The feature of minimizing overhead of struct page associated with each
HugeTLB page is implemented on x86_64, however, the infrastructure of this
feature is already there, we could easily enable it for other
architectures. Introduce ARCH_WANT_HUGETLB_PAGE_FREE_VMEMMAP for other
architectures to be easily enabled. Just select this config if they want
to enable this feature.
Link: https://lkml.kernel.org/r/20220331065640.5777-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Barry Song <baohua@kernel.org>
Tested-by: Barry Song <baohua@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: James Morse <james.morse@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Will Deacon <will@kernel.org>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* Remove 's' & 'u' as valid ISA extension
* Do not allow disabling the base extensions 'i'/'m'/'a'/'c'
x86:
* Fix NMI watchdog in guests on AMD
* Fix for SEV cache incoherency issues
* Don't re-acquire SRCU lock in complete_emulated_io()
* Avoid NULL pointer deref if VM creation fails
* Fix race conditions between APICv disabling and vCPU creation
* Bugfixes for disabling of APICv
* Preserve BSP MSR_KVM_POLL_CONTROL across suspend/resume
selftests:
* Do not use bitfields larger than 32-bits, they differ between GCC and clang
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmJi3KUUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMhvQf/Yncfg3MkOvKsVxnCe7diKDTI/E2n
wBGNIcL8r7L9oIltHL4Mh7JQTacHFQOZ9PQ30NO1p+pznZ03e8LR59IF1JpP7VOU
sWrLZ5a4bIAEjOpA7Jxcee6hUBwewBauDgFLbb+YAI2lAahiH7jVfywDRife/c3k
N2LjeA75K8UvMiDCfjxxxerFJK91zaqjWlUNF2OhtFp/5pnMfS+nli9Q8QS837pZ
oUf+0Beb2RpSHan+wbYVU7X3ZLwtpR0M3w3uXOG+X3as56wDf26znXS02aSwa45x
lfX+pqJfmb4vCJJDXt6avH27EVgTq0Vew+BhQHG3VLRO6uxZ+smX6qmsuw==
=kvbw
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"The main and larger change here is a workaround for AMD's lack of
cache coherency for encrypted-memory guests.
I have another patch pending, but it's waiting for review from the
architecture maintainers.
RISC-V:
- Remove 's' & 'u' as valid ISA extension
- Do not allow disabling the base extensions 'i'/'m'/'a'/'c'
x86:
- Fix NMI watchdog in guests on AMD
- Fix for SEV cache incoherency issues
- Don't re-acquire SRCU lock in complete_emulated_io()
- Avoid NULL pointer deref if VM creation fails
- Fix race conditions between APICv disabling and vCPU creation
- Bugfixes for disabling of APICv
- Preserve BSP MSR_KVM_POLL_CONTROL across suspend/resume
selftests:
- Do not use bitfields larger than 32-bits, they differ between GCC
and clang"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvm: selftests: introduce and use more page size-related constants
kvm: selftests: do not use bitfields larger than 32-bits for PTEs
KVM: SEV: add cache flush to solve SEV cache incoherency issues
KVM: SVM: Flush when freeing encrypted pages even on SME_COHERENT CPUs
KVM: SVM: Simplify and harden helper to flush SEV guest page(s)
KVM: selftests: Silence compiler warning in the kvm_page_table_test
KVM: x86/pmu: Update AMD PMC sample period to fix guest NMI-watchdog
x86/kvm: Preserve BSP MSR_KVM_POLL_CONTROL across suspend/resume
KVM: SPDX style and spelling fixes
KVM: x86: Skip KVM_GUESTDBG_BLOCKIRQ APICv update if APICv is disabled
KVM: x86: Pend KVM_REQ_APICV_UPDATE during vCPU creation to fix a race
KVM: nVMX: Defer APICv updates while L2 is active until L1 is active
KVM: x86: Tag APICv DISABLE inhibit, not ABSENT, if APICv is disabled
KVM: Initialize debugfs_dentry when a VM is created to avoid NULL deref
KVM: Add helpers to wrap vcpu->srcu_idx and yell if it's abused
KVM: RISC-V: Use kvm_vcpu.srcu_idx, drop RISC-V's unnecessary copy
KVM: x86: Don't re-acquire SRCU lock in complete_emulated_io()
RISC-V: KVM: Restrict the extensions that can be disabled
RISC-V: KVM: Remove 's' & 'u' as valid ISA extension
Flush the CPU caches when memory is reclaimed from an SEV guest (where
reclaim also includes it being unmapped from KVM's memslots). Due to lack
of coherency for SEV encrypted memory, failure to flush results in silent
data corruption if userspace is malicious/broken and doesn't ensure SEV
guest memory is properly pinned and unpinned.
Cache coherency is not enforced across the VM boundary in SEV (AMD APM
vol.2 Section 15.34.7). Confidential cachelines, generated by confidential
VM guests have to be explicitly flushed on the host side. If a memory page
containing dirty confidential cachelines was released by VM and reallocated
to another user, the cachelines may corrupt the new user at a later time.
KVM takes a shortcut by assuming all confidential memory remain pinned
until the end of VM lifetime. Therefore, KVM does not flush cache at
mmu_notifier invalidation events. Because of this incorrect assumption and
the lack of cache flushing, malicous userspace can crash the host kernel:
creating a malicious VM and continuously allocates/releases unpinned
confidential memory pages when the VM is running.
Add cache flush operations to mmu_notifier operations to ensure that any
physical memory leaving the guest VM get flushed. In particular, hook
mmu_notifier_invalidate_range_start and mmu_notifier_release events and
flush cache accordingly. The hook after releasing the mmu lock to avoid
contention with other vCPUs.
Cc: stable@vger.kernel.org
Suggested-by: Sean Christpherson <seanjc@google.com>
Reported-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20220421031407.2516575-4-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use clflush_cache_range() to flush the confidential memory when
SME_COHERENT is supported in AMD CPU. Cache flush is still needed since
SME_COHERENT only support cache invalidation at CPU side. All confidential
cache lines are still incoherent with DMA devices.
Cc: stable@vger.kerel.org
Fixes: add5e2f045 ("KVM: SVM: Add support for the SEV-ES VMSA")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20220421031407.2516575-3-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rework sev_flush_guest_memory() to explicitly handle only a single page,
and harden it to fall back to WBINVD if VM_PAGE_FLUSH fails. Per-page
flushing is currently used only to flush the VMSA, and in its current
form, the helper is completely broken with respect to flushing actual
guest memory, i.e. won't work correctly for an arbitrary memory range.
VM_PAGE_FLUSH takes a host virtual address, and is subject to normal page
walks, i.e. will fault if the address is not present in the host page
tables or does not have the correct permissions. Current AMD CPUs also
do not honor SMAP overrides (undocumented in kernel versions of the APM),
so passing in a userspace address is completely out of the question. In
other words, KVM would need to manually walk the host page tables to get
the pfn, ensure the pfn is stable, and then use the direct map to invoke
VM_PAGE_FLUSH. And the latter might not even work, e.g. if userspace is
particularly evil/clever and backs the guest with Secret Memory (which
unmaps memory from the direct map).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Fixes: add5e2f045 ("KVM: SVM: Add support for the SEV-ES VMSA")
Reported-by: Mingwei Zhang <mizhang@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20220421031407.2516575-2-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
NMI-watchdog is one of the favorite features of kernel developers,
but it does not work in AMD guest even with vPMU enabled and worse,
the system misrepresents this capability via /proc.
This is a PMC emulation error. KVM does not pass the latest valid
value to perf_event in time when guest NMI-watchdog is running, thus
the perf_event corresponding to the watchdog counter will enter the
old state at some point after the first guest NMI injection, forcing
the hardware register PMC0 to be constantly written to 0x800000000001.
Meanwhile, the running counter should accurately reflect its new value
based on the latest coordinated pmc->counter (from vPMC's point of view)
rather than the value written directly by the guest.
Fixes: 168d918f26 ("KVM: x86: Adjust counter sample period after a wrmsr")
Reported-by: Dongli Cao <caodongli@kingsoft.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Yanan Wang <wangyanan55@huawei.com>
Tested-by: Yanan Wang <wangyanan55@huawei.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220409015226.38619-1-likexu@tencent.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MSR_KVM_POLL_CONTROL is cleared on reset, thus reverting guests to
host-side polling after suspend/resume. Non-bootstrap CPUs are
restored correctly by the haltpoll driver because they are hot-unplugged
during suspend and hot-plugged during resume; however, the BSP
is not hotpluggable and remains in host-sde polling mode after
the guest resume. The makes the guest pay for the cost of vmexits
every time the guest enters idle.
Fix it by recording BSP's haltpoll state and resuming it during guest
resume.
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1650267752-46796-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Skip the APICv inhibit update for KVM_GUESTDBG_BLOCKIRQ if APICv is
disabled at the module level to avoid having to acquire the mutex and
potentially process all vCPUs. The DISABLE inhibit will (barring bugs)
never be lifted, so piling on more inhibits is unnecessary.
Fixes: cae72dcc3b ("KVM: x86: inhibit APICv when KVM_GUESTDBG_BLOCKIRQ active")
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220420013732.3308816-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make a KVM_REQ_APICV_UPDATE request when creating a vCPU with an
in-kernel local APIC and APICv enabled at the module level. Consuming
kvm_apicv_activated() and stuffing vcpu->arch.apicv_active directly can
race with __kvm_set_or_clear_apicv_inhibit(), as vCPU creation happens
before the vCPU is fully onlined, i.e. it won't get the request made to
"all" vCPUs. If APICv is globally inhibited between setting apicv_active
and onlining the vCPU, the vCPU will end up running with APICv enabled
and trigger KVM's sanity check.
Mark APICv as active during vCPU creation if APICv is enabled at the
module level, both to be optimistic about it's final state, e.g. to avoid
additional VMWRITEs on VMX, and because there are likely bugs lurking
since KVM checks apicv_active in multiple vCPU creation paths. While
keeping the current behavior of consuming kvm_apicv_activated() is
arguably safer from a regression perspective, force apicv_active so that
vCPU creation runs with deterministic state and so that if there are bugs,
they are found sooner than later, i.e. not when some crazy race condition
is hit.
WARNING: CPU: 0 PID: 484 at arch/x86/kvm/x86.c:9877 vcpu_enter_guest+0x2ae3/0x3ee0 arch/x86/kvm/x86.c:9877
Modules linked in:
CPU: 0 PID: 484 Comm: syz-executor361 Not tainted 5.16.13 #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1~cloud0 04/01/2014
RIP: 0010:vcpu_enter_guest+0x2ae3/0x3ee0 arch/x86/kvm/x86.c:9877
Call Trace:
<TASK>
vcpu_run arch/x86/kvm/x86.c:10039 [inline]
kvm_arch_vcpu_ioctl_run+0x337/0x15e0 arch/x86/kvm/x86.c:10234
kvm_vcpu_ioctl+0x4d2/0xc80 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3727
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:874 [inline]
__se_sys_ioctl fs/ioctl.c:860 [inline]
__x64_sys_ioctl+0x16d/0x1d0 fs/ioctl.c:860
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x38/0x90 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
The bug was hit by a syzkaller spamming VM creation with 2 vCPUs and a
call to KVM_SET_GUEST_DEBUG.
r0 = openat$kvm(0xffffffffffffff9c, &(0x7f0000000000), 0x0, 0x0)
r1 = ioctl$KVM_CREATE_VM(r0, 0xae01, 0x0)
ioctl$KVM_CAP_SPLIT_IRQCHIP(r1, 0x4068aea3, &(0x7f0000000000)) (async)
r2 = ioctl$KVM_CREATE_VCPU(r1, 0xae41, 0x0) (async)
r3 = ioctl$KVM_CREATE_VCPU(r1, 0xae41, 0x400000000000002)
ioctl$KVM_SET_GUEST_DEBUG(r3, 0x4048ae9b, &(0x7f00000000c0)={0x5dda9c14aa95f5c5})
ioctl$KVM_RUN(r2, 0xae80, 0x0)
Reported-by: Gaoning Pan <pgn@zju.edu.cn>
Reported-by: Yongkang Jia <kangel@zju.edu.cn>
Fixes: 8df14af42f ("kvm: x86: Add support for dynamic APICv activation")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220420013732.3308816-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Defer APICv updates that occur while L2 is active until nested VM-Exit,
i.e. until L1 regains control. vmx_refresh_apicv_exec_ctrl() assumes L1
is active and (a) stomps all over vmcs02 and (b) neglects to ever updated
vmcs01. E.g. if vmcs12 doesn't enable the TPR shadow for L2 (and thus no
APICv controls), L1 performs nested VM-Enter APICv inhibited, and APICv
becomes unhibited while L2 is active, KVM will set various APICv controls
in vmcs02 and trigger a failed VM-Entry. The kicker is that, unless
running with nested_early_check=1, KVM blames L1 and chaos ensues.
In all cases, ignoring vmcs02 and always deferring the inhibition change
to vmcs01 is correct (or at least acceptable). The ABSENT and DISABLE
inhibitions cannot truly change while L2 is active (see below).
IRQ_BLOCKING can change, but it is firmly a best effort debug feature.
Furthermore, only L2's APIC is accelerated/virtualized to the full extent
possible, e.g. even if L1 passes through its APIC to L2, normal MMIO/MSR
interception will apply to the virtual APIC managed by KVM.
The exception is the SELF_IPI register when x2APIC is enabled, but that's
an acceptable hole.
Lastly, Hyper-V's Auto EOI can technically be toggled if L1 exposes the
MSRs to L2, but for that to work in any sane capacity, L1 would need to
pass through IRQs to L2 as well, and IRQs must be intercepted to enable
virtual interrupt delivery. I.e. exposing Auto EOI to L2 and enabling
VID for L2 are, for all intents and purposes, mutually exclusive.
Lack of dynamic toggling is also why this scenario is all but impossible
to encounter in KVM's current form. But a future patch will pend an
APICv update request _during_ vCPU creation to plug a race where a vCPU
that's being created doesn't get included in the "all vCPUs request"
because it's not yet visible to other vCPUs. If userspaces restores L2
after VM creation (hello, KVM selftests), the first KVM_RUN will occur
while L2 is active and thus service the APICv update request made during
VM creation.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220420013732.3308816-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Set the DISABLE inhibit, not the ABSENT inhibit, if APICv is disabled via
module param. A recent refactoring to add a wrapper for setting/clearing
inhibits unintentionally changed the flag, probably due to a copy+paste
goof.
Fixes: 4f4c4a3ee5 ("KVM: x86: Trace all APICv inhibit changes and capture overall status")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220420013732.3308816-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add wrappers to acquire/release KVM's SRCU lock when stashing the index
in vcpu->src_idx, along with rudimentary detection of illegal usage,
e.g. re-acquiring SRCU and thus overwriting vcpu->src_idx. Because the
SRCU index is (currently) either 0 or 1, illegal nesting bugs can go
unnoticed for quite some time and only cause problems when the nested
lock happens to get a different index.
Wrap the WARNs in PROVE_RCU=y, and make them ONCE, otherwise KVM will
likely yell so loudly that it will bring the kernel to its knees.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Tested-by: Fabiano Rosas <farosas@linux.ibm.com>
Message-Id: <20220415004343.2203171-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't re-acquire SRCU in complete_emulated_io() now that KVM acquires the
lock in kvm_arch_vcpu_ioctl_run(). More importantly, don't overwrite
vcpu->srcu_idx. If the index acquired by complete_emulated_io() differs
from the one acquired by kvm_arch_vcpu_ioctl_run(), KVM will effectively
leak a lock and hang if/when synchronize_srcu() is invoked for the
relevant grace period.
Fixes: 8d25b7beca ("KVM: x86: pull kvm->srcu read-side to kvm_arch_vcpu_ioctl_run")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220415004343.2203171-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The first "if" condition in __memcpy_flushcache is supposed to align the
"dest" variable to 8 bytes and copy data up to this alignment. However,
this condition may misbehave if "size" is greater than 4GiB.
The statement min_t(unsigned, size, ALIGN(dest, 8) - dest); casts both
arguments to unsigned int and selects the smaller one. However, the
cast truncates high bits in "size" and it results in misbehavior.
For example:
suppose that size == 0x100000001, dest == 0x200000002
min_t(unsigned, size, ALIGN(dest, 8) - dest) == min_t(0x1, 0xe) == 0x1;
...
dest += 0x1;
so we copy just one byte "and" dest remains unaligned.
This patch fixes the bug by replacing unsigned with size_t.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
From the perspective of Intel cstate residency counters,
SAPPHIRERAPIDS_X is the same as ICELAKE_X.
Share the code with it. And update the comments for SAPPHIRERAPIDS_X.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/20220415104520.2737004-1-rui.zhang@intel.com
- Use either MSR_TSX_FORCE_ABORT or MSR_IA32_TSX_CTRL to disable TSX to
cover all CPUs which allow to disable it.
- Disable TSX development mode at boot so that a microcode update which
provides TSX development mode does not suddenly make the system
vulnerable to TSX Asynchronous Abort.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmJb5LYTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoVVbD/9cxZWkFctCiymedUZqLabkfpYSki65
MngdpCPzCNaaIdlp44lwCido5+gJsY9unXdm3OAUzLjv6SsxxpDr5njz1/C6TM1l
XmWjlkLEbG2QDPd1Ybd/lpYQORBmiukyo8v8x0yFT7ZzwvSddoDZAbeUtkQBrIin
sDTeExsewKzL2X5qXhttrHLHu1PYgurn4ThIrrG+eg2e4FNk6UUFUS3TOyMvzJDg
NWJ7N5pGy9YkR7CISq1q+qdnH55pGaUrgonDi2qBTt3EaH0fQtZP2ZtIOYr3O4nI
YCx6isrIiGUB6kSygofxmk4B+22CaUJXd2OcUxMZ/Th/a2aCK+35BtGVPXQGi6nU
d7m+ZWB7dShOiejFygS59ty+5L5kliKXYZfUASsq1CLoXH8K1xUwBMkbY5FQ2WH1
Ue4KUvjguNqsgSRAfeHdOi6B36oot0Xf9JO013Wm3V/r9hsGPtSOjWwFuVvT/euw
a9iFtruATxDssBxH/l0djCKnwwm5yuOt1OpyizcIMFnlCgRD06h/6zgAvsJK7c8d
dh6lC4D2mXP1e2wtEyZelve1tmRJ/FeReyG2V5FNU7m1mWYGm1rJZ4AEvnbrzcbC
ePwFva0lPu8GVKG6HRgHfR8PjuQ7TFmKPKytT7fboIqQpTIY+1Q75wYD4eXkSu8Q
/ltzXQz/8lz7bA==
=UQaW
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2022-04-17' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
"Two x86 fixes related to TSX:
- Use either MSR_TSX_FORCE_ABORT or MSR_IA32_TSX_CTRL to disable TSX
to cover all CPUs which allow to disable it.
- Disable TSX development mode at boot so that a microcode update
which provides TSX development mode does not suddenly make the
system vulnerable to TSX Asynchronous Abort"
* tag 'x86-urgent-2022-04-17' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/tsx: Disable TSX development mode at boot
x86/tsx: Use MSR_TSX_CTRL to clear CPUID bits
Commit 3ee48b6af4 ("mm, x86: Saving vmcore with non-lazy freeing of
vmas") introduced set_iounmap_nonlazy(), which sets vmap_lazy_nr to
lazy_max_pages() + 1, ensuring that any future vunmaps() immediately
purge the vmap areas instead of doing it lazily.
Commit 690467c81b ("mm/vmalloc: Move draining areas out of caller
context") moved the purging from the vunmap() caller to a worker thread.
Unfortunately, set_iounmap_nonlazy() can cause the worker thread to spin
(possibly forever). For example, consider the following scenario:
1. Thread reads from /proc/vmcore. This eventually calls
__copy_oldmem_page() -> set_iounmap_nonlazy(), which sets
vmap_lazy_nr to lazy_max_pages() + 1.
2. Then it calls free_vmap_area_noflush() (via iounmap()), which adds 2
pages (one page plus the guard page) to the purge list and
vmap_lazy_nr. vmap_lazy_nr is now lazy_max_pages() + 3, so the
drain_vmap_work is scheduled.
3. Thread returns from the kernel and is scheduled out.
4. Worker thread is scheduled in and calls drain_vmap_area_work(). It
frees the 2 pages on the purge list. vmap_lazy_nr is now
lazy_max_pages() + 1.
5. This is still over the threshold, so it tries to purge areas again,
but doesn't find anything.
6. Repeat 5.
If the system is running with only one CPU (which is typicial for kdump)
and preemption is disabled, then this will never make forward progress:
there aren't any more pages to purge, so it hangs. If there is more
than one CPU or preemption is enabled, then the worker thread will spin
forever in the background. (Note that if there were already pages to be
purged at the time that set_iounmap_nonlazy() was called, this bug is
avoided.)
This can be reproduced with anything that reads from /proc/vmcore
multiple times. E.g., vmcore-dmesg /proc/vmcore.
It turns out that improvements to vmap() over the years have obsoleted
the need for this "optimization". I benchmarked `dd if=/proc/vmcore
of=/dev/null` with 4k and 1M read sizes on a system with a 32GB vmcore.
The test was run on 5.17, 5.18-rc1 with a fix that avoided the hang, and
5.18-rc1 with set_iounmap_nonlazy() removed entirely:
|5.17 |5.18+fix|5.18+removal
4k|40.86s| 40.09s| 26.73s
1M|24.47s| 23.98s| 21.84s
The removal was the fastest (by a wide margin with 4k reads). This
patch removes set_iounmap_nonlazy().
Link: https://lkml.kernel.org/r/52f819991051f9b865e9ce25605509bfdbacadcd.1649277321.git.osandov@fb.com
Fixes: 690467c81b ("mm/vmalloc: Move draining areas out of caller context")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Acked-by: Chris Down <chris@chrisdown.name>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Miscellaneous bugfixes
* A small cleanup for the new workqueue code
* Documentation syntax fix
RISC-V:
* Remove hgatp zeroing in kvm_arch_vcpu_put()
* Fix alignment of the guest_hang() in KVM selftest
* Fix PTE A and D bits in KVM selftest
* Missing #include in vcpu_fp.c
ARM:
* Some PSCI fixes after introducing PSCIv1.1 and SYSTEM_RESET2
* Fix the MMU write-lock not being taken on THP split
* Fix mixed-width VM handling
* Fix potential UAF when debugfs registration fails
* Various selftest updates for all of the above
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmJVtdMUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroO33QgAiPh80xUkYfnl8FVN440S5F7UOPQ2
Cs/PbroNoP+Oz2GoG07aaqnUkFFApeBE5S+VMu1zhRNAernqpreN64/Y2iNaz0Y6
+MbvEX0FhQRW0UZJIF2m49ilgO8Gkt6aEpVRulq5G9w4NWiH1PtR25FVXfDMi8OG
xdw4x1jwXNI9lOQJ5EpUKVde3rAbxCfoC6hCTh5pCNd9oLuVeLfnC+Uv91fzXltl
EIeBlV0/mAi3RLp2E/AX38WP6ucMZqOOAy91/RTqX6oIx/7QL28ZNHXVrwQ67Hkd
pAr3MAk84tZL58lnosw53i5aXAf9CBp0KBnpk2KGutfRNJ4Vzs1e+DZAJA==
=vqAv
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"x86:
- Miscellaneous bugfixes
- A small cleanup for the new workqueue code
- Documentation syntax fix
RISC-V:
- Remove hgatp zeroing in kvm_arch_vcpu_put()
- Fix alignment of the guest_hang() in KVM selftest
- Fix PTE A and D bits in KVM selftest
- Missing #include in vcpu_fp.c
ARM:
- Some PSCI fixes after introducing PSCIv1.1 and SYSTEM_RESET2
- Fix the MMU write-lock not being taken on THP split
- Fix mixed-width VM handling
- Fix potential UAF when debugfs registration fails
- Various selftest updates for all of the above"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (24 commits)
KVM: x86: hyper-v: Avoid writing to TSC page without an active vCPU
KVM: SVM: Do not activate AVIC for SEV-enabled guest
Documentation: KVM: Add SPDX-License-Identifier tag
selftests: kvm: add tsc_scaling_sync to .gitignore
RISC-V: KVM: include missing hwcap.h into vcpu_fp
KVM: selftests: riscv: Fix alignment of the guest_hang() function
KVM: selftests: riscv: Set PTE A and D bits in VS-stage page table
RISC-V: KVM: Don't clear hgatp CSR in kvm_arch_vcpu_put()
selftests: KVM: Free the GIC FD when cleaning up in arch_timer
selftests: KVM: Don't leak GIC FD across dirty log test iterations
KVM: Don't create VM debugfs files outside of the VM directory
KVM: selftests: get-reg-list: Add KVM_REG_ARM_FW_REG(3)
KVM: avoid NULL pointer dereference in kvm_dirty_ring_push
KVM: arm64: selftests: Introduce vcpu_width_config
KVM: arm64: mixed-width check should be skipped for uninitialized vCPUs
KVM: arm64: vgic: Remove unnecessary type castings
KVM: arm64: Don't split hugepages outside of MMU write lock
KVM: arm64: Drop unneeded minor version check from PSCI v1.x handler
KVM: arm64: Actually prevent SMC64 SYSTEM_RESET2 from AArch32
KVM: arm64: Generally disallow SMC64 for AArch32 guests
...
struct stat (defined in arch/x86/include/uapi/asm/stat.h) has 32-bit
st_dev and st_rdev; struct compat_stat (defined in
arch/x86/include/asm/compat.h) has 16-bit st_dev and st_rdev followed by
a 16-bit padding.
This patch fixes struct compat_stat to match struct stat.
[ Historical note: the old x86 'struct stat' did have that 16-bit field
that the compat layer had kept around, but it was changes back in 2003
by "struct stat - support larger dev_t":
https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git/commit/?id=e95b2065677fe32512a597a79db94b77b90c968d
and back in those days, the x86_64 port was still new, and separate
from the i386 code, and had already picked up the old version with a
16-bit st_dev field ]
Note that we can't change compat_dev_t because it is used by
compat_loop_info.
Also, if the st_dev and st_rdev values are 32-bit, we don't have to use
old_valid_dev to test if the value fits into them. This fixes
-EOVERFLOW on filesystems that are on NVMe because NVMe uses the major
number 259.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: Andreas Schwab <schwab@linux-m68k.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The following WARN is triggered from kvm_vm_ioctl_set_clock():
WARNING: CPU: 10 PID: 579353 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:3161 mark_page_dirty_in_slot+0x6c/0x80 [kvm]
...
CPU: 10 PID: 579353 Comm: qemu-system-x86 Tainted: G W O 5.16.0.stable #20
Hardware name: LENOVO 20UF001CUS/20UF001CUS, BIOS R1CET65W(1.34 ) 06/17/2021
RIP: 0010:mark_page_dirty_in_slot+0x6c/0x80 [kvm]
...
Call Trace:
<TASK>
? kvm_write_guest+0x114/0x120 [kvm]
kvm_hv_invalidate_tsc_page+0x9e/0xf0 [kvm]
kvm_arch_vm_ioctl+0xa26/0xc50 [kvm]
? schedule+0x4e/0xc0
? __cond_resched+0x1a/0x50
? futex_wait+0x166/0x250
? __send_signal+0x1f1/0x3d0
kvm_vm_ioctl+0x747/0xda0 [kvm]
...
The WARN was introduced by commit 03c0304a86bc ("KVM: Warn if
mark_page_dirty() is called without an active vCPU") but the change seems
to be correct (unlike Hyper-V TSC page update mechanism). In fact, there's
no real need to actually write to guest memory to invalidate TSC page, this
can be done by the first vCPU which goes through kvm_guest_time_update().
Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220407201013.963226-1-vkuznets@redhat.com>
Since current AVIC implementation cannot support encrypted memory,
inhibit AVIC for SEV-enabled guest.
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20220408133710.54275-1-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A microcode update on some Intel processors causes all TSX transactions
to always abort by default[*]. Microcode also added functionality to
re-enable TSX for development purposes. With this microcode loaded, if
tsx=on was passed on the cmdline, and TSX development mode was already
enabled before the kernel boot, it may make the system vulnerable to TSX
Asynchronous Abort (TAA).
To be on safer side, unconditionally disable TSX development mode during
boot. If a viable use case appears, this can be revisited later.
[*]: Intel TSX Disable Update for Selected Processors, doc ID: 643557
[ bp: Drop unstable web link, massage heavily. ]
Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Neelima Krishnan <neelima.krishnan@intel.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/347bd844da3a333a9793c6687d4e4eb3b2419a3e.1646943780.git.pawan.kumar.gupta@linux.intel.com
tsx_clear_cpuid() uses MSR_TSX_FORCE_ABORT to clear CPUID.RTM and
CPUID.HLE. Not all CPUs support MSR_TSX_FORCE_ABORT, alternatively use
MSR_IA32_TSX_CTRL when supported.
[ bp: Document how and why TSX gets disabled. ]
Fixes: 293649307e ("x86/tsx: Clear CPUID bits when TSX always force aborts")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Neelima Krishnan <neelima.krishnan@intel.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/5b323e77e251a9c8bcdda498c5cc0095be1e1d3c.1646943780.git.pawan.kumar.gupta@linux.intel.com
- Use local labels in the exception table macros to avoid symbol
conflicts with clang LTO builds
- A couple of fixes to objtool checking of the relatively newly added
SLS and IBT code
- Rename a local var in the WARN* macro machinery to prevent shadowing
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmJSwSkACgkQEsHwGGHe
VUp6QQ//TGhL2xxLoN+7pYjIBDEDHJ3Oi0m6fOweqyQAZTYcm/rAPqd7hvoWVSoO
YsLdWi9jeMwkzG0ItSm/qPVm/UvrViXwuQMdz4nDWqg2IPFIbhgNA3CKCIyPTio2
WHp2NXvYyDnwPMr6xTTRndMDoxiwxMBnXf91pNwoU3toxw0GuUuXan0Y+GKnvx1A
sqhbpWO27bAmhKb26wPw5soJVxBbSqx+1TbFVG0Sz/uwYQowMa+nfNg1DXF0sXyJ
E/ssqBB6wjl7ANVbQsxBQHRzr/EksLVPwHHrlT8ga/5loin+VJ6mTBCPLgG7SMBE
+R1fm79Bp/9KU194fcqhJ3pvnyJPi8hfizzCqNKnK871V8LRzC+jW0l3EdvASEXC
sDj0XWsSFoWft9eAtMV11d641uVC4rLB90GyyzmWWrEw9BbxmasBgED6QBx9d+V6
o1L4y58Tsz88HKzwd0PtBkeGDkvkA7xOx8ViG24IeLA0tcbixnfnATQdelQeWKqO
4m3o1JU8ogJp9JCEBY7ZeXyStFjZMedM4U/V0akF6AKnpDuVfR3T5C68cYhoLKBu
XU6Swf5sFHImNWp0+54HPnXhHj/uhuwj9YWCkxx/eXViwvVlxSdTdIQWa380EddN
0KhOFLwLOdhha2+81FJc6vmkDHwiu6hlR38yqdGvdxZf/KPKjM0=
=kMtP
-----END PGP SIGNATURE-----
Merge tag 'x86_urgent_for_v5.18_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- Fix the MSI message data struct definition
- Use local labels in the exception table macros to avoid symbol
conflicts with clang LTO builds
- A couple of fixes to objtool checking of the relatively newly added
SLS and IBT code
- Rename a local var in the WARN* macro machinery to prevent shadowing
* tag 'x86_urgent_for_v5.18_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/msi: Fix msi message data shadow struct
x86/extable: Prefer local labels in .set directives
x86,bpf: Avoid IBT objtool warning
objtool: Fix SLS validation for kcov tail-call replacement
objtool: Fix IBT tail-call detection
x86/bug: Prevent shadowing in __WARN_FLAGS
x86/mm/tlb: Revert retpoline avoidance approach
- A couple of fixes to event encoding on Sapphire Rapids
- Pass event caps of inherited events so that perf doesn't fail wrongly at fork()
- Add support for a new Raptor Lake CPU
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmJSvt0ACgkQEsHwGGHe
VUpKBRAAtegwh4ilwoRM0LePH2TX752pREy+M1qfEUp/XyH3tF8VAixCAmIg7qlI
IyjRX0AKDC1F08sM7/JmTf0M+hnl/oH2YPG8Q6p3igtfARvn+5bPZdSBpTAC9P5L
QX3S2WVzv5X78IomIfENqbg5HyZP3IXeg7R7sqZhHbtoG54n5NEv/+aJl5HmHFTt
gLTrXetL46OSMnLzKfd3hlJqCWSnTz1aGKgGX2cZy9ipI63+XrYMuNmiwJ+CrA3G
pI98RmKnCPqV2rXij1GpVQNyG2aPR+VVZM3aaq6XBAmiNTaCfnvWbEBGhCkjaSgA
UU7Y6D1Qxc0OZ1plcjhKc4l/W1oj8jqmG9nS6J2Xy4szdpZIdxBhlWq89xCrb9AC
yIgKif2iVl7eMVKVG1Jq1u2wTwurBAamH73sCCNn8ndctBjicoM8pbtHMHxzceyZ
w4Cff0yUNzHgPiqSHQRARw/CaUceL9kDoGzPeEQOR0A+27MpNulchts4HCtIvwzI
yLIK1JFPHDrCACLTMuAhvov3EMTeoTIfc91eOZRjubRTPx7TxujaZHdP7N+R3nkk
Giehc/l6IhFPhT8QACk0bziTVJ9in+Jx8pCnocGKuj80Uqs7Sq7swjlasy1Zoy7r
x9Qzy1gZhPHnvPd6LWU4WyPa767D07DlG/zFdg+P3EeWa/3efdw=
=ba3V
-----END PGP SIGNATURE-----
Merge tag 'perf_urgent_for_v5.18_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Borislav Petkov:
- A couple of fixes to cgroup-related handling of perf events
- A couple of fixes to event encoding on Sapphire Rapids
- Pass event caps of inherited events so that perf doesn't fail wrongly
at fork()
- Add support for a new Raptor Lake CPU
* tag 'perf_urgent_for_v5.18_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/core: Always set cpuctx cgrp when enable cgroup event
perf/core: Fix perf_cgroup_switch()
perf/core: Use perf_cgroup_info->active to check if cgroup is active
perf/core: Don't pass task around when ctx sched in
perf/x86/intel: Update the FRONTEND MSR mask on Sapphire Rapids
perf/x86/intel: Don't extend the pseudo-encoding to GP counters
perf/core: Inherit event_caps
perf/x86/uncore: Add Raptor Lake uncore support
perf/x86/msr: Add Raptor Lake CPU support
perf/x86/cstate: Add Raptor Lake support
perf/x86: Add Intel Raptor Lake support
the local_lock_* macros back to inline functions
- A couple of fixes to static call insn patching
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmJStZ4ACgkQEsHwGGHe
VUpUpA/8DHOMUQa7rM8z49ZWBV01HNVCLECTeeKshQBLyJfWc84MNOfdPbpgEGvY
XE/eIZDnTMB5UKD0bfRqD+AQ0fXjl3NiLnJrdDZJqEQAiP/wGBswKNXMire8xPT8
9MfaOKYWYPl0LY2uZBWVLcdC+lVe4kRGfhqAcl4LRx0ZSvMzgjcFy34NeXY8LlXD
kFQJEzHa97CTROje54mtmXEt7Y5bxjxWwVTSyfEt0hJPGo1bJtJP6FaY01Muj+Xu
h/OGNx3KLOYf9MqQC31caAwKgtUOptm8bTpvG3onaHg29qJgz2umKwONyOjYrUUn
2PE3NREfMuKI38nf88pX+lOCs6/I1uVIjJPvAVJijIcuI1ZBXrfm26IP0lZ3LqG1
h/9Y5gChiZPn1j90VnF4UCJUm4u3bYEAHqKIQgUdpcpUqX0NlxbDiXoYxJWfHnmB
PBJ0PE7Vdo4MPK0n3BGVrzXAFeOyHsohAsKFijT8afRCMAOF/ebmVs/tI5NygFrK
11e/U13/78iKkazZSxWew8vU3yXA39W5Rym7aPnhR2lWxvN+xQOjNTgZTxF9hUcZ
6AcsaYJgHR7nD8SM7Y9+cwHWOWaDEdZMg9XSkgvyd1p0tHb4u+Ve/SQK7sA3j9q7
ZmZyFSE1X3K+M1i+75rUSVmIEVM5cpfhodN89iRje/JIZ1KyRT8=
=hSOc
-----END PGP SIGNATURE-----
Merge tag 'locking_urgent_for_v5.18_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking fixes from Borislav Petkov:
- Allow the compiler to optimize away unused percpu accesses and change
the local_lock_* macros back to inline functions
- A couple of fixes to static call insn patching
* tag 'locking_urgent_for_v5.18_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Revert "mm/page_alloc: mark pagesets as __maybe_unused"
Revert "locking/local_lock: Make the empty local_lock_*() function a macro."
x86/percpu: Remove volatile from arch_raw_cpu_ptr().
static_call: Remove __DEFINE_STATIC_CALL macro
static_call: Properly initialise DEFINE_STATIC_CALL_RET0()
static_call: Don't make __static_call_return0 static
x86,static_call: Fix __static_call_return0 for i386
The x86 MSI message data is 32 bits in total and is either in
compatibility or remappable format, see Intel Virtualization Technology
for Directed I/O, section 5.1.2.
Fixes: 6285aa5073 ("x86/msi: Provide msi message shadow structs")
Co-developed-by: Adrian-Ken Rueegsegger <ken@codelabs.ch>
Signed-off-by: Adrian-Ken Rueegsegger <ken@codelabs.ch>
Signed-off-by: Reto Buerki <reet@codelabs.ch>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20220407110647.67372-1-reet@codelabs.ch
Bernardo reported an error that Nathan bisected down to
(x86_64) defconfig+LTO_CLANG_FULL+X86_PMEM_LEGACY.
LTO vmlinux.o
ld.lld: error: <instantiation>:1:13: redefinition of 'found'
.set found, 0
^
<inline asm>:29:1: while in macro instantiation
extable_type_reg reg=%eax, type=(17 | ((0) << 16))
^
This appears to be another LTO specific issue similar to what was folded
into commit 4b5305decc ("x86/extable: Extend extable functionality"),
where the `.set found, 0` in DEFINE_EXTABLE_TYPE_REG in
arch/x86/include/asm/asm.h conflicts with the symbol for the static
function `found` in arch/x86/kernel/pmem.c.
Assembler .set directive declare symbols with global visibility, so the
assembler may not rename such symbols in the event of a conflict. LTO
could rename static functions if there was a conflict in C sources, but
it cannot see into symbols defined in inline asm.
The symbols are also retained in the symbol table, regardless of LTO.
Give the symbols .L prefixes making them locally visible, so that they
may be renamed for LTO to avoid conflicts, and to drop them from the
symbol table regardless of LTO.
Fixes: 4b5305decc ("x86/extable: Extend extable functionality")
Reported-by: Bernardo Meurer Costa <beme@google.com>
Debugged-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lore.kernel.org/r/20220329202148.2379697-1-ndesaulniers@google.com
Clang can inline emit_indirect_jump() and then folds constants, which
results in:
| vmlinux.o: warning: objtool: emit_bpf_dispatcher()+0x6a4: relocation to !ENDBR: .text.__x86.indirect_thunk+0x40
| vmlinux.o: warning: objtool: emit_bpf_dispatcher()+0x67d: relocation to !ENDBR: .text.__x86.indirect_thunk+0x40
| vmlinux.o: warning: objtool: emit_bpf_tail_call_indirect()+0x386: relocation to !ENDBR: .text.__x86.indirect_thunk+0x20
| vmlinux.o: warning: objtool: emit_bpf_tail_call_indirect()+0x35d: relocation to !ENDBR: .text.__x86.indirect_thunk+0x20
Suppress the optimization such that it must emit a code reference to
the __x86_indirect_thunk_array[] base.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lkml.kernel.org/r/20220405075531.GB30877@worktop.programming.kicks-ass.net
After resuming from suspend-to-RAM, the MSRs that control CPU's
speculative execution behavior are not being restored on the boot CPU.
These MSRs are used to mitigate speculative execution vulnerabilities.
Not restoring them correctly may leave the CPU vulnerable. Secondary
CPU's MSRs are correctly being restored at S3 resume by
identify_secondary_cpu().
During S3 resume, restore these MSRs for boot CPU when restoring its
processor state.
Fixes: 772439717d ("x86/bugs/intel: Set proper CPU features and setup RDS")
Reported-by: Neelima Krishnan <neelima.krishnan@intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Tested-by: Neelima Krishnan <neelima.krishnan@intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The mechanism to save/restore MSRs during S3 suspend/resume checks for
the MSR validity during suspend, and only restores the MSR if its a
valid MSR. This is not optimal, as an invalid MSR will unnecessarily
throw an exception for every suspend cycle. The more invalid MSRs,
higher the impact will be.
Check and save the MSR validity at setup. This ensures that only valid
MSRs that are guaranteed to not throw an exception will be attempted
during suspend.
Fixes: 7a9c2dd08e ("x86/pm: Introduce quirk framework to save/restore extra MSR registers around suspend/resume")
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All work currently pending will be done first by calling destroy_workqueue,
so there is unnecessary to flush it explicitly.
Reported-by: Zeal Robot <zealci@zte.com.cn>
Signed-off-by: Lv Ruyi <lv.ruyi@zte.com.cn>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220401083530.2407703-1-lv.ruyi@zte.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Resolve nx_huge_pages to true/false when kvm.ko is loaded, leaving it as
-1 is technically undefined behavior when its value is read out by
param_get_bool(), as boolean values are supposed to be '0' or '1'.
Alternatively, KVM could define a custom getter for the param, but the
auto value doesn't depend on the vendor module in any way, and printing
"auto" would be unnecessarily unfriendly to the user.
In addition to fixing the undefined behavior, resolving the auto value
also fixes the scenario where the auto value resolves to N and no vendor
module is loaded. Previously, -1 would result in Y being printed even
though KVM would ultimately disable the mitigation.
Rename the existing MMU module init/exit helpers to clarify that they're
invoked with respect to the vendor module, and add comments to document
why KVM has two separate "module init" flows.
=========================================================================
UBSAN: invalid-load in kernel/params.c:320:33
load of value 255 is not a valid value for type '_Bool'
CPU: 6 PID: 892 Comm: tail Not tainted 5.17.0-rc3+ #799
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
<TASK>
dump_stack_lvl+0x34/0x44
ubsan_epilogue+0x5/0x40
__ubsan_handle_load_invalid_value.cold+0x43/0x48
param_get_bool.cold+0xf/0x14
param_attr_show+0x55/0x80
module_attr_show+0x1c/0x30
sysfs_kf_seq_show+0x93/0xc0
seq_read_iter+0x11c/0x450
new_sync_read+0x11b/0x1a0
vfs_read+0xf0/0x190
ksys_read+0x5f/0xe0
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
=========================================================================
Fixes: b8e8c8303f ("kvm: mmu: ITLB_MULTIHIT mitigation")
Cc: stable@vger.kernel.org
Reported-by: Bruno Goncalves <bgoncalv@redhat.com>
Reported-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220331221359.3912754-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add resched to avoid warning from sev_clflush_pages() with large number
of pages.
Signed-off-by: Peter Gonda <pgonda@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Message-Id: <20220330164306.2376085-1-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The macro __WARN_FLAGS() uses a local variable named "f". This being a
common name, there is a risk of shadowing other variables.
For example, GCC would yield:
| In file included from ./include/linux/bug.h:5,
| from ./include/linux/cpumask.h:14,
| from ./arch/x86/include/asm/cpumask.h:5,
| from ./arch/x86/include/asm/msr.h:11,
| from ./arch/x86/include/asm/processor.h:22,
| from ./arch/x86/include/asm/timex.h:5,
| from ./include/linux/timex.h:65,
| from ./include/linux/time32.h:13,
| from ./include/linux/time.h:60,
| from ./include/linux/stat.h:19,
| from ./include/linux/module.h:13,
| from virt/lib/irqbypass.mod.c:1:
| ./include/linux/rcupdate.h: In function 'rcu_head_after_call_rcu':
| ./arch/x86/include/asm/bug.h:80:21: warning: declaration of 'f' shadows a parameter [-Wshadow]
| 80 | __auto_type f = BUGFLAG_WARNING|(flags); \
| | ^
| ./include/asm-generic/bug.h:106:17: note: in expansion of macro '__WARN_FLAGS'
| 106 | __WARN_FLAGS(BUGFLAG_ONCE | \
| | ^~~~~~~~~~~~
| ./include/linux/rcupdate.h:1007:9: note: in expansion of macro 'WARN_ON_ONCE'
| 1007 | WARN_ON_ONCE(func != (rcu_callback_t)~0L);
| | ^~~~~~~~~~~~
| In file included from ./include/linux/rbtree.h:24,
| from ./include/linux/mm_types.h:11,
| from ./include/linux/buildid.h:5,
| from ./include/linux/module.h:14,
| from virt/lib/irqbypass.mod.c:1:
| ./include/linux/rcupdate.h:1001:62: note: shadowed declaration is here
| 1001 | rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
| | ~~~~~~~~~~~~~~~^
For reference, sparse also warns about it, c.f. [1].
This patch renames the variable from f to __flags (with two underscore
prefixes as suggested in the Linux kernel coding style [2]) in order
to prevent collisions.
[1] https://lore.kernel.org/all/CAFGhKbyifH1a+nAMCvWM88TK6fpNPdzFtUXPmRGnnQeePV+1sw@mail.gmail.com/
[2] Linux kernel coding style, section 12) Macros, Enums and RTL,
paragraph 5) namespace collisions when defining local variables in
macros resembling functions
https://www.kernel.org/doc/html/latest/process/coding-style.html#macros-enums-and-rtl
Fixes: bfb1a7c91f ("x86/bug: Merge annotate_reachable() into_BUG_FLAGS() asm")
Signed-off-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20220324023742.106546-1-mailhol.vincent@wanadoo.fr
On Sapphire Rapids, the FRONTEND_RETIRED.MS_FLOWS event requires the
FRONTEND MSR value 0x8. However, the current FRONTEND MSR mask doesn't
support it.
Update intel_spr_extra_regs[] to support it.
Fixes: 61b985e3e7 ("perf/x86/intel: Add perf core PMU support for Sapphire Rapids")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/1648482543-14923-2-git-send-email-kan.liang@linux.intel.com
The INST_RETIRED.PREC_DIST event (0x0100) doesn't count on SPR.
perf stat -e cpu/event=0xc0,umask=0x0/,cpu/event=0x0,umask=0x1/ -C0
Performance counter stats for 'CPU(s) 0':
607,246 cpu/event=0xc0,umask=0x0/
0 cpu/event=0x0,umask=0x1/
The encoding for INST_RETIRED.PREC_DIST is pseudo-encoding, which
doesn't work on the generic counters. However, current perf extends its
mask to the generic counters.
The pseudo event-code for a fixed counter must be 0x00. Check and avoid
extending the mask for the fixed counter event which using the
pseudo-encoding, e.g., ref-cycles and PREC_DIST event.
With the patch,
perf stat -e cpu/event=0xc0,umask=0x0/,cpu/event=0x0,umask=0x1/ -C0
Performance counter stats for 'CPU(s) 0':
583,184 cpu/event=0xc0,umask=0x0/
583,048 cpu/event=0x0,umask=0x1/
Fixes: 2de71ee153 ("perf/x86/intel: Fix ICL/SPR INST_RETIRED.PREC_DIST encodings")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1648482543-14923-1-git-send-email-kan.liang@linux.intel.com
Raptor Lake is Intel's successor to Alder lake. From the perspective of
Intel cstate residency counters, there is nothing changed compared with
Alder lake.
Share adl_cstates with Alder lake.
Update the comments for Raptor Lake.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/1647366360-82824-2-git-send-email-kan.liang@linux.intel.com
From PMU's perspective, Raptor Lake is the same as the Alder Lake. The
only difference is the event list, which will be supported in the perf
tool later.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/1647366360-82824-1-git-send-email-kan.liang@linux.intel.com
The volatile attribute in the inline assembly of arch_raw_cpu_ptr()
forces the compiler to always generate the code, even if the compiler
can decide upfront that its result is not needed.
For instance invoking __intel_pmu_disable_all(false) (like
intel_pmu_snapshot_arch_branch_stack() does) leads to loading the
address of &cpu_hw_events into the register while compiler knows that it
has no need for it. This ends up with code like:
| movq $cpu_hw_events, %rax #, tcp_ptr__
| add %gs:this_cpu_off(%rip), %rax # this_cpu_off, tcp_ptr__
| xorl %eax, %eax # tmp93
It also creates additional code within local_lock() with !RT &&
!LOCKDEP which is not desired.
By removing the volatile attribute the compiler can place the
function freely and avoid it if it is not needed in the end.
By using the function twice the compiler properly caches only the
variable offset and always loads the CPU-offset.
this_cpu_ptr() also remains properly placed within a preempt_disable()
sections because
- arch_raw_cpu_ptr() assembly has a memory input ("m" (this_cpu_off))
- prempt_{dis,en}able() fundamentally has a 'barrier()' in it
Therefore this_cpu_ptr() is already properly serialized and does not
rely on the 'volatile' attribute.
Remove volatile from arch_raw_cpu_ptr().
[ bigeasy: Added Linus' explanation why this_cpu_ptr() is not moved out
of a preempt_disable() section without the 'volatile' attribute. ]
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220328145810.86783-2-bigeasy@linutronix.de
When a static call is updated with __static_call_return0() as target,
arch_static_call_transform() set it to use an optimised set of
instructions which are meant to lay in the same cacheline.
But when initialising a static call with DEFINE_STATIC_CALL_RET0(),
we get a branch to the real __static_call_return0() function instead
of getting the optimised setup:
c00d8120 <__SCT__perf_snapshot_branch_stack>:
c00d8120: 4b ff ff f4 b c00d8114 <__static_call_return0>
c00d8124: 3d 80 c0 0e lis r12,-16370
c00d8128: 81 8c 81 3c lwz r12,-32452(r12)
c00d812c: 7d 89 03 a6 mtctr r12
c00d8130: 4e 80 04 20 bctr
c00d8134: 38 60 00 00 li r3,0
c00d8138: 4e 80 00 20 blr
c00d813c: 00 00 00 00 .long 0x0
Add ARCH_DEFINE_STATIC_CALL_RET0_TRAMP() defined by each architecture
to setup the optimised configuration, and rework
DEFINE_STATIC_CALL_RET0() to call it:
c00d8120 <__SCT__perf_snapshot_branch_stack>:
c00d8120: 48 00 00 14 b c00d8134 <__SCT__perf_snapshot_branch_stack+0x14>
c00d8124: 3d 80 c0 0e lis r12,-16370
c00d8128: 81 8c 81 3c lwz r12,-32452(r12)
c00d812c: 7d 89 03 a6 mtctr r12
c00d8130: 4e 80 04 20 bctr
c00d8134: 38 60 00 00 li r3,0
c00d8138: 4e 80 00 20 blr
c00d813c: 00 00 00 00 .long 0x0
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/1e0a61a88f52a460f62a58ffc2a5f847d1f7d9d8.1647253456.git.christophe.leroy@csgroup.eu
Paolo reported that the instruction sequence that is used to replace:
call __static_call_return0
namely:
66 66 48 31 c0 data16 data16 xor %rax,%rax
decodes to something else on i386, namely:
66 66 48 data16 dec %ax
31 c0 xor %eax,%eax
Which is a nonsensical sequence that happens to have the same outcome.
*However* an important distinction is that it consists of 2
instructions which is a problem when the thing needs to be overwriten
with a regular call instruction again.
As such, replace the instruction with something that decodes the same
on both i386 and x86_64.
Fixes: 3f2a8fc4b1 ("static_call/x86: Add __static_call_return0()")
Reported-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220318204419.GT8939@worktop.programming.kicks-ass.net
0day reported a regression on a microbenchmark which is intended to
stress the TLB flushing path:
https://lore.kernel.org/all/20220317090415.GE735@xsang-OptiPlex-9020/
It pointed at a commit from Nadav which intended to remove retpoline
overhead in the TLB flushing path by taking the 'cond'-ition in
on_each_cpu_cond_mask(), pre-calculating it, and incorporating it into
'cpumask'. That allowed the code to use a bunch of earlier direct
calls instead of later indirect calls that need a retpoline.
But, in practice, threads can go idle (and into lazy TLB mode where
they don't need to flush their TLB) between the early and late calls.
It works in this direction and not in the other because TLB-flushing
threads tend to hold mmap_lock for write. Contention on that lock
causes threads to _go_ idle right in this early/late window.
There was not any performance data in the original commit specific
to the retpoline overhead. I did a few tests on a system with
retpolines:
https://lore.kernel.org/all/dd8be93c-ded6-b962-50d4-96b1c3afb2b7@intel.com/
which showed a possible small win. But, that small win pales in
comparison with the bigger loss induced on non-retpoline systems.
Revert the patch that removed the retpolines. This was not a
clean revert, but it was self-contained enough not to be too painful.
Fixes: 6035152d8e ("x86/mm/tlb: Open-code on_each_cpu_cond_mask() for tlb_is_not_lazy()")
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Nadav Amit <namit@vmware.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/164874672286.389.7021457716635788197.tip-bot2@tip-bot2
- Make the prctl() for enabling dynamic XSTATE components correct so it
adds the newly requested feature to the permission bitmap instead of
overwriting it. Add a selftest which validates that.
- Unroll string MMIO for encrypted SEV guests as the hypervisor cannot
emulate it.
- Handle supervisor states correctly in the FPU/XSTATE code so it takes
the feature set of the fpstate buffer into account. The feature sets
can differ between host and guest buffers. Guest buffers do not contain
supervisor states. So far this was not an issue, but with enabling
PASID it needs to be handled in the buffer offset calculation and in
the permission bitmaps.
- Avoid a gazillion of repeated CPUID invocations in by caching the values
early in the FPU/XSTATE code.
- Enable CONFIG_WERROR for X86.
- Make the X86 defconfigs more useful by adapting them to Y2022 reality.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmJJWwwTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoT3mEACA9xkNjECn/MHN3B0X5wTPhVyw9+TJ
OdfpqL7C9pbAU1s2mwf3TyicrCOqx8nlnOYB/mXgfRGnbZqmUeGQFpZFM587dm/I
r/BtouAzSASjnaW7SijT3gnRTqMPVNTcLOTUEVjnTa7zatw+t4rH1uxE9dLqEq9B
cKMtsBOJyTTbj4ie3ngkUS2PQngNNHLJ4oQGZW4wCA5snLuwF1LlgcZJy8Zkrlpo
D58h/ZV6K2/tI7INWLINlqGnxaL2B/Ld4zXsFH+t05XGh+JOiq8ueLi5tdfEPG9f
/pzuGia0Cv6WBv+jOHLCBe2kfgvBx+Y8Goi0tqL0hwKCGjpZlQkhRccrjbVSAPhW
2SfxOD1pulTwI1J75csYXjTc/heJvAv/ZpZSz3wldM3fyiwnmgfWKlMYqG6Xb9+T
2OHwEUJHJQnon/f25+yb9dWI7HYMw2fEIqu3CgbRyOviObcB9MM1uKVErkCYAUWY
W7Q8ShjNPrUguCPbw4YFPIwaazuhRbR8t2kRvfBOyTYwh3jo6U3eRL72Cov84uik
hnFtUdiusWtvV59ngZelREmd3iVKif2hxx7EoGDY/VV2Ru4C2X/xgJemKJeKSR/f
gm6pp8wbPSC4TBJOfP6IwYtoZKyu03miIeupPPUDxx0hLbx5j2e6EgVM5NVAeJFF
fu4MEkGvStZc+w==
=GK27
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2022-04-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
"A set of x86 fixes and updates:
- Make the prctl() for enabling dynamic XSTATE components correct so
it adds the newly requested feature to the permission bitmap
instead of overwriting it. Add a selftest which validates that.
- Unroll string MMIO for encrypted SEV guests as the hypervisor
cannot emulate it.
- Handle supervisor states correctly in the FPU/XSTATE code so it
takes the feature set of the fpstate buffer into account. The
feature sets can differ between host and guest buffers. Guest
buffers do not contain supervisor states. So far this was not an
issue, but with enabling PASID it needs to be handled in the buffer
offset calculation and in the permission bitmaps.
- Avoid a gazillion of repeated CPUID invocations in by caching the
values early in the FPU/XSTATE code.
- Enable CONFIG_WERROR in x86 defconfig.
- Make the X86 defconfigs more useful by adapting them to Y2022
reality"
* tag 'x86-urgent-2022-04-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu/xstate: Consolidate size calculations
x86/fpu/xstate: Handle supervisor states in XSTATE permissions
x86/fpu/xsave: Handle compacted offsets correctly with supervisor states
x86/fpu: Cache xfeature flags from CPUID
x86/fpu/xsave: Initialize offset/size cache early
x86/fpu: Remove unused supervisor only offsets
x86/fpu: Remove redundant XCOMP_BV initialization
x86/sev: Unroll string mmio with CC_ATTR_GUEST_UNROLL_STRING_IO
x86/config: Make the x86 defconfigs a bit more usable
x86/defconfig: Enable WERROR
selftests/x86/amx: Update the ARCH_REQ_XCOMP_PERM test
x86/fpu/xstate: Fix the ARCH_REQ_XCOMP_PERM implementation
generalized.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmJJV1gTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYof8tD/0Xs4qpxlR81PgZSJ3QJ9vok5tKpe3j
O+ZLvQtyc2dnkduSOpJXiKe5YxDZ39Ihb7Fb9ETSUFS0ohJFDYiR6bKVXqKBjp6g
Z0u57B3j/ZrZt9W3oK2BxlKBgen3MTYmybPQja+oTZfuu+Vd+DKD6NEyGcOZe53G
+ZzEnBevar+f+/ble4PmJrnu5fP63jlUDPlY6h7HnsS2+MYTlx8JOMyhc4v4KxpR
od4/9NUMbcpV4q2hReC5D22TArhr/7woNaCFswnOuk+mb9d8sPvqv9U8iHC/YoTM
IeX3Bt1qHRT++Sjkkup2/k0xAy50H/7wMbQP+Jb993rWlLiWSd2WY0OHZ+gWSfgG
oM6a2yAZ029klyMBvV0AdiAYpvhlDs36UZBLyIIa8M4zRgH9h+//F9UZ5qnt+0kp
ACTd/B+bksbvO4A1npxZ1fUWPw6L5a8730GIy/csvAsoRlOaITfCFVA98ob+36TF
JUdyuzRAOrbt3H7pRUB+xz0pxxPkceoBBwrBTcSw1cyIyV3b8CaFT2oRWY3nt+er
THWuiXY4Jy2wtNcHMhKIZKBCtUZ7sDUBhcnplxL+qoRJ0V340B2Kh1J8/0mnjDD+
Aks4E7Q3ogpyuMXAKDEGebyTPcRe0bQXyyjJVR9cuPn5i8AM9/rv5Iqem4Ed1hLK
dQeXuWx6zLcGrw==
=mJKF
-----END PGP SIGNATURE-----
Merge tag 'core-urgent-2022-04-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RT signal fix from Thomas Gleixner:
"Revert the RT related signal changes. They need to be reworked and
generalized"
* tag 'core-urgent-2022-04-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Revert "signal, x86: Delay calling signals in atomic on RT enabled kernels"
* Documentation improvements
* Prevent module exit until all VMs are freed
* PMU Virtualization fixes
* Fix for kvm_irq_delivery_to_apic_fast() NULL-pointer dereferences
* Other miscellaneous bugfixes
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmJIGV8UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroO5FQgAhls4+Nu+NqId/yvvyNxr3vXq0dHI
hLlHtvzgGzZisZ7y2bNeyIpJVBDT5LCbrptPD/5eTvchVswDh0+kCVC0Uni5ugGT
tLT/Pv9Oq9e0X7aGdHRyuHIivIFDC20zIZO2DV48Lrj/+r6DafB2Fghq2XQLlBxN
p8KislvuqAAos543BPC1+Lk3dhOLuZ8qcFD8wGRlcCwjNwYaitrQ16rO04cLfUur
OwIks1I6TdI2JpLBhm6oWYVG/YnRsoo4bQE8cjdQ6yNSbwWtRpV33q7X6onw8x8K
BEeESoTnMqfaxIF/6mPl6bnDblVHFp6Xhld/vJcgeWQTdajFtuFE/K4sCA==
=xnQ6
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
- Only do MSR filtering for MSRs accessed by rdmsr/wrmsr
- Documentation improvements
- Prevent module exit until all VMs are freed
- PMU Virtualization fixes
- Fix for kvm_irq_delivery_to_apic_fast() NULL-pointer dereferences
- Other miscellaneous bugfixes
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (42 commits)
KVM: x86: fix sending PV IPI
KVM: x86/mmu: do compare-and-exchange of gPTE via the user address
KVM: x86: Remove redundant vm_entry_controls_clearbit() call
KVM: x86: cleanup enter_rmode()
KVM: x86: SVM: fix tsc scaling when the host doesn't support it
kvm: x86: SVM: remove unused defines
KVM: x86: SVM: move tsc ratio definitions to svm.h
KVM: x86: SVM: fix avic spec based definitions again
KVM: MIPS: remove reference to trap&emulate virtualization
KVM: x86: document limitations of MSR filtering
KVM: x86: Only do MSR filtering when access MSR by rdmsr/wrmsr
KVM: x86/emulator: Emulate RDPID only if it is enabled in guest
KVM: x86/pmu: Fix and isolate TSX-specific performance event logic
KVM: x86: mmu: trace kvm_mmu_set_spte after the new SPTE was set
KVM: x86/svm: Clear reserved bits written to PerfEvtSeln MSRs
KVM: x86: Trace all APICv inhibit changes and capture overall status
KVM: x86: Add wrappers for setting/clearing APICv inhibits
KVM: x86: Make APICv inhibit reasons an enum and cleanup naming
KVM: X86: Handle implicit supervisor access with SMAP
KVM: X86: Rename variable smap to not_smap in permission_fault()
...
If apic_id is less than min, and (max - apic_id) is greater than
KVM_IPI_CLUSTER_SIZE, then the third check condition is satisfied but
the new apic_id does not fit the bitmask. In this case __send_ipi_mask
should send the IPI.
This is mostly theoretical, but it can happen if the apic_ids on three
iterations of the loop are for example 1, KVM_IPI_CLUSTER_SIZE, 0.
Fixes: aaffcfd1e8 ("KVM: X86: Implement PV IPIs in linux guest")
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Message-Id: <1646814944-51801-1-git-send-email-lirongqing@baidu.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>