that conflicted with a relatively late bugfix and
 resulted in a particularly hellish conflict.  Because the conflict
 was only due to unfortunate timing of the bugfix, I backmerged and
 rebased the refactoring rather than force the resolution on you.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJbdwNFAAoJEL/70l94x66DiPEH/1cAGZWGd85Y3yRu1dmTmqiz
 kZy0V+WTQ5kyJF4ZsZKKOp+xK7Qxh5e9kLdTo70uPZCHwLu9IaGKN9+dL9Jar3DR
 yLPX5bMsL8UUed9g9mlhdaNOquWi7d7BseCOnIyRTolb+cqnM5h3sle0gqXloVrS
 UQb4QogDz8+86czqR8tNfazjQRKW/D2HEGD5NDNVY1qtpY+leCDAn9/u6hUT5c6z
 EtufgyDh35UN+UQH0e2605gt3nN3nw3FiQJFwFF1bKeQ7k5ByWkuGQI68XtFVhs+
 2WfqL3ftERkKzUOy/WoSJX/C9owvhMcpAuHDGOIlFwguNGroZivOMVnACG1AI3I=
 =9Mgw
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull first set of KVM updates from Paolo Bonzini:
 "PPC:
   - minor code cleanups

  x86:
   - PCID emulation and CR3 caching for shadow page tables
   - nested VMX live migration
   - nested VMCS shadowing
   - optimized IPI hypercall
   - some optimizations

  ARM will come next week"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (85 commits)
  kvm: x86: Set highest physical address bits in non-present/reserved SPTEs
  KVM/x86: Use CC_SET()/CC_OUT in arch/x86/kvm/vmx.c
  KVM: X86: Implement PV IPIs in linux guest
  KVM: X86: Add kvm hypervisor init time platform setup callback
  KVM: X86: Implement "send IPI" hypercall
  KVM/x86: Move X86_CR4_OSXSAVE check into kvm_valid_sregs()
  KVM: x86: Skip pae_root shadow allocation if tdp enabled
  KVM/MMU: Combine flushing remote tlb in mmu_set_spte()
  KVM: vmx: skip VMWRITE of HOST_{FS,GS}_BASE when possible
  KVM: vmx: skip VMWRITE of HOST_{FS,GS}_SEL when possible
  KVM: vmx: always initialize HOST_{FS,GS}_BASE to zero during setup
  KVM: vmx: move struct host_state usage to struct loaded_vmcs
  KVM: vmx: compute need to reload FS/GS/LDT on demand
  KVM: nVMX: remove a misleading comment regarding vmcs02 fields
  KVM: vmx: rename __vmx_load_host_state() and vmx_save_host_state()
  KVM: vmx: add dedicated utility to access guest's kernel_gs_base
  KVM: vmx: track host_state.loaded using a loaded_vmcs pointer
  KVM: vmx: refactor segmentation code in vmx_save_host_state()
  kvm: nVMX: Fix fault priority for VMX operations
  kvm: nVMX: Fix fault vector for VMX operation at CPL > 0
  ...
2018-08-19 10:38:36 -07:00
Linus Torvalds
6ada4e2826 Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton:

 - a few misc things

 - a few Y2038 fixes

 - ntfs fixes

 - arch/sh tweaks

 - ocfs2 updates

 - most of MM

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (111 commits)
  mm/hmm.c: remove unused variables align_start and align_end
  fs/userfaultfd.c: remove redundant pointer uwq
  mm, vmacache: hash addresses based on pmd
  mm/list_lru: introduce list_lru_shrink_walk_irq()
  mm/list_lru.c: pass struct list_lru_node* as an argument to __list_lru_walk_one()
  mm/list_lru.c: move locking from __list_lru_walk_one() to its caller
  mm/list_lru.c: use list_lru_walk_one() in list_lru_walk_node()
  mm, swap: make CONFIG_THP_SWAP depend on CONFIG_SWAP
  mm/sparse: delete old sparse_init and enable new one
  mm/sparse: add new sparse_init_nid() and sparse_init()
  mm/sparse: move buffer init/fini to the common place
  mm/sparse: use the new sparse buffer functions in non-vmemmap
  mm/sparse: abstract sparse buffer allocations
  mm/hugetlb.c: don't zero 1GiB bootmem pages
  mm, page_alloc: double zone's batchsize
  mm/oom_kill.c: document oom_lock
  mm/hugetlb: remove gigantic page support for HIGHMEM
  mm, oom: remove sleep from under oom_lock
  kernel/dma: remove unsupported gfp_mask parameter from dma_alloc_from_contiguous()
  mm/cma: remove unsupported gfp_mask parameter from cma_alloc()
  ...
2018-08-17 16:49:31 -07:00
Marek Szyprowski
6518202970 mm/cma: remove unsupported gfp_mask parameter from cma_alloc()
cma_alloc() doesn't really support gfp flags other than __GFP_NOWARN, so
convert gfp_mask parameter to boolean no_warn parameter.

This will help to avoid giving false feeling that this function supports
standard gfp flags and callers can pass __GFP_ZERO to get zeroed buffer,
what has already been an issue: see commit dd65a941f6 ("arm64:
dma-mapping: clear buffers allocated with FORCE_CONTIGUOUS flag").

Link: http://lkml.kernel.org/r/20180709122019eucas1p2340da484acfcc932537e6014f4fd2c29~-sqTPJKij2939229392eucas1p2j@eucas1p2.samsung.com
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michał Nazarewicz <mina86@mina86.com>
Acked-by: Laura Abbott <labbott@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:32 -07:00
Linus Torvalds
5e2d059b52 powerpc updates for 4.19
Notable changes:
 
  - A fix for a bug in our page table fragment allocator, where a page table page
    could be freed and reallocated for something else while still in use, leading
    to memory corruption etc. The fix reuses pt_mm in struct page (x86 only) for
    a powerpc only refcount.
 
  - Fixes to our pkey support. Several are user-visible changes, but bring us in
    to line with x86 behaviour and/or fix outright bugs. Thanks to Florian Weimer
    for reporting many of these.
 
  - A series to improve the hvc driver & related OPAL console code, which have
    been seen to cause hardlockups at times. The hvc driver changes in particular
    have been in linux-next for ~month.
 
  - Increase our MAX_PHYSMEM_BITS to 128TB when SPARSEMEM_VMEMMAP=y.
 
  - Remove Power8 DD1 and Power9 DD1 support, neither chip should be in use
    anywhere other than as a paper weight.
 
  - An optimised memcmp implementation using Power7-or-later VMX instructions
 
  - Support for barrier_nospec on some NXP CPUs.
 
  - Support for flushing the count cache on context switch on some IBM CPUs
    (controlled by firmware), as a Spectre v2 mitigation.
 
  - A series to enhance the information we print on unhandled signals to bring it
    into line with other arches, including showing the offending VMA and dumping
    the instructions around the fault.
 
 Thanks to:
   Aaro Koskinen, Akshay Adiga, Alastair D'Silva, Alexey Kardashevskiy, Alexey
   Spirkov, Alistair Popple, Andrew Donnellan, Aneesh Kumar K.V, Anju T Sudhakar,
   Arnd Bergmann, Bartosz Golaszewski, Benjamin Herrenschmidt, Bharat Bhushan,
   Bjoern Noetel, Boqun Feng, Breno Leitao, Bryant G. Ly, Camelia Groza,
   Christophe Leroy, Christoph Hellwig, Cyril Bur, Dan Carpenter, Daniel Klamt,
   Darren Stevens, Dave Young, David Gibson, Diana Craciun, Finn Thain, Florian
   Weimer, Frederic Barrat, Gautham R. Shenoy, Geert Uytterhoeven, Geoff Levand,
   Guenter Roeck, Gustavo Romero, Haren Myneni, Hari Bathini, Joel Stanley,
   Jonathan Neuschäfer, Kees Cook, Madhavan Srinivasan, Mahesh Salgaonkar, Markus
   Elfring, Mathieu Malaterre, Mauro S. M. Rodrigues, Michael Hanselmann, Michael
   Neuling, Michael Schmitz, Mukesh Ojha, Murilo Opsfelder Araujo, Nicholas
   Piggin, Parth Y Shah, Paul Mackerras, Paul Menzel, Ram Pai, Randy Dunlap,
   Rashmica Gupta, Reza Arbab, Rodrigo R. Galvao, Russell Currey, Sam Bobroff,
   Scott Wood, Shilpasri G Bhat, Simon Guo, Souptick Joarder, Stan Johnson,
   Thiago Jung Bauermann, Tyrel Datwyler, Vaibhav Jain, Vasant Hegde, Venkat Rao
   B, zhong jiang.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAlt2O6cTHG1wZUBlbGxl
 cm1hbi5pZC5hdQAKCRBR6+o8yOGlgC7hD/4+cj796Df7GsVsIMxzQm7SS9dklIdO
 JuKj2Nr5HRzTH59jWlXukLG9mfTNCFgFJB4gEpK1ArDOTcHTCI9RRsLZTZ/kum66
 7Pd+7T40dLYXB5uecuUs0vMXa2fI3syKh1VLzACSXv3Dh9BBIKQBwW/aD2eww4YI
 1fS5LnXZ2PSxfr6KNAC6ogZnuaiD0sHXOYrtGHq+S/TFC7+Z6ySa6+AnPS+hPVoo
 /rHDE1Khr66aj7uk+PP2IgUrCFj6Sbj6hTVlS/iAuwbMjUl9ty6712PmvX9x6wMZ
 13hJQI+g6Ci+lqLKqmqVUpXGSr6y4NJGPS/Hko4IivBTJApI+qV/tF2H9nxU+6X0
 0RqzsMHPHy13n2torA1gC7ttzOuXPI4hTvm6JWMSsfmfjTxLANJng3Dq3ejh6Bqw
 76EMowpDLexwpy7/glPpqNdsP4ySf2Qm8yq3mR7qpL4m3zJVRGs11x+s5DW8NKBL
 Fl5SqZvd01abH+sHwv6NLaLkEtayUyohxvyqu2RU3zu5M5vi7DhqstybTPjKPGu0
 icSPh7b2y10WpOUpC6lxpdi8Me8qH47mVc/trZ+SpgBrsuEmtJhGKszEnzRCOqos
 o2IhYHQv3lQv86kpaAFQlg/RO+Lv+Lo5qbJ209V+hfU5nYzXpEulZs4dx1fbA+ze
 fK8GEh+u0L4uJg==
 =PzRz
 -----END PGP SIGNATURE-----

Merge tag 'powerpc-4.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux

Pull powerpc updates from Michael Ellerman:
 "Notable changes:

   - A fix for a bug in our page table fragment allocator, where a page
     table page could be freed and reallocated for something else while
     still in use, leading to memory corruption etc. The fix reuses
     pt_mm in struct page (x86 only) for a powerpc only refcount.

   - Fixes to our pkey support. Several are user-visible changes, but
     bring us in to line with x86 behaviour and/or fix outright bugs.
     Thanks to Florian Weimer for reporting many of these.

   - A series to improve the hvc driver & related OPAL console code,
     which have been seen to cause hardlockups at times. The hvc driver
     changes in particular have been in linux-next for ~month.

   - Increase our MAX_PHYSMEM_BITS to 128TB when SPARSEMEM_VMEMMAP=y.

   - Remove Power8 DD1 and Power9 DD1 support, neither chip should be in
     use anywhere other than as a paper weight.

   - An optimised memcmp implementation using Power7-or-later VMX
     instructions

   - Support for barrier_nospec on some NXP CPUs.

   - Support for flushing the count cache on context switch on some IBM
     CPUs (controlled by firmware), as a Spectre v2 mitigation.

   - A series to enhance the information we print on unhandled signals
     to bring it into line with other arches, including showing the
     offending VMA and dumping the instructions around the fault.

  Thanks to: Aaro Koskinen, Akshay Adiga, Alastair D'Silva, Alexey
  Kardashevskiy, Alexey Spirkov, Alistair Popple, Andrew Donnellan,
  Aneesh Kumar K.V, Anju T Sudhakar, Arnd Bergmann, Bartosz Golaszewski,
  Benjamin Herrenschmidt, Bharat Bhushan, Bjoern Noetel, Boqun Feng,
  Breno Leitao, Bryant G. Ly, Camelia Groza, Christophe Leroy, Christoph
  Hellwig, Cyril Bur, Dan Carpenter, Daniel Klamt, Darren Stevens, Dave
  Young, David Gibson, Diana Craciun, Finn Thain, Florian Weimer,
  Frederic Barrat, Gautham R. Shenoy, Geert Uytterhoeven, Geoff Levand,
  Guenter Roeck, Gustavo Romero, Haren Myneni, Hari Bathini, Joel
  Stanley, Jonathan Neuschäfer, Kees Cook, Madhavan Srinivasan, Mahesh
  Salgaonkar, Markus Elfring, Mathieu Malaterre, Mauro S. M. Rodrigues,
  Michael Hanselmann, Michael Neuling, Michael Schmitz, Mukesh Ojha,
  Murilo Opsfelder Araujo, Nicholas Piggin, Parth Y Shah, Paul
  Mackerras, Paul Menzel, Ram Pai, Randy Dunlap, Rashmica Gupta, Reza
  Arbab, Rodrigo R. Galvao, Russell Currey, Sam Bobroff, Scott Wood,
  Shilpasri G Bhat, Simon Guo, Souptick Joarder, Stan Johnson, Thiago
  Jung Bauermann, Tyrel Datwyler, Vaibhav Jain, Vasant Hegde, Venkat
  Rao, zhong jiang"

* tag 'powerpc-4.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (234 commits)
  powerpc/mm/book3s/radix: Add mapping statistics
  powerpc/uaccess: Enable get_user(u64, *p) on 32-bit
  powerpc/mm/hash: Remove unnecessary do { } while(0) loop
  powerpc/64s: move machine check SLB flushing to mm/slb.c
  powerpc/powernv/idle: Fix build error
  powerpc/mm/tlbflush: update the mmu_gather page size while iterating address range
  powerpc/mm: remove warning about ‘type’ being set
  powerpc/32: Include setup.h header file to fix warnings
  powerpc: Move `path` variable inside DEBUG_PROM
  powerpc/powermac: Make some functions static
  powerpc/powermac: Remove variable x that's never read
  cxl: remove a dead branch
  powerpc/powermac: Add missing include of header pmac.h
  powerpc/kexec: Use common error handling code in setup_new_fdt()
  powerpc/xmon: Add address lookup for percpu symbols
  powerpc/mm: remove huge_pte_offset_and_shift() prototype
  powerpc/lib: Use patch_site to patch copy_32 functions once cache is enabled
  powerpc/pseries: Fix endianness while restoring of r3 in MCE handler.
  powerpc/fadump: merge adjacent memory ranges to reduce PT_LOAD segements
  powerpc/fadump: handle crash memory ranges array index overflow
  ...
2018-08-17 11:32:50 -07:00
Paul Mackerras
c066fafc59 KVM: PPC: Book3S HV: Use correct pagesize in kvm_unmap_radix()
Since commit e641a31783 ("KVM: PPC: Book3S HV: Unify dirty page map
between HPT and radix", 2017-10-26), kvm_unmap_radix() computes the
number of PAGE_SIZEd pages being unmapped and passes it to
kvmppc_update_dirty_map(), which expects to be passed the page size
instead.  Consequently it will only mark one system page dirty even
when a large page (for example a THP page) is being unmapped.  The
consequence of this is that part of the THP page might not get copied
during live migration, resulting in memory corruption for the guest.

This fixes it by computing and passing the page size in kvm_unmap_radix().

Cc: stable@vger.kernel.org # v4.15+
Fixes: e641a31783 (KVM: PPC: Book3S HV: Unify dirty page map between HPT and radix)
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-08-15 14:39:27 +10:00
Michael Ellerman
b3124ec2f9 Merge branch 'fixes' into next
Merge our fixes branch from the 4.18 cycle to resolve some minor
conflicts.
2018-08-13 15:59:06 +10:00
Paolo Bonzini
d2ce98ca0a Linux 4.18-rc6
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAltU8z0eHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiG5X8H/2fJr7m3k242+t76
 sitwvx1eoPqTgryW59dRKm9IuXAGA+AjauvHzaz1QxomeQa50JghGWefD0eiJfkA
 1AphQ/24EOiAbbVk084dAI/C2p122dE4D5Fy7CrfLnuouyrbFaZI5STbnrRct7sR
 9deeYW0GDHO1Uenp4WDCj0baaqJqaevZ+7GG09DnWpya2nQtSkGBjqn6GpYmrfOU
 mqFuxAX8mEOW6cwK16y/vYtnVjuuMAiZ63/OJ8AQ6d6ArGLwAsdn7f8Fn4I4tEr2
 L0d3CRLUyegms4++Dmlu05k64buQu46WlPhjCZc5/Ts4kjrNxBuHejj2/jeSnUSt
 vJJlibI=
 =42a5
 -----END PGP SIGNATURE-----

Merge tag 'v4.18-rc6' into HEAD

Pull bug fixes into the KVM development tree to avoid nasty conflicts.
2018-08-06 17:31:36 +02:00
Christophe Leroy
45ef5992e0 powerpc: remove unnecessary inclusion of asm/tlbflush.h
asm/tlbflush.h is only needed for:
- using functions xxx_flush_tlb_xxx()
- using MMU_NO_CONTEXT
- including asm-generic/pgtable.h

Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-07-30 22:48:20 +10:00
Christophe Leroy
2c86cd188f powerpc: clean inclusions of asm/feature-fixups.h
files not using feature fixup don't need asm/feature-fixups.h
files using feature fixup need asm/feature-fixups.h

Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-07-30 22:48:17 +10:00
Christophe Leroy
5c35a02c54 powerpc: clean the inclusion of stringify.h
Only include linux/stringify.h is files using __stringify()

Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-07-30 22:48:17 +10:00
Christophe Leroy
ec0c464cdb powerpc: move ASM_CONST and stringify_in_c() into asm-const.h
This patch moves ASM_CONST() and stringify_in_c() into
dedicated asm-const.h, then cleans all related inclusions.

Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
[mpe: asm-compat.h should include asm-const.h]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-07-30 22:48:16 +10:00
Paul Mackerras
b5c6f7607b KVM: PPC: Book3S HV: Read kvm->arch.emul_smt_mode under kvm->lock
Commit 1e175d2 ("KVM: PPC: Book3S HV: Pack VCORE IDs to access full
VCPU ID space", 2018-07-25) added code that uses kvm->arch.emul_smt_mode
before any VCPUs are created.  However, userspace can change
kvm->arch.emul_smt_mode at any time up until the first VCPU is created.
Hence it is (theoretically) possible for the check in
kvmppc_core_vcpu_create_hv() to race with another userspace thread
changing kvm->arch.emul_smt_mode.

This fixes it by moving the test that uses kvm->arch.emul_smt_mode into
the block where kvm->lock is held.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2018-07-26 15:38:41 +10:00