Commit Graph

21450 Commits

Author SHA1 Message Date
Hugh Dickins
72e315f7a7 mempolicy: mmap_lock is not needed while migrating folios
mbind(2) holds down_write of current task's mmap_lock throughout
(exclusive because it needs to set the new mempolicy on the vmas);
migrate_pages(2) holds down_read of pid's mmap_lock throughout.

They both hold mmap_lock across the internal migrate_pages(), under which
all new page allocations (huge or small) are made.  I'm nervous about it;
and migrate_pages() certainly does not need mmap_lock itself.  It's done
this way for mbind(2), because its page allocator is vma_alloc_folio() or
alloc_hugetlb_folio_vma(), both of which depend on vma and address.

Now that we have alloc_pages_mpol(), depending on (refcounted) memory
policy and interleave index, mbind(2) can be modified to use that or
alloc_hugetlb_folio_nodemask(), and then not need mmap_lock across the
internal migrate_pages() at all: add alloc_migration_target_by_mpol() to
replace mbind's new_page().

(After that change, alloc_hugetlb_folio_vma() is used by nothing but a
userfaultfd function: move it out of hugetlb.h and into the #ifdef.)

migrate_pages(2) has chosen its target node before migrating, so can
continue to use the standard alloc_migration_target(); but let it take and
drop mmap_lock just around migrate_to_node()'s queue_pages_range():
neither the node-to-node calculations nor the page migrations need it.

It seems unlikely, but it is conceivable that some userspace depends on
the kernel's mmap_lock exclusion here, instead of doing its own locking:
more likely in a testsuite than in real life.  It is also possible, of
course, that some pages on the list will be munmapped by another thread
before they are migrated, or a newer memory policy applied to the range by
that time: but such races could happen before, as soon as mmap_lock was
dropped, so it does not appear to be a concern.

Link: https://lkml.kernel.org/r/21e564e8-269f-6a89-7ee2-fd612831c289@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:16 -07:00
Hugh Dickins
ddc1a5cbc0 mempolicy: alloc_pages_mpol() for NUMA policy without vma
Shrink shmem's stack usage by eliminating the pseudo-vma from its folio
allocation.  alloc_pages_mpol(gfp, order, pol, ilx, nid) becomes the
principal actor for passing mempolicy choice down to __alloc_pages(),
rather than vma_alloc_folio(gfp, order, vma, addr, hugepage).

vma_alloc_folio() and alloc_pages() remain, but as wrappers around
alloc_pages_mpol().  alloc_pages_bulk_*() untouched, except to provide the
additional args to policy_nodemask(), which subsumes policy_node(). 
Cleanup throughout, cutting out some unhelpful "helpers".

It would all be much simpler without MPOL_INTERLEAVE, but that adds a
dynamic to the constant mpol: complicated by v3.6 commit 09c231cb8b
("tmpfs: distribute interleave better across nodes"), which added ino bias
to the interleave, hidden from mm/mempolicy.c until this commit.

Hence "ilx" throughout, the "interleave index".  Originally I thought it
could be done just with nid, but that's wrong: the nodemask may come from
the shared policy layer below a shmem vma, or it may come from the task
layer above a shmem vma; and without the final nodemask then nodeid cannot
be decided.  And how ilx is applied depends also on page order.

The interleave index is almost always irrelevant unless MPOL_INTERLEAVE:
with one exception in alloc_pages_mpol(), where the NO_INTERLEAVE_INDEX
passed down from vma-less alloc_pages() is also used as hint not to use
THP-style hugepage allocation - to avoid the overhead of a hugepage arg
(though I don't understand why we never just added a GFP bit for THP - if
it actually needs a different allocation strategy from other pages of the
same order).  vma_alloc_folio() still carries its hugepage arg here, but
it is not used, and should be removed when agreed.

get_vma_policy() no longer allows a NULL vma: over time I believe we've
eradicated all the places which used to need it e.g.  swapoff and madvise
used to pass NULL vma to read_swap_cache_async(), but now know the vma.

[hughd@google.com: handle NULL mpol being passed to __read_swap_cache_async()]
  Link: https://lkml.kernel.org/r/ea419956-4751-0102-21f7-9c93cb957892@google.com
Link: https://lkml.kernel.org/r/74e34633-6060-f5e3-aee-7040d43f2e93@google.com
Link: https://lkml.kernel.org/r/1738368e-bac0-fd11-ed7f-b87142a939fe@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Domenico Cerasuolo <mimmocerasuolo@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:16 -07:00
Hugh Dickins
23e4883248 mm: add page_rmappable_folio() wrapper
folio_prep_large_rmappable() is being used repeatedly along with a
conversion from page to folio, a check non-NULL, a check order > 1: wrap
it all up into struct folio *page_rmappable_folio(struct page *).

Link: https://lkml.kernel.org/r/8d92c6cf-eebe-748-e29c-c8ab224c741@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:16 -07:00
Hugh Dickins
2cafb58217 mempolicy: remove confusing MPOL_MF_LAZY dead code
v3.8 commit b24f53a0be ("mm: mempolicy: Add MPOL_MF_LAZY") introduced
MPOL_MF_LAZY, and included it in the MPOL_MF_VALID flags; but a720094ded
("mm: mempolicy: Hide MPOL_NOOP and MPOL_MF_LAZY from userspace for now")
immediately removed it from MPOL_MF_VALID flags, pending further review. 
"This will need to be revisited", but it has not been reinstated.

The present state is confusing: there is dead code in mm/mempolicy.c to
handle MPOL_MF_LAZY cases which can never occur.  Remove that: it can be
resurrected later if necessary.  But keep the definition of MPOL_MF_LAZY,
which must remain in the UAPI, even though it always fails with EINVAL.

https://lore.kernel.org/linux-mm/1553041659-46787-1-git-send-email-yang.shi@linux.alibaba.com/
links to a previous request to remove MPOL_MF_LAZY.

Link: https://lkml.kernel.org/r/80c9665c-1c3f-17ba-21a3-f6115cebf7d@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:16 -07:00
Hugh Dickins
35ec8fa020 mempolicy: mpol_shared_policy_init() without pseudo-vma
mpol_shared_policy_init() does not need to use a pseudo-vma: it can use
sp_alloc() and sp_insert() directly, since the object's shared policy tree
is empty and inaccessible (needing no lock) at get_inode() time.

Link: https://lkml.kernel.org/r/3bef62d8-ae78-4c2-533-56a44ae425c@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:15 -07:00
Hugh Dickins
93397c3b76 mempolicy trivia: use pgoff_t in shared mempolicy tree
Prefer the more explicit "pgoff_t" to "unsigned long" when dealing with a
shared mempolicy tree.  Delete confusing comment about pseudo mm vmas.

Link: https://lkml.kernel.org/r/5451157-3818-4af5-fd2c-5d26a5d1dc53@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:15 -07:00
Hugh Dickins
c36f6e6dff mempolicy trivia: slightly more consistent naming
Before getting down to work, do a little cleanup, mainly of inconsistent
variable naming.  I gave up trying to rationalize mpol versus pol versus
policy, and node versus nid, but let's avoid p and nd.  Remove a few
superfluous blank lines, but add one; and here prefer vma->vm_policy to
vma_policy(vma) - the latter being appropriate in other sources, which
have to allow for !CONFIG_NUMA.  That intriguing line about KERNEL_DS? 
should have gone in v2.6.15, when numa_policy_init() stopped using
set_mempolicy(2)'s system call handler.

Link: https://lkml.kernel.org/r/68287974-b6ae-7df-4ba-d19ddd69cbf@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:15 -07:00
Hugh Dickins
7f1ee4e207 mempolicy trivia: delete those ancient pr_debug()s
Delete those ancient pr_debug()s - PDprintk()s in Andi Kleen's original
submission of core NUMA API, and useful when debugging shared mempolicy
lifetime back then, but not used recently.

Link: https://lkml.kernel.org/r/f25135-ffb2-40d8-9577-720772b333@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:15 -07:00
Hugh Dickins
1cb5d11a37 mempolicy: fix migrate_pages(2) syscall return nr_failed
"man 2 migrate_pages" says "On success migrate_pages() returns the number
of pages that could not be moved".  Although 5.3 and 5.4 commits fixed
mbind(MPOL_MF_STRICT|MPOL_MF_MOVE*) to fail with EIO when not all pages
could be moved (because some could not be isolated for migration),
migrate_pages(2) was left still reporting only those pages failing at the
migration stage, forgetting those failing at the earlier isolation stage.

Fix that by accumulating a long nr_failed count in struct queue_pages,
returned by queue_pages_range() when it's not returning an error, for
adding on to the nr_failed count from migrate_pages() in mm/migrate.c.  A
count of pages?  It's more a count of folios, but changing it to pages
would entail more work (also in mm/migrate.c): does not seem justified.

queue_pages_range() itself should only return -EIO in the "strictly
unmovable" case (STRICT without any MOVEs): in that case it's best to
break out as soon as nr_failed gets set; but otherwise it should continue
to isolate pages for MOVing even when nr_failed - as the mbind(2) manpage
promises.

There's a case when nr_failed should be incremented when it was missed:
queue_folios_pte_range() and queue_folios_hugetlb() count the transient
migration entries, like queue_folios_pmd() already did.  And there's a
case when nr_failed should not be incremented when it would have been: in
meeting later PTEs of the same large folio, which can only be isolated
once: fixed by recording the current large folio in struct queue_pages.

Clean up the affected functions, fixing or updating many comments.  Bool
migrate_folio_add(), without -EIO: true if adding, or if skipping shared
(but its arguable folio_estimated_sharers() heuristic left unchanged). 
Use MPOL_MF_WRLOCK flag to queue_pages_range(), instead of bool lock_vma. 
Use explicit STRICT|MOVE* flags where queue_pages_test_walk() checks for
skipping, instead of hiding them behind MPOL_MF_VALID.

Link: https://lkml.kernel.org/r/9a6b0b9-3bb-dbef-8adf-efab4397b8d@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:15 -07:00
SeongJae Park
b8ee5575f7 mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets()
damon_sysfs_set_targets() had a bug that can result in unexpected memory
usage and monitoring overhead increase.  The bug has fixed by a previous
commit.  Add a unit test for avoiding a similar bug of future.

Link: https://lkml.kernel.org/r/20231022210735.46409-3-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:15 -07:00
SeongJae Park
62f76a7b53 mm/damon/core: avoid divide-by-zero from pseudo-moving window length calculation
When calculating the pseudo-moving access rate, DAMON divides some values
by the maximum nr_accesses.  However, due to the type of the related
variables, simple division-based calculation of the divisor can return
zero.  As a result, divide-by-zero is possible.  Fix it by using
damon_max_nr_accesses(), which handles the case.

Note that this is a fix for a commit that not in the mainline but mm
tree.

Link: https://lkml.kernel.org/r/20231019194924.100347-6-sj@kernel.org
Fixes: ace30fb21a ("mm/damon/core: use pseudo-moving sum for nr_accesses_bp")
Reported-by: Jakub Acs <acsjakub@amazon.de>
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:15 -07:00
SeongJae Park
44063f125a mm/damon/lru_sort: avoid divide-by-zero in hot threshold calculation
When calculating the hotness threshold for lru_prio scheme of
DAMON_LRU_SORT, the module divides some values by the maximum nr_accesses.
However, due to the type of the related variables, simple division-based
calculation of the divisor can return zero.  As a result, divide-by-zero
is possible.  Fix it by using damon_max_nr_accesses(), which handles the
case.

Link: https://lkml.kernel.org/r/20231019194924.100347-5-sj@kernel.org
Fixes: 40e983cca9 ("mm/damon: introduce DAMON-based LRU-lists Sorting")
Signed-off-by: SeongJae Park <sj@kernel.org>
Reported-by: Jakub Acs <acsjakub@amazon.de>
Cc: <stable@vger.kernel.org>	[6.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:15 -07:00
SeongJae Park
3bafc47d3c mm/damon/ops-common: avoid divide-by-zero during region hotness calculation
When calculating the hotness of each region for the under-quota regions
prioritization, DAMON divides some values by the maximum nr_accesses. 
However, due to the type of the related variables, simple division-based
calculation of the divisor can return zero.  As a result, divide-by-zero
is possible.  Fix it by using damon_max_nr_accesses(), which handles the
case.

Link: https://lkml.kernel.org/r/20231019194924.100347-4-sj@kernel.org
Fixes: 198f0f4c58 ("mm/damon/vaddr,paddr: support pageout prioritization")
Signed-off-by: SeongJae Park <sj@kernel.org>
Reported-by: Jakub Acs <acsjakub@amazon.de>
Cc: <stable@vger.kernel.org>	[5.16+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:15 -07:00
SeongJae Park
d35963bfb0 mm/damon/core: avoid divide-by-zero during monitoring results update
When monitoring attributes are changed, DAMON updates access rate of the
monitoring results accordingly.  For that, it divides some values by the
maximum nr_accesses.  However, due to the type of the related variables,
simple division-based calculation of the divisor can return zero.  As a
result, divide-by-zero is possible.  Fix it by using
damon_max_nr_accesses(), which handles the case.

Link: https://lkml.kernel.org/r/20231019194924.100347-3-sj@kernel.org
Fixes: 2f5bef5a59 ("mm/damon/core: update monitoring results for new monitoring attributes")
Signed-off-by: SeongJae Park <sj@kernel.org>
Reported-by: Jakub Acs <acsjakub@amazon.de>
Cc: <stable@vger.kernel.org>	[6.3+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:15 -07:00
Hugh Dickins
b1454b463c mm: mlock: avoid folio_within_range() on KSM pages
Since commit dc68badced ("mm: mlock: update mlock_pte_range to handle
large folio") I've just occasionally seen VM_WARN_ON_FOLIO(folio_test_ksm)
warnings from folio_within_range(), in a splurge after testing with KSM
hyperactive.

folio_referenced_one()'s use of folio_within_vma() is safe because it
checks folio_test_large() first; but allow_mlock_munlock() needs to do the
same to avoid those warnings (or check !folio_test_ksm() itself?  Or move
either check into folio_within_range()?  Hard to tell without more
examples of its use).

Link: https://lkml.kernel.org/r/23852f6a-5bfa-1ffd-30db-30c5560ad426@google.com
Fixes: dc68badced ("mm: mlock: update mlock_pte_range to handle large folio")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Yin Fengwei <fengwei.yin@intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Stefan Roesch <shr@devkernel.io>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:14 -07:00
Baolin Wang
eebb3dabbb mm: migrate: record the mlocked page status to remove unnecessary lru drain
When doing compaction, I found the lru_add_drain() is an obvious hotspot
when migrating pages. The distribution of this hotspot is as follows:
   - 18.75% compact_zone
      - 17.39% migrate_pages
         - 13.79% migrate_pages_batch
            - 11.66% migrate_folio_move
               - 7.02% lru_add_drain
                  + 7.02% lru_add_drain_cpu
               + 3.00% move_to_new_folio
                 1.23% rmap_walk
            + 1.92% migrate_folio_unmap
         + 3.20% migrate_pages_sync
      + 0.90% isolate_migratepages

The lru_add_drain() was added by commit c3096e6782 ("mm/migrate:
__unmap_and_move() push good newpage to LRU") to drain the newpage to LRU
immediately, to help to build up the correct newpage->mlock_count in
remove_migration_ptes() for mlocked pages.  However, if there are no
mlocked pages are migrating, then we can avoid this lru drain operation,
especailly for the heavy concurrent scenarios.

So we can record the source pages' mlocked status in
migrate_folio_unmap(), and only drain the lru list when the mlocked status
is set in migrate_folio_move().

In addition, the page was already isolated from lru when migrating, so
checking the mlocked status is stable by folio_test_mlocked() in
migrate_folio_unmap().

After this patch, I can see the hotpot of the lru_add_drain() is gone:
   - 9.41% migrate_pages_batch
      - 6.15% migrate_folio_move
         - 3.64% move_to_new_folio
            + 1.80% migrate_folio_extra
            + 1.70% buffer_migrate_folio
         + 1.41% rmap_walk
         + 0.62% folio_add_lru
      + 3.07% migrate_folio_unmap

Meanwhile, the compaction latency shows some improvements when running
thpscale:
                            base                   patched
Amean     fault-both-1      1131.22 (   0.00%)     1112.55 *   1.65%*
Amean     fault-both-3      2489.75 (   0.00%)     2324.15 *   6.65%*
Amean     fault-both-5      3257.37 (   0.00%)     3183.18 *   2.28%*
Amean     fault-both-7      4257.99 (   0.00%)     4079.04 *   4.20%*
Amean     fault-both-12     6614.02 (   0.00%)     6075.60 *   8.14%*
Amean     fault-both-18    10607.78 (   0.00%)     8978.86 *  15.36%*
Amean     fault-both-24    14911.65 (   0.00%)    11619.55 *  22.08%*
Amean     fault-both-30    14954.67 (   0.00%)    14925.66 *   0.19%*
Amean     fault-both-32    16654.87 (   0.00%)    15580.31 *   6.45%*

Link: https://lkml.kernel.org/r/06e9153a7a4850352ec36602df3a3a844de45698.1697859741.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:14 -07:00
Vegard Nossum
e5b16c8628 mm: hugetlb_vmemmap: fix reference to nonexistent file
The directory this file is in was renamed but the reference didn't get
updated.  Fix it.

Link: https://lkml.kernel.org/r/20231022185619.919397-1-vegard.nossum@oracle.com
Fixes: ee65728e10 ("docs: rename Documentation/vm to Documentation/mm")
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Wu XiangCheng <bobwxc@email.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:14 -07:00
Hyesoo Yu
76f26535d1 mm: page_alloc: check the order of compound page even when the order is zero
For compound pages, the head sets the PG_head flag and the tail sets the
compound_head to indicate the head page.  If a user allocates a compound
page and frees it with a different order, the compound page information
will not be properly initialized.  To detect this problem,
compound_order(page) and the order argument are compared, but this is not
checked when the order argument is zero.  That error should be checked
regardless of the order.

Link: https://lkml.kernel.org/r/20231023083217.1866451-1-hyesoo.yu@samsung.com
Signed-off-by: Hyesoo Yu <hyesoo.yu@samsung.com>
Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:14 -07:00
Muhammad Muzammil
be16dd764a mm: fix multiple typos in multiple files
Link: https://lkml.kernel.org/r/20231023124405.36981-1-m.muzzammilashraf@gmail.com
Signed-off-by: Muhammad Muzammil <m.muzzammilashraf@gmail.com>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muhammad Muzammil <m.muzzammilashraf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:14 -07:00
Vishal Moola (Oracle)
98b32d296d mm/khugepaged: convert collapse_pte_mapped_thp() to use folios
This removes 2 calls to compound_head() and helps convert khugepaged to
use folios throughout.

Previously, if the address passed to collapse_pte_mapped_thp()
corresponded to a tail page, the scan would fail immediately. Using
filemap_lock_folio() we get the corresponding folio back and try to
operate on the folio instead.

Link: https://lkml.kernel.org/r/20231020183331.10770-6-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:14 -07:00
Vishal Moola (Oracle)
b455f39d22 mm/khugepaged: convert alloc_charge_hpage() to use folios
Also remove count_memcg_page_event now that its last caller no longer uses
it and reword hpage_collapse_alloc_page() to hpage_collapse_alloc_folio().

This removes 1 call to compound_head() and helps convert khugepaged to
use folios throughout.

Link: https://lkml.kernel.org/r/20231020183331.10770-5-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:14 -07:00
Vishal Moola (Oracle)
dbf85c21e4 mm/khugepaged: convert is_refcount_suitable() to use folios
Both callers of is_refcount_suitable() have been converted to use
folios, so convert it to take in a folio. Both callers only operate on
head pages of folios so mapcount/refcount conversions here are trivial.

Removes 3 calls to compound head, and removes 315 bytes of kernel text.

Link: https://lkml.kernel.org/r/20231020183331.10770-4-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:14 -07:00
Vishal Moola (Oracle)
5c07ebb372 mm/khugepaged: convert hpage_collapse_scan_pmd() to use folios
Replaces 5 calls to compound_head(), and removes 1385 bytes of kernel
text.

Link: https://lkml.kernel.org/r/20231020183331.10770-3-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:14 -07:00
Vishal Moola (Oracle)
8dd1e89673 mm/khugepaged: convert __collapse_huge_page_isolate() to use folios
Patch series "Some khugepaged folio conversions", v3.

This patchset converts a number of functions to use folios.  This cleans
up some khugepaged code and removes a large number of hidden
compound_head() calls.


This patch (of 5):

Replaces 11 calls to compound_head() with 1, and removes 1348 bytes of
kernel text.

Link: https://lkml.kernel.org/r/20231020183331.10770-1-vishal.moola@gmail.com
Link: https://lkml.kernel.org/r/20231020183331.10770-2-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:14 -07:00
Qi Zheng
b7812c86c7 mm: memory_hotplug: drop memoryless node from fallback lists
In offline_pages(), if a node becomes memoryless, we will clear its
N_MEMORY state by calling node_states_clear_node().  But we do this
after rebuilding the zonelists by calling build_all_zonelists(), which
will cause this memoryless node to still be in the fallback nodes
(node_order[]) of other nodes.

To drop memoryless nodes from fallback nodes in this case, just call
node_states_clear_node() before calling build_all_zonelists().

In this way, we will not try to allocate pages from memoryless node0,
then the panic mentioned in [1] will also be fixed.  Even though this
problem has been solved by dropping the NODE_MIN_SIZE constrain in x86
[2], it would be better to fix it in the core MM as well.

https://lore.kernel.org/all/20230212110305.93670-1-zhengqi.arch@bytedance.com/ [1]
https://lore.kernel.org/all/20231017062215.171670-1-rppt@kernel.org/ [2]

Link: https://lkml.kernel.org/r/9f1dbe7ee1301c7163b2770e32954ff5e3ecf2c4.1697711415.git.zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:14 -07:00
Qi Zheng
c2baef394a mm: page_alloc: skip memoryless nodes entirely
Patch series "handle memoryless nodes more appropriately", v3.

Currently, in the process of initialization or offline memory, memoryless
nodes will still be built into the fallback list of itself or other nodes.

This is not what we expected, so this patch series removes memoryless
nodes from the fallback list entirely.


This patch (of 2):

In find_next_best_node(), we skipped the memoryless nodes when building
the zonelists of other normal nodes (N_NORMAL), but did not skip the
memoryless node itself when building the zonelist.  This will cause it to
be traversed at runtime.

For example, say we have node0 and node1, node0 is memoryless
node, then the fallback order of node0 and node1 as follows:

[    0.153005] Fallback order for Node 0: 0 1
[    0.153564] Fallback order for Node 1: 1

After this patch, we skip memoryless node0 entirely, then
the fallback order of node0 and node1 as follows:

[    0.155236] Fallback order for Node 0: 1
[    0.155806] Fallback order for Node 1: 1

So it becomes completely invisible, which will reduce runtime
overhead.

And in this way, we will not try to allocate pages from memoryless node0,
then the panic mentioned in [1] will also be fixed.  Even though this
problem has been solved by dropping the NODE_MIN_SIZE constrain in x86
[2], it would be better to fix it in core MM as well.

[1]. https://lore.kernel.org/all/20230212110305.93670-1-zhengqi.arch@bytedance.com/
[2]. https://lore.kernel.org/all/20231017062215.171670-1-rppt@kernel.org/

[zhengqi.arch@bytedance.com: update comment, per Ingo]
  Link: https://lkml.kernel.org/r/7300fc00a057eefeb9a68c8ad28171c3f0ce66ce.1697799303.git.zhengqi.arch@bytedance.com
Link: https://lkml.kernel.org/r/cover.1697799303.git.zhengqi.arch@bytedance.com
Link: https://lkml.kernel.org/r/cover.1697711415.git.zhengqi.arch@bytedance.com
Link: https://lkml.kernel.org/r/157013e978468241de4a4c05d5337a44638ecb0e.1697711415.git.zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:14 -07:00
Zi Yan
49cac03a8f mm/migrate: add nr_split to trace_mm_migrate_pages stats.
Add nr_split to trace_mm_migrate_pages for large folio (including THP)
split events.

[akpm@linux-foundation.org: cleanup per Huang, Ying]
Link: https://lkml.kernel.org/r/20231017163129.2025214-2-zi.yan@sent.com
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:13 -07:00
Zi Yan
a259945efe mm/migrate: correct nr_failed in migrate_pages_sync()
nr_failed was missing the large folio splits from migrate_pages_batch()
and can cause a mismatch between migrate_pages() return value and the
number of not migrated pages, i.e., when the return value of
migrate_pages() is 0, there are still pages left in the from page list. 
It will happen when a non-PMD THP large folio fails to migrate due to
-ENOMEM and is split successfully but not all the split pages are not
migrated, migrate_pages_batch() would return non-zero, but
astats.nr_thp_split = 0.  nr_failed would be 0 and returned to the caller
of migrate_pages(), but the not migrated pages are left in the from page
list without being added back to LRU lists.

Fix it by adding a new nr_split counter for large folio splits and adding
it to nr_failed in migrate_page_sync() after migrate_pages_batch() is
done.

Link: https://lkml.kernel.org/r/20231017163129.2025214-1-zi.yan@sent.com
Fixes: 2ef7dbb269 ("migrate_pages: try migrate in batch asynchronously firstly")
Signed-off-by: Zi Yan <ziy@nvidia.com>
Acked-by: Huang Ying <ying.huang@intel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:13 -07:00
Liu Shixin
245245c2ff mm/kmemleak: move the initialisation of object to __link_object
In patch (mm: kmemleak: split __create_object into two functions), the
initialisation of object has been splited in two places.  Catalin said it
feels a bit weird and error prone.  So leave __alloc_object() to just do
the actual allocation and let __link_object() do the full initialisation.

Link: https://lkml.kernel.org/r/20231023025125.90972-1-liushixin2@huawei.com
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:13 -07:00
Liu Shixin
5e4fc577db mm/kmemleak: fix partially freeing unknown object warning
delete_object_part() can be called by multiple callers in the same time. 
If an object is found and removed by a caller, and then another caller try
to find it too, it failed and return directly.  It still be recorded by
kmemleak even if it has already been freed to buddy.  With DEBUG on,
kmemleak will report the following warning,

 kmemleak: Partially freeing unknown object at 0xa1af86000 (size 4096)
 CPU: 0 PID: 742 Comm: test_huge Not tainted 6.6.0-rc3kmemleak+ #54
 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
 Call Trace:
  <TASK>
  dump_stack_lvl+0x37/0x50
  kmemleak_free_part_phys+0x50/0x60
  hugetlb_vmemmap_optimize+0x172/0x290
  ? __pfx_vmemmap_remap_pte+0x10/0x10
  __prep_new_hugetlb_folio+0xe/0x30
  prep_new_hugetlb_folio.isra.0+0xe/0x40
  alloc_fresh_hugetlb_folio+0xc3/0xd0
  alloc_surplus_hugetlb_folio.constprop.0+0x6e/0xd0
  hugetlb_acct_memory.part.0+0xe6/0x2a0
  hugetlb_reserve_pages+0x110/0x2c0
  hugetlbfs_file_mmap+0x11d/0x1b0
  mmap_region+0x248/0x9a0
  ? hugetlb_get_unmapped_area+0x15c/0x2d0
  do_mmap+0x38b/0x580
  vm_mmap_pgoff+0xe6/0x190
  ksys_mmap_pgoff+0x18a/0x1f0
  do_syscall_64+0x3f/0x90
  entry_SYSCALL_64_after_hwframe+0x6e/0xd8

Expand __create_object() and move __alloc_object() to the beginning.  Then
use kmemleak_lock to protect __find_and_remove_object() and
__link_object() as a whole, which can guarantee all objects are processed
sequentialally.

Link: https://lkml.kernel.org/r/20231018102952.3339837-8-liushixin2@huawei.com
Fixes: 53238a60dd ("kmemleak: Allow partial freeing of memory blocks")
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Patrick Wang <patrick.wang.shcn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:13 -07:00
Liu Shixin
858a195b93 mm: kmemleak: add __find_and_remove_object()
Add new __find_and_remove_object() without kmemleak_lock protect, it is in
preparation for the next patch.

Link: https://lkml.kernel.org/r/20231018102952.3339837-7-liushixin2@huawei.com
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Patrick Wang <patrick.wang.shcn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:13 -07:00
Liu Shixin
2e1d47385f mm: kmemleak: use mem_pool_free() to free object
The kmemleak object is allocated by mem_pool_alloc(), which could be from
slab or mem_pool[], so it's not suitable using __kmem_cache_free() to free
the object, use __mem_pool_free() instead.

Link: https://lkml.kernel.org/r/20231018102952.3339837-6-liushixin2@huawei.com
Fixes: 0647398a8c ("mm: kmemleak: simple memory allocation pool for kmemleak objects")
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Patrick Wang <patrick.wang.shcn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:13 -07:00
Liu Shixin
0edd7b5829 mm: kmemleak: split __create_object into two functions
__create_object() consists of two part, the first part allocate a kmemleak
object and initialize it, the second part insert it into object tree. 
This function need kmemleak_lock but actually only the second part need
lock.

Split it into two functions, the first function __alloc_object only
allocate a kmemleak object, and the second function __link_object() will
initialize the object and insert it into object tree, use the
kmemleak_lock to protect __link_object() only.

[akpm@linux-foundation.org: coding-style cleanups]
Link: https://lkml.kernel.org/r/20231018102952.3339837-5-liushixin2@huawei.com
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Patrick Wang <patrick.wang.shcn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:13 -07:00
Liu Shixin
62047e0f3e mm/kmemleak: fix print format of pointer in pr_debug()
With 0x%p, the pointer will be hashed and print (____ptrval____) instead. 
And with 0x%pa, the pointer can be successfully printed but with duplicate
prefixes, which looks like:

 kmemleak: kmemleak_free(0x(____ptrval____))
 kmemleak: kmemleak_free_percpu(0x(____ptrval____))
 kmemleak: kmemleak_free_part_phys(0x0x0000000a1af86000)

Use 0x%px instead of 0x%p or 0x%pa to print the pointer. Then the print
will be like:

 kmemleak: kmemleak_free(0xffff9111c145b020)
 kmemleak: kmemleak_free_percpu(0x00000000000333b0)
 kmemleak: kmemleak_free_part_phys(0x0000000a1af80000)

Link: https://lkml.kernel.org/r/20231018102952.3339837-4-liushixin2@huawei.com
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Patrick Wang <patrick.wang.shcn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:13 -07:00
Liu Shixin
6d4e2cda62 bootmem: use kmemleak_free_part_phys in put_page_bootmem
Patch series "Some bugfix about kmemleak", v3.

Some bugfixes for kmemleak and the printed info from debug mode.


This patch (of 7):

Since kmemleak_alloc_phys() rather than kmemleak_alloc() was called from
memblock_alloc_range_nid(), kmemleak_free_part_phys() should be used to
delete kmemleak object in put_page_bootmem().  In debug mode, there are
following warning:

 kmemleak: Partially freeing unknown object at 0xffff97345aff7000 (size 4096)

Link: https://lkml.kernel.org/r/20231018102952.3339837-1-liushixin2@huawei.com
Link: https://lkml.kernel.org/r/20231018102952.3339837-2-liushixin2@huawei.com
Fixes: dd0ff4d12d ("bootmem: remove the vmemmap pages from kmemleak in put_page_bootmem")
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Patrick Wang <patrick.wang.shcn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:13 -07:00
Kefeng Wang
8f0f4788b1 mm: remove page_cpupid_xchg_last()
Since all calls use folio_xchg_last_cpupid(), remove
page_cpupid_xchg_last().

Link: https://lkml.kernel.org/r/20231018140806.2783514-20-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:13 -07:00
Kefeng Wang
c2c3b51480 mm: use folio_xchg_last_cpupid() in wp_page_reuse()
Convert to use folio_xchg_last_cpupid() in wp_page_reuse(), and remove
page variable. Since now only normal and PMD-mapped page is handled by
numa balancing, it's enough to only update the entire folio's last cpupid.

Link: https://lkml.kernel.org/r/20231018140806.2783514-19-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:13 -07:00
Kefeng Wang
a86bc96b77 mm: convert wp_page_reuse() and finish_mkwrite_fault() to take a folio
Saves one compound_head() call, also in preparation for
page_cpupid_xchg_last() conversion.

Link: https://lkml.kernel.org/r/20231018140806.2783514-18-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:13 -07:00
Kefeng Wang
c08b7e3830 mm: make finish_mkwrite_fault() static
Make finish_mkwrite_fault static since it is not used outside of
memory.c.

Link: https://lkml.kernel.org/r/20231018140806.2783514-17-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:12 -07:00
Kefeng Wang
c825301134 mm: huge_memory: use folio_xchg_last_cpupid() in __split_huge_page_tail()
Convert to use folio_xchg_last_cpupid() in __split_huge_page_tail().

Link: https://lkml.kernel.org/r/20231018140806.2783514-16-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:12 -07:00
Kefeng Wang
4e694fe4d2 mm: migrate: use folio_xchg_last_cpupid() in folio_migrate_flags()
Convert to use folio_xchg_last_cpupid() in folio_migrate_flags(), also
directly use folio_nid() instead of page_to_nid(&folio->page).

Link: https://lkml.kernel.org/r/20231018140806.2783514-15-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:12 -07:00
Kefeng Wang
d986ba2b19 mm: huge_memory: use a folio in change_huge_pmd()
Use a folio in change_huge_pmd(), which helps to remove last
xchg_page_access_time() caller.

Link: https://lkml.kernel.org/r/20231018140806.2783514-11-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:12 -07:00
Kefeng Wang
ec1778807a mm: mprotect: use a folio in change_pte_range()
Use a folio in change_pte_range() to save three compound_head() calls.
Since now only normal and PMD-mapped page is handled by numa balancing,
it is enough to only update the entire folio's access time.

Link: https://lkml.kernel.org/r/20231018140806.2783514-10-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:12 -07:00
Kefeng Wang
19c1ac02ce mm: huge_memory: use folio_last_cpupid() in __split_huge_page_tail()
Convert to use folio_last_cpupid() in __split_huge_page_tail().

Link: https://lkml.kernel.org/r/20231018140806.2783514-6-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:12 -07:00
Kefeng Wang
c4a8d2faab mm: huge_memory: use folio_last_cpupid() in do_huge_pmd_numa_page()
Convert to use folio_last_cpupid() in do_huge_pmd_numa_page().

Link: https://lkml.kernel.org/r/20231018140806.2783514-5-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:11 -07:00
Kefeng Wang
67b33e3ff5 mm: memory: use folio_last_cpupid() in do_numa_page()
Convert to use folio_last_cpupid() in do_numa_page().

Link: https://lkml.kernel.org/r/20231018140806.2783514-4-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:11 -07:00
Kairui Song
e5b306a082 mm/swap: avoid a xa load for swapout path
A variable is never used for swapout path (shadowp is NULL) and compiler
is unable to optimize out the unneeded load since it's a function call.

The was introduced by 3852f6768e ("mm/swapcache: support to handle the
shadow entries").

Link: https://lkml.kernel.org/r/20231017011728.37508-1-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:11 -07:00
Roman Gushchin
e56808fef8 mm: kmem: reimplement get_obj_cgroup_from_current()
Reimplement get_obj_cgroup_from_current() using current_obj_cgroup(). 
get_obj_cgroup_from_current() and current_obj_cgroup() share 80% of the
code, so the new implementation is almost trivial.

get_obj_cgroup_from_current() is a convenient function used by the
bpf subsystem, so there is no reason to get rid of it completely.

Link: https://lkml.kernel.org/r/20231019225346.1822282-7-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:11 -07:00
Roman Gushchin
c63b835d0e percpu: scoped objcg protection
Similar to slab and kmem, switch to a scope-based protection of the objcg
pointer to avoid.

Link: https://lkml.kernel.org/r/20231019225346.1822282-6-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Acked-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:11 -07:00
Roman Gushchin
e86828e544 mm: kmem: scoped objcg protection
Switch to a scope-based protection of the objcg pointer on slab/kmem
allocation paths.  Instead of using the get_() semantics in the
pre-allocation hook and put the reference afterwards, let's rely on the
fact that objcg is pinned by the scope.

It's possible because:
1) if the objcg is received from the current task struct, the task is
   keeping a reference to the objcg.
2) if the objcg is received from an active memcg (remote charging),
   the memcg is pinned by the scope and has a reference to the
   corresponding objcg.

Link: https://lkml.kernel.org/r/20231019225346.1822282-5-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Acked-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:11 -07:00
Roman Gushchin
675d6c9b59 mm: kmem: make memcg keep a reference to the original objcg
Keep a reference to the original objcg object for the entire life of a
memcg structure.

This allows to simplify the synchronization on the kernel memory
allocation paths: pinning a (live) memcg will also pin the corresponding
objcg.

The memory overhead of this change is minimal because object cgroups
usually outlive their corresponding memory cgroups even without this
change, so it's only an additional pointer per memcg.

Link: https://lkml.kernel.org/r/20231019225346.1822282-4-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Acked-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:11 -07:00
Roman Gushchin
1aacbd3543 mm: kmem: add direct objcg pointer to task_struct
To charge a freshly allocated kernel object to a memory cgroup, the kernel
needs to obtain an objcg pointer.  Currently it does it indirectly by
obtaining the memcg pointer first and then calling to
__get_obj_cgroup_from_memcg().

Usually tasks spend their entire life belonging to the same object cgroup.
So it makes sense to save the objcg pointer on task_struct directly, so
it can be obtained faster.  It requires some work on fork, exit and cgroup
migrate paths, but these paths are way colder.

To avoid any costly synchronization the following rules are applied:
1) A task sets it's objcg pointer itself.

2) If a task is being migrated to another cgroup, the least
   significant bit of the objcg pointer is set atomically.

3) On the allocation path the objcg pointer is obtained locklessly
   using the READ_ONCE() macro and the least significant bit is
   checked. If it's set, the following procedure is used to update
   it locklessly:
       - task->objcg is zeroed using cmpxcg
       - new objcg pointer is obtained
       - task->objcg is updated using try_cmpxchg
       - operation is repeated if try_cmpxcg fails
   It guarantees that no updates will be lost if task migration
   is racing against objcg pointer update. It also allows to keep
   both read and write paths fully lockless.

Because the task is keeping a reference to the objcg, it can't go away
while the task is alive.

This commit doesn't change the way the remote memcg charging works.

Link: https://lkml.kernel.org/r/20231019225346.1822282-3-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:11 -07:00
Roman Gushchin
7d0715d0d6 mm: kmem: optimize get_obj_cgroup_from_current()
Patch series "mm: improve performance of accounted kernel memory
allocations", v5.

This patchset improves the performance of accounted kernel memory
allocations by ~30% as measured by a micro-benchmark [1].  The benchmark
is very straightforward: 1M of 64 bytes-large kmalloc() allocations.

Below are results with the disabled kernel memory accounting, the original state
and with this patchset applied.

|             | Kmem disabled | Original | Patched |  Delta |
|-------------+---------------+----------+---------+--------|
| User cgroup |         29764 |    84548 |   59078 | -30.0% |
| Root cgroup |         29742 |    48342 |   31501 | -34.8% |

As we can see, the patchset removes the majority of the overhead when
there is no actual accounting (a task belongs to the root memory cgroup)
and almost halves the accounting overhead otherwise.

The main idea is to get rid of unnecessary memcg to objcg conversions and
switch to a scope-based protection of objcgs, which eliminates extra
operations with objcg reference counters under a rcu read lock.  More
details are provided in individual commit descriptions.


This patch (of 5):

Manually inline memcg_kmem_bypass() and active_memcg() to speed up
get_obj_cgroup_from_current() by avoiding duplicate in_task() checks and
active_memcg() readings.

Also add a likely() macro to __get_obj_cgroup_from_memcg():
obj_cgroup_tryget() should succeed at almost all times except a very
unlikely race with the memcg deletion path.

Link: https://lkml.kernel.org/r/20231019225346.1822282-1-roman.gushchin@linux.dev
Link: https://lkml.kernel.org/r/20231019225346.1822282-2-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:11 -07:00
Huang Ying
6ccdcb6d3a mm, pcp: reduce detecting time of consecutive high order page freeing
In current PCP auto-tuning design, if the number of pages allocated is
much more than that of pages freed on a CPU, the PCP high may become the
maximal value even if the allocating/freeing depth is small, for example,
in the sender of network workloads.  If a CPU was used as sender
originally, then it is used as receiver after context switching, we need
to fill the whole PCP with maximal high before triggering PCP draining for
consecutive high order freeing.  This will hurt the performance of some
network workloads.

To solve the issue, in this patch, we will track the consecutive page
freeing with a counter in stead of relying on PCP draining.  So, we can
detect consecutive page freeing much earlier.

On a 2-socket Intel server with 128 logical CPU, we tested
SCTP_STREAM_MANY test case of netperf test suite with 64-pair processes. 
With the patch, the network bandwidth improves 5.0%.  This restores the
performance drop caused by PCP auto-tuning.

Link: https://lkml.kernel.org/r/20231016053002.756205-10-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:11 -07:00
Huang Ying
57c0419c5f mm, pcp: decrease PCP high if free pages < high watermark
One target of PCP is to minimize pages in PCP if the system free pages is
too few.  To reach that target, when page reclaiming is active for the
zone (ZONE_RECLAIM_ACTIVE), we will stop increasing PCP high in allocating
path, decrease PCP high and free some pages in freeing path.  But this may
be too late because the background page reclaiming may introduce latency
for some workloads.  So, in this patch, during page allocation we will
detect whether the number of free pages of the zone is below high
watermark.  If so, we will stop increasing PCP high in allocating path,
decrease PCP high and free some pages in freeing path.  With this, we can
reduce the possibility of the premature background page reclaiming caused
by too large PCP.

The high watermark checking is done in allocating path to reduce the
overhead in hotter freeing path.

Link: https://lkml.kernel.org/r/20231016053002.756205-9-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:10 -07:00
Huang Ying
51a755c56d mm: tune PCP high automatically
The target to tune PCP high automatically is as follows,

- Minimize allocation/freeing from/to shared zone

- Minimize idle pages in PCP

- Minimize pages in PCP if the system free pages is too few

To reach these target, a tuning algorithm as follows is designed,

- When we refill PCP via allocating from the zone, increase PCP high.
  Because if we had larger PCP, we could avoid to allocate from the
  zone.

- In periodic vmstat updating kworker (via refresh_cpu_vm_stats()),
  decrease PCP high to try to free possible idle PCP pages.

- When page reclaiming is active for the zone, stop increasing PCP
  high in allocating path, decrease PCP high and free some pages in
  freeing path.

So, the PCP high can be tuned to the page allocating/freeing depth of
workloads eventually.

One issue of the algorithm is that if the number of pages allocated is
much more than that of pages freed on a CPU, the PCP high may become the
maximal value even if the allocating/freeing depth is small.  But this
isn't a severe issue, because there are no idle pages in this case.

One alternative choice is to increase PCP high when we drain PCP via
trying to free pages to the zone, but don't increase PCP high during PCP
refilling.  This can avoid the issue above.  But if the number of pages
allocated is much less than that of pages freed on a CPU, there will be
many idle pages in PCP and it is hard to free these idle pages.

1/8 (>> 3) of PCP high will be decreased periodically.  The value 1/8 is
kind of arbitrary.  Just to make sure that the idle PCP pages will be
freed eventually.

On a 2-socket Intel server with 224 logical CPU, we run 8 kbuild instances
in parallel (each with `make -j 28`) in 8 cgroup.  This simulates the
kbuild server that is used by 0-Day kbuild service.  With the patch, the
build time decreases 3.5%.  The cycles% of the spinlock contention (mostly
for zone lock) decreases from 11.0% to 0.5%.  The number of PCP draining
for high order pages freeing (free_high) decreases 65.6%.  The number of
pages allocated from zone (instead of from PCP) decreases 83.9%.

Link: https://lkml.kernel.org/r/20231016053002.756205-8-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-by: Mel Gorman <mgorman@techsingularity.net>
Suggested-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:10 -07:00
Huang Ying
90b41691b9 mm: add framework for PCP high auto-tuning
The page allocation performance requirements of different workloads are
usually different.  So, we need to tune PCP (per-CPU pageset) high to
optimize the workload page allocation performance.  Now, we have a system
wide sysctl knob (percpu_pagelist_high_fraction) to tune PCP high by hand.
But, it's hard to find out the best value by hand.  And one global
configuration may not work best for the different workloads that run on
the same system.  One solution to these issues is to tune PCP high of each
CPU automatically.

This patch adds the framework for PCP high auto-tuning.  With it,
pcp->high of each CPU will be changed automatically by tuning algorithm at
runtime.  The minimal high (pcp->high_min) is the original PCP high value
calculated based on the low watermark pages.  While the maximal high
(pcp->high_max) is the PCP high value when percpu_pagelist_high_fraction
sysctl knob is set to MIN_PERCPU_PAGELIST_HIGH_FRACTION.  That is, the
maximal pcp->high that can be set via sysctl knob by hand.

It's possible that PCP high auto-tuning doesn't work well for some
workloads.  So, when PCP high is tuned by hand via the sysctl knob, the
auto-tuning will be disabled.  The PCP high set by hand will be used
instead.

This patch only adds the framework, so pcp->high will be set to
pcp->high_min (original default) always.  We will add actual auto-tuning
algorithm in the following patches in the series.

Link: https://lkml.kernel.org/r/20231016053002.756205-7-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:10 -07:00
Huang Ying
c0a242394c mm, page_alloc: scale the number of pages that are batch allocated
When a task is allocating a large number of order-0 pages, it may acquire
the zone->lock multiple times allocating pages in batches.  This may
unnecessarily contend on the zone lock when allocating very large number
of pages.  This patch adapts the size of the batch based on the recent
pattern to scale the batch size for subsequent allocations.

On a 2-socket Intel server with 224 logical CPU, we run 8 kbuild instances
in parallel (each with `make -j 28`) in 8 cgroup.  This simulates the
kbuild server that is used by 0-Day kbuild service.  With the patch, the
cycles% of the spinlock contention (mostly for zone lock) decreases from
12.6% to 11.0% (with PCP size == 367).

Link: https://lkml.kernel.org/r/20231016053002.756205-6-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:10 -07:00
Huang Ying
52166607ec mm: restrict the pcp batch scale factor to avoid too long latency
In page allocator, PCP (Per-CPU Pageset) is refilled and drained in
batches to increase page allocation throughput, reduce page
allocation/freeing latency per page, and reduce zone lock contention.  But
too large batch size will cause too long maximal allocation/freeing
latency, which may punish arbitrary users.  So the default batch size is
chosen carefully (in zone_batchsize(), the value is 63 for zone > 1GB) to
avoid that.

In commit 3b12e7e979 ("mm/page_alloc: scale the number of pages that are
batch freed"), the batch size will be scaled for large number of page
freeing to improve page freeing performance and reduce zone lock
contention.  Similar optimization can be used for large number of pages
allocation too.

To find out a suitable max batch scale factor (that is, max effective
batch size), some tests and measurement on some machines were done as
follows.

A set of debug patches are implemented as follows,

- Set PCP high to be 2 * batch to reduce the effect of PCP high

- Disable free batch size scaling to get the raw performance.

- The code with zone lock held is extracted from rmqueue_bulk() and
  free_pcppages_bulk() to 2 separate functions to make it easy to
  measure the function run time with ftrace function_graph tracer.

- The batch size is hard coded to be 63 (default), 127, 255, 511,
  1023, 2047, 4095.

Then will-it-scale/page_fault1 is used to generate the page
allocation/freeing workload.  The page allocation/freeing throughput
(page/s) is measured via will-it-scale.  The page allocation/freeing
average latency (alloc/free latency avg, in us) and allocation/freeing
latency at 99 percentile (alloc/free latency 99%, in us) are measured with
ftrace function_graph tracer.

The test results are as follows,

Sapphire Rapids Server
======================
Batch	throughput	free latency	free latency	alloc latency	alloc latency
	page/s		avg / us	99% / us	avg / us	99% / us
-----	----------	------------	------------	-------------	-------------
  63	513633.4	 2.33		 3.57		 2.67		  6.83
 127	517616.7	 4.35		 6.65		 4.22		 13.03
 255	520822.8	 8.29		13.32		 7.52		 25.24
 511	524122.0	15.79		23.42		14.02		 49.35
1023	525980.5	30.25		44.19		25.36		 94.88
2047	526793.6	59.39		84.50		45.22		140.81

Ice Lake Server
===============
Batch	throughput	free latency	free latency	alloc latency	alloc latency
	page/s		avg / us	99% / us	avg / us	99% / us
-----	----------	------------	------------	-------------	-------------
  63	620210.3	 2.21		 3.68		 2.02		 4.35
 127	627003.0	 4.09		 6.86		 3.51		 8.28
 255	630777.5	 7.70		13.50		 6.17		15.97
 511	633651.5	14.85		22.62		11.66		31.08
1023	637071.1	28.55		42.02		20.81		54.36
2047	638089.7	56.54		84.06		39.28		91.68

Cascade Lake Server
===================
Batch	throughput	free latency	free latency	alloc latency	alloc latency
	page/s		avg / us	99% / us	avg / us	99% / us
-----	----------	------------	------------	-------------	-------------
  63	404706.7	 3.29		  5.03		 3.53		  4.75
 127	422475.2	 6.12		  9.09		 6.36		  8.76
 255	411522.2	11.68		 16.97		10.90		 16.39
 511	428124.1	22.54		 31.28		19.86		 32.25
1023	414718.4	43.39		 62.52		40.00		 66.33
2047	429848.7	86.64		120.34		71.14		106.08

Commet Lake Desktop
===================
Batch	throughput	free latency	free latency	alloc latency	alloc latency
	page/s		avg / us	99% / us	avg / us	99% / us
-----	----------	------------	------------	-------------	-------------

  63	795183.13	 2.18		 3.55		 2.03		 3.05
 127	803067.85	 3.91		 6.56		 3.85		 5.52
 255	812771.10	 7.35		10.80		 7.14		10.20
 511	817723.48	14.17		27.54		13.43		30.31
1023	818870.19	27.72		40.10		27.89		46.28

Coffee Lake Desktop
===================
Batch	throughput	free latency	free latency	alloc latency	alloc latency
	page/s		avg / us	99% / us	avg / us	99% / us
-----	----------	------------	------------	-------------	-------------
  63	510542.8	 3.13		  4.40		 2.48		 3.43
 127	514288.6	 5.97		  7.89		 4.65		 6.04
 255	516889.7	11.86		 15.58		 8.96		12.55
 511	519802.4	23.10		 28.81		16.95		26.19
1023	520802.7	45.30		 52.51		33.19		45.95
2047	519997.1	90.63		104.00		65.26		81.74

From the above data, to restrict the allocation/freeing latency to be less
than 100 us in most times, the max batch scale factor needs to be less
than or equal to 5.

Although it is reasonable to use 5 as max batch scale factor for the
systems tested, there are also slower systems.  Where smaller value should
be used to constrain the page allocation/freeing latency.

So, in this patch, a new kconfig option (PCP_BATCH_SCALE_MAX) is added to
set the max batch scale factor.  Whose default value is 5, and users can
reduce it when necessary.

Link: https://lkml.kernel.org/r/20231016053002.756205-5-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:10 -07:00
Huang Ying
362d37a106 mm, pcp: reduce lock contention for draining high-order pages
In commit f26b3fa046 ("mm/page_alloc: limit number of high-order pages
on PCP during bulk free"), the PCP (Per-CPU Pageset) will be drained when
PCP is mostly used for high-order pages freeing to improve the cache-hot
pages reusing between page allocating and freeing CPUs.

On system with small per-CPU data cache slice, pages shouldn't be cached
before draining to guarantee cache-hot.  But on a system with large
per-CPU data cache slice, some pages can be cached before draining to
reduce zone lock contention.

So, in this patch, instead of draining without any caching, "pcp->batch"
pages will be cached in PCP before draining if the size of the per-CPU
data cache slice is more than "3 * batch".

In theory, if the size of per-CPU data cache slice is more than "2 *
batch", we can reuse cache-hot pages between CPUs.  But considering the
other usage of cache (code, other data accessing, etc.), "3 * batch" is
used.

Note: "3 * batch" is chosen to make sure the optimization works on recent
x86_64 server CPUs.  If you want to increase it, please check whether it
breaks the optimization.

On a 2-socket Intel server with 128 logical CPU, with the patch, the
network bandwidth of the UNIX (AF_UNIX) test case of lmbench test suite
with 16-pair processes increase 70.5%.  The cycles% of the spinlock
contention (mostly for zone lock) decreases from 46.1% to 21.3%.  The
number of PCP draining for high order pages freeing (free_high) decreases
89.9%.  The cache miss rate keeps 0.2%.

Link: https://lkml.kernel.org/r/20231016053002.756205-4-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:10 -07:00
Huang Ying
ca71fe1ad9 mm, pcp: avoid to drain PCP when process exit
Patch series "mm: PCP high auto-tuning", v3.

The page allocation performance requirements of different workloads are
often different.  So, we need to tune the PCP (Per-CPU Pageset) high on
each CPU automatically to optimize the page allocation performance.

The list of patches in series is as follows,

[1/9] mm, pcp: avoid to drain PCP when process exit
[2/9] cacheinfo: calculate per-CPU data cache size
[3/9] mm, pcp: reduce lock contention for draining high-order pages
[4/9] mm: restrict the pcp batch scale factor to avoid too long latency
[5/9] mm, page_alloc: scale the number of pages that are batch allocated
[6/9] mm: add framework for PCP high auto-tuning
[7/9] mm: tune PCP high automatically
[8/9] mm, pcp: decrease PCP high if free pages < high watermark
[9/9] mm, pcp: reduce detecting time of consecutive high order page freeing

Patch [1/9], [2/9], [3/9] optimize the PCP draining for consecutive
high-order pages freeing.

Patch [4/9], [5/9] optimize batch freeing and allocating.

Patch [6/9], [7/9], [8/9] implement and optimize a PCP high
auto-tuning method.

Patch [9/9] optimize the PCP draining for consecutive high order page
freeing based on PCP high auto-tuning.

The test results for patches with performance impact are as follows,

kbuild
======

On a 2-socket Intel server with 224 logical CPU, we run 8 kbuild instances
in parallel (each with `make -j 28`) in 8 cgroup.  This simulates the
kbuild server that is used by 0-Day kbuild service.

	build time   lock contend%	free_high	alloc_zone
	----------	----------	---------	----------
base	     100.0	      14.0          100.0            100.0
patch1	      99.5	      12.8	     19.5	      95.6
patch3	      99.4	      12.6	      7.1	      95.6
patch5	      98.6	      11.0	      8.1	      97.1
patch7	      95.1	       0.5	      2.8	      15.6
patch9	      95.0	       1.0	      8.8	      20.0

The PCP draining optimization (patch [1/9], [3/9]) and PCP batch
allocation optimization (patch [5/9]) reduces zone lock contention a
little.  The PCP high auto-tuning (patch [7/9], [9/9]) reduces build time
visibly.  Where the tuning target: the number of pages allocated from zone
reduces greatly.  So, the zone contention cycles% reduces greatly.

With PCP tuning patches (patch [7/9], [9/9]), the average used memory
during test increases up to 18.4% because more pages are cached in PCP. 
But at the end of the test, the number of the used memory decreases to the
same level as that of the base patch.  That is, the pages cached in PCP
will be released to zone after not being used actively.

netperf SCTP_STREAM_MANY
========================

On a 2-socket Intel server with 128 logical CPU, we tested
SCTP_STREAM_MANY test case of netperf test suite with 64-pair processes.

	     score   lock contend%	free_high	alloc_zone  cache miss rate%
	     -----	----------	---------	----------  ----------------
base	     100.0	       2.1          100.0            100.0	         1.3
patch1	      99.4	       2.1	     99.4	      99.4		 1.3
patch3	     106.4	       1.3	     13.3	     106.3		 1.3
patch5	     106.0	       1.2	     13.2	     105.9		 1.3
patch7	     103.4	       1.9	      6.7	      90.3		 7.6
patch9	     108.6	       1.3	     13.7	     108.6		 1.3

The PCP draining optimization (patch [1/9]+[3/9]) improves performance. 
The PCP high auto-tuning (patch [7/9]) reduces performance a little
because PCP draining cannot be triggered in time sometimes.  So, the cache
miss rate% increases.  The further PCP draining optimization (patch [9/9])
based on PCP tuning restore the performance.

lmbench3 UNIX (AF_UNIX)
=======================

On a 2-socket Intel server with 128 logical CPU, we tested UNIX
(AF_UNIX socket) test case of lmbench3 test suite with 16-pair
processes.

	     score   lock contend%	free_high	alloc_zone  cache miss rate%
	     -----	----------	---------	----------  ----------------
base	     100.0	      51.4          100.0            100.0	         0.2
patch1	     116.8	      46.1           69.5	     104.3	         0.2
patch3	     199.1	      21.3            7.0	     104.9	         0.2
patch5	     200.0	      20.8            7.1	     106.9	         0.3
patch7	     191.6	      19.9            6.8	     103.8	         2.8
patch9	     193.4	      21.7            7.0	     104.7	         2.1

The PCP draining optimization (patch [1/9], [3/9]) improves performance
much.  The PCP tuning (patch [7/9]) reduces performance a little because
PCP draining cannot be triggered in time sometimes.  The further PCP
draining optimization (patch [9/9]) based on PCP tuning restores the
performance partly.

The patchset adds several fields in struct per_cpu_pages.  The struct
layout before/after the patchset is as follows,

base
====

struct per_cpu_pages {
	spinlock_t                 lock;                 /*     0     4 */
	int                        count;                /*     4     4 */
	int                        high;                 /*     8     4 */
	int                        batch;                /*    12     4 */
	short int                  free_factor;          /*    16     2 */
	short int                  expire;               /*    18     2 */

	/* XXX 4 bytes hole, try to pack */

	struct list_head           lists[13];            /*    24   208 */

	/* size: 256, cachelines: 4, members: 7 */
	/* sum members: 228, holes: 1, sum holes: 4 */
	/* padding: 24 */
} __attribute__((__aligned__(64)));

patched
=======

struct per_cpu_pages {
	spinlock_t                 lock;                 /*     0     4 */
	int                        count;                /*     4     4 */
	int                        high;                 /*     8     4 */
	int                        high_min;             /*    12     4 */
	int                        high_max;             /*    16     4 */
	int                        batch;                /*    20     4 */
	u8                         flags;                /*    24     1 */
	u8                         alloc_factor;         /*    25     1 */
	u8                         expire;               /*    26     1 */

	/* XXX 1 byte hole, try to pack */

	short int                  free_count;           /*    28     2 */

	/* XXX 2 bytes hole, try to pack */

	struct list_head           lists[13];            /*    32   208 */

	/* size: 256, cachelines: 4, members: 11 */
	/* sum members: 237, holes: 2, sum holes: 3 */
	/* padding: 16 */
} __attribute__((__aligned__(64)));

The size of the struct doesn't changed with the patchset.


This patch (of 9):

In commit f26b3fa046 ("mm/page_alloc: limit number of high-order pages
on PCP during bulk free"), the PCP (Per-CPU Pageset) will be drained when
PCP is mostly used for high-order pages freeing to improve the cache-hot
pages reusing between page allocation and freeing CPUs.

But, the PCP draining mechanism may be triggered unexpectedly when process
exits.  With some customized trace point, it was found that PCP draining
(free_high == true) was triggered with the order-1 page freeing with the
following call stack,

 => free_unref_page_commit
 => free_unref_page
 => __mmdrop
 => exit_mm
 => do_exit
 => do_group_exit
 => __x64_sys_exit_group
 => do_syscall_64

Checking the source code, this is the page table PGD freeing
(mm_free_pgd()).  It's a order-1 page freeing if
CONFIG_PAGE_TABLE_ISOLATION=y.  Which is a common configuration for
security.

Just before that, page freeing with the following call stack was found,

 => free_unref_page_commit
 => free_unref_page_list
 => release_pages
 => tlb_batch_pages_flush
 => tlb_finish_mmu
 => exit_mmap
 => __mmput
 => exit_mm
 => do_exit
 => do_group_exit
 => __x64_sys_exit_group
 => do_syscall_64

So, when a process exits,

- a large number of user pages of the process will be freed without
  page allocation, it's highly possible that pcp->free_factor becomes >
  0.  In fact, this is expected behavior to improve process exit
  performance.

- after freeing all user pages, the PGD will be freed, which is a
  order-1 page freeing, PCP will be drained.

All in all, when a process exits, it's high possible that the PCP will be
drained.  This is an unexpected behavior.

To avoid this, in the patch, the PCP draining will only be triggered for 2
consecutive high-order page freeing.

On a 2-socket Intel server with 224 logical CPU, we run 8 kbuild instances
in parallel (each with `make -j 28`) in 8 cgroup.  This simulates the
kbuild server that is used by 0-Day kbuild service.  With the patch, the
cycles% of the spinlock contention (mostly for zone lock) decreases from
14.0% to 12.8% (with PCP size == 367).  The number of PCP draining for
high order pages freeing (free_high) decreases 80.5%.

This helps network workload too for reduced zone lock contention.  On a
2-socket Intel server with 128 logical CPU, with the patch, the network
bandwidth of the UNIX (AF_UNIX) test case of lmbench test suite with
16-pair processes increase 16.8%.  The cycles% of the spinlock contention
(mostly for zone lock) decreases from 51.4% to 46.1%.  The number of PCP
draining for high order pages freeing (free_high) decreases 30.5%.  The
cache miss rate keeps 0.2%.

Link: https://lkml.kernel.org/r/20231016053002.756205-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20231016053002.756205-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:10 -07:00
Kairui Song
1f4f7f0f88 mm/oom_killer: simplify OOM killer info dump helper
There is only one caller wants to dump the kill victim info, so just let
it call the standalone helper, no need to make the generic info dump
helper take an extra argument for that.

Result of bloat-o-meter:
./scripts/bloat-o-meter ./mm/oom_kill.old.o ./mm/oom_kill.o
add/remove: 0/0 grow/shrink: 1/2 up/down: 131/-142 (-11)
Function                                     old     new   delta
oom_kill_process                             412     543    +131
out_of_memory                               1422    1418      -4
dump_header                                  562     424    -138
Total: Before=21514, After=21503, chg -0.05%

Link: https://lkml.kernel.org/r/20231016113103.86477-1-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:10 -07:00
Pedro Falcato
09aec5f9b2 mm: kmsan: panic on failure to allocate early boot metadata
Given large enough allocations and a machine with low enough memory (i.e a
default QEMU VM), it's entirely possible that
kmsan_init_alloc_meta_for_range's shadow+origin allocation fails.

Instead of eating a NULL deref kernel oops, check explicitly for
memblock_alloc() failure and panic with a nice error message.

Alexander Potapenko said:

For posterity, it is generally quite important for the allocated shadow
and origin to be contiguous, otherwise an unaligned memory write may
result in memory corruption (the corresponding unaligned shadow write will
be assuming that shadow pages are adjacent).  So instead of panicking we
could have split the range into smaller ones until the allocation
succeeds, but that would've led to hard-to-debug problems in the future.

Link: https://lkml.kernel.org/r/20231016153446.132763-1-pedro.falcato@gmail.com
Signed-off-by: Pedro Falcato <pedro.falcato@gmail.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:10 -07:00
Matthew Wilcox (Oracle)
4093602d6b nilfs2: convert nilfs_copy_page() to nilfs_copy_folio()
Both callers already have a folio, so pass it in and use it directly. 
Removes a lot of hidden calls to compound_head().

Link: https://lkml.kernel.org/r/20231016201114.1928083-13-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Pankaj Raghav <p.raghav@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:09 -07:00
Usama Arif
c5ad3233ea hugetlb_vmemmap: use folio argument for hugetlb_vmemmap_* functions
Most function calls in hugetlb.c are made with folio arguments.  This
brings hugetlb_vmemmap calls inline with them by using folio instead of
head struct page.  Head struct page is still needed within these
functions.

The set/clear/test functions for hugepages are also changed to folio
versions.

Link: https://lkml.kernel.org/r/20231011144557.1720481-2-usama.arif@bytedance.com
Signed-off-by: Usama Arif <usama.arif@bytedance.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Punit Agrawal <punit.agrawal@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:08 -07:00
Mike Kravetz
c24f188b22 hugetlb: batch TLB flushes when restoring vmemmap
Update the internal hugetlb restore vmemmap code path such that TLB
flushing can be batched.  Use the existing mechanism of passing the
VMEMMAP_REMAP_NO_TLB_FLUSH flag to indicate flushing should not be
performed for individual pages.  The routine
hugetlb_vmemmap_restore_folios is the only user of this new mechanism, and
it will perform a global flush after all vmemmap is restored.

Link: https://lkml.kernel.org/r/20231019023113.345257-9-mike.kravetz@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Konrad Dybcio <konradybcio@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Usama Arif <usama.arif@bytedance.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:08 -07:00
Joao Martins
f13b83fdd9 hugetlb: batch TLB flushes when freeing vmemmap
Now that a list of pages is deduplicated at once, the TLB flush can be
batched for all vmemmap pages that got remapped.

Expand the flags field value to pass whether to skip the TLB flush on
remap of the PTE.

The TLB flush is global as we don't have guarantees from caller that the
set of folios is contiguous, or to add complexity in composing a list of
kVAs to flush.

Modified by Mike Kravetz to perform TLB flush on single folio if an
error is encountered.

Link: https://lkml.kernel.org/r/20231019023113.345257-8-mike.kravetz@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Konrad Dybcio <konradybcio@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Usama Arif <usama.arif@bytedance.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:08 -07:00
Joao Martins
f4b7e3efad hugetlb: batch PMD split for bulk vmemmap dedup
In an effort to minimize amount of TLB flushes, batch all PMD splits
belonging to a range of pages in order to perform only 1 (global) TLB
flush.

Add a flags field to the walker and pass whether it's a bulk allocation or
just a single page to decide to remap.  First value
(VMEMMAP_SPLIT_NO_TLB_FLUSH) designates the request to not do the TLB
flush when we split the PMD.

Rebased and updated by Mike Kravetz

Link: https://lkml.kernel.org/r/20231019023113.345257-7-mike.kravetz@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Konrad Dybcio <konradybcio@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Usama Arif <usama.arif@bytedance.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:07 -07:00
Mike Kravetz
91f386bf07 hugetlb: batch freeing of vmemmap pages
Now that batching of hugetlb vmemmap optimization processing is possible,
batch the freeing of vmemmap pages.  When freeing vmemmap pages for a
hugetlb page, we add them to a list that is freed after the entire batch
has been processed.

This enhances the ability to return contiguous ranges of memory to the low
level allocators.

Link: https://lkml.kernel.org/r/20231019023113.345257-6-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Konrad Dybcio <konradybcio@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Usama Arif <usama.arif@bytedance.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:07 -07:00
Mike Kravetz
cfb8c75099 hugetlb: perform vmemmap restoration on a list of pages
The routine update_and_free_pages_bulk already performs vmemmap
restoration on the list of hugetlb pages in a separate step.  In
preparation for more functionality to be added in this step, create a new
routine hugetlb_vmemmap_restore_folios() that will restore vmemmap for a
list of folios.

This new routine must provide sufficient feedback about errors and actual
restoration performed so that update_and_free_pages_bulk can perform
optimally.

Special care must be taken when encountering an error from
hugetlb_vmemmap_restore_folios.  We want to continue making as much
forward progress as possible.  A new routine bulk_vmemmap_restore_error
handles this specific situation.

Link: https://lkml.kernel.org/r/20231019023113.345257-5-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Konrad Dybcio <konradybcio@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Usama Arif <usama.arif@bytedance.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:07 -07:00
Mike Kravetz
79359d6d24 hugetlb: perform vmemmap optimization on a list of pages
When adding hugetlb pages to the pool, we first create a list of the
allocated pages before adding to the pool.  Pass this list of pages to a
new routine hugetlb_vmemmap_optimize_folios() for vmemmap optimization.

Due to significant differences in vmemmmap initialization for bootmem
allocated hugetlb pages, a new routine prep_and_add_bootmem_folios is
created.

We also modify the routine vmemmap_should_optimize() to check for pages
that are already optimized.  There are code paths that might request
vmemmap optimization twice and we want to make sure this is not attempted.

Link: https://lkml.kernel.org/r/20231019023113.345257-4-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Konrad Dybcio <konradybcio@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Usama Arif <usama.arif@bytedance.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:07 -07:00
Mike Kravetz
d67e32f267 hugetlb: restructure pool allocations
Allocation of a hugetlb page for the hugetlb pool is done by the routine
alloc_pool_huge_page.  This routine will allocate contiguous pages from a
low level allocator, prep the pages for usage as a hugetlb page and then
add the resulting hugetlb page to the pool.

In the 'prep' stage, optional vmemmap optimization is done.  For
performance reasons we want to perform vmemmap optimization on multiple
hugetlb pages at once.  To do this, restructure the hugetlb pool
allocation code such that vmemmap optimization can be isolated and later
batched.

The code to allocate hugetlb pages from bootmem was also modified to
allow batching.

No functional changes, only code restructure.

Link: https://lkml.kernel.org/r/20231019023113.345257-3-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Tested-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Konrad Dybcio <konradybcio@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Usama Arif <usama.arif@bytedance.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:07 -07:00
Mike Kravetz
d2cf88c27f hugetlb: optimize update_and_free_pages_bulk to avoid lock cycles
Patch series "Batch hugetlb vmemmap modification operations", v8.

When hugetlb vmemmap optimization was introduced, the overhead of enabling
the option was measured as described in commit 426e5c429d [1].  The
summary states that allocating a hugetlb page should be ~2x slower with
optimization and freeing a hugetlb page should be ~2-3x slower.  Such
overhead was deemed an acceptable trade off for the memory savings
obtained by freeing vmemmap pages.

It was recently reported that the overhead associated with enabling
vmemmap optimization could be as high as 190x for hugetlb page
allocations.  Yes, 190x!  Some actual numbers from other environments are:

Bare Metal 8 socket Intel(R) Xeon(R) CPU E7-8895
------------------------------------------------
Unmodified next-20230824, vm.hugetlb_optimize_vmemmap = 0
time echo 500000 > .../hugepages-2048kB/nr_hugepages
real    0m4.119s
time echo 0 > .../hugepages-2048kB/nr_hugepages
real    0m4.477s

Unmodified next-20230824, vm.hugetlb_optimize_vmemmap = 1
time echo 500000 > .../hugepages-2048kB/nr_hugepages
real    0m28.973s
time echo 0 > .../hugepages-2048kB/nr_hugepages
real    0m36.748s

VM with 252 vcpus on host with 2 socket AMD EPYC 7J13 Milan
-----------------------------------------------------------
Unmodified next-20230824, vm.hugetlb_optimize_vmemmap = 0
time echo 524288 > .../hugepages-2048kB/nr_hugepages
real    0m2.463s
time echo 0 > .../hugepages-2048kB/nr_hugepages
real    0m2.931s

Unmodified next-20230824, vm.hugetlb_optimize_vmemmap = 1
time echo 524288 > .../hugepages-2048kB/nr_hugepages
real    2m27.609s
time echo 0 > .../hugepages-2048kB/nr_hugepages
real    2m29.924s

In the VM environment, the slowdown of enabling hugetlb vmemmap optimization
resulted in allocation times being 61x slower.

A quick profile showed that the vast majority of this overhead was due to
TLB flushing.  Each time we modify the kernel pagetable we need to flush
the TLB.  For each hugetlb that is optimized, there could be potentially
two TLB flushes performed.  One for the vmemmap pages associated with the
hugetlb page, and potentially another one if the vmemmap pages are mapped
at the PMD level and must be split.  The TLB flushes required for the
kernel pagetable, result in a broadcast IPI with each CPU having to flush
a range of pages, or do a global flush if a threshold is exceeded.  So,
the flush time increases with the number of CPUs.  In addition, in virtual
environments the broadcast IPI can’t be accelerated by hypervisor
hardware and leads to traps that need to wakeup/IPI all vCPUs which is
very expensive.  Because of this the slowdown in virtual environments is
even worse than bare metal as the number of vCPUS/CPUs is increased.

The following series attempts to reduce amount of time spent in TLB
flushing.  The idea is to batch the vmemmap modification operations for
multiple hugetlb pages.  Instead of doing one or two TLB flushes for each
page, we do two TLB flushes for each batch of pages.  One flush after
splitting pages mapped at the PMD level, and another after remapping
vmemmap associated with all hugetlb pages.  Results of such batching are
as follows:

Bare Metal 8 socket Intel(R) Xeon(R) CPU E7-8895
------------------------------------------------
next-20230824 + Batching patches, vm.hugetlb_optimize_vmemmap = 0
time echo 500000 > .../hugepages-2048kB/nr_hugepages
real    0m4.719s
time echo 0 > .../hugepages-2048kB/nr_hugepages
real    0m4.245s

next-20230824 + Batching patches, vm.hugetlb_optimize_vmemmap = 1
time echo 500000 > .../hugepages-2048kB/nr_hugepages
real    0m7.267s
time echo 0 > .../hugepages-2048kB/nr_hugepages
real    0m13.199s

VM with 252 vcpus on host with 2 socket AMD EPYC 7J13 Milan
-----------------------------------------------------------
next-20230824 + Batching patches, vm.hugetlb_optimize_vmemmap = 0
time echo 524288 > .../hugepages-2048kB/nr_hugepages
real    0m2.715s
time echo 0 > .../hugepages-2048kB/nr_hugepages
real    0m3.186s

next-20230824 + Batching patches, vm.hugetlb_optimize_vmemmap = 1
time echo 524288 > .../hugepages-2048kB/nr_hugepages
real    0m4.799s
time echo 0 > .../hugepages-2048kB/nr_hugepages
real    0m5.273s

With batching, results are back in the 2-3x slowdown range.


This patch (of 8):

update_and_free_pages_bulk is designed to free a list of hugetlb pages
back to their associated lower level allocators.  This may require
allocating vmemmmap pages associated with each hugetlb page.  The hugetlb
page destructor must be changed before pages are freed to lower level
allocators.  However, the destructor must be changed under the hugetlb
lock.  This means there is potentially one lock cycle per page.

Minimize the number of lock cycles in update_and_free_pages_bulk by:
1) allocating necessary vmemmap for all hugetlb pages on the list
2) take hugetlb lock and clear destructor for all pages on the list
3) free all pages on list back to low level allocators

Link: https://lkml.kernel.org/r/20231019023113.345257-1-mike.kravetz@oracle.com
Link: https://lkml.kernel.org/r/20231019023113.345257-2-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: James Houghton <jthoughton@google.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Konrad Dybcio <konradybcio@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Usama Arif <usama.arif@bytedance.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:07 -07:00
Huang Ying
fa8c4f9a66 mm: fix draining remote pageset
If there is no memory allocation/freeing in the PCP (Per-CPU Pageset) of a
remote zone (zone in remote NUMA node) after some time (3 seconds for
now), the pages of the PCP of the remote zone will be drained to avoid
memory wastage.

This behavior was introduced in the commit 4ae7c03943 ("[PATCH]
Periodically drain non local pagesets") and the commit 4037d45220 ("Move
remote node draining out of slab allocators")

But, after the commit 7cc36bbddd ("vmstat: on-demand vmstat workers
V8"), the vmstat updater worker which is used to drain the PCP of remote
zones may not be re-queued when we are waiting for the timeout
(pcp->expire != 0) if there are no vmstat changes on this CPU, for
example, when the CPU goes idle or runs user space only workloads.  This
may cause the pages of a remote zone be kept in PCP of this CPU for long
time.  So that, the page reclaiming of the remote zone may be triggered
prematurely.  This isn't a severe problem in practice, because the PCP of
the remote zone will be drained if some memory are allocated/freed again
on this CPU.  And, the PCP will eventually be drained during the direct
reclaiming if necessary.

Anyway, the problem still deserves a fix via guaranteeing that the vmstat
updater worker will always be re-queued when we are waiting for the
timeout.  In effect, this restores the original behavior before the commit
7cc36bbddd.

We can reproduce the bug via allocating/freeing pages from a remote zone
then go idle as follows.  And the patch can fix it.

- Run some workloads, use `numactl` to bind CPU to node 0 and memory to
  node 1.  So the PCP of the CPU on node 0 for zone on node 1 will be
  filled.

- After workloads finish, idle for 60s

- Check /proc/zoneinfo

With the original kernel, the number of pages in the PCP of the CPU on
node 0 for zone on node 1 is non-zero after idle.  With the patched
kernel, it becomes 0 after idle.  That is, we avoid to keep pages in the
remote PCP during idle.

Link: https://lkml.kernel.org/r/20231007062356.187621-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20230811090819.60845-1-ying.huang@intel.com
Fixes: 7cc36bbddd ("vmstat: on-demand vmstat workers V8")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25 16:47:07 -07:00
Linus Torvalds
4f82870119 20 hotfixes. 12 are cc:stable and the remainder address post-6.5 issues
or aren't considered necessary for earlier kernel versions.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZTfz/QAKCRDdBJ7gKXxA
 joMyAP99hLaLYeJbjlf+4tLJzhlpbVoFra1ieun2D+ZgFE78xQD/T4T3PYrZhYqD
 WdrxGT9fiKOykXM5pmQRH9Zr4EvJBA0=
 =Obbk
 -----END PGP SIGNATURE-----

Merge tag 'mm-hotfixes-stable-2023-10-24-09-40' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull misc fixes from Andrew Morton:
 "20 hotfixes. 12 are cc:stable and the remainder address post-6.5
  issues or aren't considered necessary for earlier kernel versions"

* tag 'mm-hotfixes-stable-2023-10-24-09-40' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
  maple_tree: add GFP_KERNEL to allocations in mas_expected_entries()
  selftests/mm: include mman header to access MREMAP_DONTUNMAP identifier
  mailmap: correct email aliasing for Oleksij Rempel
  mailmap: map Bartosz's old address to the current one
  mm/damon/sysfs: check DAMOS regions update progress from before_terminate()
  MAINTAINERS: Ondrej has moved
  kasan: disable kasan_non_canonical_hook() for HW tags
  kasan: print the original fault addr when access invalid shadow
  hugetlbfs: close race between MADV_DONTNEED and page fault
  hugetlbfs: extend hugetlb_vma_lock to private VMAs
  hugetlbfs: clear resv_map pointer if mmap fails
  mm: zswap: fix pool refcount bug around shrink_worker()
  mm/migrate: fix do_pages_move for compat pointers
  riscv: fix set_huge_pte_at() for NAPOT mappings when a swap entry is set
  riscv: handle VM_FAULT_[HWPOISON|HWPOISON_LARGE] faults instead of panicking
  mmap: fix error paths with dup_anon_vma()
  mmap: fix vma_iterator in error path of vma_merge()
  mm: fix vm_brk_flags() to not bail out while holding lock
  mm/mempolicy: fix set_mempolicy_home_node() previous VMA pointer
  mm/page_alloc: correct start page when guard page debug is enabled
2023-10-24 09:52:16 -10:00
Ingo Molnar
4e5b65a22b Linux 6.6-rc7
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmU1ngkeHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGrsIH/0k/+gdBBYFFdEym
 foRhKir9WV3ZX4oIozJjA1f7T+qVYclKs6kaYm3gNepRBb6AoG8pdgv4MMAqhYsf
 QMe2XHi0MrO/qKBgfNfivxEa9jq+0QK5uvTbqCRqCAB8LfwVyDqapCmg3EuiZcPW
 UbMITmnwLIfXgPxvp9rabmCsTqO6FLbf0GDOVIkNSAIDBXMpcO1iffjrWUbhRa7n
 oIoiJmWJLcXLxPWDsRKbpJwzw2cIG08YhfQYAiQnC3YaeRm1FKLDIICRBsmfYzja
 rWv9r4dn4TDfV4/AnjggQnsZvz2yPCxNaFSQIT88nIeiLvyuUTJ9j8aidsSfMZQf
 xZAbzbA=
 =NoQv
 -----END PGP SIGNATURE-----

Merge tag 'v6.6-rc7' into sched/core, to pick up fixes

Pick up recent sched/urgent fixes merged upstream.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2023-10-23 11:32:25 +02:00
Hou Tao
b460bc8302 mm/percpu.c: introduce pcpu_alloc_size()
Introduce pcpu_alloc_size() to get the size of the dynamic per-cpu
area. It will be used by bpf memory allocator in the following patches.
BPF memory allocator maintains per-cpu area caches for multiple area
sizes and its free API only has the to-be-freed per-cpu pointer, so it
needs the size of dynamic per-cpu area to select the corresponding cache
when bpf program frees the dynamic per-cpu pointer.

Acked-by: Dennis Zhou <dennis@kernel.org>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231020133202.4043247-3-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-10-20 14:15:06 -07:00
Hou Tao
394e6869f0 mm/percpu.c: don't acquire pcpu_lock for pcpu_chunk_addr_search()
There is no need to acquire pcpu_lock for pcpu_chunk_addr_search():
1) both pcpu_first_chunk & pcpu_reserved_chunk must have been
   initialized before the invocation of free_percpu().
2) The dynamically-created chunk must be valid before the per-cpu
   pointers allocated from it are freed.

So acquire pcpu_lock() after the invocation of pcpu_chunk_addr_search().

Acked-by: Dennis Zhou <dennis@kernel.org>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231020133202.4043247-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-10-20 10:12:54 -07:00
Jakub Kicinski
041c3466f3 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Cross-merge networking fixes after downstream PR.

net/mac80211/key.c
  02e0e426a2 ("wifi: mac80211: fix error path key leak")
  2a8b665e6b ("wifi: mac80211: remove key_mtx")
  7d6904bf26 ("Merge wireless into wireless-next")
https://lore.kernel.org/all/20231012113648.46eea5ec@canb.auug.org.au/

Adjacent changes:

drivers/net/ethernet/ti/Kconfig
  a602ee3176 ("net: ethernet: ti: Fix mixed module-builtin object")
  98bdeae950 ("net: cpmac: remove driver to prepare for platform removal")

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-10-19 13:29:01 -07:00
Reuben Hawkins
7116c0af4b
vfs: fix readahead(2) on block devices
Readahead was factored to call generic_fadvise.  That refactor added an
S_ISREG restriction which broke readahead on block devices.

In addition to S_ISREG, this change checks S_ISBLK to fix block device
readahead.  There is no change in behavior with any file type besides block
devices in this change.

Fixes: 3d8f761531 ("vfs: implement readahead(2) using POSIX_FADV_WILLNEED")
Signed-off-by: Reuben Hawkins <reubenhwk@gmail.com>
Link: https://lore.kernel.org/r/20231003015704.2415-1-reubenhwk@gmail.com
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-10-19 11:02:49 +02:00
Alexey Dobriyan
68279f9c9f treewide: mark stuff as __ro_after_init
__read_mostly predates __ro_after_init. Many variables which are marked
__read_mostly should have been __ro_after_init from day 1.

Also, mark some stuff as "const" and "__init" while I'm at it.

[akpm@linux-foundation.org: revert sysctl_nr_open_min, sysctl_nr_open_max changes due to arm warning]
[akpm@linux-foundation.org: coding-style cleanups]
Link: https://lkml.kernel.org/r/4f6bb9c0-abba-4ee4-a7aa-89265e886817@p183
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:43:23 -07:00
Lorenzo Stoakes
158978945f mm: perform the mapping_map_writable() check after call_mmap()
In order for a F_SEAL_WRITE sealed memfd mapping to have an opportunity to
clear VM_MAYWRITE, we must be able to invoke the appropriate
vm_ops->mmap() handler to do so.  We would otherwise fail the
mapping_map_writable() check before we had the opportunity to avoid it.

This patch moves this check after the call_mmap() invocation.  Only memfd
actively denies write access causing a potential failure here (in
memfd_add_seals()), so there should be no impact on non-memfd cases.

This patch makes the userland-visible change that MAP_SHARED, PROT_READ
mappings of an F_SEAL_WRITE sealed memfd mapping will now succeed.

There is a delicate situation with cleanup paths assuming that a writable
mapping must have occurred in circumstances where it may now not have.  In
order to ensure we do not accidentally mark a writable file unwritable by
mistake, we explicitly track whether we have a writable mapping and unmap
only if we do.

[lstoakes@gmail.com: do not set writable_file_mapping in inappropriate case]
  Link: https://lkml.kernel.org/r/c9eb4cc6-7db4-4c2b-838d-43a0b319a4f0@lucifer.local
Link: https://bugzilla.kernel.org/show_bug.cgi?id=217238
Link: https://lkml.kernel.org/r/55e413d20678a1bb4c7cce889062bbb07b0df892.1697116581.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:19 -07:00
Lorenzo Stoakes
28464bbb2d mm: update memfd seal write check to include F_SEAL_WRITE
The seal_check_future_write() function is called by shmem_mmap() or
hugetlbfs_file_mmap() to disallow any future writable mappings of an memfd
sealed this way.

The F_SEAL_WRITE flag is not checked here, as that is handled via the
mapping->i_mmap_writable mechanism and so any attempt at a mapping would
fail before this could be run.

However we intend to change this, meaning this check can be performed for
F_SEAL_WRITE mappings also.

The logic here is equally applicable to both flags, so update this
function to accommodate both and rename it accordingly.

Link: https://lkml.kernel.org/r/913628168ce6cce77df7d13a63970bae06a526e0.1697116581.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:19 -07:00
Lorenzo Stoakes
e8e17ee90e mm: drop the assumption that VM_SHARED always implies writable
Patch series "permit write-sealed memfd read-only shared mappings", v4.

The man page for fcntl() describing memfd file seals states the following
about F_SEAL_WRITE:-

    Furthermore, trying to create new shared, writable memory-mappings via
    mmap(2) will also fail with EPERM.

With emphasis on 'writable'.  In turns out in fact that currently the
kernel simply disallows all new shared memory mappings for a memfd with
F_SEAL_WRITE applied, rendering this documentation inaccurate.

This matters because users are therefore unable to obtain a shared mapping
to a memfd after write sealing altogether, which limits their usefulness. 
This was reported in the discussion thread [1] originating from a bug
report [2].

This is a product of both using the struct address_space->i_mmap_writable
atomic counter to determine whether writing may be permitted, and the
kernel adjusting this counter when any VM_SHARED mapping is performed and
more generally implicitly assuming VM_SHARED implies writable.

It seems sensible that we should only update this mapping if VM_MAYWRITE
is specified, i.e.  whether it is possible that this mapping could at any
point be written to.

If we do so then all we need to do to permit write seals to function as
documented is to clear VM_MAYWRITE when mapping read-only.  It turns out
this functionality already exists for F_SEAL_FUTURE_WRITE - we can
therefore simply adapt this logic to do the same for F_SEAL_WRITE.

We then hit a chicken and egg situation in mmap_region() where the check
for VM_MAYWRITE occurs before we are able to clear this flag.  To work
around this, perform this check after we invoke call_mmap(), with careful
consideration of error paths.

Thanks to Andy Lutomirski for the suggestion!

[1]:https://lore.kernel.org/all/20230324133646.16101dfa666f253c4715d965@linux-foundation.org/
[2]:https://bugzilla.kernel.org/show_bug.cgi?id=217238


This patch (of 3):

There is a general assumption that VMAs with the VM_SHARED flag set are
writable.  If the VM_MAYWRITE flag is not set, then this is simply not the
case.

Update those checks which affect the struct address_space->i_mmap_writable
field to explicitly test for this by introducing
[vma_]is_shared_maywrite() helper functions.

This remains entirely conservative, as the lack of VM_MAYWRITE guarantees
that the VMA cannot be written to.

Link: https://lkml.kernel.org/r/cover.1697116581.git.lstoakes@gmail.com
Link: https://lkml.kernel.org/r/d978aefefa83ec42d18dfa964ad180dbcde34795.1697116581.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Suggested-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:19 -07:00
SeongJae Park
76126332c7 mm/damon/sysfs: avoid empty scheme tried regions for large apply interval
DAMON_SYSFS assumes all schemes will be applied for at least one DAMON
monitoring results snapshot within one aggregation interval, or makes no
sense to wait for it while DAMON is deactivated by the watermarks.  That
for deactivated status still makes sense, but the aggregation interval
based assumption is invalid now because each scheme can has its own apply
interval.  For schemes having larger than the aggregation or watermarks
check interval, DAMOS tried regions update request can be finished without
the update.  Avoid the case by explicitly checking the status of the
schemes tried regions update and watermarks based DAMON deactivation.

Link: https://lkml.kernel.org/r/20231012192256.33556-3-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:19 -07:00
SeongJae Park
4d4e41b682 mm/damon/sysfs-schemes: do not update tried regions more than one DAMON snapshot
Patch series "mm/damon/sysfs-schemes: Do DAMOS tried regions update for
only one apply interval".

DAMOS tried regions update feature of DAMON sysfs interface is doing the
update for one aggregation interval after the request is made.  Since the
per-scheme apply interval is supported, that behavior makes no much sense.
That is, the tried regions directory will have regions from multiple
DAMON monitoring results snapshots, or no region for apply intervals that
much shorter than, or longer than the aggregation interval, respectively. 
Update the behavior to update the regions for each scheme for only its
apply interval, and update the document.

Since DAMOS apply interval is the aggregation by default, this change
makes no visible behavioral difference to old users who don't explicitly
set the apply intervals.

Patches Sequence
----------------

The first two patches makes schemes of apply intervals that much shorter
or longer than the aggregation interval to keep the maximum and minimum
times for continuing the update.  After the two patches, the update aligns
with the each scheme's apply interval.

Finally, the third patch updates the document to reflect the behavior.


This patch (of 3):

DAMON_SYSFS exposes every DAMON-found region that eligible for applying
the scheme action for one aggregation interval.  However, each DAMON-based
operation scheme has its own apply interval.  Hence, for a scheme that
having its apply interval much smaller than the aggregation interval,
DAMON_SYSFS will expose the scheme regions that applied to more than one
DAMON monitoring results snapshots.  Since the purpose of DAMON tried
regions is exposing single snapshot, this makes no much sense.  Track
progress of each scheme's tried regions update and avoid the case.

Link: https://lkml.kernel.org/r/20231012192256.33556-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20231012192256.33556-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:19 -07:00
Audra Mitchell
b459f0905e mm/page_owner: remove free_ts from page_owner output
Patch series "Fix page_owner's use of free timestamps".

While page ower output is used to investigate memory utilization,
typically the allocation pathway, the introduction of timestamps to the
page owner records caused each record to become unique due to the
granularity of the nanosecond timestamp (for example):

  Page allocated via order 0 ... ts 5206196026 ns, free_ts 5187156703 ns
  Page allocated via order 0 ... ts 5206198540 ns, free_ts 5187162702 ns

Furthermore, the page_owner output only dumps the currently allocated
records, so having the free timestamps is nonsensical for the typical use
case.

In addition, the introduction of timestamps was not properly handled in
the page_owner_sort tool causing most use cases to be broken.  This series
is meant to remove the free timestamps from the page_owner output and fix
the page_owner_sort tool so proper collation can occur.


This patch (of 5):

When printing page_owner data via the sysfs interface, no free pages will
ever be dumped due to the series of checks in read_page_owner():

    /*
     * Although we do have the info about past allocation of free
     * pages, it's not relevant for current memory usage.
     */
     if (!test_bit(PAGE_EXT_OWNER_ALLOCATED, &page_ext->flags))

The free_ts values are still used when dump_page_owner() is called, so
keeping the field for other use cases but removing them for the typical
page_owner case.

Link: https://lkml.kernel.org/r/20231013190350.579407-1-audra@redhat.com
Link: https://lkml.kernel.org/r/20231013190350.579407-2-audra@redhat.com
Fixes: 866b485262 ("mm/page_owner: record the timestamp of all pages during free")
Signed-off-by: Audra Mitchell <audra@redhat.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Georgi Djakov <djakov@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:19 -07:00
Lorenzo Stoakes
93bf5d4aa2 mm: abstract VMA merge and extend into vma_merge_extend() helper
mremap uses vma_merge() in the case where a VMA needs to be extended. This
can be significantly simplified and abstracted.

This makes it far easier to understand what the actual function is doing,
avoids future mistakes in use of the confusing vma_merge() function and
importantly allows us to make future changes to how vma_merge() is
implemented by knowing explicitly which merge cases each invocation uses.

Note that in the mremap() extend case, we perform this merge only when
old_len == vma->vm_end - addr. The extension_start, i.e. the start of the
extended portion of the VMA is equal to addr + old_len, i.e. vma->vm_end.

With this refactoring, vma_merge() is no longer required anywhere except
mm/mmap.c, so mark it static.

Link: https://lkml.kernel.org/r/f16cbdc2e72d37a1a097c39dc7d1fee8919a1c93.1697043508.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:18 -07:00
Lorenzo Stoakes
4b5f2d2016 mm: abstract merge for new VMAs into vma_merge_new_vma()
Only in mmap_region() and copy_vma() do we attempt to merge VMAs which
occupy entirely new regions of virtual memory.

We can abstract this logic and make the intent of this invocations of it
completely explicit, rather than invoking vma_merge() with an inscrutable
 wall of parameters.

This also paves the way for a simplification of the core vma_merge()
implementation, as we seek to make it entirely an implementation detail.

The VMA merge call in mmap_region() occurs only for file-backed mappings,
where each of the parameters previously specified as NULL are defaulted to
NULL in vma_init() (called by vm_area_alloc()).

This matches the previous behaviour of specifying NULL for a number of
fields, however note that prior to this call we pass the VMA to the file
system driver via call_mmap(), which may in theory adjust fields that we
pass in to vma_merge_new_vma().

Therefore we actually resolve an oversight here by allowing for the fact
that the driver may have done this.

Link: https://lkml.kernel.org/r/3dc71d17e307756a54781d4a4ce7315cf8b18bea.1697043508.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:18 -07:00
Lorenzo Stoakes
adb20b0c78 mm: make vma_merge() and split_vma() internal
Now the common pattern of - attempting a merge via vma_merge() and should
this fail splitting VMAs via split_vma() - has been abstracted, the former
can be placed into mm/internal.h and the latter made static.

In addition, the split_vma() nommu variant also need not be exported.

Link: https://lkml.kernel.org/r/405f2be10e20c4e9fbcc9fe6b2dfea105f6642e0.1697043508.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:18 -07:00
Lorenzo Stoakes
94d7d92339 mm: abstract the vma_merge()/split_vma() pattern for mprotect() et al.
mprotect() and other functions which change VMA parameters over a range
each employ a pattern of:-

1. Attempt to merge the range with adjacent VMAs.
2. If this fails, and the range spans a subset of the VMA, split it
   accordingly.

This is open-coded and duplicated in each case. Also in each case most of
the parameters passed to vma_merge() remain the same.

Create a new function, vma_modify(), which abstracts this operation,
accepting only those parameters which can be changed.

To avoid the mess of invoking each function call with unnecessary
parameters, create inline wrapper functions for each of the modify
operations, parameterised only by what is required to perform the action.

We can also significantly simplify the logic - by returning the VMA if we
split (or merged VMA if we do not) we no longer need specific handling for
merge/split cases in any of the call sites.

Note that the userfaultfd_release() case works even though it does not
split VMAs - since start is set to vma->vm_start and end is set to
vma->vm_end, the split logic does not trigger.

In addition, since we calculate pgoff to be equal to vma->vm_pgoff + (start
- vma->vm_start) >> PAGE_SHIFT, and start - vma->vm_start will be 0 in this
instance, this invocation will remain unchanged.

We eliminate a VM_WARN_ON() in mprotect_fixup() as this simply asserts that
vma_merge() correctly ensures that flags remain the same, something that is
already checked in is_mergeable_vma() and elsewhere, and in any case is not
specific to mprotect().

Link: https://lkml.kernel.org/r/0dfa9368f37199a423674bf0ee312e8ea0619044.1697043508.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:18 -07:00
Matthew Wilcox (Oracle)
b0b598ee08 filemap: remove use of wait bookmarks
The original problem of the overly long list of waiters on a locked page
was solved properly by commit 9a1ea439b1 ("mm:
put_and_wait_on_page_locked() while page is migrated").  In the meantime,
using bookmarks for the writeback bit can cause livelocks, so we need to
stop using them.

Link: https://lkml.kernel.org/r/20231010035829.544242-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Bin Lai <sclaibin@gmail.com>
Cc: Benjamin Segall <bsegall@google.com>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt (Google) <rostedt@goodmis.org>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>

Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:18 -07:00
Lorenzo Stoakes
9b91432985 mm/mprotect: allow unfaulted VMAs to be unaccounted on mprotect()
When mprotect() is used to make unwritable VMAs writable, they have the
VM_ACCOUNT flag applied and memory accounted accordingly.

If the VMA has had no pages faulted in and is then made unwritable once
again, it will remain accounted for, despite not being capable of
extending memory usage.

Consider:-

ptr = mmap(NULL, page_size * 3, PROT_READ, MAP_ANON | MAP_PRIVATE, -1, 0);
mprotect(ptr + page_size, page_size, PROT_READ | PROT_WRITE);
mprotect(ptr + page_size, page_size, PROT_READ);

The first mprotect() splits the range into 3 VMAs and the second fails to
merge the three as the middle VMA has VM_ACCOUNT set and the others do
not, rendering them unmergeable.

This is unnecessary, since no pages have actually been allocated and the
middle VMA is not capable of utilising more memory, thereby introducing
unnecessary VMA fragmentation (and accounting for more memory than is
necessary).

Since we cannot efficiently determine which pages map to an anonymous VMA,
we have to be very conservative - determining whether any pages at all
have been faulted in, by checking whether vma->anon_vma is NULL.

We can see that the lack of anon_vma implies that no anonymous pages are
present as evidenced by vma_needs_copy() utilising this on fork to
determine whether page tables need to be copied.

The only place where anon_vma is set NULL explicitly is on fork with
VM_WIPEONFORK set, however since this flag is intended to cause the child
process to not CoW on a given memory range, it is right to interpret this
as indicating the VMA has no faulted-in anonymous memory mapped.

If the VMA was forked without VM_WIPEONFORK set, then anon_vma_fork() will
have ensured that a new anon_vma is assigned (and correctly related to its
parent anon_vma) should any pages be CoW-mapped.

The overall operation is safe against races as we hold a write lock against
mm->mmap_lock.

If we could efficiently look up the VMA's faulted-in pages then we would
unaccount all those pages not yet faulted in.  However as the original
comment alludes this simply isn't currently possible, so we are
conservative and account all pages or none at all.

Link: https://lkml.kernel.org/r/ad5540371a16623a069f03f4db1739f33cde1fab.1696921767.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:18 -07:00
Lucy Mielke
f04eba134e mm: add printf attribute to shrinker_debugfs_name_alloc
This fixes a compiler warning when compiling an allyesconfig with W=1:

mm/internal.h:1235:9: error: function might be a candidate for `gnu_printf'
format attribute [-Werror=suggest-attribute=format]

[akpm@linux-foundation.org: fix shrinker_alloc() as welll per Qi Zheng]
  Link: https://lkml.kernel.org/r/822387b7-4895-4e64-5806-0f56b5d6c447@bytedance.com
Link: https://lkml.kernel.org/r/ZSBue-3kM6gI6jCr@mainframe
Fixes: c42d50aefd ("mm: shrinker: add infrastructure for dynamically allocating shrinker")
Signed-off-by: Lucy Mielke <lucymielke@icloud.com>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:18 -07:00
Zach O'Keefe
7a81751fcd mm/thp: fix "mm: thp: kill __transhuge_page_enabled()"
The 6.0 commits:

commit 9fec51689f ("mm: thp: kill transparent_hugepage_active()")
commit 7da4e2cb8b ("mm: thp: kill __transhuge_page_enabled()")

merged "can we have THPs in this VMA?" logic that was previously done
separately by fault-path, khugepaged, and smaps "THPeligible" checks.

During the process, the semantics of the fault path check changed in two
ways:

1) A VM_NO_KHUGEPAGED check was introduced (also added to smaps path).
2) We no longer checked if non-anonymous memory had a vm_ops->huge_fault
   handler that could satisfy the fault.  Previously, this check had been
   done in create_huge_pud() and create_huge_pmd() routines, but after
   the changes, we never reach those routines.

During the review of the above commits, it was determined that in-tree
users weren't affected by the change; most notably, since the only
relevant user (in terms of THP) of VM_MIXEDMAP or ->huge_fault is DAX,
which is explicitly approved early in approval logic.  However, this was a
bad assumption to make as it assumes the only reason to support
->huge_fault was for DAX (which is not true in general).

Remove the VM_NO_KHUGEPAGED check when not in collapse path and give any
->huge_fault handler a chance to handle the fault.  Note that we don't
validate the file mode or mapping alignment, which is consistent with the
behavior before the aforementioned commits.

Link: https://lkml.kernel.org/r/20230925200110.1979606-1-zokeefe@google.com
Fixes: 7da4e2cb8b ("mm: thp: kill __transhuge_page_enabled()")
Reported-by: Saurabh Singh Sengar <ssengar@microsoft.com>
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:18 -07:00
Nhat Pham
8cba9576df hugetlb: memcg: account hugetlb-backed memory in memory controller
Currently, hugetlb memory usage is not acounted for in the memory
controller, which could lead to memory overprotection for cgroups with
hugetlb-backed memory.  This has been observed in our production system.

For instance, here is one of our usecases: suppose there are two 32G
containers.  The machine is booted with hugetlb_cma=6G, and each container
may or may not use up to 3 gigantic page, depending on the workload within
it.  The rest is anon, cache, slab, etc.  We can set the hugetlb cgroup
limit of each cgroup to 3G to enforce hugetlb fairness.  But it is very
difficult to configure memory.max to keep overall consumption, including
anon, cache, slab etc.  fair.

What we have had to resort to is to constantly poll hugetlb usage and
readjust memory.max.  Similar procedure is done to other memory limits
(memory.low for e.g).  However, this is rather cumbersome and buggy. 
Furthermore, when there is a delay in memory limits correction, (for e.g
when hugetlb usage changes within consecutive runs of the userspace
agent), the system could be in an over/underprotected state.

This patch rectifies this issue by charging the memcg when the hugetlb
folio is utilized, and uncharging when the folio is freed (analogous to
the hugetlb controller).  Note that we do not charge when the folio is
allocated to the hugetlb pool, because at this point it is not owned by
any memcg.

Some caveats to consider:
  * This feature is only available on cgroup v2.
  * There is no hugetlb pool management involved in the memory
    controller. As stated above, hugetlb folios are only charged towards
    the memory controller when it is used. Host overcommit management
    has to consider it when configuring hard limits.
  * Failure to charge towards the memcg results in SIGBUS. This could
    happen even if the hugetlb pool still has pages (but the cgroup
    limit is hit and reclaim attempt fails).
  * When this feature is enabled, hugetlb pages contribute to memory
    reclaim protection. low, min limits tuning must take into account
    hugetlb memory.
  * Hugetlb pages utilized while this option is not selected will not
    be tracked by the memory controller (even if cgroup v2 is remounted
    later on).

Link: https://lkml.kernel.org/r/20231006184629.155543-4-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Frank van der Linden <fvdl@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Tejun heo <tj@kernel.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:17 -07:00
Nhat Pham
85ce2c517a memcontrol: only transfer the memcg data for migration
For most migration use cases, only transfer the memcg data from the old
folio to the new folio, and clear the old folio's memcg data.  No charging
and uncharging will be done.

This shaves off some work on the migration path, and avoids the temporary
double charging of a folio during its migration.

The only exception is replace_page_cache_folio(), which will use the old
mem_cgroup_migrate() (now renamed to mem_cgroup_replace_folio).  In that
context, the isolation of the old page isn't quite as thorough as with
migration, so we cannot use our new implementation directly.

This patch is the result of the following discussion on the new hugetlb
memcg accounting behavior:

https://lore.kernel.org/lkml/20231003171329.GB314430@monkey/

Link: https://lkml.kernel.org/r/20231006184629.155543-3-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Frank van der Linden <fvdl@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Tejun heo <tj@kernel.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:17 -07:00
Nhat Pham
4b569387c0 memcontrol: add helpers for hugetlb memcg accounting
Patch series "hugetlb memcg accounting", v4.

Currently, hugetlb memory usage is not acounted for in the memory
controller, which could lead to memory overprotection for cgroups with
hugetlb-backed memory.  This has been observed in our production system.

For instance, here is one of our usecases: suppose there are two 32G
containers.  The machine is booted with hugetlb_cma=6G, and each container
may or may not use up to 3 gigantic page, depending on the workload within
it.  The rest is anon, cache, slab, etc.  We can set the hugetlb cgroup
limit of each cgroup to 3G to enforce hugetlb fairness.  But it is very
difficult to configure memory.max to keep overall consumption, including
anon, cache, slab etcetera fair.

What we have had to resort to is to constantly poll hugetlb usage and
readjust memory.max.  Similar procedure is done to other memory limits
(memory.low for e.g).  However, this is rather cumbersome and buggy. 
Furthermore, when there is a delay in memory limits correction, (for e.g
when hugetlb usage changes within consecutive runs of the userspace
agent), the system could be in an over/underprotected state.

This patch series rectifies this issue by charging the memcg when the
hugetlb folio is allocated, and uncharging when the folio is freed.  In
addition, a new selftest is added to demonstrate and verify this new
behavior.


This patch (of 4):

This patch exposes charge committing and cancelling as parts of the memory
controller interface.  These functionalities are useful when the
try_charge() and commit_charge() stages have to be separated by other
actions in between (which can fail).  One such example is the new hugetlb
accounting behavior in the following patch.

The patch also adds a helper function to obtain a reference to the
current task's memcg.

Link: https://lkml.kernel.org/r/20231006184629.155543-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231006184629.155543-2-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Frank van der Linden <fvdl@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Tejun heo <tj@kernel.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:17 -07:00
Frank van der Linden
59838b2566 mm, hugetlb: remove HUGETLB_CGROUP_MIN_ORDER
Originally, hugetlb_cgroup was the only hugetlb user of tail page
structure fields.  So, the code defined and checked against
HUGETLB_CGROUP_MIN_ORDER to make sure pages weren't too small to use.

However, by now, tail page #2 is used to store hugetlb hwpoison and
subpool information as well.  In other words, without that tail page
hugetlb doesn't work.

Acknowledge this fact by getting rid of HUGETLB_CGROUP_MIN_ORDER and
checks against it.  Instead, just check for the minimum viable page order
at hstate creation time.

Link: https://lkml.kernel.org/r/20231004153248.3842997-1-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:17 -07:00
Matthew Wilcox (Oracle)
2580d55458 mm: use folio_xor_flags_has_waiters() in folio_end_writeback()
Match how folio_unlock() works by combining the test for PG_waiters with
the clearing of PG_writeback.  This should have a small performance win,
and removes the last user of folio_wake().

Link: https://lkml.kernel.org/r/20231004165317.1061855-18-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:17 -07:00
Matthew Wilcox (Oracle)
7d0795d098 mm: make __end_folio_writeback() return void
Rather than check the result of test-and-clear, just check that we have
the writeback bit set at the start.  This wouldn't catch every case, but
it's good enough (and enables the next patch).

Link: https://lkml.kernel.org/r/20231004165317.1061855-17-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:17 -07:00
Matthew Wilcox (Oracle)
0410cd844e mm: add folio_xor_flags_has_waiters()
Optimise folio_end_read() by setting the uptodate bit at the same time we
clear the unlock bit.  This saves at least one memory barrier and one
write-after-write hazard.

Link: https://lkml.kernel.org/r/20231004165317.1061855-16-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:17 -07:00
Matthew Wilcox (Oracle)
f12fb73b74 mm: delete checks for xor_unlock_is_negative_byte()
Architectures which don't define their own use the one in
asm-generic/bitops/lock.h.  Get rid of all the ifdefs around "maybe we
don't have it".

Link: https://lkml.kernel.org/r/20231004165317.1061855-15-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:17 -07:00
Matthew Wilcox (Oracle)
247dbcdbf7 bitops: add xor_unlock_is_negative_byte()
Replace clear_bit_and_unlock_is_negative_byte() with
xor_unlock_is_negative_byte().  We have a few places that like to lock a
folio, set a flag and unlock it again.  Allow for the possibility of
combining the latter two operations for efficiency.  We are guaranteed
that the caller holds the lock, so it is safe to unlock it with the xor. 
The caller must guarantee that nobody else will set the flag without
holding the lock; it is not safe to do this with the PG_dirty flag, for
example.

Link: https://lkml.kernel.org/r/20231004165317.1061855-8-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:16 -07:00
Matthew Wilcox (Oracle)
0b237047d5 mm: add folio_end_read()
Provide a function for filesystems to call when they have finished reading
an entire folio.

Link: https://lkml.kernel.org/r/20231004165317.1061855-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:16 -07:00
Mark-PK Tsai
afb2d666d0 zsmalloc: use copy_page for full page copy
Some architectures have implemented optimized copy_page for full page
copying, such as arm.

On my arm platform, use the copy_page helper for single page copying is
about 10 percent faster than memcpy.

Link: https://lkml.kernel.org/r/20231006060245.7411-1-mark-pk.tsai@mediatek.com
Signed-off-by: Mark-PK Tsai <mark-pk.tsai@mediatek.com>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: YJ Chiang <yj.chiang@mediatek.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:16 -07:00
Pankaj Raghav
bafd7e9d35 filemap: call filemap_get_folios_tag() from filemap_get_folios()
filemap_get_folios() is filemap_get_folios_tag() with XA_PRESENT as the
tag that is being matched.  Return filemap_get_folios_tag() with
XA_PRESENT as the tag instead of duplicating the code in
filemap_get_folios().

No functional changes.

Link: https://lkml.kernel.org/r/20231006110120.136809-1-kernel@pankajraghav.com
Signed-off-by: Pankaj Raghav <p.raghav@samsung.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:16 -07:00
Kemeng Shi
0dfca313a0 mm/page_alloc: remove unnecessary next_page in break_down_buddy_pages
The next_page is only used to forward page in case target is in second
half range.  Move forward page directly to remove unnecessary next_page.

Link: https://lkml.kernel.org/r/20230927103514.98281-3-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:15 -07:00
Kemeng Shi
27e0db3c21 mm/page_alloc: remove unnecessary check in break_down_buddy_pages
Patch series "Two minor cleanups to break_down_buddy_pages", v2.

Two minor cleanups to break_down_buddy_pages.


This patch (of 2):

1. We always have target in range started with next_page and full free
   range started with current_buddy.

2. The last split range size is 1 << low and low should be >= 0, then
   size >= 1.  So page + size != page is always true (because size > 0). 
   As summary, current_page will not equal to target page.

Link: https://lkml.kernel.org/r/20230927103514.98281-1-shikemeng@huaweicloud.com
Link: https://lkml.kernel.org/r/20230927103514.98281-2-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:15 -07:00
Liam R. Howlett
9a12d103f7 mmap: add clarifying comment to vma_merge() code
When tracing through the code in vma_merge(), it was not completely
clear why the error return to a dup_anon_vma() call would not overwrite
a previous attempt to the same function.  This commit adds a comment
specifying why it is safe.

Link: https://lkml.kernel.org/r/20230929183041.2835469-4-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Suggested-by: Jann Horn <jannh@google.com>
Link: https://lore.kernel.org/linux-mm/CAG48ez3iDwFPR=Ed1BfrNuyUJPMK_=StjxhUsCkL6po1s7bONg@mail.gmail.com/
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:15 -07:00
Andrey Konovalov
ff093a9632 kasan: fix and update KUNIT_EXPECT_KASAN_FAIL comment
Update the comment for KUNIT_EXPECT_KASAN_FAIL to describe the parameters
this macro accepts.

Also drop the mention of the "kasan_status" KUnit resource, as it no
longer exists.

Link: https://lkml.kernel.org/r/6fad6661e72c407450ae4b385c71bc4a7e1579cd.1696605143.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202308171757.7V5YUcje-lkp@intel.com/
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:15 -07:00
Andrey Konovalov
01a5ad8163 kasan: use unchecked __memset internally
KASAN code is supposed to use the unchecked __memset implementation when
accessing its metadata.

Change uses of memset to __memset in mm/kasan/.

Link: https://lkml.kernel.org/r/6f621966c6f52241b5aaa7220c348be90c075371.1696605143.git.andreyknvl@google.com
Fixes: 59e6e098d1 ("kasan: introduce kasan_complete_mode_report_info")
Fixes: 3c5c3cfb9e ("kasan: support backing vmalloc space with real shadow memory")
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: kernel test robot <lkp@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:15 -07:00
Andrey Konovalov
d7196d87a1 kasan: unify printk prefixes
Unify prefixes for printk messages in mm/kasan/.

Link: https://lkml.kernel.org/r/35589629806cf0840e5f01ec9d8011a7bad648df.1696605143.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: kernel test robot <lkp@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:15 -07:00
Lorenzo Stoakes
6a1960b8a8 mm/gup: adapt get_user_page_vma_remote() to never return NULL
get_user_pages_remote() will never return 0 except in the case of
FOLL_NOWAIT being specified, which we explicitly disallow.

This simplifies error handling for the caller and avoids the awkwardness
of dealing with both errors and failing to pin.  Failing to pin here is an
error.

Link: https://lkml.kernel.org/r/00319ce292d27b3aae76a0eb220ce3f528187508.1696288092.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Ian Rogers <irogers@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:15 -07:00
Lorenzo Stoakes
9c4b214225 mm/gup: make failure to pin an error if FOLL_NOWAIT not specified
There really should be no circumstances under which a non-FOLL_NOWAIT GUP
operation fails to return any pages, so make this an error and warn on it.

To catch the trivial case, simply exit early if nr_pages == 0.

This brings __get_user_pages_locked() in line with the behaviour of its
nommu variant.

Link: https://lkml.kernel.org/r/2a42d96dd1e37163f90a0019a541163dafb7e4c3.1696288092.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:15 -07:00
Lorenzo Stoakes
0f20bba168 mm/gup: explicitly define and check internal GUP flags, disallow FOLL_TOUCH
Rather than open-coding a list of internal GUP flags in
is_valid_gup_args(), define which ones are internal.

In addition, explicitly check to see if the user passed in FOLL_TOUCH
somehow, as this appears to have been accidentally excluded.

Link: https://lkml.kernel.org/r/971e013dfe20915612ea8b704e801d7aef9a66b6.1696288092.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:15 -07:00
Lorenzo Stoakes
c43cfa4254 mm: make __access_remote_vm() static
Patch series "various improvements to the GUP interface", v2.

A series of fixes to simplify and improve the GUP interface with an eye to
providing groundwork to future improvements:-

* __access_remote_vm() and access_remote_vm() are functionally identical,
  so make the former static such that in future we can potentially change
  the external-facing implementation details of this function.

* Extend is_valid_gup_args() to cover the missing FOLL_TOUCH case, and
  simplify things by defining INTERNAL_GUP_FLAGS to check against.

* Adjust __get_user_pages_locked() to explicitly treat a failure to pin any
  pages as an error in all circumstances other than FOLL_NOWAIT being
  specified, bringing it in line with the nommu implementation of this
  function.

* (With many thanks to Arnd who suggested this in the first instance)
  Update get_user_page_vma_remote() to explicitly only return a page or an
  error, simplifying the interface and avoiding the questionable
  IS_ERR_OR_NULL() pattern.


This patch (of 4):

access_remote_vm() passes through parameters to __access_remote_vm()
directly, so remove the __access_remote_vm() function from mm.h and use
access_remote_vm() in the one caller that needs it (ptrace_access_vm()).

This allows future adjustments to the GUP-internal __access_remote_vm()
function while keeping the access_remote_vm() function stable.

Link: https://lkml.kernel.org/r/cover.1696288092.git.lstoakes@gmail.com
Link: https://lkml.kernel.org/r/f7877c5039ce1c202a514a8aeeefc5cdd5e32d19.1696288092.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:15 -07:00
Jaewon Kim
8c2214fc9a mm: multi-gen LRU: reuse some legacy trace events
As the legacy lru provides, the mglru needs some trace events for
debugging.  Let's reuse following legacy events for the mglru.

  trace_mm_vmscan_lru_isolate
  trace_mm_vmscan_lru_shrink_inactive

Here's an example
  mm_vmscan_lru_isolate: classzone=2 order=0 nr_requested=4096 nr_scanned=64 nr_skipped=0 nr_taken=64 lru=inactive_file
  mm_vmscan_lru_shrink_inactive: nid=0 nr_scanned=64 nr_reclaimed=63 nr_dirty=0 nr_writeback=0 nr_congested=0 nr_immediate=0 nr_activate_anon=0 nr_activate_file=1 nr_ref_keep=0 nr_unmap_fail=0 priority=2 flags=RECLAIM_WB_FILE|RECLAIM_WB_ASYNC

Link: https://lkml.kernel.org/r/20231003114155.21869-1-jaewon31.kim@samsung.com
Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com>
Acked-by: Yu Zhao <yuzhao@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Steven Rostedt (Google) <rostedt@goodmis.org>
Cc: T.J. Mercier <tjmercier@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:14 -07:00
Gregory Price
ec47e25062 mm/migrate: remove unused mm argument from do_move_pages_to_node
This function does not actively use the mm_struct, it can be removed.

Link: https://lkml.kernel.org/r/20231003144857.752952-2-gregory.price@memverge.com
Signed-off-by: Gregory Price <gregory.price@memverge.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Gregory Price <gregory.price@memverge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:14 -07:00
David Hildenbrand
dec078cc21 memory: move exclusivity detection in do_wp_page() into wp_can_reuse_anon_folio()
Let's clean up do_wp_page() a bit, removing two labels and making it a
easier to read.

wp_can_reuse_anon_folio() now only operates on the whole folio.  Move the
SetPageAnonExclusive() out into do_wp_page().  No need to do this under
page lock -- the page table lock is sufficient.

Link: https://lkml.kernel.org/r/20231002142949.235104-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:14 -07:00
David Hildenbrand
069686255c mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()
Let's convert it to consume a folio.

[akpm@linux-foundation.org: fix kerneldoc]
Link: https://lkml.kernel.org/r/20231002142949.235104-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:14 -07:00
David Hildenbrand
5ca432896a mm/rmap: move SetPageAnonExclusive() out of page_move_anon_rmap()
Patch series "mm/rmap: convert page_move_anon_rmap() to
folio_move_anon_rmap()".

Convert page_move_anon_rmap() to folio_move_anon_rmap(), letting the
callers handle PageAnonExclusive.  I'm including cleanup patch #3 because
it fits into the picture and can be done cleaner by the conversion.


This patch (of 3):

Let's move it into the caller: there is a difference between whether an
anon folio can only be mapped by one process (e.g., into one VMA), and
whether it is truly exclusive (e.g., no references -- including GUP --
from other processes).

Further, for large folios the page might not actually be pointing at the
head page of the folio, so it better be handled in the caller.  This is a
preparation for converting page_move_anon_rmap() to consume a folio.

Link: https://lkml.kernel.org/r/20231002142949.235104-1-david@redhat.com
Link: https://lkml.kernel.org/r/20231002142949.235104-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:14 -07:00
Matthew Wilcox (Oracle)
4a68fef16d mm: handle write faults to RO pages under the VMA lock
I think this is a pretty rare occurrence, but for consistency handle
faults with the VMA lock held the same way that we handle other faults
with the VMA lock held.

Link: https://lkml.kernel.org/r/20231006195318.4087158-7-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:14 -07:00
Matthew Wilcox (Oracle)
12214eba19 mm: handle read faults under the VMA lock
Most file-backed faults are already handled through ->map_pages(), but if
we need to do I/O we'll come this way.  Since filemap_fault() is now safe
to be called under the VMA lock, we can handle these faults under the VMA
lock now.

Link: https://lkml.kernel.org/r/20231006195318.4087158-6-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:14 -07:00
Matthew Wilcox (Oracle)
4de8c93a47 mm: handle COW faults under the VMA lock
If the page is not currently present in the page tables, we need to call
the page fault handler to find out which page we're supposed to COW, so we
need to both check that there is already an anon_vma and that the fault
handler doesn't need the mmap_lock.

Link: https://lkml.kernel.org/r/20231006195318.4087158-5-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:14 -07:00
Matthew Wilcox (Oracle)
4ed4379881 mm: handle shared faults under the VMA lock
There are many implementations of ->fault and some of them depend on
mmap_lock being held.  All vm_ops that implement ->map_pages() end up
calling filemap_fault(), which I have audited to be sure it does not rely
on mmap_lock.  So (for now) key off ->map_pages existing as a flag to
indicate that it's safe to call ->fault while only holding the vma lock.

Link: https://lkml.kernel.org/r/20231006195318.4087158-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:14 -07:00
Matthew Wilcox (Oracle)
164b06f238 mm: call wp_page_copy() under the VMA lock
It is usually safe to call wp_page_copy() under the VMA lock.  The only
unsafe situation is when no anon_vma has been allocated for this VMA, and
we have to look at adjacent VMAs to determine if their anon_vma can be
shared.  Since this happens only for the first COW of a page in this VMA,
the majority of calls to wp_page_copy() do not need to fall back to the
mmap_sem.

Add vmf_anon_prepare() as an alternative to anon_vma_prepare() which will
return RETRY if we currently hold the VMA lock and need to allocate an
anon_vma.  This lets us drop the check in do_wp_page().

Link: https://lkml.kernel.org/r/20231006195318.4087158-3-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:14 -07:00
Matthew Wilcox (Oracle)
5d74b2ab2c mm: make lock_folio_maybe_drop_mmap() VMA lock aware
Patch series "Handle more faults under the VMA lock", v2.

At this point, we're handling the majority of file-backed page faults
under the VMA lock, using the ->map_pages entry point.  This patch set
attempts to expand that for the following siutations:

 - We have to do a read.  This could be because we've hit the point in
   the readahead window where we need to kick off the next readahead,
   or because the page is simply not present in cache.
 - We're handling a write fault.  Most applications don't do I/O by writes
   to shared mmaps for very good reasons, but some do, and it'd be nice
   to not make that slow unnecessarily.
 - We're doing a COW of a private mapping (both PTE already present
   and PTE not-present).  These are two different codepaths and I handle
   both of them in this patch set.

There is no support in this patch set for drivers to mark themselves as
being VMA lock friendly; they could implement the ->map_pages
vm_operation, but if they do, they would be the first.  This is probably
something we want to change at some point in the future, and I've marked
where to make that change in the code.

There is very little performance change in the benchmarks we've run;
mostly because the vast majority of page faults are handled through the
other paths.  I still think this patch series is useful for workloads that
may take these paths more often, and just for cleaning up the fault path
in general (it's now clearer why we have to retry in these cases).


This patch (of 6):

Drop the VMA lock instead of the mmap_lock if that's the one which
is held.

Link: https://lkml.kernel.org/r/20231006195318.4087158-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20231006195318.4087158-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:14 -07:00
Hugh Dickins
beb9868628 shmem,percpu_counter: add _limited_add(fbc, limit, amount)
Percpu counter's compare and add are separate functions: without locking
around them (which would defeat their purpose), it has been possible to
overflow the intended limit.  Imagine all the other CPUs fallocating tmpfs
huge pages to the limit, in between this CPU's compare and its add.

I have not seen reports of that happening; but tmpfs's recent addition of
dquot_alloc_block_nodirty() in between the compare and the add makes it
even more likely, and I'd be uncomfortable to leave it unfixed.

Introduce percpu_counter_limited_add(fbc, limit, amount) to prevent it.

I believe this implementation is correct, and slightly more efficient than
the combination of compare and add (taking the lock once rather than twice
when nearing full - the last 128MiB of a tmpfs volume on a machine with
128 CPUs and 4KiB pages); but it does beg for a better design - when
nearing full, there is no new batching, but the costly percpu counter sum
across CPUs still has to be done, while locked.

Follow __percpu_counter_sum()'s example, including cpu_dying_mask as well
as cpu_online_mask: but shouldn't __percpu_counter_compare() and
__percpu_counter_limited_add() then be adding a num_dying_cpus() to
num_online_cpus(), when they calculate the maximum which could be held
across CPUs?  But the times when it matters would be vanishingly rare.

Link: https://lkml.kernel.org/r/bb817848-2d19-bcc8-39ca-ea179af0f0b4@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Carlos Maiolino <cem@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:14 -07:00
Hugh Dickins
3022fd7af9 shmem: _add_to_page_cache() before shmem_inode_acct_blocks()
There has been a recurring problem, that when a tmpfs volume is being
filled by racing threads, some fail with ENOSPC (or consequent SIGBUS or
EFAULT) even though all allocations were within the permitted size.

This was a problem since early days, but magnified and complicated by the
addition of huge pages.  We have often worked around it by adding some
slop to the tmpfs size, but it's hard to say how much is needed, and some
users prefer not to do that e.g.  keeping sparse files in a tightly
tailored tmpfs helps to prevent accidental writing to holes.

This comes from the allocation sequence:
1. check page cache for existing folio
2. check and reserve from vm_enough_memory
3. check and account from size of tmpfs
4. if huge, check page cache for overlapping folio
5. allocate physical folio, huge or small
6. check and charge from mem cgroup limit
7. add to page cache (but maybe another folio already got in).

Concurrent tasks allocating at the same position could deplete the size
allowance and fail.  Doing vm_enough_memory and size checks before the
folio allocation was intentional (to limit the load on the page allocator
from this source) and still has some virtue; but memory cgroup never did
that, so I think it's better reordered to favour predictable behaviour.

1. check page cache for existing folio
2. if huge, check page cache for overlapping folio
3. allocate physical folio, huge or small
4. check and charge from mem cgroup limit
5. add to page cache (but maybe another folio already got in)
6. check and reserve from vm_enough_memory
7. check and account from size of tmpfs.

The folio lock held from allocation onwards ensures that the !uptodate
folio cannot be used by others, and can safely be deleted from the cache
if checks 6 or 7 subsequently fail (and those waiting on folio lock
already check that the folio was not truncated once they get the lock);
and the early addition to page cache ensures that racers find it before
they try to duplicate the accounting.

Seize the opportunity to tidy up shmem_get_folio_gfp()'s ENOSPC retrying,
which can be combined inside the new shmem_alloc_and_add_folio(): doing 2
splits twice (once huge, once nonhuge) is not exactly equivalent to trying
5 splits (and giving up early on huge), but let's keep it simple unless
more complication proves necessary.

Userfaultfd is a foreign country: they do things differently there, and
for good reason - to avoid mmap_lock deadlock.  Leave ordering in
shmem_mfill_atomic_pte() untouched for now, but I would rather like to
mesh it better with shmem_get_folio_gfp() in the future.

Link: https://lkml.kernel.org/r/22ddd06-d919-33b-1219-56335c1bf28e@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Carlos Maiolino <cem@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:13 -07:00
Hugh Dickins
054a9f7ccd shmem: move memcg charge out of shmem_add_to_page_cache()
Extract shmem's memcg charging out of shmem_add_to_page_cache(): it's
misleading done there, because many calls are dealing with a swapcache
page, whose memcg is nowadays always remembered while swapped out, then
the charge re-levied when it's brought back into swapcache.

Temporarily move it back up to the shmem_get_folio_gfp() level, where the
memcg was charged before v5.8; but the next commit goes on to move it back
down to a new home.

In making this change, it becomes clear that shmem_swapin_folio() does not
need to know the vma, just the fault mm (if any): call it fault_mm rather
than charge_mm - let mem_cgroup_charge() decide whom to charge.

Link: https://lkml.kernel.org/r/4b2143c5-bf32-64f0-841-81a81158dac@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Carlos Maiolino <cem@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:13 -07:00
Hugh Dickins
4199f51a7e shmem: shmem_acct_blocks() and shmem_inode_acct_blocks()
By historical accident, shmem_acct_block() and shmem_inode_acct_block()
were never pluralized when the pages argument was added, despite their
complements being shmem_unacct_blocks() and shmem_inode_unacct_blocks()
all along.  It has been an irritation: fix their naming at last.

Link: https://lkml.kernel.org/r/9124094-e4ab-8be7-ef80-9a87bdc2e4fc@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Carlos Maiolino <cem@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:13 -07:00
Hugh Dickins
9be7d5b066 shmem: trivial tidyups, removing extra blank lines, etc
Mostly removing a few superfluous blank lines, joining short arglines,
imposing some 80-column observance, correcting a couple of comments.  None
of it more interesting than deleting a repeated INIT_LIST_HEAD().

Link: https://lkml.kernel.org/r/b3983d28-5d3f-8649-36af-b819285d7a9e@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Carlos Maiolino <cem@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:13 -07:00
Hugh Dickins
f0a9ad1d4d shmem: factor shmem_falloc_wait() out of shmem_fault()
That Trinity livelock shmem_falloc avoidance block is unlikely, and a
distraction from the proper business of shmem_fault(): separate it out. 
(This used to help compilers save stack on the fault path too, but both
gcc and clang nowadays seem to make better choices anyway.)

Link: https://lkml.kernel.org/r/6fe379a4-6176-9225-9263-fe60d2633c0@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Carlos Maiolino <cem@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:13 -07:00
Hugh Dickins
e3e1a5067f shmem: remove vma arg from shmem_get_folio_gfp()
The vma is already there in vmf->vma, so no need for a separate arg.

Link: https://lkml.kernel.org/r/d9ce6f65-a2ed-48f4-4299-fdb0544875c5@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Carlos Maiolino <cem@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:13 -07:00
Lorenzo Stoakes
6facf36ee4 mm/filemap: clarify filemap_fault() comments for not uptodate case
The existing comments in filemap_fault() suggest that, after either a
minor fault has occurred and filemap_get_folio() found a folio in the page
cache, or a major fault arose and __filemap_get_folio(FGP_CREATE...) did
the job (having relied on do_sync_mmap_readahead() or filemap_read_folio()
to read in the folio), the only possible reason it could not be uptodate
is because of an error.

This is not so, as if, for instance, the fault occurred within a VMA which
had the VM_RAND_READ flag set (via madvise() with the MADV_RANDOM flag
specified), this would cause even synchronous readahead to fail to read in
the folio.

I confirmed this by dropping page caches and faulting in memory
madvise()'d this way, observing that this code path was reached on each
occasion.

Clarify the comments to include this case, and additionally update the
comment recently added around the invalidate lock logic to make it clear
the comment explicitly refers to the minor fault case.

In addition, while we're here, refer to folios rather than pages.

[lstoakes@gmail.com: correct identation as per Christopher's feedback]
  Link: https://lkml.kernel.org/r/2c7014c0-6343-4e76-8697-3f84f54350bd@lucifer.local
Link: https://lkml.kernel.org/r/20230930231029.88196-1-lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:13 -07:00
Muhammad Usama Anjum
52526ca7fd fs/proc/task_mmu: implement IOCTL to get and optionally clear info about PTEs
The PAGEMAP_SCAN IOCTL on the pagemap file can be used to get or optionally
clear the info about page table entries. The following operations are
supported in this IOCTL:
- Scan the address range and get the memory ranges matching the provided
  criteria. This is performed when the output buffer is specified.
- Write-protect the pages. The PM_SCAN_WP_MATCHING is used to write-protect
  the pages of interest. The PM_SCAN_CHECK_WPASYNC aborts the operation if
  non-Async Write Protected pages are found. The ``PM_SCAN_WP_MATCHING``
  can be used with or without PM_SCAN_CHECK_WPASYNC.
- Both of those operations can be combined into one atomic operation where
  we can get and write protect the pages as well.

Following flags about pages are currently supported:
- PAGE_IS_WPALLOWED - Page has async-write-protection enabled
- PAGE_IS_WRITTEN - Page has been written to from the time it was write protected
- PAGE_IS_FILE - Page is file backed
- PAGE_IS_PRESENT - Page is present in the memory
- PAGE_IS_SWAPPED - Page is in swapped
- PAGE_IS_PFNZERO - Page has zero PFN
- PAGE_IS_HUGE - Page is THP or Hugetlb backed

This IOCTL can be extended to get information about more PTE bits. The
entire address range passed by user [start, end) is scanned until either
the user provided buffer is full or max_pages have been found.

[akpm@linux-foundation.org: update it for "mm: hugetlb: add huge page size param to set_huge_pte_at()"]
[akpm@linux-foundation.org: fix CONFIG_HUGETLB_PAGE=n warning]
[arnd@arndb.de: hide unused pagemap_scan_backout_range() function]
  Link: https://lkml.kernel.org/r/20230927060257.2975412-1-arnd@kernel.org
[sfr@canb.auug.org.au: fix "fs/proc/task_mmu: hide unused pagemap_scan_backout_range() function"]
  Link: https://lkml.kernel.org/r/20230928092223.0625c6bf@canb.auug.org.au
Link: https://lkml.kernel.org/r/20230821141518.870589-3-usama.anjum@collabora.com
Signed-off-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Signed-off-by: Michał Mirosław <mirq-linux@rere.qmqm.pl>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Andrei Vagin <avagin@gmail.com>
Reviewed-by: Michał Mirosław <mirq-linux@rere.qmqm.pl>
Cc: Alex Sierra <alex.sierra@amd.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Gustavo A. R. Silva <gustavoars@kernel.org>
Cc: "Liam R. Howlett" <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Miroslaw <emmir@google.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Paul Gofman <pgofman@codeweavers.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yun Zhou <yun.zhou@windriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:12 -07:00
Peter Xu
d61ea1cb00 userfaultfd: UFFD_FEATURE_WP_ASYNC
Patch series "Implement IOCTL to get and optionally clear info about
PTEs", v33.

*Motivation*
The real motivation for adding PAGEMAP_SCAN IOCTL is to emulate Windows
GetWriteWatch() and ResetWriteWatch() syscalls [1].  The GetWriteWatch()
retrieves the addresses of the pages that are written to in a region of
virtual memory.

This syscall is used in Windows applications and games etc.  This syscall
is being emulated in pretty slow manner in userspace.  Our purpose is to
enhance the kernel such that we translate it efficiently in a better way. 
Currently some out of tree hack patches are being used to efficiently
emulate it in some kernels.  We intend to replace those with these
patches.  So the whole gaming on Linux can effectively get benefit from
this.  It means there would be tons of users of this code.

CRIU use case [2] was mentioned by Andrei and Danylo:
> Use cases for migrating sparse VMAs are binaries sanitized with ASAN,
> MSAN or TSAN [3]. All of these sanitizers produce sparse mappings of
> shadow memory [4]. Being able to migrate such binaries allows to highly
> reduce the amount of work needed to identify and fix post-migration
> crashes, which happen constantly.

Andrei defines the following uses of this code:
* it is more granular and allows us to track changed pages more
  effectively. The current interface can clear dirty bits for the entire
  process only. In addition, reading info about pages is a separate
  operation. It means we must freeze the process to read information
  about all its pages, reset dirty bits, only then we can start dumping
  pages. The information about pages becomes more and more outdated,
  while we are processing pages. The new interface solves both these
  downsides. First, it allows us to read pte bits and clear the
  soft-dirty bit atomically. It means that CRIU will not need to freeze
  processes to pre-dump their memory. Second, it clears soft-dirty bits
  for a specified region of memory. It means CRIU will have actual info
  about pages to the moment of dumping them.
* The new interface has to be much faster because basic page filtering
  is happening in the kernel. With the old interface, we have to read
  pagemap for each page.

*Implementation Evolution (Short Summary)*
From the definition of GetWriteWatch(), we feel like kernel's soft-dirty
feature can be used under the hood with some additions like:
* reset soft-dirty flag for only a specific region of memory instead of
clearing the flag for the entire process
* get and clear soft-dirty flag for a specific region atomically

So we decided to use ioctl on pagemap file to read or/and reset soft-dirty
flag. But using soft-dirty flag, sometimes we get extra pages which weren't
even written. They had become soft-dirty because of VMA merging and
VM_SOFTDIRTY flag. This breaks the definition of GetWriteWatch(). We were
able to by-pass this short coming by ignoring VM_SOFTDIRTY until David
reported that mprotect etc messes up the soft-dirty flag while ignoring
VM_SOFTDIRTY [5]. This wasn't happening until [6] got introduced. We
discussed if we can revert these patches. But we could not reach to any
conclusion. So at this point, I made couple of tries to solve this whole
VM_SOFTDIRTY issue by correcting the soft-dirty implementation:
* [7] Correct the bug fixed wrongly back in 2014. It had potential to cause
regression. We left it behind.
* [8] Keep a list of soft-dirty part of a VMA across splits and merges. I
got the reply don't increase the size of the VMA by 8 bytes.

At this point, we left soft-dirty considering it is too much delicate and
userfaultfd [9] seemed like the only way forward. From there onward, we
have been basing soft-dirty emulation on userfaultfd wp feature where
kernel resolves the faults itself when WP_ASYNC feature is used. It was
straight forward to add WP_ASYNC feature in userfautlfd. Now we get only
those pages dirty or written-to which are really written in reality. (PS
There is another WP_UNPOPULATED userfautfd feature is required which is
needed to avoid pre-faulting memory before write-protecting [9].)

All the different masks were added on the request of CRIU devs to create
interface more generic and better.

[1] https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-getwritewatch
[2] https://lore.kernel.org/all/20221014134802.1361436-1-mdanylo@google.com
[3] https://github.com/google/sanitizers
[4] https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm#64-bit
[5] https://lore.kernel.org/all/bfcae708-db21-04b4-0bbe-712badd03071@redhat.com
[6] https://lore.kernel.org/all/20220725142048.30450-1-peterx@redhat.com/
[7] https://lore.kernel.org/all/20221122115007.2787017-1-usama.anjum@collabora.com
[8] https://lore.kernel.org/all/20221220162606.1595355-1-usama.anjum@collabora.com
[9] https://lore.kernel.org/all/20230306213925.617814-1-peterx@redhat.com
[10] https://lore.kernel.org/all/20230125144529.1630917-1-mdanylo@google.com


This patch (of 6):

Add a new userfaultfd-wp feature UFFD_FEATURE_WP_ASYNC, that allows
userfaultfd wr-protect faults to be resolved by the kernel directly.

It can be used like a high accuracy version of soft-dirty, without vma
modifications during tracking, and also with ranged support by default
rather than for a whole mm when reset the protections due to existence of
ioctl(UFFDIO_WRITEPROTECT).

Several goals of such a dirty tracking interface:

1. All types of memory should be supported and tracable. This is nature
   for soft-dirty but should mention when the context is userfaultfd,
   because it used to only support anon/shmem/hugetlb. The problem is for
   a dirty tracking purpose these three types may not be enough, and it's
   legal to track anything e.g. any page cache writes from mmap.

2. Protections can be applied to partial of a memory range, without vma
   split/merge fuss.  The hope is that the tracking itself should not
   affect any vma layout change.  It also helps when reset happens because
   the reset will not need mmap write lock which can block the tracee.

3. Accuracy needs to be maintained.  This means we need pte markers to work
   on any type of VMA.

One could question that, the whole concept of async dirty tracking is not
really close to fundamentally what userfaultfd used to be: it's not "a
fault to be serviced by userspace" anymore. However, using userfaultfd-wp
here as a framework is convenient for us in at least:

1. VM_UFFD_WP vma flag, which has a very good name to suite something like
   this, so we don't need VM_YET_ANOTHER_SOFT_DIRTY. Just use a new
   feature bit to identify from a sync version of uffd-wp registration.

2. PTE markers logic can be leveraged across the whole kernel to maintain
   the uffd-wp bit as long as an arch supports, this also applies to this
   case where uffd-wp bit will be a hint to dirty information and it will
   not go lost easily (e.g. when some page cache ptes got zapped).

3. Reuse ioctl(UFFDIO_WRITEPROTECT) interface for either starting or
   resetting a range of memory, while there's no counterpart in the old
   soft-dirty world, hence if this is wanted in a new design we'll need a
   new interface otherwise.

We can somehow understand that commonality because uffd-wp was
fundamentally a similar idea of write-protecting pages just like
soft-dirty.

This implementation allows WP_ASYNC to imply WP_UNPOPULATED, because so
far WP_ASYNC seems to not usable if without WP_UNPOPULATE.  This also
gives us chance to modify impl of WP_ASYNC just in case it could be not
depending on WP_UNPOPULATED anymore in the future kernels.  It's also fine
to imply that because both features will rely on PTE_MARKER_UFFD_WP config
option, so they'll show up together (or both missing) in an UFFDIO_API
probe.

vma_can_userfault() now allows any VMA if the userfaultfd registration is
only about async uffd-wp.  So we can track dirty for all kinds of memory
including generic file systems (like XFS, EXT4 or BTRFS).

One trick worth mention in do_wp_page() is that we need to manually update
vmf->orig_pte here because it can be used later with a pte_same() check -
this path always has FAULT_FLAG_ORIG_PTE_VALID set in the flags.

The major defect of this approach of dirty tracking is we need to populate
the pgtables when tracking starts.  Soft-dirty doesn't do it like that. 
It's unwanted in the case where the range of memory to track is huge and
unpopulated (e.g., tracking updates on a 10G file with mmap() on top,
without having any page cache installed yet).  One way to improve this is
to allow pte markers exist for larger than PTE level for PMD+.  That will
not change the interface if to implemented, so we can leave that for
later.

Link: https://lkml.kernel.org/r/20230821141518.870589-1-usama.anjum@collabora.com
Link: https://lkml.kernel.org/r/20230821141518.870589-2-usama.anjum@collabora.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Co-developed-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Signed-off-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Cc: Alex Sierra <alex.sierra@amd.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Gustavo A. R. Silva <gustavoars@kernel.org>
Cc: "Liam R. Howlett" <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Miroslaw <emmir@google.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Paul Gofman <pgofman@codeweavers.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yun Zhou <yun.zhou@windriver.com>
Cc: Michał Mirosław <mirq-linux@rere.qmqm.pl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:12 -07:00
Yosry Ahmed
7bd5bc3ce9 mm: memcg: normalize the value passed into memcg_rstat_updated()
memcg_rstat_updated() uses the value of the state update to keep track of
the magnitude of pending updates, so that we only do a stats flush when
it's worth the work.  Most values passed into memcg_rstat_updated() are in
pages, however, a few of them are actually in bytes or KBs.

To put this into perspective, a 512 byte slab allocation today would look
the same as allocating 512 pages.  This may result in premature flushes,
which means unnecessary work and latency.

Normalize all the state values passed into memcg_rstat_updated() to pages.
Round up non-zero sub-page to 1 page, because memcg_rstat_updated()
ignores 0 page updates.

Link: https://lkml.kernel.org/r/20230922175741.635002-3-yosryahmed@google.com
Fixes: 5b3be698a8 ("memcg: better bounds on the memcg stats updates")
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:12 -07:00
Yosry Ahmed
ff841a06c8 mm: memcg: refactor page state unit helpers
Patch series "mm: memcg: fix tracking of pending stats updates values", v2.

While working on adjacent code [1], I realized that the values passed into
memcg_rstat_updated() to keep track of the magnitude of pending updates is
consistent.  It is mostly in pages, but sometimes it can be in bytes or
KBs.  Fix that.

Patch 1 reworks memcg_page_state_unit() so that we can reuse it in patch 2
to check and normalize the units of state updates.

[1]https://lore.kernel.org/lkml/20230921081057.3440885-1-yosryahmed@google.com/


This patch (of 2):

memcg_page_state_unit() is currently used to identify the unit of a memcg
state item so that all stats in memory.stat are in bytes.  However, it
lies about the units of WORKINGSET_* stats.  These stats actually
represent pages, but we present them to userspace as a scalar number of
events.  In retrospect, maybe those stats should have been memcg "events"
rather than memcg "state".

In preparation for using memcg_page_state_unit() for other purposes that
need to know the truthful units of different stat items, break it down
into two helpers:
- memcg_page_state_unit() retuns the actual unit of the item.
- memcg_page_state_output_unit() returns the unit used for output.

Use the latter instead of the former in memcg_page_state_output() and
lruvec_page_state_output().  While we are at it, let's show cgroup v1 some
love and add memcg_page_state_local_output() for consistency.

No functional change intended.

Link: https://lkml.kernel.org/r/20230922175741.635002-1-yosryahmed@google.com
Link: https://lkml.kernel.org/r/20230922175741.635002-2-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:12 -07:00
Mike Kravetz
30a89adf87 hugetlb: check for hugetlb folio before vmemmap_restore
In commit d8f5f7e445 ("hugetlb: set hugetlb page flag before
optimizing vmemmap") checks were added to print a warning if
hugetlb_vmemmap_restore was called on a non-hugetlb page.

This was mostly due to ordering issues in the hugetlb page set up and tear
down sequencees.  One place missed was the routine
dissolve_free_huge_page.

Naoya Horiguchi noted: "I saw that VM_WARN_ON_ONCE() in
hugetlb_vmemmap_restore is triggered when memory_failure() is called on a
free hugetlb page with vmemmap optimization disabled (the warning is not
triggered if vmemmap optimization is enabled).  I think that we need check
folio_test_hugetlb() before dissolve_free_huge_page() calls
hugetlb_vmemmap_restore_folio()."

Perform the check as suggested by Naoya.

Link: https://lkml.kernel.org/r/20231017032140.GA3680@monkey
Fixes: d8f5f7e445 ("hugetlb: set hugetlb page flag before optimizing vmemmap")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Suggested-by: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Tested-by: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 14:34:12 -07:00
Andrew Morton
5ef8f1b2b4 Merge mm-hotfixes-stable into mm-stable to pick up depended-upon changes. 2023-10-18 14:32:58 -07:00
SeongJae Park
76b7069bcc mm/damon/sysfs: check DAMOS regions update progress from before_terminate()
DAMON_SYSFS can receive DAMOS tried regions update request while kdamond
is already out of the main loop and before_terminate callback
(damon_sysfs_before_terminate() in this case) is not yet called.  And
damon_sysfs_handle_cmd() can further be finished before the callback is
invoked.  Then, damon_sysfs_before_terminate() unlocks damon_sysfs_lock,
which is not locked by anyone.  This happens because the callback function
assumes damon_sysfs_cmd_request_callback() should be called before it. 
Check if the assumption was true before doing the unlock, to avoid this
problem.

Link: https://lkml.kernel.org/r/20231007200432.3110-1-sj@kernel.org
Fixes: f1d13cacab ("mm/damon/sysfs: implement DAMOS tried regions update command")
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: <stable@vger.kernel.org>	[6.2.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 12:12:41 -07:00
Arnd Bergmann
17c17567fe kasan: disable kasan_non_canonical_hook() for HW tags
On arm64, building with CONFIG_KASAN_HW_TAGS now causes a compile-time
error:

mm/kasan/report.c: In function 'kasan_non_canonical_hook':
mm/kasan/report.c:637:20: error: 'KASAN_SHADOW_OFFSET' undeclared (first use in this function)
  637 |         if (addr < KASAN_SHADOW_OFFSET)
      |                    ^~~~~~~~~~~~~~~~~~~
mm/kasan/report.c:637:20: note: each undeclared identifier is reported only once for each function it appears in
mm/kasan/report.c:640:77: error: expected expression before ';' token
  640 |         orig_addr = (addr - KASAN_SHADOW_OFFSET) << KASAN_SHADOW_SCALE_SHIFT;

This was caused by removing the dependency on CONFIG_KASAN_INLINE that
used to prevent this from happening. Use the more specific dependency
on KASAN_SW_TAGS || KASAN_GENERIC to only ignore the function for hwasan
mode.

Link: https://lkml.kernel.org/r/20231016200925.984439-1-arnd@kernel.org
Fixes: 12ec6a919b0f ("kasan: print the original fault addr when access invalid shadow")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Haibo Li <haibo.li@mediatek.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 12:12:41 -07:00
Haibo Li
babddbfb7d kasan: print the original fault addr when access invalid shadow
when the checked address is illegal,the corresponding shadow address from
kasan_mem_to_shadow may have no mapping in mmu table.  Access such shadow
address causes kernel oops.  Here is a sample about oops on arm64(VA
39bit) with KASAN_SW_TAGS and KASAN_OUTLINE on:

[ffffffb80aaaaaaa] pgd=000000005d3ce003, p4d=000000005d3ce003,
    pud=000000005d3ce003, pmd=0000000000000000
Internal error: Oops: 0000000096000006 [#1] PREEMPT SMP
Modules linked in:
CPU: 3 PID: 100 Comm: sh Not tainted 6.6.0-rc1-dirty #43
Hardware name: linux,dummy-virt (DT)
pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __hwasan_load8_noabort+0x5c/0x90
lr : do_ib_ob+0xf4/0x110
ffffffb80aaaaaaa is the shadow address for efffff80aaaaaaaa.
The problem is reading invalid shadow in kasan_check_range.

The generic kasan also has similar oops.

It only reports the shadow address which causes oops but not
the original address.

Commit 2f004eea0fc8("x86/kasan: Print original address on #GP")
introduce to kasan_non_canonical_hook but limit it to KASAN_INLINE.

This patch extends it to KASAN_OUTLINE mode.

Link: https://lkml.kernel.org/r/20231009073748.159228-1-haibo.li@mediatek.com
Fixes: 2f004eea0fc8("x86/kasan: Print original address on #GP")
Signed-off-by: Haibo Li <haibo.li@mediatek.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Haibo Li <haibo.li@mediatek.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 12:12:41 -07:00
Rik van Riel
2820b0f09b hugetlbfs: close race between MADV_DONTNEED and page fault
Malloc libraries, like jemalloc and tcalloc, take decisions on when to
call madvise independently from the code in the main application.

This sometimes results in the application page faulting on an address,
right after the malloc library has shot down the backing memory with
MADV_DONTNEED.

Usually this is harmless, because we always have some 4kB pages sitting
around to satisfy a page fault.  However, with hugetlbfs systems often
allocate only the exact number of huge pages that the application wants.

Due to TLB batching, hugetlbfs MADV_DONTNEED will free pages outside of
any lock taken on the page fault path, which can open up the following
race condition:

       CPU 1                            CPU 2

       MADV_DONTNEED
       unmap page
       shoot down TLB entry
                                       page fault
                                       fail to allocate a huge page
                                       killed with SIGBUS
       free page

Fix that race by pulling the locking from __unmap_hugepage_final_range
into helper functions called from zap_page_range_single.  This ensures
page faults stay locked out of the MADV_DONTNEED VMA until the huge pages
have actually been freed.

Link: https://lkml.kernel.org/r/20231006040020.3677377-4-riel@surriel.com
Fixes: 04ada095dc ("hugetlb: don't delete vma_lock in hugetlb MADV_DONTNEED processing")
Signed-off-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 12:12:41 -07:00
Rik van Riel
bf4916922c hugetlbfs: extend hugetlb_vma_lock to private VMAs
Extend the locking scheme used to protect shared hugetlb mappings from
truncate vs page fault races, in order to protect private hugetlb mappings
(with resv_map) against MADV_DONTNEED.

Add a read-write semaphore to the resv_map data structure, and use that
from the hugetlb_vma_(un)lock_* functions, in preparation for closing the
race between MADV_DONTNEED and page faults.

Link: https://lkml.kernel.org/r/20231006040020.3677377-3-riel@surriel.com
Fixes: 04ada095dc ("hugetlb: don't delete vma_lock in hugetlb MADV_DONTNEED processing")
Signed-off-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 12:12:41 -07:00
Rik van Riel
92fe9dcbe4 hugetlbfs: clear resv_map pointer if mmap fails
Patch series "hugetlbfs: close race between MADV_DONTNEED and page fault", v7.

Malloc libraries, like jemalloc and tcalloc, take decisions on when to
call madvise independently from the code in the main application.

This sometimes results in the application page faulting on an address,
right after the malloc library has shot down the backing memory with
MADV_DONTNEED.

Usually this is harmless, because we always have some 4kB pages sitting
around to satisfy a page fault.  However, with hugetlbfs systems often
allocate only the exact number of huge pages that the application wants.

Due to TLB batching, hugetlbfs MADV_DONTNEED will free pages outside of
any lock taken on the page fault path, which can open up the following
race condition:

       CPU 1                            CPU 2

       MADV_DONTNEED
       unmap page
       shoot down TLB entry
                                       page fault
                                       fail to allocate a huge page
                                       killed with SIGBUS
       free page

Fix that race by extending the hugetlb_vma_lock locking scheme to also
cover private hugetlb mappings (with resv_map), and pulling the locking
from __unmap_hugepage_final_range into helper functions called from
zap_page_range_single.  This ensures page faults stay locked out of the
MADV_DONTNEED VMA until the huge pages have actually been freed.


This patch (of 3):

Hugetlbfs leaves a dangling pointer in the VMA if mmap fails.  This has
not been a problem so far, but other code in this patch series tries to
follow that pointer.

Link: https://lkml.kernel.org/r/20231006040020.3677377-1-riel@surriel.com
Link: https://lkml.kernel.org/r/20231006040020.3677377-2-riel@surriel.com
Fixes: 04ada095dc ("hugetlb: don't delete vma_lock in hugetlb MADV_DONTNEED processing")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Rik van Riel <riel@surriel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 12:12:41 -07:00
Johannes Weiner
969d63e1af mm: zswap: fix pool refcount bug around shrink_worker()
When a zswap store fails due to the limit, it acquires a pool reference
and queues the shrinker.  When the shrinker runs, it drops the reference. 
However, there can be multiple store attempts before the shrinker wakes up
and runs once.  This results in reference leaks and eventual saturation
warnings for the pool refcount.

Fix this by dropping the reference again when the shrinker is already
queued.  This ensures one reference per shrinker run.

Link: https://lkml.kernel.org/r/20231006160024.170748-1-hannes@cmpxchg.org
Fixes: 45190f01dd ("mm/zswap.c: add allocation hysteresis if pool limit is hit")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Chris Mason <clm@fb.com>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: <stable@vger.kernel.org>	[5.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18 12:12:40 -07:00
Jeff Layton
cf2766bb7c
mm: convert to new timestamp accessors
Convert to using the new inode timestamp accessor functions.

Signed-off-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20231004185347.80880-80-jlayton@kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-10-18 14:08:30 +02:00